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Abstract 

Traits are primitive units of code reuse that serve as building blocks of classes. In this re-

search, we enhance reuse by extending the capabilities of traits; in particular, we add model-

ing abstractions to them. 

Traits have a variety of benefits, including facilitating reuse and separation of con-

cerns. They have appeared in several programming languages, particularly derivatives of 

Smalltalk. However, there is still no support for traits that contain modeling abstractions, and 

no straightforward support for them in general-purpose programming languages. The latter is 

due to structural concerns that exist for them at runtime, especially traits that contain model-

ing abstractions.  

Model-driven technologies are making inroads into the development community, al-

beit slowly. Modeling abstractions such as state machines and associations provide new op-

portunities for reuse, and can be combined with inheritance for even greater reusability. 

However, issues with inheritance apply also when these new abstractions are inheritable 

units. This suggests that traits and models ought to be able to be synergistically combined. 

We perform a comprehensive analysis of using modeling elements in traits. We implement 

such traits in Umple, which is a model-oriented programming language that permits embed-

ding of programming concepts into models. 

The contributions of the thesis are: a) Adding new elements including state machines 

and associations into traits, hence bringing more reusability, modularity, and applications to 

traits; b) Developing an algorithm that allows reusing, extending, and composing state ma-

chines through traits; c) Extending traits with required interfaces so dependencies at the se-

mantic level become part of their usage, rather than simple syntactic capture; d) Adding tem-

plate parameters with associations in traits, offering new applications for traits in which it is 

possible to define design patterns and to have a library of most-used functionality; e) The 

implementation of all the above concepts, including generating code in multiple general-

purpose programming languages through automatic model transformation. 
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Chapter 1. Introduction 

Reuse has long been an important objective in software engineering [58]. In this thesis, we 

demonstrate enhanced mechanisms for reuse, building on the concept of traits [93], which 

are reusable elements that can be composed to build classes. We show how traits can be ex-

tended to incorporate deeper semantics and modeling abstractions like UML associations and 

state machines. Furthermore, we demonstrate how this can be accomplished for popular pro-

gramming languages. 

These enhancements allow traits to be used in mainstream development by both 

modelers and programmers. Enhanced traits can be used to help build libraries of reusable 

models or code, and can reduce duplication and accidentally-duplicated defects. We demon-

strate these capabilities by applying them to Umple [12,13,14,15,62], which is a model-

oriented programming language that permits embedding of programming concepts into mod-

els. 

We want to clarify that we are not talking about the semantically-distinct notion in 

C++ called traits classes [42,69]. They are small objects which carry information used by 

other objects to determine implementation details. For example, they can be used to indicate 

whether or not a type is “void” inside a C++ program. The use of the term “traits” in this pa-

per follows the usage of the broader object-oriented literature. 

This thesis has been written for readers who have knowledge of object orientation 

and programming languages, as taught at the undergraduate level to computer scientists and 

software engineers. However, we specified appropriate references for readers who may lack 

such background. 

1.1. Problem Overview 

Research in the area of software reuse has helped develop high-level languages, components, 

generative methods, new architectures, and domain engineering [17,41,70]. Abstractions, 
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such as those found in modeling languages, and inheritance play particularly important roles 

in facilitating reuse. 

Inheritance shows itself in various forms such as single inheritance, multiple inher-

itance, and mixins. However, these variations suffer from conceptual and practical problems. 

For instance, there is a troublesome situation named the “diamond problem” or “fork-join 

inheritance” for multiple inheritance [28,36,92,97]. For mixins, there are also problems of 

linear composition, dispersal of glue code, and fragile inheritance [93]. Linear composition 

in mixins means that we may find a situation in which the total order of mixins does not ex-

ist. Dispersal of glue code indicates that for conflict resolution, sometimes developers need 

to modify the mixins, introduce new mixins, or use the same mixin twice. The process (or 

code) needed to resolve these issues adds complexity. 

Model-driven technologies are making inroads into the development community, al-

beit slowly. Modeling abstractions such as state machines and associations provide new op-

portunities for reuse, and can be combined with inheritance for even greater reusability. 

However, the issues with inheritance described earlier apply also when these new abstrac-

tions are inheritable units. 

Therefore, the problem we address is how such modeling elements can be reused in a 

more flexible manner than it is possible through inheritance. In other words, we investigate 

how to improve reusability at the modeling level for both low- and high-abstraction model-

ing elements including methods, associations, and state machines.  

1.1.1 Problem Scenarios Focusing on State Machines 

The following are several scenarios in which maximum reuse of modeling elements, in this 

case state machines, is not possible with inheritance. These scenarios are described symboli-

cally to simplify understanding (Figure 1). The research presented in this thesis addresses 

each of these scenarios. 

 Scenario 1: Class A has a state machine called aSM1 and class B requires to reuse or 

extend state machine aSM1. The classes do not have superclasses (Figure 1.scenario 

1). 
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 Scenario 2: Class A has a state machine called aSM1 and class B requires to reuse or 

extend state machine aSM1. However, class B already has a superclass called C 

(Figure 1.scenario 2). 

 Scenario 3: Class A has two state machines called aSM1 and aSM2. Class B requires 

to reuse or extend just state machine aSM1. Class B might have a superclass or not 

(Figure 1.scenario 3). 

 Scenario 4: Class A has two state machines called aSM1 and aSM2. Class B has a 

state machine called bSM1 with two states s1 and s2. Class B wants to reuse state ma-

chine aSM1 as the internal behavior of state s2. In fact, class B wants to make state s2 

a composite state (Figure 1.scenario 4). 

 Scenario 5: Class A has a state machine called aSM1 and class B wants to reuse state 

machine aSM1 with different state and event names. This is mostly the case when 

domains of classes A and B are different. For example in Figure 1.scenario5, class B 

wants to change state names S1 and S2 to P1 and P2; and also event e1 to t1. 

 

 

Figure 1. Different reuse scenarios for state machines 
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1.1.2 A Concrete Example 

An instance of the scenarios defined above can be found in the alarm clock described in Ob-

jectcharts [30], an incremental way to extend state machines. Figure 2, reproduced from that 

paper, depicts two state machines mainSM and timeSM for the class AlarmClock. The state 

machine mainSM has two states alarmOn and alarmOff with two events set and cancel. The 

state alarmOn is a composite state with its own nested state machine, including states quiet 

and ringing. The state machine timeSM has one cyclic state called timeUpdate. 

Scenarios 1 and 2 would occur in the situation where a designer wants to create an 

advanced alarm clock that has features like snoozing. Scenario 2 would apply if the advanced 

alarm clock already has a superclass. Scenario 3 could apply in the case of reusing state ma-

chine timeSM as it happens to be useful in other classes that have time functionality. Scenar-

io 4 could apply in a situation where the nested state machine inside state alamOn comes 

from a state machine related to a watch. 

Scenario 5 can be illustrated by considering the protocol between two states alarmOn 

and alarmOff. This protocol can easily be mapped to any electronic device if we just change 

the names of states and events (alarmOn=on; alarmOff=off; set=turnOn; cancel=turnOff). 

Taken together, these reuse scenarios enable state machines to be easily built from already-

existing state machines. 

 

 

Figure 2. State machine related to the Alarm Clock, Coleman et al. [30] 
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1.1.3 Existing Partial Solutions 

The current dominant solution for the scenarios above is based on inheritance. Using inher-

itance can easily satisfy scenario 1 in Figure 1 because it is a direct use of a state machine. 

Scenario 2 is not straightforward because class B already has a superclass. This can be re-

solved by having a root class called R containing the state machine aSM1. Then, class A and 

class C would extend R. However, this may not be possible because it might break the hier-

archy of classes. Even if it is possible, this pollutes all other classes in the hierarchy that do 

not need the state machine aSM1, in this case, class C. Another option is to use associations. 

In this case, an association is created between class A and class B. Then, wrappers and dele-

gation are implemented to achieve the behavior needed. This requires special implementation 

for every case, increases coupling and pollutes the implementation of class A with additional 

methods. Scenarios 3, 4, and 5 are impossible to achieve because inheritance just allows re-

using an element as is. 

Another approach is to use aspects [56], in which state machines are elements of the 

advice models. Aspects then need to specify to which points or elements these state machines 

must be applied. The main issue with such aspects is that classes that want to reuse state ma-

chines do not specify this need themselves; instead, such need is decided for them by the as-

pects. Therefore, the classes lose their authority to specify which elements they need to re-

use. We will further discuss the use of aspects in related work, Chapter 4.  

1.2. Overview of the Solution 

In order to tackle aforementioned problems, we use the concept of traits. Traits were first in-

troduced in dynamically-typed class-based languages by Schärli et al. [93]. A trait, in its 

original form, is a group of pure methods that serves as a building block for classes. It is a 

simple but powerful unit of code reuse that we will discuss in detail in Section 2.2. Traits can 

be used to structure object-oriented programs in a compositional manner. 

Knowing the reuse capability of traits, we bring traits to the modeling level so as to 

be able to obtain such reuse flexibility for developing models. Model-based traits extend 

classic traits, so can contain methods, but also can have modeling elements such as state ma-

chines and associations. They are enriched with operators and a composition mechanism so 
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they can be integrated better with model-driven development. Our extensions to traits allow 

us to satisfy all reuse scenarios explained in Section 1.1.1. 

Our solution also considers the fact that those scenarios should be implementable in 

major object-oriented programming languages. Therefore, it offers a mechanism that allows 

implementing model-based traits in such programming languages. 

1.3. Contributions 

In this thesis, we show that we can tackle limitations of reusability based on inheritance at 

the modeling level for object-oriented systems by adopting a new approach based on traits. 

We use this approach to define modeling elements in traits and reuse those elements with 

more flexibility than they could be reused by the concept of inheritance. We also show that 

the systems developed with our approach can be implemented with object-oriented pro-

gramming languages. 

The contributions of this thesis are as follows: 

 

 Bringing the concept of traits to the modeling level and extending it with modeling 

concepts so traits can be used in model-driven development. 

 A mechanism and operators to reuse, extend, and compose state machines. 

 Extending traditional traits with required interfaces so dependencies at the semantics 

level become part of their usage, rather than simple syntactic capture. 

 A model transformation to enable model-level traits to be implementable in object-

oriented programming languages. 

 A concrete implementation of all of the above in Umple [12,114]. 

 Two cases studies that show how modeling elements can be reused using traits. 

 Reengineering two systems to use model-level traits, showing how our approach can 

be utilized to develop significant software systems. 

1.4. Validation 

We have validated our approach by implementing two systems and by reengineering two 

other systems. The results are provided in Chapter 5. 
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Our results confirm that traits can be used at the modeling level to encapsulate mod-

eling elements such as methods, associations, and state machines. Moreover, traits can be 

applied through code generation automatically in multiple object-oriented programming lan-

guages. 

Furthermore, our validation shows that modeling elements defined in traits have more 

opportunity for reuse in comparison with specifying them in classes and reusing by way of 

inheritance. This is explained in Section 1.1.3.  

Our validation also shows that having traits at the modeling level enables modeling 

and implementation of real systems, demonstrating that our work is practical. We also show 

that a system modeled with traits has the same behavior as an equivalent system without 

traits. 

Finally, we used test-driven development to further validate our implementation. The 

tests cases have been designed to make sure that what is defined as facts (rules) for traits at 

the modeling level are implemented correctly, and in particular that the resulting generated 

code behaves as expected. 

1.5. Choice of the Tool (Umple) 

Our work does not depend on any specific programming language, but we require a concrete 

platform to explore the notion of model-level traits and show the feasibility of the features 

and extensions. We have chosen Umple [12,114], a textual modeling language, as this plat-

form. Umple is an open source modeling tool and programming technology that enables 

what we call Model-Oriented Programming. The main relevant features of Umple related to 

this work are as follows: 

 It is a modeling language. This is important because our work extends traits to be 

used in model-driven development processes. 

 It offers a textual syntax for modeling. This simplifies the way modeling concepts 

can be extended. 

 It allows writing executable parts of models in any programming language supported 

by Umple. Therefore, such capabilities can be inherited by traits. 
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 It is enriched by code generators for several programming languages (currently Java, 

PHP, and C++ are the most supported ones), so traits and our extensions can be trans-

formed to those languages. 

 It is an open source project, so our work is immediately available to all developers 

and researchers. 

 

In this work, we introduce traits into Umple, however, being able to graphically rep-

resent traits along with their elements and operators is also key for model-driven engineer-

ing. Although, we adopted a simple graphical representation for traits (described in Section 

2.2.10) based on the previous research conducted by Schärli et al. [93] and extended it with 

our notation, we believe more studies are needed in this direction to represent traits as mod-

eling elements in graphical modeling languages. Our suggested agile approach for graphical 

languages such as UML to obtain benefits from traits could be to implement the concepts of 

traits and their operators under a UML profile.  We consider this as future work. 

It should be point out that we focus on modeling languages (or frameworks) which 

are compatible with the concepts of object-orientation and UML. The philosophy of traits 

can be used in other modeling frameworks; however, new sets of studies are required to in-

vestigate which elements of each modeling language can be represented in traits, what kinds 

of conflicts might arise, and what operators would be required. These kinds of challenges are 

not explored in this work, and are left as future work. 

1.6. Limitations of the Work 

In model-driven software development, a system can be modeled from different perspectives. 

These perspectives are expressed through diagrams (or modeling elements) such as class di-

agrams, state machines, and activity diagrams. In this work, we extend traits to have associa-

tions, state machines, and attributes. Traits have the potential to contain other modelling el-

ements too, but they are not covered in this work. 

This work does not propose a formal graphical representation for concepts added to 

traits. We do present some of our examples using a graphical representation for basic fea-

tures of traits, but we leave validation of the usability of this notation to future work. 
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The model transformations designed and implemented as part of this work are com-

pletely tested at the modeling level. This means they can be used to construct a valid system 

in any programming language generated by Umple. However, we only tested the generated 

code in the Java language. More work would have to be done to validate the generated code 

for other languages. 

Finally, all our concepts, extensions, and algorithms have been implemented in Um-

ple and have been subjected to many test cases. However, we have not applied formal meth-

ods to our work. We propose to do this as a future work because it would require formaliza-

tion of all of Umple, and this is just currently being started by others. 

1.7. Publications 

The following scientific papers have been published or submitted by the author and are di-

rectly related to this thesis. During the time of writing this thesis, the author also published 

six additional papers that were not directly related to the thesis, and hence are not listed here. 

The first author is the main author. 

1.7.1 Finalized Publications 

 Vahdat Abdelzad, Timothy C. Lethbridge, Promoting Traits into Model-Driven De-

velopment, Software & Systems Modeling, pp. 1-21, 2015. [2]  

 Vahdat Abdelzad, Extended Traits for Model-Driven Software Development, Doc-

toral Symposium at MoDELS, CEUR Workshop Proceedings 1531, 2015. [1] 

 Timothy Lethbridge, Vahdat Abdelzad, Mahmoud Husseini Orabi, Ahmed Husseini 

Orabi, Opeyemi Adesina, Merging Modeling and Programming using Umple, Inter-

national Symposium on Leveraging Applications of Formal Methods, Verification 

and Validation (ISoLA), Springer LNCS 9953, pp. 187-197, 2016. [63] 

1.7.2 Submitted Publications 

 Vahdat Abdelzad, Timothy C. Lethbridge, Increasing the Flexibility and Reusability 

of State Machines using Traits and Composition, submitted to IEEE Transaction on 

Software Engineering, 2017. 
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1.8. Thesis Outline 

The rest of this thesis is organized as follows: 

In Chapter 2, we introduce preliminary concepts and backgrounds related to the thesis 

including the required syntax and semantics of Umple. This chapter also encompasses the 

basic definition needed to understand traits. This is required to be able to understand better 

Chapter 3. People who are familiar with Umple, as well as traits in any programming lan-

guages, may skip this chapter. 

In Chapter 3, we describe traits in model-driven software development. We first de-

scribe requirements of such traits and then explain how those traits should be processed in 

modeling languages. Then, we concentrate on semantics of our flattening algorithm that al-

low implementing model-based traits. This semantics is independent of actual implementa-

tion of such an algorithm in a specific modeling language. Furthermore, we present syntax 

and semantics of model-based traits implemented in Umple, including traits that contain state 

machines, associations, and required interfaces, as well as operators to deal with conflicts. 

We explain how model transformations are performed in Umple so as to enable traits to be 

accessible in major object-oriented programming languages. The chapter concludes by ex-

plaining the traits metamodel. 

In Chapter 4, we present related work regarding traits and the way state machines are 

reused, extended, and composed through traits. The chapter also discusses in which areas 

traits could be useful. 

In Chapter 5, three different scenarios are presented in order to demonstrate the use-

fulness and practicality of the work. The first one, a geometric system, represents how basic 

features of traits, implemented in Umple, can be used to build a system. The next two case 

studies show how traits in Umple can be useful if they are applied to already-developed sys-

tems in Umple: the Umple compiler and an Umple translation of JHotDraw. We demonstrate 

the usefulness of the work by way of an industrial case study in which we model a frame-

work for service-oriented systems. Furthermore, we explain how we used test-driven ap-

proach at the modeling level to make sure our extensions are valid. 

In Chapter 6, we discuss reusability aspects of our work, challenges we have faced 

during this research, and challenges might be faced with users of our work. 

In Chapter 7, we conclude our work and present future work. 
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Chapter 2. Background 

In this chapter, we describe the required concepts needed to understand the rest of the thesis. 

First we give a brief overview of Umple, in which our approach has been implemented. 

Then, we outline the pre-existing work on basic traits, the research we are extending. 

We utilize domain-specific and symbolic examples whenever it is required to de-

scribe better the meaning of concepts. Symbolic examples are preferred to domain-specific 

examples because the meaning can be inferred without the need to domain knowledge. 

2.1. Umple 

Umple is an open-source software development technology designed to fully merge model-

ing and programming [115]. An Umple system looks and feels like code when a program-

ming perspective is preferred but looks and feels like a model when it is explored in a model-

ing (e.g., graphical) environment [63]. Indeed, people who already know programming lan-

guages such as Java and C++ can add modeling concepts to their programs as they proceed, 

while people with a modeling perspective can model their systems with Umple and incre-

mentally add execution elements (such as methods) into the model according to the lan-

guages they prefer. This key capability in Umple is called model-code duality. This capabil-

ity is preserved in our work with traits as well. 

Umple also supports text-diagram duality, which allows developing systems using 

both a textual and a graphical syntax. However, Umple concentrates more on textual syntax-

es in favor of ease of editing, and better model management through version control systems 

such as Git [52]. It supports major programming languages and generates metrics for various 

forms of analysis, formal methods’ code (e.g., Alloy [5] and SMV [4]), and SQL database 

code in addition to other modeling syntax such as XMI. Umple systems can be manipulated 

by the Eclipse IDE, command line technologies, and a web-based environment [116]. 

Most modeling concepts in Umple have been adapted from UML [117], however, it 

has its own concepts which are not available in UML. Umple’s design philosophy emphasiz-
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es simplicity so it does not incorporate everything available in UML. Key model types in-

clude classes, associations, state machines, constraints, patterns, aspect-orientation, and trac-

ing [7]. An extensive set of examples of Umple can be found online, including in Umple-

Online [116], and in the Umple GitHub site [118]. In the following sections, we describe 

syntax and semantics of the main elements of Umple utilized in this thesis.  

Listing 1. A simple Umple example 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 

class Line { 
  isA GeometricObject; 
  Point pA; 
  Point pB; 
} 
class Cube{ 
  isA Polyhedra; 
  Double edgeLength; 
  Double volume() { /*implementation */ }    
} 
class Canvas{ 
  0..1 -> * GeometricObject objects; 
  internal Boolean selected = false; 
  status{ 
    idle{ 
      draw [selected]-> drawing; 
      close -> end; 
    } 
    drawing{ 
      done -> /{ saveTemporary(); } idle; 
      entry /{ changeCursor(); } 
      do { draw(); } 
      exit /{ changeCursor(); }   
    } 
    final end{} 
  } 
} 

 

 

2.1.1 Classes 

A class in Umple defines an object-oriented class available for use as a type. Classes are de-

fined by the keyword class. The name of class comes after the keyword followed by a pair of 

curly brackets which encompasses all properties (content) related to the class (it is also called 

the body of class). A class can also be abstract and this is achieved through the keyword ab-

stract. This keyword appears in the body of a class followed by a semicolon. The graphical 

syntax for a class is that of UML. 
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Listing 1 shows a simplified Umple model of a graphical system described in more 

detail as one of our case studies in Section 5.1. As seen, there are three classes called Line, 

Cube, and Canvas defined in lines 1, 6, and 11 respectively. Figure 3 depicts the UML class 

diagram related to the Umple model in Listing 1. 

 

 
 

Figure 3. The visual representation of Umple code in Listing 1 

2.1.1.1 Generalization 

In order to have generalization (also called inheritance) among two classes, the keyword isA 

is used followed by the name of the superclass and ended by a semicolon. Umple supports 

only single inheritance, although the concept of traits described later in this thesis allows de-

velopers to overcome this limitation. In Listing 1, for example, class Line is a subclass of 

class GeometricObject defined in line 2. Class Cube is a subclass of class Polyhedra defined 

in Line 7. It is also worth pointing out that the keyword isA is also used for implementing 

interfaces and using traits, which are described as we progress. 

2.1.1.2 Primitive types 

Umple supports some built-in primitive types that can be used in models. It is rec-

ommended to use these primitive types instead of platform-specific types in an Umple model 

because the Umple compiler can recognize them and transform them into proper primitive 

types in target languages. These primitive types are Integer, Float, String, Double, Boolean, 

Date, and Time. 
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2.1.1.3 Attributes 

Attributes are a representation of data held by classes. Each attribute has a type and can be 

defaulted to a certain value. If there is no type defined for an attribute, the type String is used 

by default. 

A value can be given to an attribute upon initialization through the operator = fol-

lowed by a value and a semicolon. Attributes can have stereotypes (or modifiers) such as in-

ternal and autounique that make them more specified. The comprehensive list of these stere-

otypes can be found in attribute section of the Umple user manual [114]. If an attribute does 

not have an initialization value, one parameter will be added to the constructor of the class in 

order to require developers to initialize the value. 

By default, Umple generates accessor (get-) and mutator (set-) methods for each at-

tribute; certain stereotypes override this. As seen in Listing 1, class Line has two attributes 

called pA and pB whose types are Point (lines 3 and 4). Class Cube has a Double attribute 

(line 8) called edgeLength and class Canvas has a Boolean attribute called selected (line 13). 

The latter attribute has a stereotype named internal and a default value which is false. When 

these classes are transformed to target language code, classes Line, Cube, and Canvas will 

have the accessors and mutators depicted in Table 1.  

Table 1. Accessors and mutators related to the Umple model in Listing 1 

(N/A: Not Applicable) 
 

Class Attribute Accessor Mutator 

Line pA getPA setPA 

Line pB getPB setPB 

Cube edgeLength getEdgeLength setEdgeLength 

Canvas selected N/A N/A 
 

 

Umple allows modelers to define attributes (or other elements) based on the pro-

gramming languages they are familiar with. This is possible with Umple because Umple 

supports incorporating programming languages’ structures along with modeling elements. 

Our recommendation is to use the Umple syntax to make the model more reusable. 
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2.1.1.4 Methods 

Umple allows modelers to extend the functionality of a class with user-defined methods. 

Such methods are defined similarly to the way methods are defined in Java. Methods’ se-

mantics and properties follow the UML conventions for methods. 

A standard Umple user-defined method will specify the return type, the name, the ar-

gument list, and then the method body in curly brackets. The method body is not parsed by 

Umple, but is output just as the user has written it. It is possible for the user to specify differ-

ent bodies, one for each language that can be generated, by preceding the curly brackets by 

the name of the language, such as ‘Java’, or ‘Cpp’. 

The default visibility for Umple user-defined methods is public, but it can be changed 

explicitly. The generated output for the method will use the correct format for specifying the 

return type, signature, and arguments as required by the language being generated. 

Inside methods, developers may call other user-defined methods or any of the API 

methods generated by Umple that access the Umple attributes, associations, and state ma-

chines (described as we progress). To determine what API methods are available to be called 

by methods, refer to the API reference [48] or generate Javadoc from an Umple file. 

As an example of a user-defined method, Listing 1 shows a method called volume() 

for the class Line in Line 9. The method volume() has a Double return type with no parame-

ter. Its visibility is also public, by default. The method has a body (implementation) replaced 

by a comment in this example for brevity. 

Abstract methods in Umple are defined by the keyword abstract at the beginning. 

The structure of an abstract method is similar to a method without a body. In fact, instead of 

curly brackets and its content, a semicolon is used. For example, the abstract form of the 

method volume() in Listing 1 would be as follows: 

abstract Double volume(); 

2.1.1.5 Code blocks 

Umple allows different programming languages to be used as its action language. By action 

language, we mean the blocks of code that are present in user-defined methods as well as in 

other constructs such as computed attributes, state machine actions, and state machine activi-

ties. We will discuss the latter items later. Such code blocks are always indicated by target-
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language code in curly brackets, optionally preceded by the target language name (e.g., Java 

or Cpp). For example, if a class has a method, its implementation can be written by any 

programming language supported by Umple. The target language to be generated by the 

compiler is specified directly using a ‘generate’ keyword in the Umple code, or as an argu-

ment when invoking the Umple compiler. This language will be used to select which code 

blocks are output. By default, Umple generates Java as its target. 

All code blocks that are not tagged with a target language are assumed to be written 

in the target language that is currently being generated. This simplifies the design of systems 

that are always intended to be generated in one target language (e.g., an all-Java system), as 

the ‘Java’ keyword then does not need to be specified before every set of curly brackets. De-

tails of all supported target languages can be found in the grammar part of the Umple user 

manual [51]. As an example, the C++ implementation of the method volume() in Listing 1 

would be as follows:  

Double volume() Cpp{/*implementation */} 

2.1.2 Interfaces 

An interface in Umple defines a list of methods that are implemented in one or more classes. 

An interface is defined by the keyword interface followed by a unique name and a pair of 

curly brackets. The signatures of all methods of interfaces must be defined inside curly 

brackets. A class implements an interface through the keyword isA, just like a class extends 

another class. A class can implement more than one interface. Moreover, an interface can 

extend another interface as well. This is also achieved through the keyword isA. 

Listing 2. A simple interface example in Umple 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 

interface I1 { 
  void method1(); 
} 
interface I2{ 
  isA I1; 
  void method2();    
} 
class C{ 
  isA I2; 
  void method1() { /*implementation */ } 
} 
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Listing 2 shows an example in which two interfaces I1 and I2 are defined in lines 1 

and 4. Interface I1 has an abstract method method1() (line 2). Interface I2 extends interfaces 

I1 (line 5) and has its own abstract method method2() (line 6). Class C declares that it im-

plements interface I2 in line 9 and also implements one of its abstract method method1(). 

However, class C does not have an implementation for the abstract method method2(). If 

such a case happens, the Umple compiler detects and automatically implements the method. 

The implementation has an empty code body and it is there to make sure the final system will 

be able to be built. Umple developers use this technique to develop a prototype faster. 

2.1.3 Umple Mixins 

Mixins in Umple are designed to reduce the complexity of large systems and add flexibility 

to design. Umple constructs such as classes can be split into several parts, each typically in a 

different file. The multiple definitions are combined to create a complete definition. For ex-

ample, through mixins, we can define a class with one set of attributes in one file, and a dif-

ferent set of attributes in a second file. When the Umple model is built, these classes are 

mixed to gather and compose the final class. This allows separate features to be separately 

developed. Indeed, in some cases, only one of the features may be needed; in that case one of 

the files can be omitted. Another use of mixins is to keep the user-defined methods of a class 

in a separate file from the ‘pure’ modeling elements of that same class, such as the attributes 

and associations. 

An example of mixins is in Listing 3. This is a symbolic example in which there are 

two classes called C with their own unique attributes and methods. These classes are inside 

two files called model-file1.ump and model-file2.ump (part a). These can be combined using 

the Umple expression, described below, that would be present in a third Umple file. 

use model-file1.ump; use model-file2.ump; 

     

Once the final model is built, the result will be equal to what would have been 

achieved if the model in Listing 3.b had instead been present. It is worth noting that the se-

mantics of Umple mixins differs somewhat from the general semantics of mixins defined in 

the literature [28]. Specifically, while in Umple multiple definitions of a class with the same 

name are merged and any elements of the class can participate in this merging (attributes, 
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methods, and so on), in other languages (such as Ruby), mixins are classes with different 

names whose methods are merged into multiple client classes. 

Listing 3. A symbolic mixin example in Umple 

a b 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 

// model-file1.ump 
class C { 
  attribute1; 
  attribute2; 
  void method1 (); 
  void method2() 
} 
 
// model-file2.ump 
class C { 
  attribute3; 
  attribute4; 
  void method3(){/*impl… */} 
  void method4(){/*impl… */} 
} 

// model-file.ump 
class C { 
  attribute1; 
  attribute2; 
  attribute3; 
  attribute4; 
  void method1(){/*impl… */} 
  void method2(){/*impl… */} 
  void method3(){/*impl… */} 
  void method4(){/*impl… */} 
} 

 

 

2.1.4 Associations 

Umple supports directional and bidirectional associations, as well as compositions, which are 

associations with additional constraints. It uses the symbols -- for bidirectional, -> for direc-

tional, and <@>- for composition associations. For example, line 12 of Listing 1 shows a 

direct zero or one to many association between the class Canvas and GeometricObject. 

Multiplicities appear before the name of classes and as in UML can be zero or one 

(0..1), one (1), zero or many (*), one or many (1..*), or have specific upper and lower 

bounds. Role names are optional and appear after the name of a class. If there is no specified 

role name, Umple automatically generates suitable names based on the multiplicity and 

names of involved classes. The association defined in line 12 has a defined right role name 

called objects, while the left side role name is automatically determined to be canvas. 

In the same manner that Umple creates accessors and mutators for attributes, it cre-

ates useful APIs for associations. The number of API methods and their signatures depend on 

the type of each association, and particularly the values for the multiplicities at both ends of 

the association. Furthermore, based on the type of association, Umple might add specific pa-
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rameters to the constructor of classes. For example, Umple generates the Java APIs described 

in Table 2 for the association defined for the class Canvas. The signatures of APIs are self-

explanatory.  

Table 2. Generated APIs for directional associations 

public GeometricObject getObject(int index) 

public List<GeometricObject> getObjects() 

public int numberOfObjects() 

public boolean hasObjects() 

public int indexOfObject(GeometricObject aObject) 

public static int minimumNumberOfObjects() 

public boolean addObject(GeometricObject aObject) 

public boolean removeObject(GeometricObject aObject) 

public boolean addObjectAt(GeometricObject aObject, int index) 

public boolean addOrMoveObjectAt(GeometricObject aObject, int index) 
 

2.1.5 State Machines 

State machines are widely used to model discrete event-driven behaviors of systems, or parts 

of systems [47,95,115]. For example, they can model the behavior of object-oriented classes 

and have been used to develop real-time, desktop, mobile, and web-based systems. They 

have also been supported with a range of verification and testing techniques [39,73].  

Umple supports UML state machine semantics. However, it does not support non-

deterministic state machines. State machines control the behavior of instances of classes; it is 

a key way that UML envisions using state machines [117]. There is considerable literature 

focusing on such state machines and also on code generation from such machines 

[30,34,79,95,96] to avoid the need for manual coding of their logic. 

A state machine in Umple is defined by a unique name inside a class followed by a 

pair of curly brackets. All elements related to the state machine must be defined inside the 

brackets. For example, there is a state machine called status in Listing 1 for class Canvas, 

defined in lines 14-26. 

In Umple, a class can have several state machines. Transitions of a state machine 

cannot have a destination state in another state machine. However, since events assigned to 
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these state machines belongs to a class, multiple state machines can communicate with each 

other indirectly through calling those events in actions. Umple supports code generation for 

state machines in Java and C++. At the current time state machine code is not generated in 

other target languages such as PHP and Ruby. In the following sections, we describe state 

machines’ elements and their syntax.  

2.1.5.1 Simple states 

A simple state is defined by a unique name followed by a pair of curly brackets inside state 

machines. Simple states can have do activities, exit actions, and entry actions; these are all 

described in the coming sections. A simple state can be the source or destination of transi-

tions. However, they cannot encompass other states. For example, there are two simple states 

belonging to state machine status in Listing 1 named idle and drawing. They are defined in 

lines 15 and 19 and have their own content expressed in their curly brackets.  

2.1.5.2 Transitions 

A transition is shown as a directed connection between a source and a destination state. A 

transition may include an event specification, a guard, and actions. An event specification is 

a method name (possibly followed by arguments). An event occurs when there is a call to a 

method whose signature matches the event specification. If the state machine is in the source 

state and the event occurs, then the state machines changes to be in the destination state; the 

transition is said to be triggered or fired. 

The triggering of a transition can be prevented by the presence of a guard. A guard is 

a Boolean expression in square brackets; it is evaluated when the event occurs. If the guard 

evaluates to false, then the transition is not triggered. 

Transitions without event specifications are called auto transitions. In the normal 

case, when a state machine enters the source state of an auto transition, the state will be im-

mediately changed to the destination state. In other words, the transition is triggered as soon 

as the state machine enters the source state. This behaviour can be blocked by a guard as de-

scribed above. In other words, checking whether a guard is true or false happens before trig-

gering an auto transition. Moreover, a slightly different behaviour occurs if there is a do ac-

tivity, as discussed later. 
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Once a transition is triggered (normal or auto transition), before changing the current 

state of the state machine to the destination state of the transition, any action of the transition 

is executed. 

Transitions are defined through the symbol -> in states. The source of a transition is 

defined implicitly because a transition is defined in a state. Therefore, the source state of a 

transition is the state in which the transition is defined. The destination state, which is man-

datory, should appear after the symbol -> followed by a semicolon. The event specification 

of a transition is defined on the left side of the symbol; this is followed optionally by a pair 

of square brackets that encompass a guard expression. The action of a transition is defined 

before the name of the destination state through the symbol slash (/) followed by a pair of 

curly brackets enclosing a code block. There may be more than one code block, each for a 

different target language, as described in Section 2.1.1.5. 

For instance, line 16 of Listing 1 shows a transition leaving the state idle and transi-

tioning to the state drawing with the event draw and a guard which has a condition on a 

Boolean attribute called selected; while line 20 shows a transition with an action, which calls 

the method saveTemporary(); 

2.1.5.3 Events 

Events specifications have the structure used for defining methods in classes, without the 

body. They can have name and parameters, but their return type is always Boolean. The 

Boolean return value can be used in target language code to determine whether or not a tran-

sition was successfully triggered. If an event method is called, and there is no matching event 

specification in any current state, or transition guards block such transitions, then the event 

method returns false. 

 If an event does not have parameters, the parentheses can be removed to make the 

syntax simpler. For example, the event used for the transition defined in line 20 in Listing 1 

has the name done without any parameter. If the event had an integer parameter, the transi-

tion would be defined as follows: 

done(Integer i) -> /{ saveTemporary(); } idle; 
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2.1.5.4 Guards 

As outlined earlier, guards are Boolean expressions used to apply restrictions on the way 

transitions are triggered. They are surrounded by a pair of square brackets; this is consistent 

with other uses of Boolean expressions in Umple, such as class preconditions or invariants. 

Within guards, modelers can refer to attributes, mutators, accessors, and other API 

methods such as those generated for associations. Umple supports major arithmetic and 

Boolean operators such as “and”, “or”, and “<” in guards. Furthermore, modelers can write 

their Boolean expression in any target language they prefer, however, in that case they will 

not be able to benefit from model analysis. If this case is chosen (i.e., Umple’s attempt to 

parse the guard is not successful), Umple will transfer such guard code without modification 

to the target language when the code is generated. For example, line 16 in Listing 1 shows a 

guard whose Boolean expression is just a Boolean attribute called selected. Umple is able to 

parse this, so it can be analysed. 

2.1.5.5 Transition actions 

Transition actions are executable logic executed when a transition is triggered. They are exe-

cuted before a state machine changes its current state. As pointed out in Section 2.1.5.2, such 

actions are defined by the symbol slash (/) followed by a pair of curly brackets. The execu-

tion part of actions is written inside curly brackets and includes setting attributes or calling 

methods. The execution part must have negligible logical execution time. It is the responsi-

bility of a developer to write code in actions that executes essentially instantaneously – in 

other words code that does not loop or have the potential to be blocked in some way. 

An example of a transition action is given in line 20 of Listing 1. It shows an action 

calling method saveTemporary(). Modelers can use target-language specific execution code 

in actions. In that case, as we discussed in Section 2.1.1.5 on Code Blocks earlier, they need 

to specify the name of target language before the curly bracket.  

2.1.5.6 Entry actions 

Entry actions of a state are executed immediately when the state becomes the current state of 

its state machine. In other words, when a state is entered by a transition. When such a transi-

tion is triggered, the entry action of the destination state is executed immediately upon entry 
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into the new state (after any transition action). Entry actions have a similar appearance to 

transition actions, except that they are preceded by the keyword entry. As with transition ac-

tions, they are followed by the symbol slash (/) and a pair of curly brackets containing code 

that must run in negligible time. 

For instance, line 21 in Listing 1 depicts an entry action for the state drawing. It calls 

method changeCursor() as it execution command. Umple allows having more than one entry 

action in states. Each entry action is defined independently and they are executed in the se-

quence they appear in the Umple model.  

2.1.5.7 Exit actions 

Exit actions of a state are executed immediately when the state is no longer the current state 

of its state machine. In other words, when a state exits due to triggering of a transition. When 

a transition is triggered, first the exit action is executed and then any transition action is exe-

cuted. Exit actions are defined just like entry actions, except using exit. 

For example, line 23 in Listing 1 depicts an exit action for the state drawing. It calls 

method changeCursor(). Umple also allows having more than one exit action for states. Each 

exit action is defined independently and they are executed in the sequence they appear in the 

Umple model. 

Later on we will discuss nested states; it is worth noting that when exiting several 

levels of nesting, the exit actions are called sequentially starting with the innermost (most 

nested) state being exited. Any transition action then occurs. After this any entry actions oc-

cur starting with the outermost (least nested) state being entered. 

2.1.5.8 Do activities 

When longer-running or potentially blockable code is to be executed while in a state, a do 

activity is used. Such code cannot be executed in actions because they do not have negligible 

logical execution time. The activity defined in the do activity of a state is run in a separate 

thread that can continue to execute as long as the state machine remains in that state. Any do 

activity is initiated after entry actions are completed. A do activity might run to completion 

of its own accord, but if it is still running when an exit transition is triggered, then its thread 

will be terminated; this occurs before any exit action is run. 
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In the case of a state with an auto-transition and a do-activity, the auto transition is 

only triggered when the do-activity runs to completion. Handling do activities in threads al-

lows the state machine to 'stay live' and be able to respond to other events, even while the do 

activity is running. 

Do activities are defined by the keyword do followed a pair of curly brackets contain-

ing the code to execute. For instance, line 22 in Listing 1 shows a do activity that runs the 

method draw(). Like entry and exit actions, Umple allows having more than one do activity. 

All of them are defined separately and are started in their own threads in the sequence they 

appear in the Umple model. 

2.1.5.9 Initial state 

Every state machine needs to have an initial state to make sure execution is started from the 

right state. Initial states can be used to set the value of some attributes or trigger some actions 

required for the state machines. In Umple, initial states are defined implicitly. In fact, the 

first state that is defined inside a state machine is considered as the initial state. For example, 

the initial state of the state machine status in Listing 1 is idle (line 15).  

2.1.5.10 Final states 

Final states are states upon whose entry the state machine must be terminated. More specifi-

cally it means the instance of the class including the state machine must be deleted. Final 

states are defined using the keyword final within the definition of such states. Final states 

cannot have do activities or exit actions. However, they can have entry actions. They are al-

lowed to be destinations of any transition, but they cannot be the source of any transition. A 

state machine can have more than one final state. For example, the final state for the state 

machine status in Listing 1 is end (line 25). 

2.1.5.11 Composite states 

Composite states are different from simple states because they can have other states inside. 

In fact, they allow an unlimited hierarchy of states. A composite state must have at least one 

simple or composite state inside it. Composite states can have, like simple states, their own 

entry and exit actions, transitions, and do activities. 
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 Listing 4. A state machine for a television with a composition state 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 

class Television { 
  mode{ 
    on{ 
      turnOff -> off; 
      stop{ 
        play -> playing; 
      } 
      playing{ 
        stop -> stop; 
        pause -> paused; 
      } 
      paused{ 
        stop -> stop; 
        play -> playing; 
      } 
    } 
    off{ 
      turnOn -> on; 
      shutDown -> end; 
    } 
    final end{} 
  } 
} 

 

 

 

 

Figure 4. The state machine diagram for the Umple model in Listing 4 
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States nested within composite states are defined in the same manner as they are de-

fined within a state machine. Every composite state has an initial state that is the first state 

defined in it, and it can have its own final states. Every time a composite state is entered, it 

will by default be in its initial state. Transitions can also have source and destination states 

that are inside the composite state or outside it. 

For example, Listing 4 shows a state machine named mode for the class Television. It 

has a composite state called on, a simple state called off, and a final state called end. The ini-

tial state of this state machine is the composite state on. Composite state on has three simple 

states stop, playing, and paused. The initial state of the composite state on is the simple state 

stop. The composite state on also has a transition with the even name turnOff. When this 

event happens, the current state will be changed to the simple state off without any considera-

tion of which inner state the composite state is in. Figure 4 depicts how a composite state de-

fined in Listing 4 is drawn graphically in Umple. 

2.1.5.12 Regions 

Regions are a concept allowing parallelism in state machines. The presence of more than one 

region specifies more than one independent state machine nested inside an outer state ma-

chine. In Umple, regions are defined inside states and have unique names. Their names are 

determined automatically from the name of the first state, which is their initial state. A com-

posite state has at least one region that allows it to have nested states and transitions. Most 

composite states have a single region. 

When a state machine has more than one region, they are said to be orthogonal, or 

concurrent. In such a case, a state machine has more than one active state at a time (one for 

each region). These orthogonal regions can be executed in collaboration with each other or 

independently. It is recommended to keep regions independent so as to reduce the complexi-

ty that comes from collaboration. 

Orthogonal regions are defined by the symbol || within a composite state. Composite 

states have by default a single region so the second and other regions are separated by the 

symbol ||, appearing at the end of the last state related to the previous region. For instance, 

Listing 5 shows the extended version of the composite state on in Listing 4 in which the sec-

ond region is added to model the behavior of a menu. As seen, the symbol || is added (line 
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14) to the end of the last state related to the region stop, which is state paused. The second 

region is automatically detected after the symbol || and it is named invisible. Umple automat-

ically detects regions and names them; they are not named manually. The second region 

named invisible has two simple states called invisible and visible. Figure 5 depicts the graph-

ical representation for orthogonal states in Listing 5.  

Listing 5. The composite state on related to the class Television with parallel regions 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 

    on{ 
      turnOff -> off; 
      // the default and first region: stop 
      stop{  play -> playing;   } 
      playing{ 
        stop -> stop; 
        pause -> paused; 
      } 
      paused{ 
        stop -> stop; 
        play -> playing; 
      } 
      // the end of the region stop 
      || 
      // the second parallel region: invisible 
      Invisible { showMenu -> visible; } 
      Visible { cancelMenu -> invisible; }       
    } 

 

 

 

 

Figure 5. State machine diagram for the Umple model in Listing 5 
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Although Umple detects the names of regions automatically in order to reduce the 

amount of effort required by modelers to create an orthogonal state machine and also make 

models simpler, it forces the initial states of orthogonal regions in a composite state to be 

unique. Most of the time modelers never need to know the names of regions. 

2.1.6 Umple Grammar 

Umple uses its own extended Backus–Naur form (EBNF) syntax for the grammar. This was 

created to allow Umple to deal with code blocks coming from different programming lan-

guages. It also has its own parser tool. In fact, the Umple syntax offers a very simple mecha-

nism to define a new language, as well as extend an existing one. We explain here some of 

the required notations for an understanding of the rest of this thesis. Full details about the 

Umple grammar can be found in the Umple user manual [49]. 

2.1.6.1 Terminals 

Terminals in the Umple grammar are any characters other than whitespace, +, *, ( , ) or the 

contents of matching sets of square brackets. The parser expects to match the characters ex-

actly. 

2.1.6.2 Non-terminals 

Umple has two types of non-terminals: simple and rule-based, both found within matching 

sets of square brackets. Simple non-termals can be considered as references to built-in parser 

rules. 

A basic simple non-terminal appears as a name (a sequence of non-whitespace char-

acters) surrounded by single square brackets. It indicates that the parser should recognize an 

identifier, defined as a sequence of alphanumeric characters, with underscores allowed. Sev-

eral special symbols can precede the name to modify this behaviour; these are discussed in a 

later sections. Full details can be found in the Umple user manual [49]. A simple non-

terminal that can match one of a set of strings is marked with an equals sign, and the symbol 

| to separate the strings. The following is an example. 

[=visibility:public|private|protected] 
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A rule-based non-terminal is a name within double square brackets, and references a 

grammar rule. A rule is a sequence of terminals, simple non-terminals, and rule-based non-

terminals. A rule can be reused many times in the grammar. For additional clarity, rule-based 

non-terminals are shown using blue in this document. 

Listing 6. A snippet of Umple grammar 

1 
2 

classDefinition: class [name] { [[classContent]]* }  
classContent- : [[comment]] 

 

 

 Listing 6 shows a snippet of Umple grammar for classes. There are two rules, 

classDefinition and classContent. There is a simple non-terminal name encompassed by 

square brackets ([name]), and two rule-based non-terminals named, classContent, and com-

ment. The word ‘class’, as well as the curly brackets { and } are terminals. The * is a special 

symbol defined below. 

The sequence of tokens generated by the parser normally just includes the patterns 

matched by the simple non-terminals. Umple uses the symbol minus “-” after a rule name to 

indicate that the rule name should be added to the tokenization string. This appears in line 2 

of Listing 6. It allows the analyser to interpret the token stream correctly. Terminals are not 

added to the tokenization string. For instance, in Listing 6, the terminal class is used to direct 

parsing, but will not appear in the tokenization string. If it is required to tokenize such sym-

bols, a constant can be defined using the notation [=name].  

2.1.6.3 Optionality and repetition 

The Umple grammar allows repeating or making optional some elements in the grammar. 

Parentheses can be used to group several elements in the grammar into a single element for 

the purposes of applying operations such as the following. An asterisk * means that zero or 

more of the preceding elements may occur while a plus sign + means that one or more of the 

preceding elements must occur. The optional elements can be defined by the symbol ?, 

which means that the preceding element may occur. For example, the rule classContent in 

Listing 6 should be repeated zero or more times because of asterisk * at the end (line 1). 
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Since Umple uses parentheses to surround several elements, they cannot be used as 

terminals. In order to have them as terminals, special keywords OPEN_ROUND_BRACKET 

and CLOSE_ROUND_BRACKET must be used.  

2.1.6.4 Special matching cases 

By default, simple non-terminals match identifiers that can include underscore and certain 

other symbols. In order to match alphanumeric identifiers only, the symbol tilde ~ is used 

before the name (e.g., [~name]). The Umple grammar also allows matching based on regular 

expression. For example, [!bound:\d+] matches a sequence of one of more digits in this case. 

2.2. Basic Traits 

In this section, we introduce the history, basic terms, concepts, and semantics related to 

traits. We focus on the concepts that pre-existed our work. The new syntax and semantics of 

traits designed and implemented in our work are described in Chapter 3. 

2.2.1 Background 

The term ‘trait’ was first introduced by Ungar et al. [99] in a dynamically-typed prototype-

based language called Self [60]. Traits objects were considered as shared parent objects that 

provide common behavior to be shared among their instances and refinements. These kinds 

of traits might contain state (attributes) as well. The foremost goal for such traits was to 

achieve flexibility while supporting all organizational functions carried out by classes. The 

organizational functions are as follows [99]: 

 

 Sharing implementation and state among the instances of a data type and among re-

lated data types. 

 Defining strict interfaces for data types that protect and hide implementation. 

 Using global names to refer to data types. 

 Categorizing large name spaces into structured parts for easier browsing. 
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A slightly revised version of traits was introduced in dynamically-typed class-based 

languages by Schärli et al. [93]. The main motivations for having traits in these languages are 

reusability problems related to multiple inheritance and mixins. A summary of problems that 

Schärli et al. try to address through traits is as follows: 

 Multiple inheritance 

 Dealing with conflicting features coming from multiple parents: the issue is about 

the ambiguity that arises when conflicting features are inherited along different 

paths. A particular version of this issue is known as “diamond problem” or “fork-

join inheritance”. 

 Accessing overridden features: this issue happens when identically named fea-

tures are inherited from different base classes and a single keyword such as super 

is not enough to access inherited methods unambiguously. 

 Factoring out generic wrappers: multiple inheritance allows a class to reuse fea-

tures from multiple base classes, but it does not allow to write a reusable entity 

that wraps methods implemented in as-yet unknown classes. Languages such as 

C++ and Eiffel use templates to compensate this limitation.  

 Mixin inheritance 

 Total ordering: since mixins composition is linear, all mixins used by a class need 

to be inherited once at a time. Mixins used later in the order will override all the 

identical named features coming from previous earlier mixins. If a conflict hap-

pens it might not possible to find a suitable total order in order to resolve the con-

flict.  

 Dispersal of glue code: When a composite entity uses mixins, it does not have full 

control of the way used mixins are composed. If a conflict happens, it should be 

resolve through intermediate classes created when mixins are used (one at a time). 

This might even result in the need to modify the involved mixins. 

 Fragile hierarchies: The linear nature of mixins limits possibilities for resolving 

conflicts. Therefore, using multiple mixins results in inheritance chains that are 

fragile with respect to changes. If changes are required, they might happen in 

mixins and so it can break the chain in such a way that consistent behavior cannot 

be established.  
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Schärli et al. [93] presented definitions, interpretation rules, structures, and specified 

conflict situations for traits. This formulation of traits was implemented in Squeak [54], an 

open-source dialect of Smalltalk-80. A trait, in these kinds of languages, is a group of pure 

methods that serves as building blocks for classes. Schärli emphasized the idea that such 

traits include only a set of provided methods and required methods. In comparison to the 

traits in Self [60], these traits cannot have state (attributes). State had to be obtained through 

‘glue’ code, which must be provided by classes as implementations of required methods. As 

a result, such traits are called stateless traits. Such traits can be composed of other traits but, 

they cannot include any classes. Classes use such traits in the same way they use generaliza-

tions. When classes (clients) declare they use a trait, the contents of the trait’s provided 

methods become logically part of that class (client).  

The key properties of traits, in Schärli’s formulation, are the following; except where 

noted, these remain true in later formulations of traits, including those we have developed in 

this thesis: 

 A trait provides a set of methods that implement behavior (the provided methods). 

 A trait requires a set of methods (the required methods) that serve as parameters for 

the provided behavior. These must be provided by the client in some way, either di-

rectly or from some other traits. 

 Traits do not specify any state variables, and the methods provided by traits never ac-

cess state variables directly (this limitation is lifted in stateful traits, such as those we 

present in this thesis). 

 Classes and traits can be composed of other traits, but the composition order is irrele-

vant. Conflicting methods must be explicitly resolved. 

 Trait composition does not affect the semantics of a class. The meaning of the class is 

the same as it would be if all the methods obtained from the trait(s) were defined di-

rectly in the class. 

 Similarly, trait composition does not affect the semantics of a trait. A composite trait 

is equivalent to a flattened trait containing the same methods. 
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A formal definition of traits and their basic properties was provided by Ducasse et al. 

[35]. This established how traits can be composed of other traits or used by classes. In this 

thesis, we focus on the style of traits introduced by Schärli et al. [93]. All extension and algo-

rithms we develop are based on them. In the following sections, we explore in detail these 

traits. 

2.2.2 Clients 

Clients of traits can be either classes or traits. If the type of a client is a class, it is called a 

final client. If the type of a client is a trait, the client is called a composed trait. Traits use 

other traits to increase levels of granularity. A trait can have any number of clients, but it 

cannot be its own client. The client relation among traits forms a partial order (no cycles). 

2.2.3 Provided Methods 

Provided methods are defined in traits and supply functionality to clients. They are similar to 

standard object-oriented methods. They have their own parameters and implementations. 

Generally, they use (call) required methods to achieve their goals. 

2.2.4 Required Methods 

Required methods are abstract functionality required by traits in order to provide promised 

functionality. They have a signature like methods in object-orientation, but they do not have 

a body (implementation). Required methods must be satisfied by clients of traits. If the client 

of a trait is a final client (a class), its required methods can be satisfied by the client itself, 

another trait, or its superclass. If a client is another trait, the required methods may be satis-

fied by the trait or the clients of composed trait. 

2.2.5 Attributes 

Basic traits do not have attributes and, as was mentioned earlier, they receive the state 

through their required methods. However, not having attributes results in incompleteness in 

stateless traits. Incompleteness causes classes to require a significant amount of boilerplate 
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glue code when they use basic traits. In order to deal with this issue, stateful traits [18] were 

introduced. In our work, we accept this extension and allow traits to have attributes. 

Attributes in traits play the same role they have in classes. They can have their own 

default values, accessors, and mutators. However, there are limitations in their definition 

when they are used in combination with other traits. We describe these cases in detail when 

we describe our syntax in Umple. 

2.2.6 Use of Traits 

Traits can be used by any class that satisfies their required methods. A trait can be used by 

more than one class. Traits can also be used by other traits, but they are not required to satis-

fy those required methods. If the required methods are not satisfied by the composed traits, 

then they will be part of the required methods of the composed traits. Furthermore, a trait 

cannot be used by itself. 

2.2.7 Template Parameters 

Traits can also be more general, which is achieved through template parameters. Template 

parameters are a technique to increase the genericity and hence flexibility and reusability of 

various elements. In C++ and Java, one can specify generic classes, interfaces, and opera-

tions. One can also model UML elements with unbound formal parameters that can be used 

to define families of classifiers, packages, and operations. This feature is also applied to traits 

to substantially increase reusability of traits and broaden their appeal. Currently, template 

parameters are supported by Scala [104].  

Template parameters of traits are bound to real types when traits are used by clients. 

The parameters are treated as types so they can be used in the manner types are used. For ex-

ample, they can define the type of attributes or parameters of both provided and required 

methods.  

2.2.8 Flattening 

Flattening is a concept that says the semantics of a class defined using traits is exactly the 

same if the class is defined without them. In other words, if a class uses a trait that has pro-

vided methods, it is exactly the same as if those methods are defined directly in the class. In 
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a technical manner, making provided methods (or other elements defined in this thesis for 

traits) as local properties of clients is called flattening. 

When inheritance is used among classes, some methods in a class override methods 

with the same signature that come from its superclass. The same semantics is applied to traits 

as well. If a class has a concrete method and its used trait has a method with the same signa-

ture, the method that comes from the trait is disregarded. The same rule is applied when a 

trait uses other traits. The process of flattening can be manipulated at runtime or directly ap-

plied during compilation (like copying provided methods into clients). 

2.2.9 Conflicts in Traits 

When traits are used in the design of systems, there are some situations in which the result 

will be either incorrect or ambiguous. These situations are considered as conflicts and need 

to be resolved directly by designers. For instance, if a class uses two different traits, and each 

trait has a method with the same signature but different implementations, this causes a con-

flict. 

The conflicts are detected automatically by Umple and we have defined operators for 

resolving them – i.e., providing a way to specify which alternative should have precedence. 

Details about these conflicts and their resolution operators will be explained for each element 

defined in traits. 

2.2.10 Graphical Representations 

Traits were first introduced as a programming concept and there has been no standard 

graphical representation for them suitable to be used for graphical modeling. However, 

Schärli et al. [93] used a graphical representation for describing traits in their work (as an 

extension to UML[117]). Figure 6 depicts that representation. As seen, the name of the trait 

comes at the top and then lists of provided and required methods appear in the left and right 

columns, respectively. Furthermore, there are bubble-headed lines attached to the left column 

for provided methods and arrows attached to the right column for required methods. We uti-

lize a simplified version of this representation in this thesis, depicted in Figure 7. Our focus 

is on the textual representation because of its simplicity and scalability, but we accompany 

our textual representation with a graphical one when it is beneficial.   
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Figure 6. A graphical representation for traits [93] 

 

 

Figure 7. A simplified graphical representation for traits 

2.2.11 Traits and UML Components 

UML Components [117] are a type of modular and reusable element in modeling, which has 

a common terminology with traits. Components and traits have provided and required 

interfaces and can have a fine and coarse level of control on them. For example, they can 

have one or several methods as required or provided interfaces/methods. There is no re-

striction on the granularity of either. They can be substituted by another one of their own 

types if provided and required interfaces/methods are identical. However, these do not mean 

that they function in a semantically consistent way. 

We consider the following differences between them, which make traits unique at the 

modeling level; a) components can be instantiated, but traits cannot because they are inher-

ently abstract; b) a UML component may encompass classes, but this is not allowed for 

traits; c) we cannot remove/rename/change visibility of provided interfaces in UML compo-

nents while we can do these operations for provided methods of traits; d) we can compile a 

component and use its binary version, but we cannot perform this for traits; e) internals of 
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components (except provided interfaces) are hidden for the elements that use them, but for 

traits, those internals are flattened in the elements; f) there is no concept of port for traits; h) 

it is possible to use some provided methods of traits, but when we want to use components, 

we should load all provided interfaces. 

2.2.12 Features Lacking in Traits Prior to This Research 

In above sections, we discussed the main characteristics of traits. We explained that if a 

method is defined in a trait, it can be reused in several ways that is not possible if the same 

method is defined in class. The main reason for this is that traits do not have limitations of 

inheritance and they are not dependent on the inheritance hierarchy (see Section 1.1). How-

ever, there are some features that they do not have. Not having these features might be con-

sidered as a reason why traits are not used much in current software engineering practice. 

These features can be summarized as follows: 

1. Traits cannot be used for modeling software systems. In model-oriented software de-

sign practices, an architecture of the system is created using a modeling language and 

then the architecture is improved into a detailed design. Therefore, if traits cannot be 

used for modeling software systems, they will not be adopted by modern software 

development methods. 

2. Traits cannot contain modeling elements as a way to describe their functionality. 

Therefore, they cannot offer their functionality in an abstract way. For example, a 

state machine can be reused better that several methods because it has high abstrac-

tion, but traits cannot support this prior to our work. 

3. Traits are supported by only a few programming languages, and not in the most wide-

ly used languages such as Java and C++. Therefore, it is logical that traits are not yet 

known and well-accepted by the software development community. 

 

These limitations are the key motivation for this research. We will describe in 

Chapter 3 how our approach overcomes these limitations. 
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2.3. Summary 

In this chapter, we reviewed basic concepts related to Umple and its modeling elements that 

will be used along with traits at the modeling level. We also reviewed the semantics and rel-

evant concepts related to classis traits. Knowing these concepts will help the reader to under-

stand our model-based traits and their implementation in Umple, covered in the next chapter. 

In the next chapter, we introduce requirements, syntax, and semantics of model-based 

traits. We also demonstrate mechanisms that allow composing modeling elements defined in 

this chapter. We also demonstrate how traits can be implemented in object-oriented pro-

gramming languages based on our approach.    
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Chapter 3. Traits in Model-Driven Software De-
velopment 

In this chapter, we provide an overview of requirements that must be fulfilled in order to 

have traits at the modeling level. We then explain activities that need to be performed to pro-

cess traits in modeling languages. Next, we describe our flattening algorithm including se-

mantics of each step of the algorithm. The algorithm also covers how state machines can be 

composed. The described semantics is independent of the actual implementation, so other 

modeling languages can adopt traits. 

After describing the semantics of our algorithm, we explain the core syntax of traits 

that we implemented in Umple. We demonstrate enhanced features such as state machines, 

associations, and required interfaces. We present various automatic code generation mecha-

nisms for traits and describe our implementation. The syntax and features of traits are de-

scribed by simple examples in Umple; these are followed by a graphical representation to 

improve understanding. Finally, we demonstrate the metamodel of traits and describe the ap-

plication of each class in the metamodel. 

We want to indicate that we are not purporting to add traits to UML. We are introduc-

ing them as a textual modeling concept in the Umple language that strongly aligns with UML 

but is not UML itself. Our graphical representation is designed to help visualize traits and 

understand our work, but is not proposed as a UML extension or even a formal contribution 

of our work. 

In our approach, diagrams are generated rather than being drawn using a drawing 

tool. We do not make any claims about whether it would be usable or useful to edit the dia-

grams or use them to create traits in models. 

3.1. Requirements and Design Goals 

In order to have traits at the modeling level, we need to clearly specify what the requirements 

are, why those requirements are important or needed, and whether those requirements are 
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based on already developed concepts or are new. Furthermore, it is required to specify the 

design goals. In this section, we cover these subjects. 

Requirements for model-based traits were extracted from different sources. We start-

ed by studying different variations of inheritance [28,36,92,97] in order to conceptualize the 

problems we would need to resolve. Then, we concentrated on classical traits in program-

ming languages [8,54,104,105,108]. This was important because we wanted to have the clas-

sical traits’ flexibility at the modeling level as well. We extended our requirements extraction 

by studying other research conducted to extend features of classical traits 

[18,20,29,33,65,74,83,84,100]. The most inspiring source for the requirements was model-

based engineering. This was clear because we wanted to have traits at the modeling level so 

requirements of being a modeling element must be added to traits. 

The following shows a summary of main requirements, however, the full list of re-

quirements extracted along with their justification, source, and satisfaction (in our modeling 

languages) is listed in Appendix II. 

 

 Traits should define their functionality through provided methods 

 Traits should define their required functionality through required methods 

 Traits should have template parameters 

 Traits should be able to define constraints on their template parameters 

 Traits should be able to define functionality through associations  

 Traits should be able to define functionality through state machines  

 Traits should be able to have attributes 

 Traits should be reusable by classes and other traits 

 Traits should be able to be used along with inheritance 

 Traits should be able to define required interfaces for their class clients 

 Traits should be able to be reused by more than one client 

 Traits should offer mechanisms to resolve conflicts 

 Traits should offer mechanism to control their elements’ granularity when they are 

reused by client. 

 Traits should provide a mechanism to extend functionality of other trait elements 

(e.g., state machines) 
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 Traits should be implementable by object-oriented programming languages 

 

The design goals of having traits at the modeling level are as follows: 

 

 Improve reusability mechanisms of the modeling elements 

 Increase the level of abstraction in which functionality of traits can be expressed 

 Improve reuse, extension, and composition of state machines 

 Improve the way traits can be used by final clients to control (specify) their content 

 Support implementation of traits in object-oriented programming languages 

3.2. Workflow of Processing Traits  

When a system is modeled based on traits, the modeled system needs to be processed in or-

der to be transformed into an executable system in an object-oriented programming lan-

guage. Figure 8 depicts the necessary phases of processing a trait-based model. Figure 8 also 

shows what kinds of artifacts are produced and required in each processing phase. The dif-

ferent phases are described in the following sections. 

3.2.1 Parsing Phase 

As seen in Figure 8, the inputs of this phase are a trait-based model and grammar files. The 

grammar files include the grammar for traits as well as for other modeling elements such as 

classes and interfaces. The model and grammar files are dependent on the language in which 

traits are implemented. In our case, we use the Umple model and grammar files. The struc-

ture of the Umple grammar is discussed in Section 2.1.6 and the grammar of traits is ex-

plained in Section 3.4. The complete Umple grammar file related to traits can be found in our 

online Github repository [119]. 

 In the parsing phase, the parser (Umple parser) parses a given model and builds an 

abstract syntax tree for the model based on the grammar files. The parser guarantees that the 

model is valid syntactically. The output artifact of this phase is an abstract syntax tree. 
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Figure 8. The general workflow of processing traits  

  

If the modeling language is not textual, then it is required to make sure the modeled 

system is validated syntactically through other mechanisms available for the language. 

Graphical modeling languages, for example, make sure their models are valid syntactically 

through their user interfaces.   

3.2.2 Analyzing Phase 

As seen in Figure 8, the inputs of this phase are an abstract syntax tree obtained from the 

parsing phase and the metamodel of the modeling language (including the metamodel of 

traits and other modeling elements). The metamodel of traits is explained in Section 3.9 and 

the complete Umple metamodel can be found in our online Github repository [50]. 

In the analyzing phase, the analyzer builds an instance of the metamodel based on its 

inputs. In our case, it builds an instance of the Umple metamodel. While the analyzer builds 
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an instance of the metamodel, it also validates that defined traits and their elements are valid 

alone. For example, the names of traits are unique in the system or there are not more than 

one provided or required method with the same signature.  

Moreover, other modeling elements such as classes and interfaces are also validated 

alone in this phase. Umple elements and their semantics are explained in Section 2.1. The 

output of this phase is a valid instance of the metamodel, which we call the non-flattened 

model. This phase of processing (analyzing) exists in both textual and graphical modeling 

languages. Therefore, the languages that want to adopt traits need to extend their metamodel 

and their analyzing phase. 

3.2.3 Flattening Phase 

As seen in Figure 8, the input of this phase is a non-flattened model from the previous phase 

(the analyzing phase). The flattener receives the non-flattened model and then applies speci-

fied operators (explained in Sections 3.4.11 and 3.5.4) to the model’s elements, composes 

state machines (explained in Section 3.5.5), and finally flattens elements (composed and not 

composed) into the final clients (Section 3.3.2). The output artifact of this phase is an in-

stance of the metamodel called the flattened model. The flattening algorithm is explained in 

Section 3.3.1. 

Modeling languages that want to adopt traits need to add this phase to their pro-

cessing phases. The language-specific implementation of the flattening algorithm (see Sec-

tion 3.3.1) can be different based on the languages’ limitations and strengths. In other words, 

modeling languages must implement the semantics of flattening elements defined in Section 

3.3.2. Note that composition of state machines is covered as part of the flattening algorithm. 

3.2.4 Code Generation Phase 

As seen in Figure 8, the input of this phase is a flattened model from the flattening phase. A 

code generator receives a flattened model and generates a programming language defined by 

the developers (described in Section 3.8). There can be several different code generators; for 

example Umple can generate Java, C++, and other languages. Other code generator can also 

produce artifacts such as diagrams of the model, including both flattened and non-flattened 

diagrams (described in Section 3.4.7). In our work, we reuse already-developed code genera-
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tors for different programming languages supported by Umple. However, we developed dia-

gram generators for flattened and non-flattened models as part of this work. 

Modeling languages that adopt traits might have their own code generators. There-

fore, their code generators must be able to generate the functional system without any modi-

fication. If a modeling language does not have a code generator and they run the model di-

rectly, it must also be possible without any modification. The main reason is that traits are 

flattened to modeling elements that are already recognized by code generators or model run-

ners. However, if modeling languages want to have non-flattened and flattened diagrams, 

they need to achieve this through the technologies available for them.  

3.3. Flattening of Modeling Elements 

Flattening is one of the fundamental concepts behind traits. Therefore, in this section, we de-

scribe our flattening algorithm as part of processing activities for traits explained in section 

3.2. We also explain the semantics of flattening for each modeling element defined in our 

flattening algorithm. As pointed out in Section 3.2.3, the real implementation (language-

specific) of the flattening algorithm can be different based on the languages’ limitations and 

strengths. Each modeling language must implement the semantics of flattening elements de-

fined in Section 3.3.2. 
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Figure 9. The general flattening algorithm for traits  
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3.3.1 Flattening Algorithm 

 As described in Section 3.2.3, the flattening phase receives a non-flattened model and then 

builds a flattened model used for the code or diagram generation. The general algorithm used 

to obtain a flattened model from a non-flattened model is depicted in Figure 9. The Umple-

specific implementation of the algorithm can be found in our online Github repository [31]. 

Flattening of traits is initiated by calling a method named “void applyTraits()”. 

As seen in Figure 9, the flattening algorithm is applied to each class in the non-

flattened model (input) and if there is no class left, the flattened model (output) is delivered 

to the code generation phase. 

For every class in the non-flattened model, the algorithm goes through each trait used 

by the class and flatten attributes, provided methods, associations, state machines, required 

methods, and required interfaces. In the following, we describe the different steps of the al-

gorithm: 

Step 1: For each class in the non-flattened model execute steps 2 through 4. If there 

is no class left, return the flattened model.  

Step 2: For each trait used by the class (specified in step 1) execute steps 2.1 through 

2.6. If there is no used trait left, execute step 3. 

Step 2.1 (for attributes): 

2.1.a: Apply template parameters to attributes and if there is no con-

flict, proceed to the next sub-step (2.1.b). Otherwise, terminate with an 

error. 

2.1.b: Apply operators to attributes and if there is no conflict, pro-

ceeds to the next sub-step (2.1.c).  Otherwise, terminate with an error. 

Note that in the current implementation of the algorithm in Umple, 

operators related to attributes are not implemented yet. 

2.1.c: Flatten the attributes into the class, and if there is no conflict, 

proceed to flatten provided methods (step 2.2). Otherwise, terminate 

with an error. The semantics of flattening attributes is described in 

Section 3.3.2.1. 

 



 

 

Chapter 3. Traits in Model-Driven Software Development  47 

 

Step 2.2 (for provided methods): 

2.2.a: Apply template parameters to provided methods and if there is 

no conflict, proceed to the next sub-step (2.2.b). Otherwise, terminate 

with an error. 

2.2.b: Apply operators to provided methods and if there is no conflict, 

proceed to the next sub-step (2.2.c).  Otherwise, terminate with an er-

ror. 

2.2.c: Flatten the provide methods into the class and if there is no con-

flict, proceed to flatten associations (step 2.3). Otherwise, terminate 

with an error. The semantics of flattening provided methods is de-

scribed in Section 3.3.2.2. 

 

Step 2.3 (for associations): 

2.3.a: Apply template parameters to associations and if there is no 

conflict, proceed to the next sub-step (2.3.b). Otherwise, terminate 

with an error. 

2.3.b: Apply operators to associations and if there is no conflict, pro-

ceed to the next sub-step (2.3.c). Otherwise, terminate with an error. 

Note that in the current implementation of the algorithm in Umple, 

operators related to associations have not implemented yet. 

2.3.c: Flatten the associations into the class and if there is no conflict, 

proceed to flatten state machines (step 2.4). Otherwise, terminate with 

an error. The semantics of flattening associations is described in Sec-

tion 3.3.2.6. 

 

Step 2.4 (for state machines): 

2.4.a: Apply template parameters to state machines and if there is no 

conflict, proceed to the next sub-step (2.4.b). Otherwise, terminate 

with an error. 
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2.4.b: Apply operators to state machines and if there is no conflict, 

proceed to the next sub-step (2.4.c). Otherwise, terminate with an er-

ror. 

2.4.c: Flatten the state machines into the class and if there is no con-

flict, proceed to flatten required methods (step 2.5). Otherwise, termi-

nate with an error. The semantics of flattening state machines is de-

scribed in Section 3.3.2.5. 

 

Step 2.5 (for required methods): 

2.5.a: Apply template parameters to required methods and proceed to 

the next sub-step (2.5.b). 

2.5.b: Flatten the required methods into the class and then proceed to 

flatten required interfaces (step 2.6). The semantics of flattening re-

quired methods is described in Section 3.3.2.3. 

 

Step 2.6 (for required interfaces): 

2.6.a: Flatten the required interfaces into the class and then proceed. 

The semantics of flattening required interfaces is described in Section 

3.3.2.4. 

 

Step 3: (handling required methods) 

Check whether the class is abstract or not. 

If the class is abstract, consider unsatisfied flattened required methods as ab-

stract methods of the class. Then, proceed to step 4. 

If the class is not abstract, check whether or not it satisfies all flattened re-

quired methods. If the class satisfies them, proceed to step 4; otherwise, ter-

minate with an error.  

 

Step 4: (handling required interfaces) 

Check whether the class is abstract or not. 
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If the class is abstract, consider unimplemented flattened required interfaces 

as interfaces that must be implemented by the class. Then, proceed. 

If the class is not abstract, check whether or not it implemented all flattened 

required interfaces. If the class implements all of them, proceed; otherwise, 

terminate with an error. 

 

3.3.2 Semantics of Flattening Elements 

The general concept of flattening was explained in Section 2.2.8. However, we describe here 

the semantics of flattening in detail when it comes to all elements that can be defined in traits 

(e.g., state machines and methods). In our approach, flattening is implemented at the model-

ing level. In fact, when an element from a trait can be flattened into a client, we simply make 

a copy of that element and add it to the client. Working at the modeling level enables traits’ 

implementation to be supported automatically by all code generators available for Umple. 

We suggest the same perspective when other modeling languages or frameworks want to 

adopt traits. 

Please consider that not always all elements of traits are flattened into clients because 

they might be under the effect of removing operators. In the same vein, some elements might 

be changed before flattening because of renaming operators or the composition mechanism 

(which is valid for state machines). In the following sections, the semantics of flattening is 

described with respect to the fact that template parameters and operations have already been 

applied on elements and so elements are ready to be flattened. 

3.3.2.1 Flattening of attributes 

When a client uses a trait and the trait has one or many attributes, those attributes are added 

(technically are copied) to the client under the following conditions: 

 cond1: the client does not have local attributes with the same name and type. 

 cond2: the client does not obtain attributes with the same name and type from other 

used traits, except those attributes come from the same source (trait) by another path. 

 

Based on the defined conditions above, other cases might happen: 
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 If condition cond1 is false and condition cond2 is true or false: those attributes com-

ing from the trait are disregarded. 

 If condition cond1 is true and condition cond2 is false: this is a conflict, and flatten-

ing should not proceed until the modeler resolves the conflict. 

 

3.3.2.2 Flattening of provided methods 

When a client uses a trait and the trait has one or many provided methods, those provided 

methods are added to the client under the following condition: 

 cond1: the client does not have local methods with the same signature. 

 cond2: the client does not obtain provided methods with the same signature from oth-

er used traits, except those provided methods come from the same source (trait) by 

another path. 

 

Based on the defined conditions above, other cases might happen: 

 

 If condition cond1 is false and condition cond2 is true or false: those provided meth-

ods coming from the trait are disregarded. 

 If condition cond1 is true and condition cond2 is false: this is a conflict and flattening 

should not proceed until the modeler resolves the conflict. 

 

3.3.2.3 Flattening of required methods 

When a trait (host) uses another trait and the used trait has one or many required methods, 

those required methods are flattened to the host trait under the following conditions: 

 cond1: the host trait does not implement the required methods. 

 cond2: the host does not implement the required methods by using another trait.  

 cond3: the host trait does not have local required methods with the same signature. 

Note that a trait cannot have a provided and required method with the same signature. 

Therefore, cond1 and cond3 cannot be false at the same time. 
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 cond4: the host trait does not obtain required methods with the same signature from 

other used traits. 

 

Based on the defined conditions above, other cases might happen too: 

 

 If condition cond1 is false and other conditions are true or false: those required meth-

ods coming from the trait are disregarded. 

 If condition cond2 is false and other conditions are true or false: those required meth-

ods coming from the trait are disregarded. 

 If condition cond3 is false and other conditions are true or false: those required meth-

ods coming from the trait are disregarded. 

 If condition cond4 is false and other conditions are true: this results in two scenarios 

as follows. 

- Other used traits have not been flattened yet: in this case, those required 

methods coming from the trait are flattened into the host trait. 

- Other used traits have been flattened: in this case, those required methods 

coming from the trait are disregarded. 

 

When a class uses a trait and the trait has one or many required methods, the same 

process explained above is performed to obtain all required methods needed to be imple-

mented by the class. In fact, in this case, flattening does not happen because the class must 

implement those required methods. However, if the class is abstract, flattening happens and 

those required methods are considered as abstract methods for the abstract class and must be 

implemented by concrete subclasses of the abstract class (note: this is supported by Step 3 of 

the flattening algorithm described in Section 3.3.1).  

 

3.3.2.4 Flattening of required interfaces 

When a trait (host) uses another trait and the used trait has one or many required interfaces, 

those required interfaces are added to the host trait under the following conditions: 

 cond1: the host trait does not have local required interfaces with the same name. 



 

 

Chapter 3. Traits in Model-Driven Software Development  52 

 

 cond2: the host trait does not obtain required interfaces with the same name from 

other used traits. 

 

Based on the defined conditions above, other cases might happen: 

 

 If condition cond1 is false and condition cond2 is true or false: those required inter-

faces coming from the trait are disregarded. 

 If condition cond1 is true and condition cond2 is false: this results in two scenarios as 

follows: 

- Other used traits have not been flattened yet: in this case, those required inter-

faces coming from the trait are flattened into the host trait. 

- Other used traits have been flattened: in this case, those required interfaces 

coming from the trait are disregarded. 

 

When a class uses a trait and the trait has one or many required interfaces, the same 

process is performed to obtain all required interfaces that must be implemented in advance 

by the class. In fact, in this case, flattening does not happen because classes must implement 

those required interfaces. However, if the class is abstract, flattening happens and those re-

quired interfaces are considered as interfaces implemented by the abstract class. The concrete 

subclasses of the abstract class will be forced to implement those interfaces (note: this is 

supported by Step 4 of the flattening algorithm describe in Section 3.3.1). 

 

3.3.2.5 Flattening of state machines 

When a client uses a trait and the trait has one or many state machines, those state machines 

are added to the client under the following conditions: 

 cond1: the client does not have local state machines with the same name. 

 cond2: the client does not obtain state machines with the same name from other used 

traits. 

 

Based on the defined conditions above, other cases might happen: 
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 If condition cond1 is false and condition cond2 is true: those state machines coming 

from the trait are composed with the same machine in the client. The composition al-

gorithm is described in Section 3.3.3. 

 If condition cond1 is true and condition cond2 is false: those state machines coming 

from the trait are composed with the same machines coming from the used traits. The 

final composed state machines are added to the client. 

 If condition cond1 is false and condition cond2 is false: in this case the following 

steps are performed. 

- Step 1: Those state machines coming from the trait are composed with the 

same machines coming from the used traits. 

- Step 2: The composed state machines (from Step 1) are composed with the 

same machines in the client. 

3.3.2.6 Flattening of associations 

When a client uses a trait and the trait has one or many associations, those associations are 

added to the client under the following conditions: 

 cond1: the client does not have local associations with the same role name. 

 cond2: the client does not obtain associations with the same role name from other 

used traits, except those associations coming from the same source (trait) that the cli-

ent has gotten its associations from too. 

 

Based on the defined conditions above, the following cases might happen: 

 

 If condition cond1 is false and condition cond2 is true or false: those associations 

coming from the trait are disregarded. 

 If condition cond1 is true and condition cond2 is false: this is a conflict and flattening 

should not proceed until the modeler resolves the conflict. 
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Figure 10. The general activities of the composition algorithm for state machines  

 

3.3.3 Composition Algorithm for State Machines 

As part of the semantics for flattening state machines define in Section 3.3.2.5, state ma-

chines with the same name should be composed. In this section, we describe the general ac-

tivities of our composition algorithm. The semantics of each activity is described in Section 

3.3.4. The exact implementation of our algorithm in the Umple language can be found in our 

online repository [31]. In order to describe the algorithm and also semantics of activities (in 

Section 3.3.4), we consider the following assumptions: 

 The state machine defined in the client is called base state machine. The same con-

cept is considered for other internal elements of the state machine such as base state, 

base transition, and so on. 

 The state machine defined in the used trait is called used state machine. The same 

concept is considered for other internal elements of the state machine such as used 

state, used transition, and so on. 
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 All the time, the base state machine accepts new elements and modification. In fact, 

the composed state machine is the base state machine with all new and composed el-

ements. 

 When actions are indicated, we mean three groups of actions: entry actions of states, 

exit actions of states, and actions of transitions. 

 

As seen in Figure 10, the algorithm receives two state machines named base and used 

state machines and then it goes through the following steps: 

 

Step 1: Checks whether or not both state machines have the same initial states. If 

they have, then proceed to step 2, otherwise, add the used state machine as a region to 

the base state machine. The base state machine is returned as the composed state ma-

chine. The semantics of this phase is explained again in Section 3.3.4.1. 

Step 2: Execute step 3 for each state in the used state machine. If there is no used 

state left, return the composed state machine. 

Step 3: Check whether or not the used state exists in the base state machine. If it does 

not, add the used state to the base state machine. Otherwise, execute steps 3.1 through 

3.4. The semantics of this step is described in Section 3.3.4.2. 

Step 3.1: Compose transitions of base and used states. If there is a conflict 

then terminate with an error. Otherwise, it goes to step 3.2. The semantics of 

this step is described in Section 3.3.4.5. 

Step 3.2: Compose actions of base and used states. If there is a conflict then 

terminate with an error. Otherwise, proceed to step 3.3. The semantics of this 

step is described in Section 3.3.4.3. 

Step 3.3: Compose activities of base and used states. If there is a conflict then 

terminate with an error. Otherwise, proceed to step 3.4. The semantics of this 

step is described in Section 3.3.4.4. 

Step 3.4: Compose regions of base and used states. If there is a conflict then 

terminate with an error. Otherwise, proceed. The semantics of this step is de-

scribed in Section 3.3.4.6. 
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3.3.4 Semantics of Composition Activities 

In this section, we describe the semantics of activities defined as part of our composition al-

gorithm in Section 3.3.3.  

3.3.4.1 Composing state machines 

A base state machine and a used state machine can be composed based on the following con-

ditions: 

 If both state machines have the same initial state. In this case, internal elements of 

both state machines are composed as well (see Sections 3.3.4.2, 3.3.4.3, 3.3.4.4, 

3.3.4.5, 3.3.4.6). 

 If base and used state machines have different initial states. In this case, internal ele-

ments of both state machines are kept separate and the used state machines is added 

as a region to the base state machine. 

3.3.4.2 Composing states 

States (simple or composite) of a base state machine and a used state machines are composed 

based on the following conditions: 

 The used state is not available in the base state machine. In this case, the used state is 

added to the base state machine. When a state is added to the base state machine, its 

actions, activities, transitions, and regions (valid for composite states as well) are also 

added to the base state machine. 

 The used state is also available in the base state machine. In this case, the used state’s 

actions, activities, transitions, and regions (valid for composite states as well) are 

composed with those of the base state based on semantics defined for them in Sec-

tions 3.3.4.3,3.3.4.4, 3.3.4.5, and 3.3.4.6, respectively. 

3.3.4.3 Composing actions 

Actions of a base element (state or transition) and a used element are composed under the 

following conditions: 

 If the base element has an action without the keyword superCall and the following 

conditions happen as well: 
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- The base element does not receive an action from other used traits. In this 

case, the actions of the used element are disregarded. 

- The base element receives an action from other used traits. In this case, the 

actions of the used element are disregarded. 

 If the base element has an action with the keyword superCall and the following con-

ditions happen as well: 

- The base element does not receive an action from other used traits. In this 

case, the keyword superCall is replaced with the actions of the used element. 

- The base element receives an action from other used traits. In this case, a con-

flict happens. 

 If the base element does not have an action and the following conditions happen as 

well: 

- The base element does not receive an action from other used traits. In this 

case, the actions of the used element are added to the base state. 

- The base element receives an action from other used traits. In this case, a con-

flict happens. 

3.3.4.4 Composing activities 

Activities of a base state and a used state are composed under the following conditions: 

 If the base state has an activity without the keyword superCall and the following 

conditions happen as well: 

- The base state does not receive an activity from other used traits. In this case, 

the activities of the used states are disregarded. 

- The base state receives an activity from other used traits. In this case, the ac-

tivities of the used state are disregarded. 

 If the base state has an activity with the keyword superCall and the following condi-

tions happen as well: 

- The base state does not receive an activity from other used traits. In this case, 

the keyword superCall is replaced with the activities of the used state. 

- The base state receives an activity from other used traits. In this case, a con-

flict happens. 



 

 

Chapter 3. Traits in Model-Driven Software Development  58 

 

 If the base state does not have an activity and the following conditions can happen as 

well: 

- The base state does not receive an activity from other used traits. In this case, 

the activities of the used state are added to the base state. 

- The base state receives an activity from other used traits. In this case, a con-

flict happens. 

3.3.4.5 Composing transitions 

When transitions of states are composed, we need to have a signature for transitions to be 

able to differentiate them from each other. The signature of a transition is the combination of 

the signature of the event and its guard. Therefore, transitions of a base state and a used state 

are composed under the following conditions: 

 If the base state has the used transition then only actions of two transition are com-

posed based on the semantics defined in Section 3.3.4.3. 

 If the base state does not have the used transition then the used transition is added to 

the base state. However, adding the used transition must not cause the base state ma-

chine to be non-deterministic. If it would do so, then a conflict occurs. 

3.3.4.6 Composing regions 

Regions of a base composite state and a used composite state are composed under the follow-

ing conditions: 

 The base composite state has a region with the name of the used region: then the used 

region is composed with the base region. The semantics of composition for regions is 

like that described for two state machines in Section 3.3.4.1. 

 The base composite state does not have the used region: then the used regions is add-

ed to the base composite state. 

3.4. Traits in Umple 

Umple traits are defined through the keyword trait followed by a unique name and a pair of 

curly brackets. The name must be alphanumeric and start with an alpha character, or the 

symbol (underscore), otherwise, the Umple compiler raises error code 200. We also recom-
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mend capitalizing the first letter of traits names, as is the case for classes and interfaces in 

Umple. If it is not capitalized, the warning code 201 is raised. Furthermore, if the name is not 

unique in the system under development, error code 203 is raised by the compiler. All errors 

and warnings generated by the Umple compiler and related to the correctness and validity of 

traits are summarized in Table 5 in Appendix I.  

All elements of traits are defined inside the curly brackets except template parameters 

defined between the trait name and the curly brackets (described as we progress). Listing 7 

shows the top-level grammar rule for traits. Other rules are defined as they are introduced. If 

a rule is defined in more than one place, the actual Umple rule is a union of all of them, in 

the same manner as if they are logically separated by the vertical bar symbol |. In the defini-

tions related to traits, we have reused some already-defined rules from other parts of the 

Umple grammar. This ensures consistent syntax for common elements between traits and 

classes. 

Listing 7. The top-level grammar rule for the definition of traits 

1 traitDefinition: trait [name] [[traitParameters]]? { [[traitContent]]* } 
 

 

Listing 8 shows a symbolic example through which we will describe the basics of 

traits. As seen, there are two traits called T1 and T2 defined in lines 1 and 6. Furthermore, 

there are two classes called Class C1 and C2 defined in 12 and 15. Class C2 is a subclass of 

class C1. Other elements of the model are described as we progress. 

Figure 11 shows the graphical representation of the model in Listing 8. It is generated 

automatically by Umple and can be accessed in UmpleOnline [116]. Each trait is depicted 

based on the notation introduced in Section 2.2.10. We will explain the detail of the graph-

ical representation when we describe the corresponding textual syntax. The graphical repre-

sentation used for expressing how a trait is used by clients is the same as the arrow used for 

inheritance. We have chosen the same notation because Umple uses isA for inheritance and 

also for using traits. This keeps textual and graphical syntax compatible. More detail regard-

ing reusing traits is provided in Section 3.4.3. 
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Listing 8. A symbolic example describing basic syntax of traits 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 

trait T1{ 
  abstract void method1(); 
  abstract void method2(); 
  void method4(){/*implementation*/ } 
} 
trait T2{ 
  isA T1; 
  void method3(); 
  void method1(){/*implementation*/ } 
  void method2(){/*implementation*/ } 
} 
class C1{ 
  void method3(){/*implementation*/ } 
} 
class C2{ 
  isA C1; 
  isA T2; 
  void method2(){/*implementation*/ } 
} 

 

    

 

Figure 11. The graphical representation of the Umple model in Listing 8 

3.4.1 Definition of Required Methods 

Required methods are defined similarly to the way abstract methods are defined in classes. 

They have exactly the same syntax, but it is also possible in traits to define required methods 

without the keyword abstract. If a method is defined like a normal method without a body 
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(or implementation), the Umple compiler will consider that as a required method. Listing 9 

shows the grammar related to required methods and provided methods (described in the next 

section). Some of referenced rules are omitted because of brevity. 

For example, trait T1 in Listing 8 has two required methods named method1() and 

method2() in lines 2 and 3. These required methods have been defined by the keyword ab-

stract while trait T2 has a required method named method3() defined in line 8 without the 

keyword abstract. Figure 11 depicts those required methods in the right column on each trait. 

Listing 9. The grammar related to the definition of required and provided methods 

1 
 

2 

 

 

 

3 

4 

5 

 

6 

7 

8 

traitContent-:  [[abstractMethodDeclaration]] 
              | [[concreteMethodDeclaration]] 

concreteMethodDeclaration : [=modifier:public|protected|private]? 
    [=static]? [type]? [[methodDeclarator]] [[methodThrowsExceptions]]?  
    [[methodBody]] 
  | [=modifier:public|protected]? [=abstract] [type]? 
    [[methodDeclarator]] [[methodThrowsExceptions]]? ; 

abstractMethodDeclaration:  [type] [[methodDeclarator]] ; 

methodDeclarator: [methodName] [[parameterList]] 

parameterList: OPEN_ROUND_BRACKET ([[parameter]] ( , [[parameter]] )* )? 

   CLOSE_ROUND_BRACKET 

parameter: [[typedName]] 

typedName-: [type]? [[list]]? [~name] 

list-: [!list:\[\s*\]] 
 

 

3.4.2 Definition of Provided Methods 

Provided methods are defined in the same way concrete methods are defined in classes. In-

deed, they have exactly the same syntax and semantics. Provided methods also support mul-

tiple code blocks, for generation of systems in different languages. Listing 9 shows the 

grammar related to the definition of provided methods. 

For example, trait T1 in Listing 8 has a provided method named method4() defined in 

line 4 while trait T2 has two provided methods method1() and method2() defined in lines 9 

and 10. Figure 11 depicts those provided methods on the left column of corresponding traits. 
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3.4.3 Reusing Traits inside Clients 

Traits are used by clients by specifying the keyword isA followed by their names and a semi-

colon. When clients specify names of traits for use, those traits must exist in the system, oth-

erwise, the Umple compiler detects non-existent traits and raises error code 202. If a client 

uses more than one trait, it can separate them by comma or use the keyword isA for each 

one. 

As pointed out in Section 2.2.2, traits cannot use themselves. For example, in Listing 

10.a, trait T1 uses itself. Therefore, the Umple compiler detects this case and raises error 

code 204. The compiler also ensures that this case does not happen through several uses in a 

cyclic manner, otherwise, raises error code 205. For example, in Listing 10.b, trait T1 uses 

trait T2 and trait T2 uses trait T3, Trait T3 again uses trait T1. This cyclic use makes trait T1 

again uses itself. 

Listing 10. Errors related to using traits in a cyclic manner 

a b 

1 
2 
3 

trait T1{ 
  isA T1; 
} 

trait T1{  isA T2; } 
trait T2{  isA T3; } 
trait T3{  isA T1; } 

 

 

Listing 11. The grammar related to the use of traits 

1 

2 

3 

4 

5 

6 

 

7 

8 

 

9 

10 

 

11 

12 

traitContent-: [[softwarePattern]] 

softwarePattern- : [[isA]] 

isA- : [[singleIsA]] | [[multipleIsA]] 

singleIsA- : isA [[isAName]] ( , isA [[isAName]] )*  ; 

multipleIsA- : isA [[isAName]] ( , [[isAName]] )* ; 

isAName- : " [**extendsNames] " [[gTemplateParameter]]? 

  | [extendsName] [[gTemplateParameter]]? 

gTemplateParameter : < [[AllInclusionExclusionAlias]] >  

AllInclusionExclusionAlias- : [[InclusionExclusionAlias]] 

  ( , [[InclusionExclusionAlias]]  )* 

InclusionExclusionAlias- : [[functionIncludeExcludeAlias]]  

functionIncludeExcludeAlias- : [[functionInExAlias]] 

  ( , [[functionInExAlias]]  )* 

functionInExAlias- : [[traitAppliedParameters]] 

traitAppliedParameters : [~pName] = [~rName] 
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Listing 11 shows the grammar related to using traits. It also includes the grammar re-

lated to binding values to the template parameters described in Section 3.4.9. Note that the 

rule softwarePattern is also referenced in the grammar for classes, therefore classes use the 

same structure to use traits. 

For example, trait T2 in Listing 8 uses trait T1 defined in line 7 and class C2 uses trait 

T2 defined in line 17. Clients can use other traits if they satisfy their required methods. Satis-

faction of required methods is performed by having exactly the same methods implemented 

in clients. For example, trait T2 in Listing 8 uses trait T1 and so it is required to have the re-

quired methods of trait T1 implemented in trait T2. Trait T2 achieves this through imple-

menting two methods named method1() and method2() defined in lines 9 and 10. If a class 

uses a trait without satisfying its required methods, the Umple compiler detects unsatisfied 

required methods and raises error code 208. 

Trait T2 in Listing 8 is not a final client, so, it could use trait T1 without implement-

ing those required methods. Therefore, the required methods of trait T2 are method1(), meth-

od2(), and method3(). Class C2, which is a final client, uses trait T2 and therefore needs to 

implement its required method, which is method3(). However, there is no direct implementa-

tion for it. Instead, class C2 obtains such an implementation indirectly from its superclass, 

which is C1. Therefore, it satisfies the required method of trait T2. Figure 11 depicts the use 

of associations among traits and their clients. 

When clients use traits, they obtain all provided methods defined in the traits. This 

includes all other provided methods those traits might obtain from their own used traits. For 

example, trait T2 gets the provided method method4() from trait T1. This provided method 

can be called by all other provided methods defined in trait T2. Therefore trait T2 provides 

three provided methods named method1(), method2(), and method4(). Class C2 uses trait T2 

and so it obtains all provided methods. 

3.4.4 Traits and Umple Mixins 

In the same way Umple supports mixins to compose classes, traits can also be composed in 

this way. This means that a trait can be defined in several places or files and when they are 

used by clients, all elements defined in those separate places will be applied to clients. The 

benefits achieved is like the one described for classes in Section 2.1.3. 
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Listing 12. Using traits with mixings 

a b 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 

trait T1{ 
  void method1(); 
  void method2(){/*impl… */ } 
} 
trait T1{ 
  void method3(){/*impl… */ } 
} 
class C1{ 
  isA T1; 
  void method1(){/*impl… */ }     
} 

trait T1{ 
  void method1(); 
  void method2(){/*impl… */ } 
  void method3(){/*impl… */ } 
} 
class C1{ 
  isA T1; 
  void method1(){/*impl… */ }     
} 

 

 

For example, Listing 12.a depicts two definitions for trait T1 (lines 1 and 5). Class C1 

uses trait T1 and implements the required method method1() and also obtains two provided 

methods method2() and method3(). Listing 12.b shows the same model as defined in Listing 

12.a without any mixin.  

3.4.5 Traits and Abstract Classes 

Classes in Umple can be abstract, therefore, they can have completely abstract methods like 

interfaces can (although abstract classes can also have concrete methods). In order to lever-

age this case, it is allowed for abstract classes to use traits without satisfying their required 

methods. If this is the case, the required methods of traits will be considered as abstract 

methods for the abstract class. Then, all concrete subclasses of the abstract class are required 

to implement those abstract methods. This process ensures that required methods will finally 

be implemented. It is worth noting that interfaces cannot use traits because they cannot have 

concrete methods in their definitions. 

Listing 13 shows an example in which class C1 is abstract (line 6) and uses trait T1. It 

does not have an implementation for required method method1() of trait T1. Therefore, that 

required method becomes an abstract method for class C1. Class C1 now has two abstract 

methods method1() and method3(). It also has concrete method method2() coming from trait 

T1. Class C2 is a subclass of class C1 and has to provide an implementation for abstract 

methods of class C1 (lines 12 and 13). 
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Listing 13. Using traits through abstract classes 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 

trait T1{ 
  void method1(); 
  void method2(){/*implementation*/} 
} 
class C1{ 
  abstract; 
  isA T1; 
  abstract void method3(); 
} 
class C2{ 
  isA C1; 
  void method1(){/*implementation*/} 
  void method3(){/*implementation*/} 
} 

 

 

3.4.6 Flattening of Traits 

A system modeled with traits can be transformed to a compatible model without traits. This 

model is useful when it is required to understand what provided methods are available in 

each final client. This is accomplished through flattening. There are two ways to represent a 

flat model of the system: graphical and textual. These flat models are generated automatical-

ly. In fact, modelers can toggle between the trait and flat model for better understanding of 

their models.  

Listing 14 shows the flattened textual model of the model in Listing 8. As seen, there 

is no definition for traits in the model and classes have all functionality they needed from 

traits as their local methods. Figure 12 depicts the corresponding flattened graphical model. 

The model in Listing 14 can motivate the question why a modeler should not be able 

to just design this model. The main reason is that, for example, method method3() might be 

used in several places. In each place, developers need to implement the method again. If 

there is a bug in the implementation of the method, developers need to apply a patch to all 

those places. Having the method defined a trait helps avoid the pitfall and reach the required 

reusability. 

 

 

  



 

 

Chapter 3. Traits in Model-Driven Software Development  66 

 

Listing 14. The flattened model related to the model in Listing 8 

1 
2 
3 
4 
5 
6 
7 
8 
9 

class C1 { 
  void method3() { /*implementation*/ } 
} 
class C2 { 
  isA C1; 
  void method2() { /*implementation*/ } 
  void method4() { /*implementation*/ } 
  void method1() { /*implementation*/ } 
} 

 

 

 

 

Figure 12. The graphical representation of the Umple model in Listing 14 

3.4.7 Exploring Traits and their Flattened models 

Traits can be explored textually in Umple; others have already proposed a graphical repre-

sentation for them [93]. We wanted to generate such a graphical representation automatically 

for Umple. In order to achieve this, we developed a diagram generator with Graphviz [103] 

which represents traits, classes, and interfaces all together under one diagram. 

Traits are flattened to clients when they are used by clients, so it would also be bene-

ficial to be able to instantly switch between a view with traits and a flattened view. This 

could help modelers to understand how traits are represented in any object-oriented target 

languages, as well as the implications of the traits to the generated system. In order to enable 

such a feature, we needed to represent flattened models graphically. Umple already had a 

class diagram generator based on Graphviz so we simply reused this.  
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Figure 13. How to switch between different views for traits 

 

Figure 13 shows the middle menu of UmpleOnline. In order to have traits represented 

graphically, first the menu OPTIONS must be selected. Then, sub menus Graphviz Class and 

Traits must be selected for DIAGRAM TYPE and SHOW VIEW respectively (as highlight-

ed in the figure). In order to switch to the flattened model, modelers simply need to deselect 

Traits in SHOW VIEW. These two views can also be generated through using the Umple 

command line interface and the Umple Eclipse Plugin. 

3.4.8 Definition of Attributes in Traits 

Attributes in traits are defined in the same way they are defined for classes. Traits also sup-

port all modifiers that can be applied to attributes. Listing 15 gives an example of the way 

attributes can be defined and used in traits. As discussed earlier, these kinds of traits are 

called stateful.  

As seen in the listing, there is a trait named Identifiable that has five attributes: first-

Name, lastName, address, phoneNumber, and fullName (lines 2-6). It also has a provided 

method named isLongName() (line 7). There are no required methods because the trait offers 

pure functionality to its clients. Class Person uses trait Identifiable and obtains the provided 

method and defined attributes from the trait. Class Company also uses the trait Identifiable 

and extends class Organization. It obtains both attributes coming from its superclass and 
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used trait. Figure 14 shows the graphical representation for the model in Listing 15. Attrib-

utes are presented in the same manner they are presented for classes. Figure 15 depicts the 

flattened model for the model in Listing 15. All attributes are flattened similar to the way 

provided methods are flattened. 

Listing 15. An example representing how attributes are defined and used in traits 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 

trait Identifiable { 
  firstName; 
  lastName; 
  address; 
  phoneNumber; 
  fullName = {firstName + " " + lastName} 
  Boolean isLongName() {return lastName.length() > 1;}   
} 
class Person { 
  isA Identifiable; 
} 
class Organization { 
  Integer registrationNumber; 
} 
class Company { 
  isA Organization, Identifiable; 
} 

 

 

 

 

Figure 14. The graphical representation of the Umple model in Listing 15 
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Figure 15. The flattened model for the Umple model in Listing 15 

 

When clients use traits, a name conflict might happen because a client might have an 

attribute and obtain a new attribute with the same name from a trait. Modelers are responsi-

ble to resolve the conflict. The conflict is detected automatically and is presented to the user 

with warning code 218. 

Unlike conflicts with other elements in traits that we will describe later, in the current 

implementation of our work, there is no operator to resolve an attribute name clash conflict. 

The main reason for not having this operator is that attributes can be used in the body of pro-

vided methods and so any operator would need to be applied in those places too. The current 

version of Umple does not analyse the semantics of provided methods, therefore, there is no 

information at the modeling level to show in which provided methods those attributes have 

been used. If Umple is later extended in this respect, we would then be able to add suitable 

operators to deal with conflicts among attributes in traits. Our current recommendation is to 

change the name of attributes in the clients of traits and avoid changing names in traits be-

cause this could break other clients of those traits. 

Another way to avoid conflicts is to use stateless traits. In that case, traits use re-

quired methods to have access to states (attributes). Listing 16 shows an example in which 

trait T1 uses two required methods getData() and setData(Integer) to have access and write 

to the attribute data of type Integer (lines 2 and 3). It also has a provided method that uses 

the method getData() to obtain the value of the attribute data. Then, it performs some opera-

tion on it (in this case adding 2 to the value, line 6) and finally uses the method set-

Data(Integer) to save the new value into the attribute data (line 7). The class C1 uses trait T1 

and has the attribute data. Since Umple automatically generates accessor and mutators for 
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attributes (more information described in Section 2.1.1.3), they satisfy the required methods 

defined in trait T1 and so there is no need to implement them manually in class C1. 

Listing 16. Using required methods to obtain states 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 

trait T1{ 
  Integer getData(); 
  void setData(Integer); 
  Integer processData(){ 
    int data = getData(); 
    data=data+2; 
    setData(data); 
  } 
} 
class C1{ 
  Integer data; 
  isA T1; 
} 

 

 

It is worth mentioning that although Umple supports stateful traits, we recommend 

using stateless traits and obtain access to states through required methods. However, Umple 

allows stateful traits so they can be used when it would result in simpler designs.  

3.4.9 Template Parameters 

Template parameters at the modeling level are combined with other modeling elements like 

associations (described as we progress). This combination increases modularity and reusabil-

ity to an extent that is not achievable at the implementation level. 

Template parameters can be referred to in required and provided methods and attrib-

utes. Traits can have template parameters with generic or primitive data types. As mentioned 

in Section 2.1.1.2, primitive types include Integer, Float, String, and so forth. Generic types 

include classes and interfaces. The difference in their use is that it is possible to put re-

strictions on bound types of generically-typed parameters. Such restrictions might include a 

declaration that the interfaces or classes must be extended or implemented by other specific 

classes. These restrictions are only available for generic-type parameters because primitive 

types cannot implement or extend any other type and so there is no way of imposing such 

constraints on them. 
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Listing 17. An example of traits without template parameters 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 

22 

23 

trait T1{ 
  abstract C1 method2(C1 data); 
  String method3(C1 data) {/*implementation is unique for T1*/ } 
} 
trait T2{ 
  abstract C2 method2(C2 data); 
  String method3(C2 data) {/*implementation is unique for T2*/ } 
} 
interface I1{ 
  void method1(); 
} 
class C1{ 
  isA I1; 
  isA T1; 
  void method1(){/*implementation is unique for C1*/}  
  C1 method2(C1 data){ /*implementation is unique for C1*/ } 
} 
class C2{ 
  isA I1; 
  isA T2; 
  void method1(){/*implementation is unique for C2*/} 
  C2 method2(C2 data){ /*implementation is unique for C2*/ } 
} 

 

 

 

Figure 16. The graphical representation of the Umple model in Listing 17  

 

Listing 17 and Figure 16 show an example in which template parameters have not 

been used. In Listing 17, there are two traits T1 and T2 each having a required method called 

method2() but with the different return and parameter types. Their provided methods have 

the same logic but operating on different implementations of interface I1 (C1 and C2) 

through the parameter “data”. In the absence of template parameters, the design is required 

to have two traits in this case. In the following, we describe how template parameters are de-

fined and can tackle this redundancy. 
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Template parameters are defined after the name of a trait inside a pair of angle brack-

ets. Each parameter has a name and they are separated by a comma. Restrictions on the tem-

plates applied in the same manner Umple allows extending and implementing interfaces and 

classes respectively. In other words, the keyword isA is used after the name of a template pa-

rameter followed by the name of interfaces or a class. If there are more than one interface or 

one interface and one class, they are separated by the symbol &. Listing 18 shows the gram-

mar related to the definition of template parameters in traits. 

Listing 18. The grammar related to the definition of template parameters 

1 

2 

3 

traitParameters: < [[traitFullParameters]] (,[[traitFullParameters]] )* > 

traitFullParameters : [~parameter] ([[traitParametersInterface]])? 

traitParametersInterface- : isA [~tInterface]( & [~tInterface])* 
 

 

When clients use traits, they must bind types to their parameters and also types must 

satisfy their restrictions. Values are bound through the symbol =, in the manner values are 

generally assigned to attributes. The bindings are performed inside a pair of angle brackets, 

each one separated by a comma. Therefore, when a client uses a trait with template parame-

ters, they need to extend the normal way of using traits by having angle brackets appearing 

after the name of traits. Listing 11 showed the grammar related to binding values to template 

parameters when they are used by clients. 

Listing 19 shows how the model in Listing 17 can be remodeled based on template 

parameters. Listing 19 depicts a trait called T1 (line 1) with one template parameter named 

TP. The template parameter is restricted to implement the interface I1, defined in line 5. The 

restriction is applied to make sure a correct type will be bound to the template parameter. 

Trait T1 has a required method named method2() with a return value and a parameter of type 

TP (which is a template parameter). Furthermore, it has a provided method named method3() 

with a parameter of type TP. 

Class C1 defined in line 8 uses trait T1 and assigns class C1 as a binding type to TP. 

Since class C1 has already implemented interface I1 (line 9), the type is acceptable. Class C1 

needs to implement the required method of trait T1, but it must be performed based on the 

type assigned to the template parameter TP. Therefore, class C1 implements method2() with 
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the correct data type (which is C1) for the parameter and return types. Line 12 shows the ex-

act signature of the implemented method. 

Listing 19. An example shows how template parameters are defined and used 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 

trait T1< TP isA I1 > { 
  abstract TP method2(TP data); 
  String method3(TP data){ /*implementation*/ } 
}  
interface I1{ 
  void method1(); 
} 
class C1{ 
  isA I1;  
  isA T1<TP = C1>; 
  void method1(){/*implementation*/}  
  C1 method2(C1 data){ /*implementation*/ } 
} 
class C2{ 
  isA I1; 
  isA T1< TP = C2 >; 
  void method1(){/*implementation*/} 
  C2 method2(C2 data){ /*implementation*/ } 
} 

 

 

 

 

Figure 17. The graphical representation of the Umple model in Listing 19  

 

 



 

 

Chapter 3. Traits in Model-Driven Software Development  74 

 

 

 

Figure 18. The flattened model for the Umple model in Listing 19 

 

Figure 17 presents how template parameters and their bindings are shown graphical-

ly. When a trait has template parameters, they are annotated with «Template Parameter». The 

same kind of annotation is used to specify what kinds of restriction each template parameter 

has. When a client binds a value to a template parameter, the corresponding arrow is annotat-

ed with «bind» along with the name of the template parameter and its bound type. 

Figure 18 depicts the flattened model related to the model in Listing 19. As seen, 

classes Cl and C2 have obtained the same provided methods but with different data types 

based on the binding types. Using template parameters reduces the number of traits required 

to be implemented and therefore allow to have more general traits. 

3.4.9.1 Nested template parameters 

Since a trait can use other traits, a trait with template parameters should also be able to use 

other traits with template parameters. Therefore, it should also be possible to bind a template 

parameter to another template parameter to achieve better flexibility. This is performed in the 

same manner a type is bound to a template parameter. Furthermore, template parameters are 

modulated for each trait so it is possible for a trait with template parameters to use other 

traits with the same names for their template parameters. 

Listing 20 gives an example in which one template parameter is bound to another 

one. Trait T1 has the template parameter TP used to define the type of parameter for the pro-

vided method method2(). Trait T2 has the template parameter TP used to define the type of 
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parameter for the provided method method3(). It also uses trait T1 and binds its own template 

parameter to traits T1’s template parameter (line 6). Note that trait T2 can also bind any other 

type to the template parameter TP, if it is required. Finally, class C1 uses trait T2 and binds 

String to the template parameter TP (line 10). 

Listing 20. An example of nested template parameters 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

trait T1<TP>{ 
  void method1(); 
  void method2(TP data) {/*implementation*/} 
} 
trait T2<TP>{ 
  isA T1< TP = TP >; 
  void method3(TP Data) {/*implementation*/} 
} 
class C1{ 
  isA T2< TP = String >; 
  void method1(){/*implementation*/} 
} 

 

    

3.4.9.2 Validity of template parameters and their constraints 

There are several cases that can stop clients from using traits with template parameters or 

traits from defining template parameters. These cases are checked automatically by the Um-

ple compiler and a proper error is raised for each case. These case are as follows: 

a) If traits define template parameters, clients of those traits need to bind types to them. 

Otherwise, error code 219 is raised. For instance, in Listing 21.a class C2 uses trait 

T1 but it fails to bind a type to the template parameter TP. 

b) If clients bind types to the template parameters of used traits and the types are not 

available in the system under design, error code 221 is raised. For example, in Listing 

21.b class C2 uses trait T1 and binds class C1 to the template parameter TP, but class 

C1 does not exist.  

c) If traits define template parameters and put constraints on them, the classes and inter-

faces involved in the constraints must exist in the system under design, otherwise, er-

ror code 223 is raised. For instance, in Listing 21.c trait T1 has the template parame-

ter TP with the restriction of implementing the interface I, but interface I does not ex-

ist. 
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d) If clients bind types to the template parameters of used traits and the types exist but 

they do not satisfy the constraints of the template parameters, error codes 206 and 

225 are raised for the class and interfaces respectively. For example, in Listing 21.d, 

class C uses trait T1 and binds the class C1 to the template parameter TP, but the 

class C1 does not implement the interface I. 

e) If a multiple inheritance is applied as a constraint to a template parameter, it is de-

tected and error code 224 is raised. Umple does not support multiple inheritance. For 

example, in Listing 21.e, trait T1 tries to constrain the type of template parameter TP 

to be a subclass of C1 and C2.  

f) When template parameters used for attributes and several traits are used by a client, 

the composition of traits should not cause a conflict in types and attribute names. For 

example, in Listing 21.f, class C1 uses two traits T1 and T2, which bring two attrib-

utes named name with two different types, Integer and String. The compiler raises er-

ror code 217 for this case. 

g) Two different types cannot be given to a template parameter and the detection of this 

is reflected by error code 216. For example, in Listing 21.g, class C uses trait T, but it 

cannot bind two types Integer and String to template parameter TP. 

h) The name of template parameters must be unique in the definition of each trait. For 

example, in Listing 21.h, trait T cannot have two template parameters with the name 

TP. Breaking this rule results in error code 214. 

i) Clients must always bind types to the correct template parameter of a trait, otherwise, 

error code 215 is raised. For example, in Listing 21.i, class C uses trait T but it cannot 

bind String to template parameter TP1 that is not defined for trait T. 
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Listing 21. The case in which template parameters can not be used or defined 

 a b 

1 
2 
3 
4 
5 
6 

trait T1<TP>{/*implementation*/} 
class C2{ 
  isA T1; 
  /*implementation*/ 
} 

trait T1<TP>{/*implementation*/} 
class C2{ 
  isA T1<TP=C1>; 
  /*implementation*/ 
} 

  
c 

 
d 

1 
2 
3 
4 
5 
6 
7 
8 
9 

trait T1<TP isA I>{ 
  /*implementation*/ 
} 
class C1{/*implementation*/} 
class C{ 
  isA T1< TP = C1 >; 
  /*implementation*/ 
} 

trait T1<TP isA I>{ 
  /*implementation*/ 
} 
interface I{/*implementation*/} 
class C1{/*implementation*/} 
class C{ 
  isA T1< TP = C1 >; 
  /*implementation*/ 
} 

  
e 

 
f 

1 
2 
3 
4 
5 

trait T1<TP isA C1&C2>{ 
  /*implementation*/ 
} 
class C1{ /*implementation*/ } 
class C2{ /*implementation*/ } 

trait T<TP>{  TP name;  } 
trait T1{ isA T< TP = Integer >;} 
trait T2{ isA T< TP = String >;} 
class C1{ isA T1,T2;} 

  
g 

 
h 

1 
2 
3 
4 

trait T<TP>{ TP name;  } 
class C{  
  isA T< TP = Integer , TP= String>; 
} 

trait T<TP,TP>{ TP name;  } 
class C{  
  isA T< TP =Integer >; 
} 

  
                   i 

 
 

1 
2 
3 
4 

trait T<TP>{ TP name;  } 
class C{  
  isA T< TP = Integer , TP1 = String >; 
} 

 

 

3.4.9.3 Template parameters in code blocks 

Since Umple supports using programming languages to implement the body of methods, it is 

beneficial to allow template parameters to be used in collaboration with them. The current 

implementation of Umple does not involve parsing the code blocks, since Umple supports 
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many languages in code blocks and those languages constantly evolve. As a result, detecting 

template parameters and replacing them with the binding types in places that are syntactical-

ly and semantically correct poses challenges. In order to tackle this issue, Umple introduces a 

special syntax to allow having template parameters that can be substituted in code blocks. 

Listing 22. An example model of using template parameters in code blocks. 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 

trait T1 <TP>{ 
  String method1(); 
  String method2(){ 
    #TP# instance = new #TP#(); 
    return method1() +":"+instance.process(); 
  } 
} 
class C1{ 
  String process(){/*implementation*/} 
} 
class C2{ 
  isA T1< TP = C1 >; 
  String method1(){/*implementation*/ } 
} 

 

 

Listing 23. The generated Java method for the template parameter described in Listing 22  

1 
2 
3 
4 

public String method2(){ 
    C1 instance = new C1(); 
    return method1() + ":" +instance.process(); 
} 

 

 

For template parameters to operate on code in code blocks, they need to be encom-

passed within a pair of the symbol #. This ensures that the dedicated Umple scanner (i.e., not 

a full code parser) will be able to detect strings matching the template parameters correctly 

and replace them with binding values. 

Listing 22 shows an example in which a template parameter is used in the body of a 

method. As seen, trait T1 has a template parameter named TP (line 1). The provided method 

method2() needs to return a string which is a combination of calling the required method 

method1() and a method named process() from the template parameter TP. In the body of the 

provided method method2(), an instance of the template parameter needs to be created so as 

to call the method process(). This is achieved by having the name of template parameter en-
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compassed by # in places that require types (line 4). The rest needs to follow the syntax of 

the language used to implement the code blocks, in this case, Java. 

Class C2 uses trait T1 and binds class C1 to the template parameter TP (line 12). It 

also implements the required method method1() in order to use the trait. Listing 23 depicts 

the method method2() in Java generated for the class C2. 

3.4.10 Recognized Conflicts 

As mentioned earlier, using traits is not always a straightforward mechanism and sometimes 

there are conflicts. Provided methods are the main reasons for conflicts when they appear in 

clients, derived from different traits and hierarchy levels. If a method with the same signature 

comes to a client from two different traits, it is considered as a conflict that must be resolved. 

However, if the method comes from two different traits but with a common source (i.e., both 

different traits use a common third trait), it is not considered as a conflict. Conflicts are de-

tected in our implementation automatically. 

Listing 24. The conflict arising from provided methods but different implementations 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

trait T1{ 
  void method1(){/*implementation related to T1*/ } 
} 
trait T2{ 
  void method1(){/*implementation related to T2*/ }  
} 
class C1{ 
  isA T1; 
  isA T2; 
} 

 

 

Listing 24 describes the first case of conflict. As seen, trait T1 has a provided method 

named method1() with its unique implementation (line 2) and trait T2 also has a provided 

method with the same signature but different implementation (line 5). Class C1 uses traits T1 

and T2 and therefore there is a conflict regarding which provided method should be accepted. 

The Umple compiler automatically detects this situation under the error code 210. 

Listing 25 illustrates an example of two cases, in which one of them results in a con-

flict and another does not. Class C1 uses traits T2 and T3 and it hence will get two provided 

methods – method1() and method2()– twice, coming from two different traits. There is no 
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conflict for method1() because T2 and T1 get the same method from a common source (trait 

T1). However, this is not the case for the method2() because this method has been overridden 

by trait T3 (line 10). In other words, the sources are now not the same. Therefore, in class C1 

there is a conflict. It is important to note that there is no graphical representation for this ex-

ample because Umple detects the conflict (under the error code 210) and does not allow gen-

eration of an inconsistent diagram. 

Listing 25. The conflict arising from provided methods in different levels 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 

trait T1{ 
  void method1(){/*implementation related to T1*/ } 
  void method2(){/*implementation related to T1*/ }   
} 
trait T2{ 
  isA T1; 
} 
trait T3{ 
  isA T1; 
  void method2(){/*implementation related to T3*/ }  
} 
class C1{ 
  isA T2; 
  isA T3; 
} 

 

3.4.11 Operators 

Operators are capabilities that allow resolving the conflicts and also managing the granulari-

ty of traits. Operators are applied to traits when traits are used by clients. Clients can apply 

more than one operator to a specific trait, but those operators need to be compatible with 

each other. There is no sequence in the way operators are applied. Operators are defined in-

side angle brackets after the name of traits and can be mixed with binding types to template 

parameters. The general structure by which a client uses operators is as follows. 

isA TName <Operator1, Operator2, …, Operatorn> 

 

TName specifies the name of a trait to which each Operatori,i=1..n is applied. There is 

no limitation on the number of operations that can be applied to a trait. Two operators with 

the same semantics (such as removing and renaming) can only be applied to different ele-

ments. Errors resulting from violations such rules are detected and reported to the modeler. 
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Note that all processes related to the flattening and composition algorithm (described later) 

are performed after applying the operators. 

In the discussion that follows here and in Section 3.5.4 (operators on state machines), 

the syntax and semantics of the operators are described in detail. There may appear to be a 

lot of details for the user to comprehend. However, all the operators follow a pattern, and the 

semantics has been designed to be consistent with operators on other modeling elements. 

If traits have template parameters and those template parameters have been used as 

types in provided methods (or event of state machines), their types do not affect the signature 

of provided methods referred to by operators. In other words, types of template parameters 

are applied to traits after operators are applied. 

The identification factor for selecting a provided method is its signature. However, 

the return type of provided methods is not used for identification because the name and list 

of types of parameters can uniquely differentiate each provided method from others. When 

parameters of provided methods are specified, there is no need to define the name of parame-

ters. 

3.4.11.1 Removing/keeping provided methods 

This operator allows removing or keeping provided methods of a trait. The syntax for this 

operator is as follows: 

(+|-) methodName(argumentTypes) 

  

The symbol – indicates removing while the symbol + indicates keeping. The symbol 

must precede the signature of the provided method. When the symbol – is applied to a pro-

vided method of a trait, it removes the method from the set of provided methods. However, 

when the symbol + is applied to a provided method of a trait, the provided method is kept 

and the rest are removed. If a method signature is specified in this operator and it is not 

available in the used trait, the Umple compiler raises error code 212. The Umple compiler 

also detects if this operator was applied more than once on a specific method and raises error 

code 211 in that case. Listing 26 shows the Umple grammar related to this operator. 

Listing 26. The grammar related to operator removing/keeping 
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1 

2 

 

iEFunction: [=modifier:+|-] [~methodName] [[iEParameterList]] 

iEParameterList: OPEN_ROUND_BRACKET  

  ( [parameter] ( , [parameter] )* )? CLOSE_ROUND_BRACKET 
 

 

For instance, Listing 27 depicts an example in which class C1 removes the provided 

methods method2() and method3() (line 9) while class C2 keeps only the provided method 

method5(), coming from trait T1 (line 13). Figure 19 shows the flattened class diagram for 

Listing 27. As seen, class C1 obtains two provided methods method4() and method5() in ad-

dition to the method1() which satisfies the required methods of trait T1. Class C2 just has the 

provided method method5() in addition to method1(); 

Listing 27. An example that shows how to control granularity of traits 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 

trait T1{ 
  abstract method1();  
  void method2(){/*implementation*/} 
  void method3(){/*implementation*/} 
  void method4(){/*implementation*/} 
  void method5(){/*implementation*/} 
} 
class C1{ 
  isA T1< -method2() , -method3()>; 
  void method1() {/*implementation related to C1*/} 
} 
class C2{ 
  isA T1< +method5() >; 
  void method1() {/*implementation related to C2*/} 
} 

 

 

 

 

Figure 19. The flattened model for the Umple model in Listing 27 

 

In Section 3.4.10, two cases that could cause conflicts were described. Listing 28 

shows how the removing operator “ - “  can be applied to resolve the conflict in Listing 24. 

There are two options to apply the operator. The first one is to remove provided method 



 

 

Chapter 3. Traits in Model-Driven Software Development  83 

 

method1() from trait T1, modeled in Listing 28.a line 12. The second option is to remove 

provided method method1() from trait T2, modeled in Listing 28.b line 13. The selection of 

options depends on the specific needs of the particular design. The developer needs to inves-

tigate which method satisfies the requirements of class C1. In most cases, it is clear from the 

functionality the provided method offers. 

Listing 28. Resolving the conflict in Listing 24 by the removing operator 

a b 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 

trait T1{ 
  void method1(){ 
    /*impl.. related to T1*/ 
  } 
} 
trait T2{ 
  void method1(){ 
    /*impl… related to T2*/ 
  }  
} 
class C1{ 
  isA T1< -method1() >; 
  isA T2; 
} 

trait T1{ 
  void method1(){ 
    /*impl.. related to T1*/ 
  } 
} 
trait T2{ 
  void method1(){ 
    /*impl… related to T2*/ 
  }  
} 
class C1{ 
  isA T1; 
  isA T2< -method1() >; 
} 

 

 

Listing 29. Resolving the conflict in Listing 25 by removing/keeping operator 

a b 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 

trait T1{ 
  void method1(){ 
    /*impl.. related to T1*/ 
  } 
  void method2(){ 
    /*impl.. related to T1*/ 
  }   
} 
trait T2{ 
  isA T1; 
} 
trait T3{ 
  isA T1; 
  void method2(){ 
    /*impl.. related to T3*/ 
  }  
} 
class C1{ 
  isA T2; 
  isA T3< -method2() >; 
} 

trait T1{ 
  void method1(){ 
    /*impl.. related to T1*/ 
  } 
  void method2(){ 
    /*impl.. related to T1*/ 
  }   
} 
trait T2{ 
  isA T1< -method2() >; 
} 
trait T3{ 
  isA T1; 
  void method2(){ 
    /*impl.. related to T3*/ 
  }  
} 
class C1{ 
  isA T2; 
  isA T3; 
} 
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Listing 29 shows how the operator should be applied to the model in Listing 25 to 

resolve the conflict. In this case, again, Umple developers are responsible for deciding which 

method needs to be removed. Listing 29.a models the case in which the provided method 

method2() is removed from trait T3 (line 20) while Listing 29.b removes the provided meth-

od method2() from trait T1 (line 10). 

Please consider that in the case of having many conflicts, the keeping operator (+) 

can also be used for the same result. Multiple keeping operators can be used together to keep 

several methods and throw away the rest. 

3.4.11.2 Renaming (Aliasing) 

The renaming operator allows changing the name of provided methods and also their visibili-

ties. This operator can also be mixed partially with the keeping operator to provide better 

flexibility. The operator does not allow changing the types of parameters or number of pa-

rameters. The reason is that the provided methods might be used by other provided methods 

and so any change regarding types and numbers can break traits. 

The current implementation of the operator does not support renaming recursive 

methods. The reason for this is that the current version of Umple does not support parsing the 

body of methods. Therefore, if a method is used in the body of other methods, we cannot re-

named it at the modeling level. Being able to parse the body of methods will allow this oper-

ator to be applied to recursive methods as well. 

When a provided method is referred in the operator, it must exist in the trait, other-

wise, the Umple compiler raises error code 212. Furthermore, the new name of the provided 

method must be unique in the list of provided methods, otherwise, error code 220 is raised. 

The syntax for this operator is as follows: 

(+) methodName(argumentTypes) as newName 

 

Listing 30 shows the Umple grammar related to this operator. This operator is a good 

candidate for resolving conflicts because it allows clients to have access to both conflicting 

provided methods. 
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Listing 30. The grammar related to operator renaming 

1 

 

2 

3 

functionAliasName: [=modifier:+]? [~methodName] 

   [[iEParameterList]] as [[IEVisibilityAlias]] 

IEVisibilityAlias-: ([[IEVisibility]] [~aliasName]?) | ([~aliasName]) 

IEVisibility-: [=iEVisibility:public|private|protected] 
 

 

 

Listing 31. An example that shows how to customize vocabulary of traits  

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 

trait T1{ 
  abstract method1();  
  void method2(){/*implementation*/} 
  void method3(){/*implementation*/} 
  void method4(){/*implementation*/} 
  void method5(Integer data){/* implementation*/} 
} 
class C1{ 
  isA T1< method2() as function2 >; 
  void method1() {/*implementation related to C1*/} 
} 
class C2{ 
  isA T1< method3() as private function3 >; 
  void method1() {/*implementation related to C2*/} 
} 
class C3{ 
  isA T1< +method5(Integer) as function5 >; 
  void method1() {/*implementation related to C3*/} 
} 

 

 

 

 

Figure 20. The flattened model for the Umple model in Listing 31 

 

For example, Listing 31 shows this operator in action. Class C1 uses trait T1 (line 9) 

and renames its provided method method1() to function2. There is no need to specify paren-
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theses for the new name. Class C2 uses trait T1 (line 13) and while it renames provided 

method3() to function3, it also changes the visibility of the provided method to be private. 

Finally, class C3 uses trait T1 and renames the provided method method5(Integer) to func-

tion5. However, it also forces other provided methods of trait T1 to be removed. This feature 

can be really useful if there is a utility trait and we are just interested in a provided method 

with the name that suits our domain. Figure 20 presents a class diagram in which the final 

result of applying operators to traits can be seen. 

Now, we want to see how the operator can be used to resolve the conflicts described 

in Section 3.4.10. Listing 32 shows two different ways to resolve conflicts. Listing 32.a 

shows how the provided method method1() of trait T1 is renamed to func1 (line 12) while  

Listing 32.b presents how the provided method method1() of trait T2 is renamed to func2 

(line 13). As seen, the operator allows having access to both conflicting methods in clients. 

This is not possible with the removing operator. 

Listing 32. Resolving the conflict in Listing 24 by renaming operator 

a b 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 

trait T1{ 
  void method1(){ 
    /*impl.. related to T1*/ 
  } 
} 
trait T2{ 
  void method1(){ 
    /*impl… related to T2*/ 
  }  
} 
class C1{ 
  isA T1<method1() as func1>; 
  isA T2; 
} 

trait T1{ 
  void method1(){ 
    /*impl.. related to T1*/ 
  } 
} 
trait T2{ 
  void method1(){ 
    /*impl… related to T2*/ 
  }  
} 
class C1{ 
  isA T1; 
  isA T2<method1() as func2>; 
} 

 

 

Listing 33 shows how the operator is used to deal with the conflict in Listing 25. In 

Listing 25.a, class C1 changes the name of provided method method2() of trait T3 to func3 

(line 20). In Listing 25.b the provided method method2() of trait T1 is changed to func2 in-

side trait T2 (line 10). Although the final method names of class C1 in Listing 33.a and b are 

different, they are exactly the same regarding the functionality offered. 

 

 



 

 

Chapter 3. Traits in Model-Driven Software Development  87 

 

Listing 33. Resolving the conflict in Listing 25 by renaming operator 

a b 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 

trait T1{ 
  void method1(){ 
    /*impl.. related to T1*/ 
  } 
  void method2(){ 
    /*impl.. related to T1*/ 
  }   
} 
trait T2{ 
  isA T1; 
} 
trait T3{ 
  isA T1; 
  void method2(){ 
    /*impl.. related to T3*/ 
  }  
} 
class C1{ 
  isA T2; 
  isA T3<method2()as func3>; 
} 

trait T1{ 
  void method1(){ 
    /*impl.. related to T1*/ 
  } 
  void method2(){ 
    /*impl.. related to T1*/ 
  }   
} 
trait T2{ 
  isA T1<method2() as func2>; 
} 
trait T3{ 
  isA T1; 
  void method2(){ 
    /*impl.. related to T3*/ 
  }  
} 
class C1{ 
  isA T2; 
  isA T3; 
} 

 

 

Note that, it is not allowed to rename required methods because they have been used 

in the body of methods. Therefore, if we were allowed changing them, the implementation 

would be broken. This feature is, however, available in programming languages such as 

FRTJ [22] which have completely modular implementation for traits. 

3.5. State Machines in Traits 

A state machine (SM) describes the behavior of some system element, for example, the life 

cycle of an instance of a class. However, there are several challenges with the practical use 

of state machines: They can grow complex, it can be hard to compose them from reusable 

parts, and it can be hard to create slightly-varying versions as specializations of a general 

case, for example in a product line. 

There is only a small amount of literature on building state machines from reusable 

component state machines, or on composition and generalization/specialization of such ma-

chines [16,57,72]. As described in the problem section (Section 1.1), current reuse and ex-

tension mechanisms for state machines are typically limited in terms of the following items: 
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 State machines are generally defined as elements of classes, so reuse and extension 

follow the rules and limitations of inheritance (subtyping). 

 Composite states cannot be built based on already-defined state machines. In other 

words, composite states cannot be defined and reused separately. 

 Although state machines in different domains may have isomorphic structures, the 

different vocabulary (e.g., different event and state names) in each domain prevents 

reuse. 

 

In fact, it seems reasonable to expect that elements with similar behavior ought to be 

able to reuse the same state machine, especially if there was a parameterization mechanism 

to allow for small differences. It should similarly be possible to reuse behavior expressed as 

a state machine to build more complex behavior. In this section, we explain how state ma-

chines are defined in Umple traits and used in combination with state machines in other traits 

or classes. 

3.5.1 Definition of State Machines in Traits 

A trait can have zero or many state machines, each with a unique name. The definition of 

state machines in traits follows the same rules and constraints that exist for them in classes 

(described in Section 2.1.5). 

Listing 34.a shows a trait called T1 (lines 1-10) with two state machines sm1 (lines 2-

5) and sm2 (lines 6-9). Use of trait T1 in class C1 results in class C1 having those two state 

machines as native state machines. In general, if a class already has state machines with 

completely distinct names to those being introduced via traits, the introduced state machines 

are just ‘flattened’ into the class, i.e,. they are treated as though they were coded directly in 

the class. 

Introduced machines that have names duplicating existing state machine names are 

composed (merged) with the existing machines, and the resulting composed machines are 

flattened into the class (described in Section 3.3.3). The same concept is applied when traits 

are used by other traits. Listing 34.b expresses the same model designed in Listing 34.a, in 

which class C1 has two state machines, but it uses trait T2 (line 15) to obtain the same state 

machines. Trait T2 provides state machine sm2 from its own definition (lines 9-12) and state 
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machine sm1 from trait T1 (line 8). This use of traits by other traits allows building more 

complex traits (and hence more complex state machines) from simpler ones (e.g., Figure 21). 

Listing 34. State Machines in traits 

a b 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 

trait T1 { 
  sm1{ 

  s0 {e1-> s1;} 
  s1 {e0-> s0;} 
} 
sm2{ 
  s0 {e1-> s1;} 
  s1 {e0-> s0;} 
} 

} 
class C1 { 
  isA T1; 
} 
 
 

trait T1 { 
  sm1{ 

  s0 {e1-> s1;} 
  s1 {e0-> s0;} 

  } 
} 
trait T2 { 
  isA T1; 
  sm2{ 

  s0 {e1-> s1;} 
  s1 {e0-> s0;} 

  } 
} 
class C1 { 
  isA T2; 
} 

 

 

 

 

 

Figure 21. The diagram corresponding to Listing 34 
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3.5.2 The Relationship between State Machine, Provided, and Re-
quired Methods 

As pointed out before, basic traits are composed of required and provided methods. Clients 

need to satisfy required methods in order to obtain benefits of provided methods. In other 

words, provided methods need those required methods to behave correctly. Therefore, mod-

eling elements in traits should be served as provided functionality. State machines in traits 

clearly match this rule and are considered as provided functionality. More concretely, any 

event in a state machine is considered as a provided method, and so can satisfy the required 

methods of used traits. 

Listing 35. Satisfaction of required methods through state machines 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 

trait T1{ 
  Boolean m1(String input); 
  Boolean m2(); 
  sm1{ 
    s1{ e1(String data) -> /{ m1(data); } s2;   } 
    s2{ e2 -> /{ m2(); } s1; } 
  } 
} 
class C1{ 
  isA T1; 
  sm2{ 
    s1{ m1(String str) -> s2;} 
    s2{ m2 ->  s1;} 
  } 
} 

 

 

State machines are supposed to encapsulate their own actions and guards so they can 

be reused as a piece of functionality. For example, a guard can be defined as a reference to 

an attribute in the trait or to a parameter of the event, so when the state machine is reused the 

attribute and parameter are reused as well. The same perspective is true for actions. In real 

world cases, state machines may need to obtain those conditions and actions from the context 

(e.g., clients) in which they are reused. State machines hence require those conditions and 

actions to behave correctly. This requirement is in alignment with the notion of required 

methods of traits. Therefore, required actions and guards of state machines can be expressed 

as required methods of traits. Therefore the required behavior of them can also be satisfied 

by other state machines in the clients. 
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It should be noted that if guards, actions, and activities of state machines are defined 

as methods (not inline code blocks directly in the state machine), they are not anymore re-

quired methods. They will be treated as provided methods, and traits’ rules related to provid-

ed methods will be applied to them. 

Listing 35 shows an example in which required methods are satisfied by events of 

state machines. As seen, trait T1 has two required methods, m1(String) and m2(), called in 

actions of transitions e1(string) and e2 in states s1 and s2 of state machine sm1 respectively. 

Class C1 uses trait T1 and must satisfy those required methods. Class C1 does not have any 

concrete method to satisfy the required methods, but it has state machine sm2. State machine 

sm2 has two event m1(String) and m2 which satisfy the required methods of trait T1. 

If state machines are used to satisfy the required methods, there is a limitation in re-

turn types of required methods. All required methods must have Boolean as their return 

types, otherwise, events cannot satisfy them. The reason for this limitation is that all event 

automatically obtain Boolean as their return types by the Umple compiler. 

Listing 36. Template parameters with state machines in traits 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

trait T1<TP>{ 
  sm{ 

  s1{ e1(TP p1)-> s2; } 
    s2{ e2(String p1, TP p2) -> s1; } 
  } 
}   
class C1{/*implementation*/} 
class C2{ 
  isA T1<TP=C1>; 
} 

 

 

 

Figure 22. State machine diagram for the class C1 in Listing 36 
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3.5.3 Template Parameters in State Machines 

Like the way template parameters defined in traits are used for required and provided meth-

ods, they can also be used in collaboration with state machines. Template parameters can be 

used to define the types of parameters for events. They can also be used in code blocks relat-

ed to actions and activities, as described in Section 3.4.9.3. 

Listing 36 illustrates an example of how template parameters can be used with events 

of state machines. State machine sm in trait T1 has two events. Event e1 has a parameter of 

type TP (line 3) and event e2 has two parameters with types String and TP (line 4). Class C2 

uses trait T1 (line 9) and binds class C1 to the template parameters TP. The flattened state 

machine of class C2 is depicted in Figure 22. 

3.5.4 Operators 

As with operators on methods described earlier (Section 3.4.11), certain operators can be ap-

plied to traits’ state machines when they are used in clients. These provide mechanisms to 

improve flexibility, assign state machines to specific states, and resolve conflicts caused by 

name collisions. These operators follow the same structure defined for operators on methods. 

3.5.4.1 Changing the name of a state machine 

This operator is used to change the name of a state machine when it is to be reused by a cli-

ent. This operator can also be mixed partially with the keeping operator to provide better 

flexibility. The syntax for this operator is as follow: 

(+) stateMachineName as newName 

 

When a state machine with a given name is specified by the renaming operator, it 

must be available in the trait being operated on, either directly in the trait or another trait 

used by the trait. Otherwise, the Umple compiler raises error code 230. Listing 37 shows 

how names of state machines represented in Listing 34 (parts a and b) can be changed to 

mach1 and mach2. As seen, in Listing 37.a both state machines that are available directly in 

trait T1 have been renamed. State machine sm1 renamed in Listing 37.b is defined in trait T1 

but accessible in trait T2 because trait T2 uses trait T1. The changed model related to Listing 

37 is depicted in Figure 23.  
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Listing 37. Changing the name of state machines in Listing 34 

 a b 

1 
2 
3 

class C1 { 
 isA T1<sm1 as mach1, sm2 as mach2>; 
} 

class C1 { 
 isA T2<sm1 as mach1, sm2 as mach2>; 
} 

 

 

 

Figure 23. The diagram corresponding to modification in Listing 37 

 

Listing 38 shows another example in which class C1 uses the operator to rename the 

state machine sm1 in trait T1 in Listing 34 and also automatically remove other state 

machines, which are just state machine sm2 in this case. The logic of this operator is exactly 

like the one described for renaming operator for methods in Section 3.4.11.2 

Listing 38. Changing name of a state machine and removing others in Listing 34  

1 
2 
3 

class C1 { 
 isA T1< +sm1 as mach1 >; 
} 

 

 

There are two main scenarios for this operator. The first is merging: when a client al-

ready has a state machine and will obtain another state machine coming from the used trait. 

The two machines might have some of the same states but different functionality. The client 

wants to have all functionality merged in one state machine (described as we progress). In 
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this case, the operator is used to change the name of the incoming state machine from the 

trait, to match the name of the existing state machine. The result is that the new functionality 

will be merged into the existing state machine. 

The second scenario is for avoiding conflicts. This occurs when a client has an exist-

ing state machine and wants to incorporate another one with different functionality, but that 

happens to have the same name. In this case, the client can change the name of the incoming 

state machine to be different from the existing state machine. This second scenario can be 

needed in various conflict-resolution scenarios.  

As pointed out above, the state machine used in this operation needs to be accessible, 

otherwise, the Umple compiler raises error code 230 (e.g., Listing 39.a). Furthermore, the 

operator can be applied once on a specific state machine, otherwise, the Umple compiler 

raises the error code 290 (Listing 39.b). 

Listing 39. Errors when changing improperly the name of state machines in Listing 34 

a b 

1 
2 
3 

class C1 { 
 isA T1<sm10 as mach1 >; 
} 

class C1 { 
 isA T2<sm1 as mach1, sm1 as mach2>; 
} 

 

3.5.4.2 Changing the name of a state 

This operator changes the name of a state inside a specific state machine. The operator co-

vers both simple and composite states. The syntax used for this purpose is as follows:  

stateMachineName.stateName.....stateName as newName 

 

The state to be renamed is specified based on a series of names separated by dots, 

starting with the name of the state machine. If the state is a simple or composite state at the 

top level of a hierarchical state machine, then it comes directly after the name of the state 

machine. However, if it is deeper in the hierarchy, the chain of parents must also be speci-

fied. The last name in the series is always the name of the state to be renamed. 

Listing 40 shows an example including a trait and class named T1 and C1. Trait T1 

has a state machine with a composite state named s0 (line 3). Composite state s0 has two in-

ternal states s11 and s12. Class C1 uses trait T1 and changes the name of state s0 to state0 

and the name of s11 to state11 (line 12). In order to specify the state s0, it is preceded by the 
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name of a state machine, which is sm. For state s11, the name of the state machine, the com-

posite state, and the region name (implicitly called s0) precede it 

Listing 40. An example that shows how to change the name of states  

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 

trait T1 { 
  sm{ 
    s0{ 
      e1-> s1; 
      s11{ e12-> s12; } 
      s12{ e11-> s11; }    
    } 
    s1{ e0-> s1;  }   
  } 
} 
class C1 { 
  isA T1<sm.s0 as state0, sm.s0.s0.s11 as state11>; 
} 

 

 

 

Figure 24. The diagram corresponding to modifications in Listing 40 

 

In Umple, the name of the single region inside a composite state is set automatically 

to the name of the composite state. The operator applies also the same rule when it changes a 

composite state. Figure 24 shows the result of operators on the state machine in trait T1 in 

Listing 40. 

The first scenario for this operator is to change the vocabulary used for the names of 

states. This adds flexibility when a trait is specified in a generalized context and there is a 
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need to adapt names so as to be more domain-specific. For example, ‘tripEnded’ in a general 

transportation state machine becomes ‘landed’ in an adaptation to the airline domain, or 

‘docked’ in an adaptation to the water transport domain. 

The second scenario is when two states need to be merged, but they have different 

names. By changing the name of one so it matches the other, the algorithm knows how to 

merge them. 

The third scenario occurs when there are two states in a state machine to be com-

posed, but we want to keep those two states separate and prevent merging. 

When a state is to be renamed, the state machine and state must be available in the 

trait, otherwise, the Umple compiler raises error code 230 (e.g., Listing 41.a). Furthermore, a 

state should not be renamed more than once. If this happens, the Umple compiler detects 

states and raises error code 229 (e.g., Listing 41.b). 

Listing 41. Errors when changing improperly the name of state in Listing 40 

a b 

1 
2 
3 
4 

class C1 { 
  isA T1<sm.m1 as state0>; 
} 

class C1 { 
  isA T1<sm.s0 as state0, 
         sm.s0 as state01>; 
} 

 

3.5.4.3 Changing the name of regions 

This operator allows renaming a specified region. It is just like the operator used for chang-

ing the name of states. The difference is that the last name in the sequential series of names 

(separated by dots) is the name of a region to be changed. Regions in Umple (as in UML) 

have to be encapsulated in a state. If the region does not exist in the specified state, the Um-

ple compiler raises error code 230. Furthermore, the new name must be unique in the list of 

available regions for the specified state, otherwise, the Umple compiler does not allow re-

naming and raises error code 237. 

Since names of regions are set automatically by the Umple compiler and they are 

equal to the names of their initial states, renaming the name of a region must also be applied 

to its initial state. This is performed automatically by the operator. The applications for this 

operator are like those for changing the name of states. In particular, this operator is used 

when several regions are supposed to be merged or kept separate. 
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Listing 42. An example that shows how to rename a region  

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 

trait T1{ 
  sm { 
    s1{ 
      r1{ e1-> r11; } 
      r11{} 
      || 
      r2{ e2-> r21; } 
      r21{} 
    } 
  } 
} 
class C1{ 
  isA T1<sm.s1.r1 as region1,sm.s1.r2 as region2>; 
} 

 

 

 

Figure 25. The diagram corresponding to modification in Listing 42 

 

Listing 42 shows an example in which state machine sm in trait T1 has a composite 

state s1 with two regions r1 and r2. Class C1 uses trait T1 and renames the name of those 

regions to region1 and region2 respectively (line 13). Figure 25 shows the result of the oper-

ations. As seen, now both initial states have the name of their regions. 

3.5.4.4 Change the name of events 

This operator is used to change the name of events that will trigger transitions in state ma-

chines. The syntax used for this operator is as follows: 

(* | stateMachineName).eventName(argumentTypes) as new_Name 
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Through this operator, it is possible to rename an event related to a specific state ma-

chine or all state machines in a trait. For the first case, the modeler specifies the name of the 

state machine (stateMachineName). For the second case, an asterisk (*) is specified. The 

event name (eventName) must end with a pair of parentheses including any needed argument 

types. This operator does not allow changing the argument types because that would break 

the implementation of the event method. The operator is used mostly to change the event 

names based on a new domain’s requirements. It can also be used to keep an event from be-

ing overwritten by the client’s state machine and vice versa. 

Listing 43. An example that shows how to change the name of states  

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 

trait T1 { 
  sm1{ 
    s0 {e1(Integer index)-> s1;} 

  s1 {e0-> s0;} 
} 
sm2{ 

    t0 {e1(Integer index)-> t1;} 
  t1 {e0-> t0;} 
} 

} 
class C1 { 
  isA T1<sm1.e1(Integer) as event1, *.e0() as event0>; 
} 

 

 

 

Figure 26. The diagram corresponding to modification in Listing 43 

 

Listing 43 shows an example in which trait T1 has two state machines sm1 and sm2. 

These state machines have common events named e1(Integer) and e0(). Class C1 wants to 

use trait T1 with some changes in the name of events. It is required to rename all event 

names e0() to event0() and just change the event name e1(Integer) to event1(Integer) in state 
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machine s1. Line 12 depicts how class C1 achieves it. Since the change on event e0() is go-

ing to happen in both the state machines, the symbol * has been used. However, the name of 

state machine sm1 was used for the event e1(Integer) because we do not want to have it 

changed in state machine sm2. The result of those operations can be seen in the diagram 

shown in Figure 26. 

When an event name is used with a specific name for its state machine, the state ma-

chine and event must be available in the trait, otherwise, the Umple compiler raises error 

code 231 (e.g., Listing 44.a). The same restriction is applied when the symbol * is used for 

the name of state machines. If the event is not available in at least one of state machines ex-

isting in the trait, then the Umple compiler raises error code 232 (e.g., Listing 44.b).  

Listing 44. Errors when changing improperly the name of state in Listing 40 

a b 

1 
2 
3 

class C1 { 
  isA T1<sm1.e2() as event2>; 
} 

class C1 { 
  isA T1<*.e2() as event2>; 
} 

 

3.5.4.5 Removing/keeping a state machine 

This operator is used to remove or keep a state machine when a client uses a trait. In the re-

moving mode, specified by the minus symbol ‘-‘, the indicated state machine is ignored and 

is not included in the client. In the keeping mode, specified by ‘+’, only the indicated state 

machine is kept and the others are ignored. This operator can be used to keep the client free 

of un-needed detail or conflict. The syntax used for this operator is as follows: 

(-|+) stateMachineName 

 

Listing 45 shows an example in which trait T1 has three state machines sm1, sm2, and 

sm3. Classes C1 requires state machine sm2 and sm3 while class C2 requires just state ma-

chine sm2. Class C1 achieves this through removing state machine sm1 from trait T1 (line 

13). Class C2 obtains its required state machine through keeping just state machine sm2 (line 

16). Class C2 could also achieve the same result through removing sm1 and sm2. Using the 

keeping operator is more convenient when there are several state machines and modelers 

need just one them. Figure 27 shows the result of operations on classes C1 and C2 in Listing 

45. 
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Listing 45. An example that shows how to remove or keep state machines  

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 

trait T1 { 
  sm1{ 
    s0 { e0-> s0;} 
  } 

sm2{ 
    t0 { e0-> t0;} 
  } 

sm3{ 
    w0 { e0-> w0;} 
  } 
} 
class C1 { 
  isA T1< -sm1 >; 
} 
class C2 { 
  isA T1< +sm2 >; 
} 

 

 

 

Figure 27. The diagram corresponding to modification in Listing 45 

When a state machine is defined to be removed or kept, it must be available in the 

trait, otherwise, the Umple compiler raises error code 230. Listing 46 shows two cases which 

result in the error. 

Listing 46. Errors when removing wrong state machine in Listing 45 

a b 

1 
2 
3 

class C1 { 
  isA T1< -sm10 >; 
} 

class C1 { 
  isA T1< +sm20 >; 
} 

 

3.5.4.6 Removing/keeping a state 

This operator is used to remove or keep a simple or composite state when using a state ma-

chine in a trait. The syntax for this operator is as follows: 

(-|+) stateMachineName.stateName.....stateName 
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This works much like removing/keeping a state machine, using a minus sign for re-

moving and a plus for keeping. The symbols are followed by the name of the state. In the 

removing mode, this operation will delete all incoming and outgoing transitions of the state 

as well. In the keeping mode, the specified state will be kept and the remaining states will be 

removed. This also includes removing all transitions from other states to the specified state. 

This mode cannot be applied to the initial states, but if it is applied to other states, the initial 

state will not be removed (the reason for this is discussed later). 

The operator is helpful for cases in which base state machines do not need the func-

tionality of that specific state, or have the same state and do not want to merge it with the one 

coming from the reused trait. Another use is when clients use more than one trait and those 

traits have common state machines and states. These common states might have different 

functionality and clients might want to keep one version. 

Listing 47. An example that shows how to remove or keep states  

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 

trait T1 { 
  sm1{ 
    s0 {  
      e1-> s1; 
      e2-> s2; 
    } 
    s1 {  
      e2-> s2; 
      e3-> s3; 
    } 
    s2 {  
      e3-> s3; 
      e2-> s2; 
    } 
    s3 {  
      e0-> s0; 
      e2-> s2; 
    }   
  } 
} 
class C1 { 
  isA T1< -sm1.s2 >; 
} 
class C2 { 
  isA T1< +sm1.s1 >; 
} 
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Figure 28. The diagram corresponding to state machine in trait T1 Listing 47 

 

Figure 29. The diagram corresponding to state machines in class C1 and C2 in Listing 47 

 

Listing 47 shows an example including trait T1 with state machine sm1 (line2). The 

graphical representation related to this state machine is depicted in Figure 28. Class C1 uses 

trait T1 and removes state s2 from the state machine sm1 (line 22). The result is shown in the 

left state machine in Figure 29. As seen, in addition to the state s2, all outgoing transitions 

(named e2()) from states s0, s1, and s3 have been removed. The operator also removed in-

coming transition e3() from state s2 to state s3. 

Class C2 uses trait T1 and requires just state s1 of state machine sm1. The result is 

shown in the right state machine in Figure 29. As seen, all other states except s0 have been 

removed. The reason is that state s0 is the initial state of state machine sm1 and removing it 
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results in non-reachable states. The Umple compiler does not allow this situation. Further-

more, all transitions coming from other states to s1 have been removed (in this case, there is 

none) except transitions coming from the initial state s0. The operator also removes the out-

going transitions e2() and e3() of state s1 to other states s2 and s3 except the ones going to 

the initial state (in this case, there is none). It should be pointed out that in some scenarios it 

might make sense to even remove the initial state when the keeping operator is used. How-

ever, we decided to keep keeping and removing operators consistent with each other. 

When a state is defined to be removed or kept, the state and its state machine must be 

available in the trait, otherwise, the Umple compiler raises error code 230 (e.g., Listing 48.a). 

Furthermore, the operator cannot be applied to the initial state of a state machine or to the 

initial state of a composite state because it will cause other states to become unreachable. If 

the modeler applies it in such cases, the Umple compiler raises error code 233 (e.g., Listing 

48.b) 

Listing 48. Errors when removing wrong state machine in Listing 45 

a b 

1 
2 
3 

class C1 { 
  isA T1< -sm1.s20 >; 
} 

class C1 { 
  isA T1< -sm1.s0 >; 
} 

 

3.5.4.7 Removing/keeping a region 

This operator is used to remove or keep a region of a state machine. The syntax used for this 

operator is exactly like the one defined for removing or keeping a state, except that the last 

name in the dot-separated chain specifies the name of the region. This operator is utilized in 

cases similar to those explained for removing a state. It can also be used to make a composite 

state a simple state by reducing the number of regions to zero. 

Listing 49 shows an example in which two classes C1 and C2 use trait T1 and manip-

ulate its state machine’s regions. State machine sm has a composite state s1 with three re-

gions r1, r2, and r3. Class C1 removes region r1 from the composite state s1 (line 20) while 

class C2 keeps region r2 (line 23). As seen in both cases, the region name appears after the 

name of state machine sm and the state s1. Figure 31 depicts the result of this operator on 

classes C1 and C2. In comparison to the diagram in Figure 30, we can see, since region r1 

has been removed in class C1, the incoming transition e2() has also been removed automati-
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cally. In class C2, all outgoing transition from region r2 to other regions, including e2() and 

e4(), have been removed automatically in addition to region r1 and r3. 

Listing 49. An example that shows how to remove or keep regions  

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 

trait T1{ 
  sm { 
    s1{ 
      r1{ e1-> r11; } 
      r11{} 
      || 
      r2{ 
        e2-> r11; 
        e3-> r21; 
        e4-> r31; 
      } 
      r21{} 
      || 
      r3{e5->r31; } 
      r31{} 
    } 
  } 
} 
class C1{ 
  isA T1< -sm.s1.r1 >; 
} 
class C2{ 
  isA T1< +sm.s1.r2 >; 
} 

 

 

 

 

Figure 30. The diagram corresponding to state machine in trait T1 in Listing 49 
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Figure 31. The diagram corresponding to state machine in class C1 and C2 in Listing 49 

 

When a region is defined to be removed or kept, the state machine and the region 

must be available in the trait, otherwise, the Umple compiler raises error code 230. Listing 

50 shows two examples resulting in the error, which in both cases the region r12 does not 

exist in state s1 related to the state machine in Listing 49. 

Listing 50. Errors when removing wrong state machine in Listing 49 

a b 

1 
2 
3 

class C1 { 
  isA T1< -sm.s1.r12 >; 
} 

class C1 { 
  isA T1< +sm.s1.r12 >; 
} 

 

3.5.4.8 Removing/keeping a transition 

This operator is used to remove or keep a transition from a state machine. The syntax for this 

operator is as follows: 

(-|+) stateMachineName.stateName.....stateName. 
((eventName(argumentTypes) ([guard])?) | [guard?]) 

 

A minus symbol is followed by a transition that needs to be removed. A plus symbol 

is used to pick a transition to keep. A transition is defined by specifying the name of the state 

machine, states (including regions for nested states), event, and guard. The symbol ? is not 

part of the operator and it is there to show which elements are optional. The name of the state 
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machine and states are mandatory. The event name (along with its arguments) depends on 

the type of transition. 

If the transition is ‘auto’ (immediately taken on entry to the state or upon completion 

of a do activity) there is no need to specify it, otherwise, it must be specified. If a transition 

has a guard, it must be specified using the same syntax used when specifying transitions (in-

side square brackets). However, if a transition is auto and unguarded, it must be defined with 

an empty guard “[]” and without any event name. Actions and destination states are not part 

of the definition for this operator because the above definition suffices to uniquely select any 

transition. The operator is utilized when base state machines do not need a specific transition 

coming from the used trait. Furthermore, base state machines might want to extend a transi-

tion of a state, but it might already have a transition matching the given specification. 

Listing 51. An example that shows how to remove or keep transitions  

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 

trait T1{ 
  internal Boolean cond; 
  sm { 
    s1{ 
      e2(Integer i)-> s2; 
      e3[!cond]-> s3; 
      e4[cond]-> s4; 
    } 
    s2{ 
      [cond] -> s3; 
      [!cond]-> s4; 
    } 
    s3{  
      -> s1; 
    } 
    s4{ 
     -> s1; 
    } 
  } 
} 
class C1{ 
  isA T1< +sm.s1.e2(Integer) >; 
} 
class C2{ 
  isA T1< -sm.s1.e4()[cond] >; 
} 
class C3{ 
  isA T1< -sm.s2.[cond] >; 
} 
class C4{ 
  isA T1< -sm.s3.[] >; 
} 
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Figure 32. The diagram corresponding to state machine in trait T1 in Listing 51 

 

 

Figure 33. The diagram corresponding to state machine in class C1 in Listing 51 

 

 

Figure 34. The diagram corresponding to state machine in class C2 in Listing 51 
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Figure 35. The diagram corresponding to state machine in class C3 in Listing 51 

 

Different ways of using this operator to keep and remove transition are demonstrated 

in Listing 51. The graphical representation of the state machine sm in trait T1 (line 3) is de-

picted in Figure 32. Class C1 uses trait T1 (line 22) and keeps the transition with the event 

name e2(Integer) from the state machine sm and state s1. Other transitions related to the state 

s1, which are e3() and e4(), are removed. Since the transition does not have a guard, brackets 

are not required in the specification of the transition. depicts the result of the operator in class 

C1. 

Class C2 also uses trait T1 (line 25), but it removes the transition with the event name 

e4() and a guard on the variable cond from the state machine sm and state s1. This case 

shows how a transition with the event name and guard can be specified. The result of this 

operator in class C2 is depicted in  Class C3 uses trait T2, but it removes an auto transition 

from state s2 with a guard on the variable cond. As seen, no name has been defined in the 

operator for the event and the guard is just defined inside brackets.hows the result of the op-

erator in class C3. 

Finally, class C4 uses the trait T1 (line 31), but it removes an auto transition without a 

guard. As seen, an empty bracket after the name of the state is used to specify the transition. 

As pointed out before (Section 2.1.5), Umple does not support non-deterministic state ma-

chines. Therefore, it is not possible to have more than one auto transition for a state. If that 
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happens, the Umple compiler detects it and automatically removes the last one defined in the 

Umple model. It also informs users about it. The result of the operator in class C4 is depicted 

in Figure 36. 

Like other operators, the Umple compiler checks the validity of transitions defined in 

the operator and if they are not available in the state machines coming from traits, error code 

231 is raised. 

 

Figure 36. The diagram corresponding to state machine in class C4 in Listing 51 

3.5.4.9 Extending a state by adding a state machine to it 

This operator is used to assign a state machine to a specific state inside another state ma-

chine, hence turning that state into a composite state. The syntax used for this operator is as 

follows: 

srcStateMachineName as 
desStateMachineName.stateName.....stateName 

 

This operator involves two state machines. The srcStateMachineName is found in the 

trait, and the desStateMachineName is found in the client. The state in the client can be sim-

ple or composite. This operator provides a practical mechanism to incrementally compose a 

state machine from various parts. 

For example, simple ‘on/off’ pairs of states with events to toggle between them are 

fairly common and can be injected easily into destination states using this operator. If a com-

posited state is extended with this operator, it will trigger our composition algorithm, illus-

trated in the next section. 
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Furthermore, the operator can be used to bring more than one state machine inside a 

state. More details regarding how the state accepts the assigned state machine will be illus-

trated later. Here, we just demonstrate how a simple state can be extended with another state 

machine. 

Listing 52. Extending a state with another state machine  

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 

trait T1{ 
  sm1{     
    m1{ 
      t2-> m2; 
    } 
    m2{ 
      t1-> m1; 
    } 
  } 
} 
class C1{ 
  isA T1<sm1 as sm.s2>; 
  sm{ 
    s1{ 
      e2-> s2;  
    } 
    s2{ 
      e1-> s1; 
    } 
  } 
} 

 

 

 

 

Figure 37. The diagram corresponding to state machine in class C1 in Listing 52 
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Listing 52 shows an example in which class C1 has state machine sm with two states 

s1 and s2. Trait T1 has state machine sm1. Class C1 needs to have state machine sm1 activat-

ed when it is in state s2. Class C1 achieves this by specifying the source state machine and 

destination state when it uses trait T1 (line 12). The result of this operator can be seen in Fig-

ure 37. 

Like other operators, the Umple compiler checks the validity of the source state ma-

chine and the destination state. If one of them does not exist or is invalid, the Umple compil-

er raises error code 230.   

3.5.5 Composition 

We have chosen to employ the word composition for the way state machines can be com-

bined because it covers several related mechanisms. Through composition, we achieve typi-

cal state machine reuse, merging several state machines, and simple state extension by other 

state machines. Simpler traits can be composed with other traits to make more complex 

traits.  

In the basic case, state machines being composed need to have the same vocabulary – 

in other words, the same names for the elements (state machines and states) that are to be 

considered the same. These state machines might have functionality that is either completely 

different or partially the same. There might be cases in which there is no need to compose 

state machines with the same names and even vice versa. This is achieved through the opera-

tors we have defined in the previous sections. In other words, modelers are given the free-

dom to decide which state machines must be composed. Trait developers or modelers have 

full control over the way elements of traits are composed. Therefore, composition based on 

names is required because traits or classes might have more than one state machine and dur-

ing the composition process, it must be clear which state machines need to be composed. 

Conceptually, during composition, the state machines existing in clients (called base 

state machines) are the ones receiving composition elements from state machines coming 

from traits. Technically, the latter ones are composed first and then the result state machine is 

flattened instead of the one defined in the clients. The composition of elements includes all 

concepts defined in state machines such as states, composite states, regions, transitions, 
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guards, activities, and actions. Elements in base state machines have a higher priority over 

the ‘same’ elements coming from used traits if any conflict is observed. 

However, attributes used by guards within state machines deserve special attention. 

Attributes and state machines together hold the state of an object, therefore, overriding the 

attribute in a guard will tend to fundamentally change the semantics of the state machine. 

The Umple compiler, therefore, warns modelers that they may be introducing an error. 

3.5.5.1 States 

When two state machines are matched to be composed, states of these state machines should 

be composed. The following cases can happen among states (simple or composite) of the 

state machines: 

 A state in the base state machine matches the one coming from used trait. Two states 

are considered to match if they have the same names and are at the same hierarchy 

level of their state machines, with the same names of the chain of parents. In this 

case, these two state machines are composed and the resulting state gets the same 

name (the composition of internal elements are described as we progress). 

 A state exists in the base state machine, but it does not exist in the used trait. In this 

case, the state is added to the composed state machine. 

 A state exists in the used trait, but it does not exist in the base state machine. The 

state is added to the composed state machine. 

 

Listing 53.a and Figure 38 show an example in which class C1 and trait T1 have a 

common state machine named sm (line 2 and 9). The state machine in Trait T1 has states s1 

and s3 while the state machine in class C1 has states s1 and s4. Since state s1 exists in both, 

they are composed and represented under the same name in the composed state machine. 

However, other states are unique and are added as-is to the composed state machine. Listing 

53.b and Figure 39 show the Umple model of the composed state machine flattened in class 

C1. 

When two states are composed, their entry actions are composed as well. If the base 

state has an entry action and the state coming from the used trait has also entry actions, then 

the ones coming from used traits are disregarded. If the base state does not have any entry 
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action, the actions coming from the used trait are considered as entry actions for the com-

posed state. 

Listing 53. Composition of states and the flattened composed state machine 

a b 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 

trait T1{ 
  sm{ 
   s1{/*implementation*/} 
   s3{/*implementation*/} 
  } 
} 
class C1{ 
  isA T1; 
  sm{ 
   s1{/*implementation*/} 
   s4{/*implementation*/} 
  } 
} 

class C1{ 
  sm{ 
   s1{/*implementation*/} 
   s3{/*implementation*/} 
   s4{/*implementation*/} 
  } 
} 

 

 

 

 

 

 

Figure 38. The diagram corresponding to 

state machine in class C1 and trait T1 in 

Listing 53.a 

 Figure 39. The diagram corresponding to 

state machine in class C1 in Listing 53.b 

 

Listing 54.a shows an example in which different cases of composition related to en-

tries are explained. State machines in class C1 and trait T1 have two states s1 and s2 that can 

be composed. The entry action of base states s1 calls action4() while the entry of the same 

state in trait T1 calls action1(). Since base functionality always has priority, then action ac-

tion1() is disregarded. The base state s2 does not have an entry action while the state s2 in 

the used trait calls action2() in its entry. Therefore, the composite state calls action2() in its 

entry. Since there are no matching states for states s3 and s4, they are added as-is to the 
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composed state machine. Listing 54.b shows the Umple model of the composed state ma-

chine flattened in class C1. 

Listing 54. Composition of entry actions and the flattened composed state machine 

a b 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 

trait T1{ 
  sm{ 
   s1{ entry /{action1();} } 
   s2{ entry /{action2();} } 
   s3{ entry /{action3();} } 
  } 
} 
class C1{ 
  isA T1; 
  sm{ 
   s1{ entry /{action4();} } 
   s2{ }    
   s4{ entry /{action5();} } 
  } 
} 

class C1{ 
  sm{ 
   s1{ entry /{action4();} } 
   s2{ entry /{action2();} }    
   s3{ entry /{action3();} } 
   s4{ entry /{action5();} } 
  } 
} 

 

 

A client can use more than one trait (and obtain more than one state machine) and so 

it is possible to have more than two states whose entry actions need to be composed with the 

base state’s entry action. In this case, the composition algorithm needs to consider an order 

among them. Since we do not consider any order when traits are used by clients, this should 

be respected in the composition of actions. Therefore, the Umple compiler detects this case 

and raises error code 236. Note that this conflict happens if more than one state coming from 

used traits have an entry action. 

Listing 55 shows an example in which composition of entry actions is considered as a 

conflict. The base state s1 (line 14) in class C1 has no entry action and so it can accept entry 

actions coming from state machines in T1 and T2. However, there are two entries coming 

from used traits which cause a conflict. Note that if class C1 did not have state machine sm, 

it would still be a conflict for composition. However, if state s1 in class C1 had an entry then 

this would not be a conflict because those entries coming from traits would be disregarded. 

The composition of exit actions and do activities for matching states follows exactly 

the same rules explained for entry actions. Listing 56 shows a simple Umple model to 

demonstrate the rules for exit actions and do activities.  
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Consider that in our current implementation, we do not provide any operator for ac-

tions and activities because they are part of states and we have operators for states. Further-

more, we think having operators for actions and do activities could make the approach more 

complicated.  

Listing 55. A conflict in composing entry actions of states  

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 

trait T1{ 
  sm{ 
    s1{ entry /{action1();} } 
  } 
} 
trait T2{ 
  sm{ 
    s1{ entry /{action2();} } 
  } 
} 
class C1{ 
  isA T1, T2; 
  sm{ 
    s1{} 
  }  
} 

 

   

Listing 56. Composition of entry actions and the flattened composed state machine  

a b 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 

trait T1{ 
  sm{ 
   s1{ exit /{action1();} } 
   s2{ do   /{activity1();} } 
  } 
} 
class C1{ 
  isA T1; 
  sm{ 
   s1{ exit /{action2();} } 
   s2{ }    
  } 
} 

class C1{ 
  sm{ 
   s1{ exit /{action2();} } 
   s2{ do   /{ activity1();} }    
  } 
} 

 

 

    

3.5.5.2 Transitions 

Each transition has a structure which makes it unique for each state. This structure includes 

the signature of the event and its guard. If base states do not have transitions with the same 

signatures that come from used traits, those incoming transitions are added to the base states. 
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This uniqueness of transitions guarantees statically that the composed state machines will be 

deterministic. If there are transitions in common, the ones coming from traits will be disre-

garded (this is the same ‘override’ semantics as is used in inheritance). 

Listing 57. Composition of transitions and the flattened composed state machine 

a b 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

trait T1{ 
  sm{ 
    s1{  
      e1[x>0]-> s2; 
      e2-> s3; 
    } 
    s2{ e3-> s1;} 
    s3{ e4-> s2;} 
  } 
} 
class C1{ 
  isA T1; 
  sm{ 
    s1{  
      e1[x>0]-> s3; 
      e5-> s4; 
    } 
    s4{} 
  } 
} 

class C1{ 
  sm{ 
    s1{  
      e1[x>0]-> s3; 
      e2-> s3; 
      e5-> s4; 
    } 
    s2{ e3-> s1;} 
    s3{ e4-> s2;} 
    s4{}  
  } 
} 

 

 

 

Figure 40. The diagram corresponding to class C1 and trait T1 in Listing 57.a 

 



 

 

Chapter 3. Traits in Model-Driven Software Development  117 

 

 

 

Figure 41. The diagram corresponding to class C1 in Listing 57.b 

 

Listing 57.a and Figure 40 represent an example in which we describe how 

composition of transitions happens. As seen, class C1 uses trait T1 (line 12) and they have 

common state machine that needs to be composed. The base state machine and used state 

machine have common state s1. Both states have the transition e1[x>0] (lines 4 and 15), but 

their destination states are different. Therefore, the one coming from the used trait is disre-

garded. The used state s1 (line 3) has the transition e2 (line5), which does not exist in the 

base state s1 and so is added to the list of transitions for the composed state s1. In the same 

manner, the base state s1 has transition e5 (line 16) which does not exist in used state s1 and 

so it is also added to the list of composed state s1. Other states in the base and used state ma-

chines do not have a matching state and so they and their transitions are added to the com-

posed state. Listing 57.b and Figure 41 show the Umple model of the composed state ma-

chine flattened in class C1. 

As pointed out before, Umple does not support non-deterministic state machines and 

so composed state machines must be deterministic as well. Our composition algorithm auto-

matically detects transitions that cause the composed state to be non-deterministic and raises 

error code 234. 
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Listing 58. An example regarding detection of non-determinism when composition occurs  

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 

trait T1{ 
  sm{ 
    s1{ e1[x>0] -> s2;  } 
    s2{ e2 -> s1; } 
  } 
} 
class C1{ 
  isA T1; 
  sm{ 
    s1{ 
      e1 -> s3; 
      e3 -> s3; 
    } 
    s3{ } 
  } 
} 

 

 

Listing 58 shows an example regarding how a transition in a base state could be 

caused to have non-determinism. As seen, both state machines in class C1 and trait T1 have 

state s1 and they need to be composed. The state s1 in trait T1 has transition e1[x>0] and the 

transition’s destination is s2. The base state s1 has transition e1 without a guard and its desti-

nation state is state s3. This transition does not exist in the state s1 coming from the trait, so 

it can be added to the composed state s1. However, this causes a situation in which the com-

posite state machine can be in two states s2 and s3 simultaneously. Therefore, the composi-

tion is not allowed. 

When transitions are composed, their actions need to be composed as well. The way 

actions are composed follows exactly the same rules defined for entry and exit actions of 

states. Listing 59.a and Figure 42 show an example in which different cases of composition 

are described. As seen, two transitions e1[x>0] and e2 in state s1 of base and used state ma-

chines need to be composed. The base transition e1[x>0] has action action4(), and the in-

coming transition has action action1(). Since there is an action defined in the base transition, 

the action action1() coming from the used transition is disregarded. 

The base state e2 does not have any action, but the incoming transition has action ac-

tion2(). Therefore, action action2() is added to the composed transition e2. Furthermore, 

since the base and used transitions e2 have different destinations, the one defined in the base 

state (state s2) is accepted as the valid destination. Transitions e3 defined in state s2 of trait 
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T1 and state s1 of class C1 are added with their actions to the composed states because there 

are no matching transitions for them. Listing 59.b and Figure 43 show the Umple model of 

the composed state machine flattened in class C1. 

Listing 59. Composition of actions and the flattened composed state machine 

a b 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

trait T1{ 
  sm{ 
    s1{  
      e1[x>0]-> /{action1();} s2; 
      e2 -> /{action2();} s1; 
    } 
    s2{ e3-> /{action3();} s1;} 
  } 
} 
class C1{ 
  isA T1; 
  sm{ 
    s1{  
      e1[x>0]-> /{action4();} s2; 
      e2 -> s2; 
      e3 -> /{action5();} s2;  
    } 
    s2{} 
  } 
} 

class C1{ 
  sm{ 
    s1{  
      e1[x>0]-> /{action4();} s2; 
      e2 -> /{action2();} s2; 
      e3 -> /{action5();} s2; 
    } 
    s2{ e3-> /{action3();} s1;} 
  } 
} 

 

 

 

 

 

Figure 42. The diagram corresponding to class C1 and trait T1 in Listing 59.a 

 

 



 

 

Chapter 3. Traits in Model-Driven Software Development  120 

 

 

Figure 43. The diagram corresponding to class C1 in Listing 59.b 

 

Finding matching transitions to be composed requires comparison of guards. Umple 

provides a grammar for Boolean expressions written for guards and constraints (an essential 

subset of OCL [109]). The Umple compiler parses Boolean expressions and builds constraint 

trees for them. In order to achieve a robust comparison, we have developed an algorithm that 

takes two guards (constraint trees) and precisely compares them (without paying attention to 

the order they are defined). This algorithm can currently detect if two Boolean expressions 

are completely equal statically. However, it is not able to detect if one Boolean expression 

logically implies another one (this is ongoing work), so such guards are currently treated as 

distinct. In the section on future work, we explain what kinds of approaches can be adopted 

to improve this capability. 

3.5.5.3 The Keyword SuperCall 

We explained that when states are matched, their transitions, entry actions, exit actions and 

do activities are composed. In the composition process, the base elements have always priori-

ty over the ones coming from used traits. In Listing 59.a, for example, we explained that the 

action of transition e1[x>0] in the base state s1 (line 14) will be the one accepted in the 

composed state machine and the action coming from its matching transition (action1()) is 

disregarded. 

However, there might be cases in which modelers want to have access to coming el-

ements (in this case action1()). In order to satisfy this advanced requirement, we extended 

the syntax and semantics of composition with the keyword superCall. This keyword is used 
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in actions and activities and implies that actions or activities coming from matching elements 

must be executed at the point where the superCall keyword is encountered. 

Listing 60. Composition of actions by the keyword superCall 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 

trait T1{ 
  sm{ 
    s1{  
      entry /{action1();} 
      e1 -> /{action2();} s1; 
    } 
  } 
} 
trait T2{ 
  isA T1; 
  sm{ 
    s1{  
      entry /{superCall; action3();} 
      e1 -> /{action4(); superCall;} s1; 
    } 
  } 
} 
class C1{ 
  isA T2; 
  sm{ 
    s1{  
      entry /{ superCall; action5();} 
      e1 -> /{action6();superCall; action7();} s1; 
    } 
  } 
} 

 

 

Modelers can change the order in which the keyword appears in combination with 

other executable parts of base actions and activities so as to obtain full control of when the 

coming actions and activities must be executed. The incoming actions and activities can be 

executed before, after, or in the middle of the base actions and activities. 

Listing 60 shows how the keyword can be used in a hierarchy among traits and clas-

ses to obtain all actions of used traits in a different order. The state machine sm in trait T1 

has state s1 and this state has entry action action1(). Transition e1 calls action2() when it is 

triggered. Trait T2 uses trait T1 (line 10) and has the same state machine and state. It wants 

to execute the entry action of used state s1 (action1()) first and then execute its own action, 

which is action3(). It achieves this by having the keyword superCall before action3() (line 

13). The state s1 of trait T2 also wants to have the same behavior for the action of its 

transition but in an opposite direction. It wants to execute first its own action and then one 
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coming from the used trait. In order to achieve this, it uses the keyword after its own action 

action4() (line 14).  

Listing 61. The flattened composed state machine of Class C1 in Listing 60  

1 
2 
3 
4 
5 
6 
7 
8 

class C1{ 
  sm{ 
    s1{  
      entry /{action1();action3();action5(); } 
      e1 -> /{action6();action4();action2();action7();} s1; 
    } 
  } 
} 

 

 

Class C1 uses trait T2 and has the same state machine and state names defined in trait 

T2. It wants to achieve the same scenario for the entry action of state s1, described for the 

trait T2 while it was using trait T1. However, it wants to execute the action of transition e1 

coming from trait T2 in the middle of its own two actions, action6() and action7(). For the 

entry action, class C1 uses the keyword before its own action (line 22). Class C1 uses the 

keyword in the middle of actions for the transition e1 in order to achieve the behavior it 

wants (line 23). Listing 61 shows the Umple model of the composed state machine flattened 

in class C1. 

When clients use more than one trait, using the keyword superCall can cause a con-

flict. This happens because an order of execution is required. It is worth noting that the con-

flict explained here is different from the problem that exists in multiple inheritance. In multi-

ple inheritance, the ambiguity comes from the fact that there are two methods, for example, 

coming from two different superclasses with the same name. The issue with superCall is 

about the execution order of actions coming from used traits. We cannot decide which action 

should be executed first when they are composed in a client. Please note that when this con-

flict happens, modelers can use operators to fix it. 

Listing 62 shows an example in which a conflict exists and the Umple compiler de-

tects it and raises error code 235. As seen, class C1 uses two traits T1 and T2 and there is 

matching state s1 and matching transition e1 needed to be composed. Since the keyword has 

been used in the base transition e1, it indicates that the actions of matching transitions need 

to be executed, but there are more than one action to be executed. Therefore, the Umple 

compiler prevents these models from being composed. 
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Listing 62. A conflict while the keyword superCall is used 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 

trait T1{ 
  sm{ 
    s1{ e1 -> /{action1();} s1; } 
  } 
} 
trait T2{ 
  sm{ 
    s1{ e1 -> /{action2();} s2;} 
    s2{} 
  } 
} 
class C1{ 
  isA T1,T2; 
  sm{ 
    s1{ e1 -> /{superCall; action3();} s3; } 
    s3{} 
  } 
} 

 

 

Note that if one of transitions coming from trait T1 or T2 did not have an action, then 

the composition would be valid because there would be no conflict in order of execution. 

This semantic is also applied to clients in which more than two traits are used. The same con-

flicts can also happen for activities, entry, and exit actions of states. They are detected and 

reported under error code 236.  

3.5.5.4 Simple and composite state composition 

Regions are another element of state machines that need to be composed. If the base state is 

simple and the incoming state is composite, then the composite state’s region is added to the 

composited state. Therefore, the composed state will be composite. The same rule applies 

when the base state is composite and the incoming state is simple. If both states are compo-

site they are composed with the same rule, but another special rule is applied to them (re-

garding their initial states) that is discussed in the next section. 

Listing 63.a shows an example in which those two cases are explained. As seen, two 

state machines sm in class C1 and trait T1 need to be composed. The base state s1 in class C1 

is simple and state s1 in trait T1 is composite. Therefore, the composed state s1 will be a 

composite state including all elements inside state s1 in trait T1. The base state s2 in class C1 

is composite while the state s2 in trait T1 is simple. Therefore, the composed state s2 will be 
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a composite state including all elements inside state s2 in class C1. Listing 63.b shows the 

flattened state machines of class C1 in Listing 63.a. 

Listing 63. Composition of simple and composite states 

a b 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 

trait T1{ 
  sm{ 
    s1{  
      e1 ->  s2;  
      t1{ e2 ->  t2;} 
      t2{} 
    } 
    s2{} 
  } 
} 
class C1{ 
  isA T1; 
  sm{ 
    s1{} 
    s2{ 
      e3 ->  s1;  
      t1{ e4 ->  t2;} 
      t2{} 
    } 
  } 
} 

class C1{ 
  sm{ 
    s1{  
      e1 ->  s2;  
      t1{ e2 ->  t2;} 
      t2{} 
    } 
    s2{  
      e3 ->  s1;  
      t1{ e4 ->  t2;} 
      t2{} 
    } 
  } 
} 

 

 

3.5.5.5 Composition and rules relating to the initial state 

As expressed in Section 2.1.5.9, the initial state is the one listed first in a state machine. If 

two state machines are being composed and have the same initial state, composition is 

straightforward: The result is a single state machine. If the initial states are different, howev-

er, the question arises: Which of them would now become the initial state following compo-

sition? This can arise when two independent state machines are composed, or when two state 

machines with the same name are added as substate machines of a state. When such a situa-

tion happens, the Umple compiler informs modelers and raises warning code 228. 

Listing 64 shows an example in which class C1 uses two traits T1 and T2 that have 

two state machines with the name sm. The state machine sm in the trait T1 has the initial state 

s1 while the one in the trait T2 has the initial state t1. Both state machines have a common 

state called s3. The solution adopted by Umple is to put each state of the two state machines 

into different regions. This keeps both state machines independent and composition is once 
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again straightforward. When a common event is triggered, it causes transitions in both re-

gions. Figure 44.a shows the result of this solution on the example in Listing 64. Both re-

gions can have states with the same name other than the start state. In Umple, we impose a 

rule that the start states of a set of regions must each have different names. 

Listing 64. Using two state machines with different initial states 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 

trait T1{ 
  sm{ 
    s1{ e1 ->  s2;} 
    s2{ e3 ->  s3;} 
    s3{ e2 ->  s2;} 
  } 
} 
trait T2{ 
  sm{ 
    t1{ t1 ->  t2;} 
    t2{ t3 ->  s3;} 
    s3{ t2 ->  t2;} 
  } 
} 
class C1{ 
  isA T1,T2; 
} 

 

 

 

 
 

a b 
 

Figure 44. The composed state machine of class C1 in Listing 64 
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However, what if the user wanted in fact not to create regions, but to compose the 

two state machines, and pick one of the start states? The solution is to rename one of the start 

states during the composition so they are both the same. This is accomplished using the re-

naming (‘as’) operator. In order to apply this option on the example in Listing 64, line 16 

must be replaced with the following: 

isA T1 <sm.s1 as t1>, T2; 

 

The result is depicted in Figure 44.b. As seen, the algorithm detects the common 

states (which are s3 and t1) and composes them. The operator could be applied to T2 instead 

of T1. In that case, the composed state machine would be the same as depicted in Figure 44.b 

except that the name of initial state would be s1. 

A similar situation occurs when a client wants to extend a state machine coming from 

a used trait. In that case, the state machine inside the client needs to directly specify an initial 

state that matches the one coming from the used trait. This initial state is called a dummy ini-

tial state. For example, Listing 65, shows an example in which class C1 uses the trait T1 in 

Listing 64 and wants to extend its state machine’s behavior (changing the transition going 

out of the state s3). The class C1 defines a state machine called sm, which matches the name 

of the used one, and needs to add a ‘dummy’ initial state in it to ensure the merging occurs 

rather than region creation. The same approach is also applied when a composite state is to 

be extended by clients. 

Listing 65. Setting the common initial states when a state machine is extended 

1 
2 
3 
4 
5 
6 
7 

class C1{ 
  isA T1; 
  sm{ 
    s1{} 
    s3{ e2 ->  s1;} 
  } 
} 

 

3.6. Associations in Traits 

An association is a useful mechanism at the modeling level that specifies relationships 

among instances of classifiers. An association implies the presence of certain variables and 

provided methods (such as ones defined in Table 2) in both associated classifiers. Other 
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methods, as well as traits, can hence refer to the implied methods. Since an association can 

be seen as a set of implied provided methods, it would be logically possible to extend the 

concept of traits to incorporate associations. However, prior to our work, there was no such a 

mechanism in traits. 

An association can only be between a class and another class or between a class and 

an interface; in other words, defining an association between two interfaces is not allowed. 

This must also be accounted for in the definition of traits. The reason for this is that associa-

tions imply that at least one end must maintain the state of the links between instances. For 

unidirectional associations (navigable in one direction only), only one end maintains this 

state, so the other end can be an interface. For bidirectional associations, both ends must 

maintain the state, so both ends must be classes. 

Having associations in classes is considered a kind of limitation on fine-grained re-

usability because such classes cannot then be used alone in other systems. This happens be-

cause the other systems also need the associated classes or interfaces. Furthermore, the na-

ture of associations is defined based on exact names. When class A, for example, with an as-

sociation with another class or interface B is to be used in a different system, then that sys-

tem must have a class or interface with the exact name B. In order to overcome this issue, we 

extend traits to have associations with template parameters. 

Listing 66. An issue with associations among classes   

 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 

class C1{ 
  0..1 -- * C2; 
  /*implementation*/ 
} 
interface I1 { 
  /*implementation*/ 
} 
class C2{ 
  isA I1; 
  /*implementation*/ 
} 

 

 
 

Figure 45. The diagram corresponding to Listing 66 
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Listing 66 and Figure 45 show an example explaining the case in which a class can-

not be reused alone. In class C1 (lines 1-4) there is a bidirectional association between C1 

and C2. Class C2 (lines 8-11) implements interface I1 (lines 5-7). If we would like to use 

class C1 in another system we have to transfer class C2 and interface I1 as well. There might 

be a class in the new system that can satisfy all features of class C2, but we cannot use it be-

cause it is forced to have exactly the same name in the new system. It is also impossible to 

change the name of the compatible class to C2 because there will be inconsistency among 

elements of the new system. 

In addition, if we change the name and apply it to all other parts of the system, the 

new name may be out of the domain of the system and so create understanding challenges. 

The same issues related to class C1 can happen to class C2 because it depends on class C1. 

Associations are defined syntactically in the same way they are defined for classes. 

Traits can make associations with interfaces, classes, and template parameters. If one end of 

the association is a template parameter, the binding type must be checked to make sure it is 

compatible with the association. For example, if a trait has a bidirectional association with a 

template parameter, the binding value cannot be an interface and it must be a class. This is an 

extra constraint applied to template parameters. Breaking this constraint is reported to mod-

elers using error code 213. 

Listing 67. An example of associations in traits 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 

interface I1 { 
  /*implementation*/ 
} 
trait T1 <RelatedClass isA I1> { 
  0..1 -- * RelatedClass; 
  /*implementation*/ 
} 
class C1{ 
 isA T1<RelatedClass=C2>; 
 /*implementation*/ 
} 
class C2{ 
  isA I1; 
  /*implementation*/ 
} 
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Figure 46. The diagram corresponding to Listing 67  

 

In order to avoid the limitations in Listing 66, we redesign it with a trait depicted in 

Listing 67 and Figure 46. There are again two classes C1 and C2 and an interface I1. We 

added a trait (lines 4-7) with a template parameter RelatedClass restricted to implement in-

terface I1. Furthermore, we added the same association that was in class C1 in Listing 66 to 

the trait, but parameter RelatedClass was substituted for concrete name C2. This association 

applied to class C1 in line 8, in which class C2 has been bound to parameter RelatedClass. 

As a result, the association is available for both classes C1 and C2. In this case, if we want to 

use class C1 in another system we do not need to have exactly a class named C2. We need a 

class that implements interface I1, and we simply need to bind it to parameter RelatedClass. 

The name of the class is not fixed anymore in this approach and the proper candidate from 

the target system can be used with class C1. Class C2 can be reused independently too be-

cause there is no concrete relationship between it and other elements of the system. 

When an association is defined, APIs (set of methods) are generated in the class to al-

low such actions as adding, deleting and querying links of associations. Traits may use these 

APIs inside provided methods to achieve their needed implementation. With this approach, 

we increase cohesion because we will have more related provided methods inside traits and 

reduce coupling at design time because of having template parameters. Furthermore, the ab-
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straction level of traits will be increased because we will not use attributes to establish rela-

tionships and instead utilize the more abstract notion of associations. 

Listing 68. Observable pattern with traits and their associations 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

class Dashboard{ 
  void update (Sensor sensor){ /*implementation*/ } 
} 
class Sensor{ 
  isA Subject< Observer = Dashboard >; 
} 
trait Subject <Observer>{ 
  0..1  -> * Observer; 
  void notifyObservers() { /*implementation*/ } 
} 

 

 

Listing 68 and Figure 47 depict a simple version of the observer pattern [43] imple-

mented based on traits. As can be seen in line 7, the concept of the subject in the observer 

pattern has been implemented as trait Subject, which gets its observer as a template parame-

ter. A direct association has been defined in trait Subject (Line 8), which has a multiplicity of 

zero or one on the Subject side and zero or many on the Observer side. This association lets 

each subject have many observers and it can also be used for when observers do not need to 

know the subject. The trait has encapsulated the association between the subject and observ-

ers and then applies it to proper elements when it is used by a client. 

 

Figure 47. The diagram corresponding Listing 68  
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As each subject must have a notification mechanism to let observers know about 

changes, there is a provided method notifyObservers() for this. This method obtains access to 

all observers through the association. Two classes Dashboard and Sensor play the roles of 

observer and subject. Class Dashboard has a method named update(Sensor) (line 2) used by 

the future subject to update it. Class Sensor obtains the feature of being a subject through us-

ing trait Subject and binding Dashboard to parameter Observer. 

3.7. Required Interfaces in Traits 

Required functionality of classic traits is defined in terms of required methods. However, 

there are shortcomings with this approach. The first shortcoming is that there is no way to 

reuse a list of required methods. For example, consider a case in which there are traits that 

happen to have the same set of required methods but different provided methods. In this case, 

there is duplication due to repeated listing of the same methods. Furthermore, if there are 

several traits that must always have the same list of required methods, an inconsistency could 

be introduced in the design by changing just one of them and not all.  

Listing 69 and Figure 48 describe an example of this shortcoming. As can be seen, 

traits T1 and T2 have two common required methods method1() and method2() (lines 2-3 and 

7-8). They also have different provided methods method3() (line 4) and method4() (line 9) 

respectively. The required methods of traits T1 and T2 must always be kept the same because 

we want to have composed trait T3 (line 11), which brings together provided methods of two 

traits (line 12). These provided methods must always achieve their functionality from the 

same required methods. Since traits T1 and T2 are two separate traits and can be extended 

separately, there is no way to guarantee those required methods will be kept the same during 

software maintenance. In other words, there is the possibility one of those traits might be 

modified without applying the change to the other one. 

From a different perspective, another shortcoming appears when we know the clients 

of traits and that they must implement certain interfaces in order to have a correct implemen-

tation for the required methods. In fact, there is no way to put dependencies at the semantics 

level on clients through traits because required methods are simply syntactically captured. 

This suggests that it might be a good idea to put a restriction on clients that specifies the in-

terfaces they must implement. Such a restriction would ensure that traits are not used in cli-
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ents that just happen to have methods with the same signature. This is important because 

having reusable elements that work correctly with a minimum number of errors should be the 

designers’ responsibility and not the user’s [68]. Later, we will show a solution to this. 

Listing 69. Duplication and potential inconsistency in required methods 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
16 
20 
21 
22 
23 
24 

trait T1{ 
  abstract void method1(); 
  abstract Double method2(); 
  Float method3(){/*implementation*/ }  
} 
trait T2{ 
  abstract void method1(); 
  abstract Double method2(); 
  Float method4(){/*implementation*/ }  
} 
trait T3{ 
  isA T1, T2; 
} 
class C3{ 
  void method1(){/*implementation*/ } 
  Double method2(){/*implementation*/ } 
} 
class C1{ 
  isA C3, T1; 
} 
class C2 { 
  isA C3, T3; 
  Boolean method3(){/*implementation*/ } 
} 

 

 

 

 

Figure 48. The diagram corresponding to Listing 69 
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Listing 70. Traits with incomplete set of required methods 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 

interface I1{ 
  void method1(); 
  Double method2(); 
} 
trait T1{ 
  abstract void method3(); 
  abstract Float method4(); 
  void method5(){/*implementation*/ } 
} 
class C1{ 
  isA I1, T1; 
  void method1(){/*implementation*/ } 
  Double method2(){/*implementation*/ }   
  void method3(){/*implementation*/ } 
  Float method4(){/*implementation*/ } 
} 
class C2{ 
  isA T1; 
  void method3(){/*implementation*/ } 
  Float method4(){/*implementation*/ } 
} 

 

 

 

 

Figure 49. The diagram corresponding to Listing 70 

 

Listing 70 and Figure 49 depict this shortcoming, in which two classes C1 (line 10-

16) and C2 (line 17-21) have the ability to satisfy required methods of the trait T1. In addi-

tion, imagine that the correct satisfaction of required methods depends internally on clients 

which implement interface I1 (line 1-4). According to the specification (that is not clear 
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here), trait T1 should not be used by class C2, while it has been used. This gives rise the idea 

that there should be a mechanism to let traits specify more precisely what they want. 

Traditionally, there is no straightforward way to apply a mechanism to avoid this is-

sue. Of course, it can be done implicitly by defining all abstract methods of interfaces as re-

quired methods, but again in that case, there will be duplication and the issue of inconsisten-

cy. Furthermore, this makes traits have lots of required methods, which results in them being 

less readable and understandable. 

Listing 71. Introduction of required interfaces to reduce duplication and inconsistency 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 

interface I1{ 
  void method1(); 
  double method2(); 
} 
interface I2 { 
  isA I1; 
  Boolean method3(); 
} 
trait T1{ 
  isA I1; 
  Float method3(){/*implementation*/ }  
} 
trait T2{ 
  isA I1; 
  Float method4(){/*implementation*/ }  
} 
trait T3{ 
  isA T1,T2; 
} 
class C3{ 
  void method1(){/*implementation*/ } 
  Double method2(){/*implementation*/ } 
} 
class C1{ 
  isA C3, I1, T1; 
} 
class C2 { 
  isA C3, I2, T3; 
  Boolean method3(){/*implementation*/ } 
} 

 

 

In order to address these issues, we extend traits with required interfaces. Using 

these, traits can either put extra restrictions on clients or just manage their required methods 

in a more modular and reusable way. Traits may use already-existing interfaces or new 

interfaces may be written to accomplish the desired modularization. Furthermore, developers 
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will be able to create a hierarchy of interfaces to optimize the reusability. Traits define their 

required interfaces through the keyword isA followed by the name of interfaces and a semi-

colon. 

 

Figure 50. The diagram corresponding to Listing 71 

 

When a class uses traits, it needs to implement the required interfaces of those traits, 

otherwise, the Umple compiler detects missing interfaces and raises error code 222. If a trait 

uses other traits with required interfaces, those required interfaces are added to the set of re-

quired interfaces of the trait and final clients are required to implement all of those required 

interfaces. 

The new design for the example in Listing 69 is shown in Listing 71 and Figure 50. 

There is now a hierarchical design for required methods in terms of interfaces, making it re-

usable and consistent. Traits T1 and T2 now have the same required interface (lines 10 and 

14) and if there is a modification in the required interface it will be applied to both. Classes 

C1 and C2 have to implement interfaces I1 (Line 25) and I2 (line 28) to be able to use trait 

T1 and T2. 
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3.8. Transformations and Code Generation 

Model-driven development allows and recommends developers to model systems abstractly 

and focus on high-level functionality without concern for implementation details. When pos-

sible, the goal is to generate implementation code automatically, a process either called mod-

el-to-code transformation or code generation. One designs systems with abstract elements in 

order to focus on business problems instead of technology, to have fewer errors, and to in-

crease the speed of development. 

In this section, we discuss and describe how systems which are modeled using traits 

can be implemented using automatic code generation. We discuss different strategies that 

depend on the type of target language and then describe our own automatic code generation 

used by Umple. 

As pointed out before, traits were first introduced and implemented in Squeak [54] 

and then in other languages like PHP [108]. These constitute the first group of languages that 

have native keywords or structures for representing traits; their compilers are aware of traits 

and can analyze them. The second group of programming languages such as Ruby [110] and 

Javascript [100] support traits, but without specific keywords for them. In these cases, devel-

opers adapt other structures of the language to implement traits. However, several of the 

most important languages such as Java and C++ do not support traits at all. There has been 

some research towards adding traits to these languages, but traits have never become a part 

of their standard versions [21,33,65,83,85,86]. When traits are represented in models, there 

will be three options for implementing the modeled systems corresponding to the three 

groups of programming languages described above. 

The first option applies to programming languages that directly support traits. In this 

case, automatic code generation is straightforward because there will be a one-to-one map-

ping from traits in the modeling level to traits in the implementation level. It is worth point-

ing out, however, that currently these languages do not support associations, required inter-

faces, and state machines as proposed in this thesis. Therefore, there are not direct one-to-one 

mapping for these concepts. 

The second option is associated with programming languages that do not have a di-

rect keyword for traits but provide structures used to mimic traits. The implementation for 

these languages will be a little bit different than for the first group because there will not be a 
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direct mapping between traits in modeling and implementation levels. However, the mapping 

will happen conceptually because each trait will be implemented with the required structures 

in the generated language. In this automatic code generation, using best practices (for im-

plementing traits) will play the most important rule because we would like to use the mini-

mum combination of structures and to have as modular as possible a representation of the 

implementation of traits. This would improve the process of understanding of the final sys-

tems for who are code-oriented or need to inspect the final system. 

The final option, for languages not supporting traits at all, is to directly base code 

generation on the idea that compilers typically use flattening to inject provided methods into 

clients. After the compiler does this, all elements of traits are treated as real elements of cli-

ents, and clients have access to those elements just like any other elements. Code generation 

from model-based traits can do this directly for programming languages that do not support 

traits. 

This third approach, however, requires greater intelligence in analyzing the traits at 

the model level to ensure the validity of the final systems. Since we chose the final option, in 

Umple the compiler does considerable analysis of the traits and provides many warnings and 

error messages when syntactic and semantic problems are identified in the defined traits. 

Appendix I, for example, shows a summary of error and warning code we detect to make 

sure the final model (system) will be valid. 

It should be noted that the approach we describe in this thesis implies that there 

should not be any round-trip model transformation. This means that there should be just a 

direct transformation from model to code and developers should not modify the generated 

code. When there is a need for modifications, they should be first applied to the model and 

then the code generation should be reapplied to update the final system. This approach is just 

like the standard approach for compiling a high-level programming language and is the pre-

ferred approach in model-driven development. Allowing round-tripping (taking modifica-

tions of generated code and applying them to update the model, then regenerating the code) 

would be too complex in the context of traits; it has always been against the Umple philoso-

phy too. 

The reason for the complexity of round-triping for traits is that it is hard to find du-

plicated elements in the generated code. Even if it is possible, it might even be harder to re-



 

 

Chapter 3. Traits in Model-Driven Software Development  138 

 

late generated code to its modeling elements. For example, state machines and associations 

are modeling elements that are implemented by different techniques at the code level and so 

it is hard to express whether specific code represents a state machine at the modeling level or 

not. Being able to achieve this capability is considered as future work. 

Since Umple supports code generation for languages such as Java and PHP, we want-

ed to provide a mechanism to be reusable by all code generators. Otherwise, we had to re-

implement our composition algorithm and validity checks in each code generator. Therefore, 

we introduced a layer of the model-to-model transformation inside the Umple compiler that 

applies flattening to the Umple compiled model and so there is no need to modify already 

designed code generators. This also allows us to provide a module extension to Umple that 

can be enabled and disabled easily. This was also critical to provide a mechanism to switch 

easily between the flattened and normal model in our cloud-based IDE. The model-to-model 

transformation obtains an Umple model as its input and returns an Umple model that has all 

composition algorithms and flattened elements applied to it (described in Section 3.3). The 

final Umple model then is delivered to the code generators to generate the code for specific 

languages chosen by modelers. 

The Umple models are the master file, and we do not want developers to edit gener-

ated code. However, we provided a simple mechanism to track traits in the generated code 

because it helps when people want to inspect or to certify the generated code. It also provides 

information to debuggers. There is a traceable annotation for each provided method which 

indicates exactly the name of a trait from which this method comes. 

All validity checks and the composition algorithm for state machines have been 

committed to the Umple compiler on Github and are freely accessible to investigation or ad-

aptation by other modeling languages. 

3.9. The Traits Metamodel 

One of key factors in understanding a model-driven technology is its metamodel. In this sec-

tion, we describe the metamodel of traits. The metamodel of traits is constructed in combina-

tion with some of the modeling elements already defined in the Umple compiler. Figure 51 

shows a simplified version of traits’ metamodel. This metamodel is used to describe the na-

ture of elements utilized to implement traits in Umple. The comprehensive metamodel of 
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traits along with the Umple compiler can be found in its online version [50]. The classes in 

the metamodel are as follows. The first eight of these existed prior to our work, but have 

been extended in our work: 

UmpleElement: This is an abstract class that is one of the top-level items found in an 

Umple metamodel. Currently, it has one subclass which is UmpleClassifier. It includes in-

formation regarding the positions of the element, package name, extra code, and so on. 

Method: This represents the concept of methods in Umple. Methods can be abstract 

and have return types and parameters. If a method is not abstract, then it can have a body that 

indicates its execution logic. A method can have several bodies, each one representing an 

implementation in a different programming language. 

UmpleClassifier: This is an abstract class that is a subclass of UmpleElement. It in-

cludes dependencies on external libraries, UmpleModel, and so on. It has a zero-to-many as-

sociation with class Method. UmpleClassifier also manipulates the token obtained through 

the Umple parser. This class has three subclasses, UmpleInterface, UmpleClass, and 

UmpleTrait.  

Attribute: This represents the concept of attributes in Umple. An attribute has a type 

and name and it can also have modifiers. 

Association: This represent the concept of associations in Umple. It encapsulates 

ends of an association, role names, and multiplicities.  

StateMachine: This represents the concept of state machines in Umple. It encapsu-

lates all elements that can be defined in a state machine such as states, transitions, and so on. 

UmpleInterface: This represents the concept of interfaces in Umple. It is a subclass 

of UmpleClassifier. 
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Figure 51. A simplified metamodel of traits 
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UmpleClass: This represents the concept of classes in Umple and is a subclass of 

UmpleClassifier. It has a zero-to-many association with classes Attribute, Associations, 

StateMachine, UmpleTrait (which represent traits), and GeneralTPApplied (which encapsu-

lates values and operators applied to traits). It also includes other elements defined for clas-

ses in Umple. A zero-to-many association with UmpleTrait satisfies the fact that classes as 

clients can use as many traits they want. A zero-to-many association with GeneralTPApplied 

expresses that fact that many operations can be applied for each trait. The number of 

UmpleTrait and GeneralTPApplied for each class is equal. 

UmpleTrait: This represents the concept of traits in Umple and is a subclass of 

UmpleClassifier. A trait can have a zero-to-many association with classes UmpleInterface, 

GeneralTemplateParameter, GeneralTPApplied, Attribute, Association, StateMachine, and 

UmpleTrait. The associations with the classes are used for the following purpose: 

 UmpleInterface: to save the list of required interfaces defined for the trait. 

 GeneralTemplateParameter: to save the list of template parameters defined for 

the trait. 

 GeneralTPApplied: to save values and operators applied to each trait used in-

side the trait.  

 Attribute: to save the list of attributes defined in the trait. 

 Association: to save the list of associations defined in the trait. 

 StateMachine: to save the list of state machines defined in the traits. 

 UmpleTrait: to save the list of used traits by the trait. A trait cannot have itself 

in this list. 

 

GeneralTemplateParameter: This presents the concept of template parameters for 

traits. GeneralTemplateParameter encapsulates the name of the parameter and holds a zero-

to-many association with UmpleClassifier. The association is used to specify constraints de-

fined for the parameter. Although UmpleTrait is a subclass of UmpleClassifier, the values for 

this association can just be interfaces and classes. 

GeneralTPApplied: This class represents all values and operators applied to a trait 

while it is used by a client. Because of it, both kinds of clients, UmpleTrait and UmpleClass, 

have an association with it. GeneralTPApplied has a zero-to-many association with 
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MethodTemplateSignature and StateMachineModifier. It also holds the values bound to tem-

plate parameters. The associations with the classes are used for the following purpose: 

 MethodTemplateSignature: to save all operators applied to provided methods. 

 StateMachineModifier: to save all operators applied to state machines 

MethodTemplateSignature: This represents the class encapsulating an operator ap-

plied to a trait. It includes the signature of the provided method and modifiers such as sym-

bols ‘-‘, ‘+’, and `as`. 

 StateMachineModifier: This class represents the class encapsulating operators ap-

plied to state machines of traits. StateMachineModifier by itself deals with any operator ap-

plied directly to the state machine and not to its internal elements. These operators are re-

naming, removing, and keeping state machines. Other operators are subclasses of this class 

because they need the state machine information for all of their operations. The subclasses of 

StateMachineModifier are classes ExtendedStateByStateMachine and StateModifier. 

ExtendedStateByStateMachine: This class encapsulates the operator used to extend 

a state. It includes the name of destination machine and the required hierarchy of states. The 

name of source state machine is stored in its superclass. 

StateModifier: This represents all operators involving states. It holds the hierarchy 

of states and other values specific to each operator. The name of state machine and type of 

modifier are stored in its superclass. 

EventModifier: This represents all operators applied to transitions. It holds the sig-

nature of the event and the guard expression. The name of the state machine, the hierarchy of 

states, and the type of modifier are stored in its superclass. 

3.10. Summary 

In this chapter, we first introduced the requirement of model-based traits, described our algo-

rithms, and explained the semantics of activities performed in these algorithms. Then, we 

explained how model-based traits can be defined in Umple. We described the syntax and se-

mantics of model-based traits in Umple. We explored how model-based traits can be imple-

mented in object-oriented programming languages, which is achieved automatically in Um-

ple. The metamodel of traits was also explained. 



 

 

Chapter 3. Traits in Model-Driven Software Development  143 

 

In the next chapter, we discuss research that is in the close relationship with our 

work. This helps to understand how those research affected our work and how our work 

could improve them. Since there is no direct work about having traits at the modeling level 

(as long as we are aware of), we discuss research conducted in the domain of traits, inher-

itance, and composing modeling elements such as state machines. 
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Chapter 4. Related Work 

In this chapter, research that is most closely related to our research is explored. Each research 

project is first described briefly and then the research’s contributions to the present research 

and vice versa are investigated. We categorized related work into two sections. The first is 

about basic traits and the second is about state machines and how they are merged or extend-

ed for developing systems. Most of the related research to the first section has already been 

described in Section 2.2, but we will add some other aspects not discussed in that section. 

4.1. Other Research about Basic Traits 

In this section, we explore some research that has been conducted regarding traits and their 

basic capabilities. 

4.1.1 Traits in Statically-typed Class-based Languages 

The main issues and the possible strategies for integrating traits into statically-typed class-

based languages are explored in depth by Nierstrasz et al. [74]. The first issue to be consid-

ered is: What is the relationship between traits and types? Furthermore, if there is a relation-

ship (integration) between classes and traits, how should trait methods be typed? In statical-

ly-typed languages types must be defined in advance, but this could prevent traits from being 

generic enough to be applied to many different classes, some of which may not be known at 

compile time. Nierstrasz et al. also expressed that there are many other trade-offs that arise 

when traits are added to another language. For example, implementing traits by compiling 

them away is an easy solution, but it makes debugging harder. 

To resolve these questions, Nierstrasz et al. [74] proposed a formal flattening-based 

model and strategy to add traits to these kinds of languages. Although this model is not com-

prehensive, it could resolve several of the sophisticated issues (pointed above) related to the 

integration. The authors have used this model to examine how traits can be integrated into 

C#. Nierstrasz et al. also tried to simulate traits in C++ using template parameters and (virtu-
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al) multiple inheritance. They discuss the consequences of such a strategy: C++ allows im-

plementing trait-like composition by using a combination of nested templates and multiple 

inheritance with virtual base classes. It can also simulate the renaming (alias) operator by 

disciplined use of scope modifier ::, but the removing (exclusion) operator cannot be 

achieved in the same way that is equivalent from a compositional point of view. Nierstrasz et 

al. also expressed that this kind of traits (represented as template classes) cannot be distribut-

ed and linked as a library and the source code of traits must be present at compile time. 

The difference between our work and that of Nierstrasz et al. is that we support traits 

at the modeling level and when it comes to implementation at the code level, we do not use 

template parameters and multiple inheritance. We use single inheritance and then flatten el-

ements of traits to classes. Our approach also provides native operators for traits to resolve 

conflicts and even change the visibility of provided methods. Flattening may cause duplica-

tion in classes that use traits, but Nierstrasz et al. also indicated that their version of traits 

cannot be compiled separately and they need to be compiled in the context of each class, 

which results in duplication in object-code. 

Having typed trait inheritance is explored by Liquori and Spiwack [65,66] in which 

they developed an extension called Featherweight-trait Java (FTJ) for Featherweight Java 

(FJ) [53]. The main goal of the work was to introduce typed trait-based inheritance as a sim-

ple way to provide a simple type system that typechecks traits when imported in classes. In 

this extension, traits do not have state and are used as behavioral bricks to build classes. The 

authors have placed special emphasis on dealing with the classical issue of multiple 

inheritance called the “diamond” conflict. This work could be considered as a first-step to 

adding traits to statically-typed class-based languages, in particular, Java. 

In our work, we do not consider traits as types, but we use traits to build classes as 

well. Not having traits as types can be mitigated in our approach by the fact that there is no 

need to implement required methods of traits in abstract classes. Therefore, when a trait is 

used by an abstract class it can be considered as an identical type for the trait. Furthermore, 

our approach does not just resolve the problem of multiple inheritance regarding methods, it 

also resolves the problem of multiple inheritance when modeling elements are considered in 

design of systems instead of methods. 
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Supporting traits in Java was also explored by Quitslund [82,83]. In that research, the 

goal was to explore how to resolve barriers of reuse in Java through traits via a case study of 

Java Swing. These barriers include the lack of multiple inheritance, inaccessible private inner 

classes, non-extensible final classes, and synchronized variations. In addition, traits were di-

rectly implemented as an extension to mini-Java (MJ), a subset of Java, by devising a com-

piler (TMJC) that works by translation, taking source extended with traits, and translating it 

to pure mini-Java. An Eclipse-based environment for this was created [84]. In this, a pro-

grammer can move freely between views of the system with or without its traits. The ad-

vantage of representing traits as classes is that existing Java development tools can be used. 

Our approach implement traits in Java with pure Java structures (classes and interfac-

es). However, we do not use classes to model traits. Our approach instead has its own syntax 

and semantics for traits and performs all validity checks before transformation of traits to 

pure Java code. This also enables us to have modeling elements as part of traits, which is not 

possible in Quitslund’s work. Having separate syntax and semantics also removes the ambi-

guity that arises when classes are used for two different purposes. We also have an environ-

ment in the cloud that allows moving freely between views. We do not have an Eclipse 

plugin to achieve such benefits when Umple is used in Eclipse. However, modelers can gen-

erate the diagrams’ scripts and render them locally in their machines.   

Emerson et al. [71] proposed an implementation for Java based on their study of ja-

va.io libraries. In their research, traits are represented as stateless Java classes. Required 

methods are expressed as abstract methods. Classes representing traits can be used with other 

classes to produce composite classes. According to their implementation, a class can be used 

both through inheritance and through composition. This implementation is in contrast with 

their earlier proposal of type traits [82] in which traits were special program units. 

In our work, we also consider abstract methods as required methods, but we do not 

consider it for classes because our approach has a syntax for traits so there is no mixing this 

with the concept of classes. The composition in our approach is achieved among traits and 

classes while it is performed through classes in Emerson et al.’s work. Furthermore, their ap-

proach also does not deal with modeling elements. It is worth noting if such implementation 

is necessary for some Java projects, the only modification required in our approach is to de-
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velop a new code generator to map our defined metamodel to Java code. In this case, our 

metamodel and rules defined for traits would be reusable as well. 

Attempts in the direction of exploring traits in Java resulted in the research of Denier 

[33] in which AspectJ has been utilized as a subset of aspect-oriented programming [56,111]. 

The key idea behind this was a feature called inter-type declaration in aspect-oriented pro-

gramming. The inter-type declaration mechanism offers a subset of structural reflection, 

which allows for extension or modification of classes at compile time. The proposed solution 

could implement most of properties of traits but it was not able to provide full support re-

garding conflict resolution. The main reason for this shortcoming was the lack of fine-

grained operators in AspectJ. Although aspects could implement capabilities of traits, there 

are some philosophical differences that we will discuss in Section 4.2.6 when we talk about 

state machines. 

XTRAITx, a language for pure trait-based programming, was introduced by Bettini 

and Damiani [21]. Their research achieves complete compatibility and interoperability with 

Java without reducing flexibility of traits. It also provides an incremental adaptation of traits 

in existing Java projects based on Eclipse. In this implementation, classes play the role of 

object generators and types, while traits only play the role of units of code reuse and are not 

types. In this research, there are several operations for traits (as conflict resolution methods) 

including method alias, method restrict, method hiding, and method/field rename. 

Trait-based programming has all operators we have in Umple for basic features of 

traits (except changing visibility of provided methods), but it does not support enhanced fea-

tures we have for Umple including required interfaces, associations, template parameters, 

and state machines. Like trait-based programming, we also do not consider traits as types and 

use them as units of code and model reuse instead of just code reuse. Trait-based program-

ming provides traits for Java, but traits in Umple are implemented in all languages generated 

by the Umple generator. As far as we are aware, this feature is only available in our approach 

through Umple. 

4.1.2 Stateful Traits 

We talked about stateful traits [18] in Sections 2.2.1 and 2.2.5, and extend that discussion 

here. The reason stateful traits were introduced is that if required accessors are going to be 
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public (which is a case in the Smaltalk implementation, for example), they can violate the 

encapsulation of client classes. Furthermore, if a trait is modified to have additional state el-

ements, new required accessors will be propagated to all client traits and classes. Therefore, 

this introduces a form of fragility that traits were intended to avoid. 

This challenge is resolved in stateful traits by letting traits define instance variables 

(or attributes) [18]. Instance variables are purely local to the scope of a trait unless they are 

explicitly made accessible by the clients of the trait. In other words, instance variables are 

private to a trait unless the client decides to either access them or merge instances variables 

coming from multiple traits at composition time. The client also can map those instance vari-

ables to possibly new names. The new names will be private to the scope of the client. The 

conflicts regarding the names are avoided and instance variables from disjoint traits can be 

merged by the clients. In this approach, the clients still retain the control of the composition. 

Bergel et al. [18] also proved [19], by means of a formal object calculus, that adding state to 

traits preserves the properties of the system when the traits are flattened. 

Traits in Umple support attributes, but they are not local to traits. In other words, 

Umple has stateful traits that explicitly make attributes accessible to clients. The main reason 

for having attributes accessible comes from the fact that we flatten all traits elements at the 

modeling level to clients so it is not possible to have two attributes with the same name for a 

class. We believe there are some cases in which having attributes local is beneficial, but it 

can be achieved differently in Umple through having unique names for attributes. This 

unique name can be built by combining the name of attribute with the name of its trait. Since 

the name of traits are unique in Umple, we will obtain unique names for attributes automati-

cally.   

4.1.3 Traits and Software Product Lines 

Application of traits in software product lines (SPL) was investigated by Bettini et al. 

[22,23]. Bettini et al. used traits along with records [27] to model the variability of the state 

part of products explicitly. In their approach, class-based inheritance is ruled out and classes 

are built only by composition of traits, interfaces, and records. They introduced Feather-

weight Record-Trait Java (FRTJ), which ensures type-safety of a SPL by type-checking its 
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artifacts only once and ensuring type-safety of an extension of a (type-safe) SPL by checking 

only the newly added parts. 

Damiani et al. [32] also propose an approach for SPLs of trait-based programs. It is 

based on delta-oriented programming (DOP). In their approach, program modifications are 

expressed by delta modules and formulated by using the trait composition mechanism. The 

approach has been realized in the programming language DELTATRAITJ. The approach 

provides a flexible inter-product and intra-product code reuse. 

Our work can be extended to be used in the context of SPLs because of the capability 

it has in providing reusable assets (we consider additional exploration in this area as future 

work); other researchers are looking into the best way to achieve that. Furthermore, our work 

deals with modeling elements for traits such as state machines, but the work of Damiani et al. 

[32] does not cover this dimension. 

4.2. Research on State Machines in Traits 

Our work is unique in the manner it reuses and extends state machines. In this section, we 

explore related work regarding reuse, extension, and composition (including merging) 

among state machines and their clients. 

4.2.1 Resolving Inconsistencies 

State machines can be used in early phases of software development to describe or extract 

requirements and design alternatives. Merging state machines can be used to identify, track, 

and resolve inconsistencies [37,46,59,87]. State machines are also used to build a full repre-

sentation of the behaviour of the system under development. 

Easterbrook et al. [38] proposed a framework called Xbel supported by a multi-

valued model checker, Xchek, to merge and reason about multiple inconsistent state machine 

models. These inconsistent state machines can arise from the different perspectives of stake-

holders. The framework acts as an exploration tool to support requirement negotiation. It 

does not restrict analysts to use a specific method of merging models or handling inconsist-

encies. It helps to reason about merging inconsistent models (or disagreements) that can af-

fect the critical properties of the final system. 
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Our approach deals with state machines at design time and it assumes that conflicts 

related to different perspectives of stakeholders have already been resolved. Conflicts that 

arise during reusing state machines are deemed to be like conflicts that happen in program-

ming languages. Our approach has been enriched with practical operators to deal with these 

kinds of conflicts. 

Sabetzadeh et al. [89] used a category-theoretic approach for representation and anal-

ysis of inconsistency in graph-based viewpoints generated in requirements. Their approach is 

able to parameterize inconsistency through lattices. The designer must explicitly identify in-

terconnections between viewpoints before the merge process happens. In our approach, traits 

can partially be considered as viewpoints. However, it is possible to define required behavior 

in traits and also modify elements when they are reused in clients. In our approach, composi-

tion of elements is performed based on implicit rules defined in the Umple compiler. For ex-

ample, state machines with the same names are composed. However, modelers can use pro-

vided operators to explicitly interconnect elements (indeed, overwrite implicit rules we have 

defined as part of our implementation). 

4.2.2 Merging of State Machines 

Uchitel al. [98] proposed model merging as an approach in order to compose partial behav-

ioral models described by different stakeholders that may have different views or concerns. 

They formally defined model merging as observational refinement and argue that merging 

consistent models results in a minimal common refinement. Since minimal common refine-

ments are not unique, modelers must participate in the merging process. Their approach also 

provides an algorithm for checking consistency between two models. In their approach, the 

goal is to augment the knowledge about the final system by obtaining the common refine-

ment knowledge from different partial behavior descriptions. In other words, the goal is to 

preserve the behavioral properties instead of the model structure. 

One of the differences of our approach compared to Uchitel et al. [98] is that our ap-

proach preserves the model structure. The reason is that our approach is used to build the fi-

nal system instead of providing knowledge at the early stages. Therefore, any change in the 

model structure, if needed, must be performed by modelers. Furthermore, composition in our 

approach can be considered as the process of selecting the most appropriate common refine-
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ment. In order to enable modelers to participate in the composition process of our approach, 

required operators have been defined. 

Nejati et al. [72] described two operators, match and merge, to manage models in 

model-based development. The operator match is used for finding relationships between 

models and merge is used for combining models in terms of the existing relationships. In 

their approach, hierarchical state machines can be matched and merged in terms of both 

structural and semantic information. Their approach preserves the behavioral properties of 

models. The approach has been designed for models developed independently and can be 

used for states reached from the initial states. The tool used for their approach has not been 

maintained since the publication date. 

In our approach, we also have these two operators needed to compose elements. For 

matching, structural information of elements is used in order to make sure embedded imple-

mentations (such as actions and activities) are not going to be affected because of behavioral 

merging. Nejati et al.’s approach [72] can be deemed as an informational extension to our 

approach by which modelers can be informed about elements that have the same behavior. 

Then, if the results make sense to modelers, a proper operator can be used to map and merge 

them. We consider our systematic mapping and composing better than implicitly merging 

based on behavior because it can be tracked statically later by modelers. In other words, 

when operators are used to explicitly interconnect elements to each other for merging pur-

pose, they become part of the static model that can be tracked. This is not possible when 

merging is performed implicitly because elements are matched dynamically by the matching 

algorithm and it is not part of the model. 

Sabetzadeh et al. [90] also propose a framework in which relations between models 

are first-class artifacts in merging models. They describe the framework by applying it to 

merging state machines, and also a tool [90] they developed for this purpose. The paper 

answers questions about how to specify the relationships between models when we want to 

merge them. This paper points out two important concerns about the specification of model 

relationships. The first one concerns the flexibility in the way that concepts from a set of 

models are interrelated to each other. The second expresses that there should be different 

merging algorithms for different phases in the development process because each phase has 

its own concerns and requirements. They have implemented a proof-of-concept tool called 
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TReMer based on their framework. The advanced version of the tool, TREMer+ [91], con-

siders merging models as a way to check the global consistency of distributed models. The 

idea is to avoid the complexity of checking the consistency of the final system through pair-

wise checking rules and to perform the checking when models are merge. 

Our approach covers two concerns pointed by Sabetzadeh et al. [90] through provid-

ing operators to make interconnection among state machines elements (if needed) and an al-

gorithm based on traits, which allows reusing, extending, and composing state machines at 

the design and implementation level (described in Sections 3.3.3 and 3.5). This is one of our 

reasons why we opted not to consider behavioral matching because, at this level of modeling, 

which results in the final implementation, structural properties are a valid source of composi-

tion. Furthermore, our approach supports two levels of consistency checking: at the defini-

tion and composition levels. The first checks consistency without paying attention to the 

used traits (state machines). It detects conflicts such as nondeterministic events. The second 

is done when the composition happens and includes detecting variable conflicts. 

Walkinshaw et al. [101] worked on an approach to compare models based on their 

structure and behavior (language). This approach uses a scoring mechanism to find the simi-

larity of states. In their approach, states do not have labels and the score is computed by 

matching the surrounding network of states and transitions. In fact, Walkinshaw et al. have 

used binary classification performance measures to quantify the differences among models. 

Their research tries to resolve the issue with existing language comparison approaches, in 

which they fail to effectively and reliably compare the full language because the essentially 

impossible sequences are not considered alongside the possible sequences. Indeed, the tech-

niques are primarily motivated by the specific challenge of evaluating the accuracy of state-

machine reverse-engineering techniques. 

In our approach, we consider that states have labels and when they are combined with 

the states’ hierarchy level (and region names), unique identifications are achieved for states. 

This is the main factor for merging states. The algorithm of Walkinshaw et al. [101] can be 

used when modelers want to explore possible equal states in the composite final system 

based on the structure and behavior. Then, they may use the results to merge states explicitly. 

Pradel et al. [81] present a comparison method for state machines extracted from 

specification miners, in particular, method-ordering constraints. The idea is to provide an 
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evaluation mechanism which allows comparing different mining approaches objectively in-

stead of subjectively. The framework has two steps. In the first step, the specification of the 

API is expressed in a lightweight formal language, utilized to generate a reference finite state 

machine (FSM). Then, the reference FSM is compared with the FSM mined by the approach. 

Pradel et al.’s approach uses a k-tail algorithm [24] to merge states. Our work can be differ-

entiated from that of Pradel et al. [81] in that there is no need to know exactly how two state 

machines inside traits are equal because what is important is to know if two state machines 

(or states) are the same or not. If they are not, the composition algorithm is going to take care 

of it. Furthermore, if the matching algorithm of our approach was expressed based on the k-

trail algorithm, the value of k would be one. 

4.2.3 Software Product Lines 

State machine merging has also been explored in software product lines [80]. Beidu et al. 

[16] provided a framework called FeatureHouse for composing feature-oriented state ma-

chines. The framework has two tools which allow generating a feature structure tree (FST) 

for every feature and composing FSTs using superimposition. The input of the framework is 

a feature state machines (or state machine fragments) and the outputs are two different mod-

els. One model is used to facilitate the composition of future feature state machines and the 

second is the whole product line, with optional features guarded by presence conditions. The 

authors have also proposed a feature merge expression that allows incrementally modifying 

feature transition systems [10]. Umple currently does not support feature models [55], but 

our approach could satisfy the merging part of Beidu et al. [16]’s framework. This exposes 

the fact that our approach also has the potential to be used in the domain of software product 

engineering. 

4.2.4 Distributed and Object-Oriented Systems 

Development methods of distributed systems have also utilized state machines. ROOM [95] 

is a methodology for developing distributed real-time systems. It is based on two comple-

mentary modeling paradigms, modeling dimensions, and abstraction levels. Modeling di-

mensions are composed of Structure, Behavior, and Inheritance while abstraction levels con-

sist of System, Concurrency, and Detail. It has been indicated that in the behavior part of ac-
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tors, inheritance has been added to the basic statechart formalism. For example, a subclass 

can refine the behavior of a superclass by decomposing what is a leaf state in the parent into 

a nested state machine. 

Our approach provides such a feature through traits. However, it surpasses the limita-

tions of inheritance (described as different scenarios in Section 1.1.1). Required methods can 

be mapped to ports, defined in ROOM, but they are not forced to trigger an event of state 

machines. Each message in ROOM is assigned to a port, but our approach has a direct mes-

saging mechanism. In our approach, structural boundaries for state machines are provided so 

as to allow using, integrating, and moving them easily in or between software systems. This 

is accomplished in ROOM through assigning them to actors. ROOM also lacks the ability to 

track event flows that span multiple objects over time [94]. This issue in our approach can be 

moderated by the fact when the composed state machine is obtained for a class and all events 

can be tracked for one object. This can be completed by a feature of Umple which allows 

generating sample tables of sequences for a state machines. Of course, if tracking at the exe-

cution time is required, it can be achieved by the model-based tracing feature of Umple [7].  

Objectcharts [30] is another approach for the design of object-oriented software sys-

tems in which state machines are used to characterize the behavior of classes. It proposes a 

hierarchical process to extend state machines and uses single inheritance. Although it pro-

vides clear steps regarding how to reuse state machines, it lacks features such as the ability to 

reuse a state machine freely in different levels of hierarchy (such requirements discussed in 

Section 1.1). Our approach follows the hierarchical process defined in Objectcharts, but it 

does not have the limitations of inheritance. 

4.2.5 State Reduction 

State machine composition in any form might end up generating many states; this might not 

be preferable for cases in which memory allocation is important. State reduction can be done 

through merging equivalent states. The responsibility is typically given to modelers to de-

termine the states that need merging and to give them the same names so the algorithm can 

take care of merging. Avedillo et al. [11] propose a state assignment algorithm which uses 

state splitting and merging techniques during state assignment in order to minimize the area 

of the combinational component after logic reduction. In our approach, we do not minimize 
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the merged state machines because the number and name of state machines are important. 

Avedillo et al.’s approach can be applied to the final composed state machine produced from 

our approach. 

4.2.6 Aspect-orientation 

State machine composition has been researched in aspect-oriented software development 

[3,56] as well. Elrad et al. [40] proposed to extract crosscutting behavior from state machines 

and model them as aspects. Aspects and base state machines are modeled with orthogonal 

regions and utilize broadcasting and propagating events to communicate with each other. 

Mahoney et al. [67] improved Elrad et al. [40]’s method by allowing events to act as aliases 

for other events in order to specify the order in which events should be handled. 

Zhang [102] used aspect-oriented techniques to extend the behavior of a state ma-

chine. Zhang concentrated on the execution history of state machines as a candidate for 

pointcuts. This brings a rich mechanism to specify pointcuts inside state machines. Ge et al. 

[45] incorporated aspects into UML state machines by having core and aspect state machines 

designed inside composite states. Then, the final model is woven based on the relative loca-

tion of core composite states and aspect composite states. In fact, the final model by itself is 

modeled as another state machine with those composite states and other decisions states. The 

composite states communicate with each other through message passing. 

Kienzle et al. [57] implemented a method to design reusable assets based on three no-

tations: class diagrams, state machines, and sequence diagrams. They make use of a packag-

ing mechanism called an aspect model to group structure, state, and message behavior. Their 

method also allows an aspect to use another aspect by means of inheritance in order to in-

crease the reusability of aspects. The template parameters are added to the aspect model to 

maximize flexibility and reuse.  

Although aspect-orientation is flexible and has received some attention by research-

ers [6,57,61], there are important methodological and technical differences between traits 

and aspects. Aspects were introduced to deal with crosscutting concerns and provide a mech-

anism to modulate and reuse them. Traits were introduced to deal with the problem of inher-

itance regarding not being able to get the maximum benefit of behavior defined inside clas-

ses. Furthermore, in aspect-orientation, aspects are elements that specify to which modeling 
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elements their behavior must be applied, but in traits, it is clients (traits or classes) that de-

cide which traits must be reused. This overcomes an issue (that is also claimed to be the ben-

efit) with aspects which is exactly what code is affected by an aspect. This effect is not easy 

to determine and can be changed unexpectedly. The differences can be summarized as 

follows: 

I. Aspects model crosscutting concerns and their advice models can affect 

(cross-cut) more than one element in the model under development. Even 

though this is a great feature, it can be problematic. As a system is incremen-

tally developed, it can be possible to have new elements that match pointcuts 

of some already-defined aspects, but they may not be part of the core con-

cerns for which those aspects have been designed. This results in hidden side 

effects. For example, an aspect defined with a regular expression to log activi-

ties can be caused to log security data because a security module might add or 

rename an activity which accidentally matches the regular expression. Traits 

do not suffer from this side-effect because they just affect their direct clients. 

II. Aspects and traits are used in different methodological ways. In aspect-

orientation, core concerns (e.g., classes and state machines) are not responsi-

ble for specifying what they require to reuse. In fact, aspects specify what 

must be reused by core concerns (e.g., through binding templates). However, 

in trait-orientation clients decide what they need to reuse. One of the conse-

quences of aspect-orientation is that developers need to utilize tools to debug 

or understand, for example, whether or not there is an aspect applied to an el-

ement, however, this can be interpreted easily in trait-orientation because el-

ements directly express the list of reused traits. 

III. The way an aspect reuses another aspect is different from the way traits use 

other traits. An aspect reuses another aspect through inheritance, which does 

not allow the detailed level of reuse among aspects. It also does not allow 

modifying the behavior coming from super aspects (to some extent this can be 

done through template parameters). However, traits can reuse other traits 

(more than one) with much better flexibility. 
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IV. Aspects allow specifying how advice models should be woven to the core 

concerns, but there is no such mechanism in traits. Traits follow some defined 

rules that govern how elements inside traits must be reused and composed 

with clients. Not having aspect weaving options (before and after) in traits 

may affect how elements inside traits can be reused. However, the simplicity 

coming from this can definitely help enable traits to be adopted by practition-

ers, in particular, object-oriented developers. 

 

It is important to express that we have experienced items I and II through questions 

that we have received from new developers who joined the Umple team to help develop the 

Umple compiler itself. The Umple compiler has been developed using Umple and it benefits 

from the use of aspects. Several times it has been pointed out by developers that they imple-

ment methods, but those methods show some unpredicted behavior. They were not aware 

that their methods match some pointcuts of Umple compilers’ aspects (item I).  Having an 

IDE support, for sure, could be helpful in this case for Umple. However, this reveals that as-

pect-oriented models depend on support of specific IDEs. If there is no IDE support for 

them, it will be challenging to understand them. Trait-based systems can be explored without 

IDE features (for example, with a simple text editor). This is considered as one of traits’ ad-

vantages. 

In the same manner, they pointed out that there are some classes that do not have spe-

cific methods, but the final model shows them and when we introduced aspects to them, they 

asked us about a tool to show how many aspects are applied to a specific class (items I and 

II). The same conclusion as before is reached in this case: that aspect-oriented programs de-

pends on specific IDE features to be understood well. 

4.3. Summary 

In this chapter, we discussed research conducted regarding classic traits. We described which 

languages support them and in which domains traits have been used. Afterwards, we focused 

on research conducted regarding reusing, extending, and merging state machines. These 

studies showed how our approach can be improved and how our approach may improve oth-
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ers. For example, state reduction can be used in final phase of work to reduce number of 

states required to represent state machines of a system. 

In the next chapter, we demonstrate how we evaluate our approach through imple-

menting several cases studies. We also show how we concluded that our approach is practi-

cal. Finally, we explain how we adopted test-driven development to make sure our imple-

mentation of the approach in Umple is valid.  
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Chapter 5. Case Studies 

In this chapter, we explain ways we have demonstrated and evaluated the practicality and 

effectiveness of our work by way of case studies. We have considered several goals as fol-

lows:  

Firstly, we want to evaluate whether we can effectively model a system with the con-

cepts of traits added to Umple. This is achieved through a case study that shows how traits 

can be used in Umple to model a functional system. The case study is explained in Section 

5.1. 

Secondly, we are interested to know if we can model and implement a system with 

traits that has already been developed with Umple without traits. This includes the process by 

which we should detect traits. In fact, the goal is to make sure our approach is capable of be-

ing used in large systems. Furthermore, we want to compare the systems with and without 

traits, to observe benefits and drawbacks of the version with traits. This part is explained in 

Section 5.1.3. 

Thirdly, we want to evaluate whether we can effectively model a system with state 

machines defined in traits. This includes evaluating the syntax of state machines in traits and 

also the composition algorithm we have developed for state machines. For this purpose, we 

want to implement a system which already uses state machines, so we can see how many op-

portunities for reusable state machines our approach can uncover. This evaluation is de-

scribed in Section 5.3. 

Finally, we want to make sure what has been applied to the Umple compiler includ-

ing syntax, semantics, and the composition algorithm are performing formally as they have 

been defined. Furthermore, the semantics and syntax of traits will not be changed accidental-

ly as the Umple compiler extends over time. This is covered in Section 0. 
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5.1. A Geometric System 

In this section, we implement a geometric system based on our approach, as a part of our 

evaluation. The rationale, design and results of the implementation are covered in the next 

sections. 

5.1.1 Goals 

The main goals of this case study are summarized as follows: 

1. To confirm that we can define traits and their provided and required methods. 

2. To confirm that traits can be reused by classes that already have a superclass. 

3. To confirm that traits can be composed of other traits. 

4. To confirm that we can achieve general traits by using template parameters. 

5. To confirm the flattening algorithm works for methods. 

6. To confirm that if methods are defined in traits they have better reuse opportunity 

than if they are defined in classes. 

7. To confirm that if we develop a system at the modeling level with traits, we can gen-

erate a functioning system for it in the Java programming language.  

 

5.1.2 Implementation 

In this section, we describe how we used Umple traits to implement the geometric system. It 

is important to note that we believe traits should be used when they bring benefits regarding 

flexibility, reusability, and avoiding multiple inheritance. It is possible to make more exten-

sive use of traits, to the point of using them to introduce every single method. We have not 

chosen that style, instead using traits when they are most useful, and using classic object-

oriented design when it already works well. 

In Figure 52, a part of this system’s hierarchy is depicted. We have simplified the 

case study, hiding classes, leaves, attributes, and methods that are not necessary for the dis-

cussion about traits we provide. Full code and diagrams of the complete case study can be 

viewed in UmpleOnline [116]. In the Load menu, select the Geometric System. By default a 
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class diagram is shown, without methods and/or traits. To show methods and traits, go to the 

Options menu and click on the appropriate checkboxes. 

 

 

Figure 52. The hierarchy of the graphical system 

 

As shown in Figure 52, there is a superclass named RootClass with three subclasses 

specifically Canvas, GeometricObject, and Color. The class Canvas is responsible for draw-

ing geometric objects and the class Color keeps the necessary features related to color. The 

class GeometricObject is an abstract class for all geometric objects and has four subclasses 

including Shape2D, Shape3D, Point, and Line. The class Shape2D is a superclass for two 

classes, CurvedShape and Polygon. The class Shape3D is also a superclass for two classes, 

Polyhedra and NonPolyhedra. These abstract classes have their own subclasses (leaves). For 

example, the classes Circle, Rectangle, Sphere, and Cube are subclasses of the classes 

CurvedShape, Polygon, NonPolyhedra, and Polyhedral respectively. The class Line is 

straight, has no thickness, and extends in both directions without end. 

One of the features that the system must have is to allow comparing two objects (e.g., 

shapes, color, etc.) regarding whether they are equal or not. We call this the equality feature. 
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For example, the system needs to compute whether or not two points are equal. Furthermore, 

the system must also allow comparing objects regarding being bigger or smaller. We call this 

the comparability feature. For instance, we need to compute whether or not a cube is smaller 

than another cube. There are cases in which we cannot have the comparability feature for 

classes (because there is no consistent way to compute it) and they must have just the equali-

ty feature. However, all classes that need the comparability feature must also have the equali-

ty feature. For example, points and lines can only have the equality feature while a circle 

must have both features. In this system, there are also some other classes that do not need 

these features (e.g., Canvas). 

Listing 72. Te traits related to the equality and comparability features 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 

trait TEquality<TP1>{ 
  Boolean isEqual(TP1 object); 
  Boolean isNotEqual(TP1 object){  
    return isEqual(object) ? true : false; 
  } 
}  
trait TComparable<TP2>{ 
  isA TEquality<TP1=TP2>; 
  Boolean isLessThan(TP2 object); 
  Boolean isLessAndEqual(TP2 object) { 
    return (isLessThan(object) && isEqual(object)) ? true : false;  
  } 
  Boolean isBiggerThan (TP2 object){ 
    return isLessAndEqual(object) ? false : true; 
  } 
  Boolean isBiggerAndEqual(TP2 object){ 
    return (!isLessThan(object) && isEqual(object)) ? true : false; 
  } 
} 

 

In order to implement these features, we have designed two traits named TEquality 

and TComparable. Their Umple code is depicted in Listing 72. The trait TEquality provides 

a provided method named isNotEqual() and requires a required method named isEqual(). It 

also has a template parameter named TP1 used in the arguments of the required and provided 

methods. This feature allows us to have the same or suitable type for the arguments of meth-

ods which are going to be used in clients. This removes the need for casting of types in the 

body of methods and allows static type-checking during compilation. 
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Figure 53. Use of the trait TEquality and TComparable 

 

The trait TComparable uses trait TEquality to obtain functionality needed for its pro-

vided methods in addition to the required method named isLessThan(). It provides three pro-

vided methods named isLessAndEqual(), isBiggerThan(), and isBiggerAndEqual(). It also 

has a template parameter named TP2 passed into the parameter of TEquality. In other words, 

this trait has one required method in the body and obtains another one through the trait TE-

quality. It also has three provided methods in the body and obtains one through the trait TE-

quality. To give the exact or proper type to the template parameter of these traits, they should 

be applied to the exact class or the first common superclass. Therefore, the trait TEquality is 

applied to the class Color, Point, and Line while the trait TComparable is applied to Poly-

gon, CurvedShape, Polyhedra and NonPolyhedra. 

Figure 53 shows part of the diagram in which the class Color uses the trait TEquality. 

It implements the required method of the trait, which is isEqual(). The class CurvedShape is 

abstract and uses the trait TComparable. It does not have enough information to implement 

the required methods of the trait so it keeps them as abstract methods and forces leaves to 

implement them (Circle in this case). It should be noted that there also are other ways to de-
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sign and apply these traits. For example, the trait TEquality and TComparable could be com-

pletely distinct and we would then apply TEquality to the GeometryObject and the trait 

TComaprable to other mentioned classes. The key point here is that traits can give develop-

ers a variety of options while designing systems. 

Another feature that we want to have is color and its related functionality for geomet-

ric objects. We also want to have an additional color for the edges of shapes. However, there 

are some shapes that mathematically do not have edges. We have designed two traits named 

TDrawable and TDrawableWithEdge for these purposes. The related Umple code is depicted 

inListing 73.  

Listing 73. Traits related to the equality and comparability features 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 

trait TDrawable { 
   0..1 -> * Color color; 
   Integer getRed(){ 
     return getColor(0).getRed(); 
   } 
   Integer getBlue(){/*implementation */} 
   Integer getGreen(){/*implementation */} 
   void applyTransparency(Integer p){/*implementation */} 
   void applyPattern(Integer type){ /*implementation */} 
   void applyColorFilter(Integer f){ /*implementation */} 
} 
trait TDrawableWithEdge{ 
   isA TDrawable; 
   Integer getERed(){ 
     return getColor(1).getRed(); 
   } 
   Integer getEBlue(){/*implementation */} 
   Integer getEGreen(){/*implementation */}  
   void applyETransparency(Integer p){ /*implementation */} 
   void applyEPattern(Integer type){ /*implementation */} 
   void applyEColorFilter(Integer f){ /*implementation */} 
} 

 

 

The trait TDrawable gives the general meaning of color to all geometric objects while 

TDrawableWithEdge provides edge color functionality to appropriate shapes. The trait 

TDrawable has an association with the class Color and does not have any required method. It 

provides several provided methods related to color in which three of them are wrappers for 

methods in the class Color. All the functionality of the trait TDrawable depends on the first 

object color of the association (e.g., line 4). 



 

 

Chapter 5. Case Studies  165 

 

  The traits TDrawableWithEdge uses the trait TDrawable and adds provided methods 

related to the color of edges. All the functionality of trait TDrawableWithEdge depends on 

the second object color of the association defined in trait TDrawable (e.g., line 15). These 

two traits do not have any required methods, which shows that it is possible to consider traits 

as a mechanism to implement libraries. To have these feature in the system, the trait TDraw-

able is applied to the class GeometricObject because all shapes must have a color. The trait 

TDrawableWithEdge is applied to the class Shape2D and Polyhedra because instances of the 

class NonPolyhedra do not have edges to be colored.  

Since the class Canvas should draw geometric objects along with their color, there 

should be a mechanism to let this class know about the changes in the properties so that it 

can update the canvas. This feature can be achieved through the Observable pattern. In order 

to implement this pattern, we reuse the trait Subject introduced in Listing 68. The class Ge-

ometricObject uses this trait and assigns the class Canvas as a binding type to the parameter 

Observer. 

The indicated features so far are general features that other projects or classes might 

also want to use. Having them in terms of traits allows developers to reuse them without 

worries about the complexity of the class hierarchy. We can change or remove the names of 

provided methods either because of specifics of the domain or in case of conflicts. 

5.1.3 Results  

We modeled the system in Umple and generated Java code for this system. We compiled the 

system and the Java compiler passed the compilation without any error. We also manually 

checked to make sure each Java class has the functionality that it has obtained through traits 

at the modeling level and their type and signature are correct. 

 

The following shows the satisfaction of goals defined in Section 5.1.1: 

 

1. We showed that we could define traits and their required and provided methods. We 

could also validate that if a client does not implement required methods of traits, they 

cannot reuse it. 

2. We showed that traits can be used by classes that already have a superclass. 
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3. We showed that traits can use other traits to achieve some of their functionality. 

4. We showed that traits can be defined in a general manner with template parameters. 

These traits can be used by several classes. 

5. We confirmed that our flattening algorithm works for methods by being able to see 

methods of traits are accessible in Java classes in the generated code. 

6. We showed that if methods are in traits, they can be reused in cases that are not pos-

sible with inheritance. This shows that we have improved reuse by adopting the ap-

proach. 

7. We showed that a system modeled by traits can be implemented in the Java pro-

gramming language. This is demonstrated by generating and compiling the system in 

Java. 

5.2. Re-engineering the Umple Compiler and JHotDraw 

In this section, we describe re-engineering of two systems, the Umple compiler and 

JHotDraw [106], such that they use traits. The goals, design, and results of these case studies 

are in the following subsections. 

5.2.1 Goals 

The main goals of these two case studies are summarized as follows: 

1. To validate that our approach and implementation is scalable and practical. 

2. To confirm that model-based traits can be used in the implementation of software 

systems with well-defined requirements. 

3. To confirm that a final system generated from a traits-based model has the same be-

havior if the system is developed without traits. 

4. To explore further what benefits we can achieved if traits are applied to already de-

veloped systems. 

5. To reconfirm that if we develop a system at the modeling level with traits, we can 

implement it in the Java programming language. 
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5.2.2 Implementation 

In this section, we describe how we re-engineered two systems, the Umple compiler and 

JHotDraw [106] to use traits and automatically regenerated them in the Java language. 

It is important to point out that the advantages of traits associated with better compo-

sition and reuse have been recognized by languages such as Scala [104], Squeak [54], Perl 

[105], Fortress [8], and PHP [108]. Identification of traits is still challenging in this area and 

there are manual and semi-automatic approaches and tools for this purpose [20,64]. Howev-

er, there is not yet a comprehensive approach or tool that can identify traits based on all clues 

like method cancellation [9] or duplication. They were also developed for specific languages, 

which makes it difficult to adopt a systematic approach. 

Detecting all possible traits, in order to maximize the effect on reusability and LoC 

(Line of Code), is not necessary to achieve our goals. Therefore, we just focus on detecting 

traits based on the exact duplicate methods. We also describe traits’ advantages as learned in 

the case studies, as well as some static metrics, although the static metrics are not the key 

contribution of the approach nor the main factors of the evaluation. 

 The first system we re-engineering is the Umple compiler, which is written in Um-

ple.  We simply added traits directly to it. The second case study, JHotDraw was written in 

Java, so we had to first transform it to Umple. We did this through a tool called the Umplifi-

cator which allows us to transform software systems from Java to Umple [44]. The trans-

formed system retains the same properties as the original since the Umple compiler trans-

forms it back to its original target language. 

Detection and implementation of traits for our two case studies was a manual process. 

Duplicate code (clones and near clones) were detected using CodePro Analytix [112]. Code-

Pro Analytix is a Java tool for Eclipse developers who are concerned about improving soft-

ware quality and reducing development cost. It provides a feature to find clones, but was not 

initially designed to detect traits. 

In the first round of the process, we detected methods sharing the same signature and 

body. Each method was assigned to a trait and then its required methods were discovered. 

We followed this approach because we wanted to have fine-grained traits and then compose 

them into composite traits. When the owner of a method had implemented special interfaces 

that were crucial for the methods, we considered them as required interfaces. 
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Table 3. Static metrics of Umple and JHotDraw 

 
LOC 

(.java) 

LOC 

(.ump) 
Types 

Percentage by 

Kinds 
Methods 

Umple 100613 39782 1133 
7.2% interface, 

92.7% class 
2018 

JHotDraw 80535 77647 1068 
5.7% interface, 

94.2% class 
6893 

 

 

Next we looked for methods which had a) the same number and order of parameters 

but different types (to see if we can use template parameters), and b) the same body. We 

again assigned each method to a trait and discovered the required methods and required in-

terfaces. Template parameters were added to traits according to the number of differences in 

types. Then names of different types were replaced with template parameters. When special 

restrictions were detected that are needed for binding the types of template parameters, they 

were applied to parameters. 

Finally, we integrated traits with other modeling elements of the systems and gener-

ated the final systems automatically in the Java language. We ran the pre-existing test cases 

of those systems on the newly regenerated systems.  

5.2.3 Results 

All of the test cases passed in the new systems. This confirms that it is possible to use traits 

at the model level and transform them into target languages while keeping the system’s be-

havior exactly the same as the system without modeling. 

Static metrics of these two systems before and after applying traits are depicted in 

Table 3 and Table 4 respectively. As can be seen in Table 4, traits were detected for Umple 

that resulted in 0.84% deduction in LOC. In other words, 335 line of code were saved be-

cause of traits. All traits have one required method on average (minimum zero and maximum 

nine) and have been applied at least to two clients on average (minimum two and maximum 

four).  

There are 68 detected traits for JHotDraw, which resulted in 1.36% (1062 LOC) re-

duction in code volume. Each trait has at least two required methods on average (minimum 

zero and maximum three) and have been applied at least to two clients on average (minimum 
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two and maximum three). The improvement in JHotDraw is more than the improvement we 

had in the Umple compiler because there was more interface implementation in JHotDraw as 

compared to the Umple compiler. This is summarized in the fifth column of Table 3. There 

are 7.2% interfaces and 92.7% classes in Umple while 5.7% interfaces and 94.2% classes in 

JHotDraw. 

Table 4. Traits specification for Umple and Jhotdraw 

 Traits 

Required 

Methods 

(avg) 

Clients 

(avg) 

Saved 

LOC 

Saved 

LOC 

Umple 17 1.0 2.3 335 0.84% 

JHotDraw 68 2.5 2.1 1062 1.36% 
 

 

While we were detecting traits in these systems we made some interesting observa-

tions. Some of these were confirmations of already-made points in other scientific papers, 

while the remainder are related to our improvements to traits. Firstly, it was confirmed that 

code generation is an essential part of model driven development. The benefits of traits 

would not be present if we were not generating code, and were just using them for documen-

tation, as is often the case for models in industry [78]. 

Secondly, having big methods clearly decreases reusability. We detected several 

clones internally within many methods using CodePro Analytix [112], but they were mixed 

up with other implementation code, preventing us from being able to straightforwardly make 

those methods into provided methods of traits. If the methods had been more fine-grained, 

we would have likely been able to create more reusable traits and further reduce the number 

of lines of code. This issue was particularly noticeable in cases where an interface was im-

plemented by several classes. 

Thirdly, further refactoring of big methods is likely to lead to additional traits, hence 

further code reduction. Fourthly, as indicated before, we used duplicate methods as a clue for 

traits, if we used other factors (such as considering different types of clone [88]), we would 

be able to detect more traits. 

Having relatively small 1% reduction in code volume through the use of traits in the 

two re-engineered systems described above may seem to suggest the use of traits might not 

be worthwhile. Having code savings is nice, but not necessary for there to be a valid contri-
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bution. The benefit of having the traits goes beyond mere code volume reduction; with the 

introduction of traits, we have reduced the possibility of errors due to duplicate code, and 

have improved the understandability of the system. For example, in our evaluation systems, 

we found in one duplication case that there was a comprehensive comment regarding the 

functionality for just one of them and nothing for others. Therefore, developers, who will 

read the clone instance that does not have the comment, would have to employ lots of cogni-

tive effort to understand it. 

In these case studies, we have not detected state machines through the reverse engi-

neering process because Umplificator does not yet support detecting state machines from Ja-

va code and representing them in Umple. Therefore, we might be able to achieve even better 

percentage of code reduction by representing a significant amount of code through state ma-

chines. 

 

The following shows the satisfaction of goals defined in Section 5.2.1: 

 

1. We have used traits to model two systems which have in average 90000 LoC. This 

showed that our approach can be used to develop reasonably large systems. 

2. We modeled two systems which are actively under development and have well-

defined requirements. This shows our approach is capable of handling such systems. 

3.  We modeled two systems with traits and then generated those automatically. These 

systems passed the test cases that were designed for the same systems without traits. 

This confirms that a system modeled with traits can have the same behavior as the 

same system without traits. This guarantees completeness with respect to the test sets. 

4. Due to the reduction in code volume, we have some evidence that traits could reduce 

cognitive effort when a system needs to be studied by developers. However, we think 

more experimental studies need to be conducted in this direction. 

5. We were able to generate two open-source systems from our models and run them. 

This again shows that we can use traits at the modeling level and automatically im-

plement them in the Java programming language. 
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5.3. CORDET Framework 

In this section, we implement an industrial framework called the CORDET Framework [77] 

to explore how having state machines in traits is practical and how they can be used in real 

scenarios. Although the framework is industrial and large, it is not possible to give all scenar-

ios in which we can show the application of our defined operators. In fact, different combina-

tions of operators can happen in different domains and scenarios. 

5.3.1 Goals 

The main goals of this case study are summarized as follows: 

1. To confirm that it is possible to build systems using state machines in traits and also 

that it is practical. 

2. To confirm that state machines in traits give opportunities for reuse. 

3. To confirm that our flattening algorithm (including composition) for state machines is 

working correctly. 

4. To confirm that state machines defined in traits and used to build a system, can be 

transformed to a target programming language. 

5. To reconfirm that if we develop a system at the modeling level with traits, we can 

generate and execute Java for it. 

5.3.2 Implementation 

The CORDET Framework  [77] is a specification of a generic architecture for distributed 

service-oriented embedded systems. The framework specifies components that implement 

the generic service concept. The service concept of CORDET is based on the service concept 

of the “Packet Utilization Standard” or PUS [107]. The behavior of components is defined 

based on state machines. These state machines are defined using the FW profile [75]. The 

modeling concepts of the FW profile have been implemented in the C language [76]. The 

linear behavior in state machines is modeled by procedures, which are a restricted version of 
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activity diagrams in UML. The notion of procedures has been defined in the FW profile as 

well. 

Generally, frameworks should provide mechanisms whereby target applications can 

modify some of their behavior so as to meet their own specific needs. This mechanism is 

achieved in the CORDET framework through adaptation points. An adaptation point is spec-

ified by the stereotype <<AP>>. Adaptation points can be defined in actions or guards of 

state machines and in procedures. 

The focus of the framework is for reuse at the framework level and not at the compo-

nent level, but reuse and adaptability at the component level inside the framework may be 

achieved by single inheritance. Having the framework based on our approach breaks this re-

use limitation and makes the components much more reusable. 

We have chosen this framework for our evaluation for three reasons. The first is that 

it exploits state machines and single inheritance to describe and reuse behavior of compo-

nents. Since our approach proposes to deal with limitations of reusing state machines, the 

framework is a great candidate to express how our work can improve reusability and flexibil-

ity. The second reason is that we have wanted to apply our approach to an industrial-strength 

system: CORDET has been applied to several real systems and is being maintained. Addi-

tionally, we are familiar with one of the base projects related to the framework, called OBS 

Framework Design Patterns [120], and have applied it to a real system. This could be a big 

advantage when understanding this industrial framework. 

In the following, we explain the behavior of the main components in the framework 

and describe how our approach is applied to them so as to achieve the same functionality but 

with better reuse. We have used in our implementation the same names for elements defined 

in the framework in order to help to track outputs and differences. Other components of the 

framework are modeled based on the same approach used for the main components. 
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Figure 54. Applications as Providers and Users of Services, Alessandro et al. [77] 

 

The service concept in the framework is defined as a set of capabilities that an appli-

cation offers to other applications. An application is considered as a provider of service to 

other applications or a user of service from others. Figure 54 depicts the concept in which the 

green target application plays both roles while application A plays the role of a user and ap-

plication B and C play the role of providers. The capabilities are managed through com-

mands and reports. A command is a data exchange between a service user and a service pro-

vider to perform a particular activity within the service provider. A report is also a data ex-

change between a service provider and a service user to provide information related to the 

execution of a service activity. 

Components in the framework need to have specific behavior, depicted in Figure 55 

as a state machine called Base State Machine. Once a component is instantiated, it will be in 

the state CREATED and will need proper initialization based on the specification of the tar-

get application. The process of initialization called CIP (Component Initialization Procedure) 

is depicted on the left side of Figure 56. If this procedure finishes successfully, the compo-

nent will be in the state INITIALIZED. In this state, the reset procedure called CRP (Com-

ponent Reset Procedure) is executed and its successful execution puts the component in the 

state CONFIGURED. The CRP makes a component get its default values, and its process is 

depicted on the right side of Figure 56. 
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Figure 55. A Base State Machine, Alessandro et al. [77] 

 

Once the component is in state CONFIGURED, it should execute the procedure as-

signed to it, which completely depends on the target application. In the framework, it is 

called CEP (Component Execution Procedure) and there is no defined procedure for it. The 

logic of how the procedure should be dealt with is described through the do activity and en-

try and exit actions.  

However, the framework specifies that this can also be done with an embedded state 

machine. In that case, Start, Execute, and Stop actions, which are part of the FW profile, are 

not needed anymore. This method is the one adopted in this thesis because we wanted to 

model the system with state machines as much as possible. Finally, the component ends its 

execution by receiving the event shutdown. It is valuable to indicate that the state 

CONFIGURED is the state in which the meaningful behavior of components such as com-

mands and reports is defined. We will get to this point as we progress. 

Regarding the adaptation points specified by stereotypes <<AP>>, there is one point 

in Figure 55 called Shutdown Action and there are four adaptation points in Figure 56 called 

Do Initialization check, Do Initialization Action, Do Configuration check, and Do Configu-

ration Action. Their names are self-explanatory. 
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Figure 56. Initialization and Reset Procedures, Alessandro et al. [77] 

 

Listing 74 shows the Umple model related to the specification depicted in Figure 55 

and Figure 56. In order to model the specification based on our approach, we first need to 

define a trait, called BaseStateMachine (line 1) and then define the Base State Machine in-

side the trait, called baseStateMachine (line 9-31). The definitions of states and transitions 

follow the specification. Two states transientCCIP (line 14) and transientCCRP (line 22) are 

defined in order to express the two decision points in Figure 55. 

Two procedures (CIP and CRP), defined as parts of the Base State Machine depicted 

in Figure 55, are modeled through two methods runCIP() (line 30-35) and runCRP() (line 

36-39). Procedures are modeled through methods in Umple. Umple has a feature that allows 

using programming language syntax to precisely specify sequential procedures. In this case, 

we implement the CIP and CRP procedures using Java syntax. Having procedures as meth-

ods allows seamlessly using them inside the state machine for purposes they have been de-

fined (lines 11 and 19). These two methods were defined as private methods so they will not 

be accessible through public interfaces of clients, but clients will be able to use them through 

the public interfaces of baseStateMachine. Furthermore, these two methods will be consid-

ered as provided methods of the trait BaseStateMachine. 
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Listing 74. The base state machine based on traits 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
30 
33 
34 
35 
36 
37 
38 
39 
40 

trait BaseStateMachine{ 
  internal Boolean cipOutcome = false; 
  internal Boolean crpOutcome = false; 
  Boolean initializationCheck();  
  Boolean initializationAction();  
  Boolean configurationCheck(); 
  Boolean configurationAction();  
  void runShutdown(); 
  baseStateMachine{ 

  CREATED{ 
      exit /{cipOutcome = runCIP();} 
      init -> transientCCIP; 
    } 

  transientCCIP{ 
      [cipOutcome] -> INITIALIZED; 
      [!cipOutcome] -> CREATED;   
    } 

  INITIALIZED{ 
      exit /{crpOutcome = runCRP();} 
      reset -> transientCCRP; 
    } 

  transientCCRP{ 
      [crpOutcome] -> CONFIGURED; 
      [!crpOutcome] -> INITIALIZED;  
    } 

  CONFIGURED{ 
      reset -> transientCCRP; 
      shutdown -> /{runShutdown();} END; 
    } 
    final END{}  
  } 
  private Boolean runCIP(){  
    if (initializationCheck()) return initializationAction();  
    return false; 
  }   
  private Boolean runCRP(){ 
    if (configurationCheck()) return configurationAction();  
    return false; 
  } 
} 

 

 

Adaptation points are elegantly modeled by required methods of traits. This forces 

clients to provide their own implementation according to the needs of the target application. 

The four adaptation points in Figure 56 are modeled by the required methods initializa-

tionCheck(), initializationAction(), configurationCheck(), and configurationAction() (lines 4-

7). The adaptation point in Figure 55 is modeled through the required method runShutdown() 

(line 8). Since adaptation points are modeled as required methods they can be seamlessly 
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used inside other methods and also state machines’ actions and guards. Two attributes cip-

Outcome and crpOutcome (lines 2-3 are used to keep the results of two procedures runCIP() 

and runCRP() (line 11 and 19) respectively in order to make proper decisions inside the state 

machine. 

One of the features that frameworks generally provide to the target application is a 

default implementation for adaptation points. Default implementations are mostly used for 

testing or rapid prototyping. Such a perspective has also been defined in the CORDET 

framework and it is implemented by having subclasses that provide default implementations. 

In our approach, it can be achieved by a class using a trait (BaseStateMachine) and then 

providing default implementations for adaptation points or using the trait by another trait and 

then providing default implementations for adaptation points. The first approach reduces the 

reusability because the default implementation needs to follow the limitation of inheritance, 

while the second approach offers the same flexibility as the trait BaseStateMachine provides. 

Listing 75. The default implementation for adaptation points 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 

trait BaseStateMachineDefault { 
  isA BaseStateMachine; 
  Boolean initializationCheck() { 
    return true; 
  }  
  Boolean initializationAction(){ 
    return true; 
  } 
  Boolean configurationCheck(){ 
    return true; 
  } 
  Boolean configurationAction() { 
    return true; 
  } 
  void runShutdown(){/*do necessary tasks*/} 
} 

 

 

The second perspective is depicted in Listing 75. As seen, the trait BaseStateMa-

chineDefault just uses the trait BaseStateMachine and provides default implementations of 

adaptation points. Now, we have two reusable assets that can be reused by other clients in 

ways than would be possible just using inheritance (The limitations of inheritance were ex-

plored in Section 1.1.3). 
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Next, we concentrate on the behavior of the command component. A command en-

capsulates both the actions that need to be executed and the conditional checks that deter-

mine whether or not the command either is sent or executed. A command’s life cycle is di-

vided into two parts named the user and provider sides. We concentrate on the provider side 

here. The conditional checks are triggers for switching between different states and they need 

to have zero logical execution time (i.e. they must consist of a sequence of steps that are exe-

cuted in one single execution of the procedure [75]). This makes it possible to have those 

checks as parts of guards in state machines. 

There are two checks called acceptance and ready checks. The acceptance check re-

turns true if the command has been received and can be accepted. The ready check returns 

true when the execution of the command can start. These checks are application specific and 

are considered as adaptation points. There are also four actions as follows: 

 startAction: should be executed at the beginning of a command execution. The out-

put specifies whether the command should be processed or aborted. 

 progressAction: encapsulates the actions performed on one execution step. The out-

put of this action specifies whether the command needs to be continued, failed, or 

terminated. 

 terminationAction: encapsulates final actions that need to be executed before the 

command is terminated. The output of this action specifies whether the command will 

be terminated or aborted. 

 abortAction: encapsulates the finalization actions that need to be executed in case of 

a command failure. 

 

The above actions are also application specific and so are considered as adaptation 

points. The command switches among its states based on defined checks and actions. The 

command needs to have the behavior of the Base State Machine defined in Figure 55 and its 

own specific behavior. In fact, the behavior of the command should be defined inside the 

state CONFIGURED. 

In order to achieve this, the framework proposes single inheritance. This means that 

the behavior of the command attaches to its superclass’s behavior and there is no straight-

forward way to reuse it independently (as we discussed in Section 1.1.1). In our approach, 
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this can be accomplished in two ways. The first way, depicted in Listing 76, is to use the trait 

BaseStateMachine inside the trait CrFwInCmd (line 2) and then extend the state 

CONFIGURED. The new trait needs to define a state machine with the name baseStateMa-

chine (line 3) and then specify the dummy initial state (line 4), which is CREATED. The trait 

then defines a state called CONFIGURED and puts the behavior of command in it. The be-

havior of command has not been defined in Listing 76 because it will be defined in our 

second way. 

Listing 76. Building command’s behavior without assignment 

1 
2 
3 
4 
5 
6 
7 

trait CrFwInCmd{ 
  isA BaseStateMachine; 
  baseStateMachine{ 

  CREATED {} 
  CONFIGURED {/*behavior of the command.*/} 

  } 
} 

 

 

The second way, which is our recommended one, is to design the state machine relat-

ed to the command completely independently. Then, compose the final state machine 

through assigning this state machine to the state CONFIGURED. Listing 77 depicts an inde-

pendent state machine for the command inside the trait CrFWInSM. The state machine status 

(line 11) has exactly the same behavior defined inside the composite state CONFIGURED in 

the previous way.  

As noted, there is no need to give the same name, baseStateMachine, to this new state 

machine and also there is no need to know about the initial state and the hierarchy level at 

this level of definition. The trait is completely self-defined with its own requirements and can 

be reused in different components as needed. Therefore, the main difference between the first 

and second ways is that in the first one, it would not be possible to reuse the behavior inde-

pendently. We also need to follow the same names for the initial state, regions, and compo-

site states, otherwise, we cannot extend the proper state. 

 

 

 

. 
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Listing 77. Building commands’ behaviour with assignment 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
30 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 

trait CrFWInSM{ 
  internal Boolean startActionResult = false; 
  internal Boolean progressActionResult = false; 
  internal Boolean terminationActionResult = false; 
  Boolean acceptanceCheck(); 
  Boolean readyCheck(); 
  Boolean startAction(); 
  String progressAction(); 
  Boolean terminationAction(); 
  Boolean abortAction();  
  status { 

  RECEIVED{ 
      check[acceptanceCheck() ] -> ACCEPTED; 
      check[!acceptanceCheck()] -> ABORTED; 
    } 

  ACCEPTED{ 
      execute[readyCheck()] -> STARTED; 
      execute[!readyCheck()] -> PENDING; 
    } 

  PENDING{ 
      [readyCheck()] -> STARTED; 
      [!readyCheck()] -> PENDING; 
    } 

  STARTED{ 
      entry/{startActionResult = startAction();} 
      [!startActionResult] -> ABORTED; 
      [startActionResult] -> INPROGRESS; 
    } 

  INPROGRESS{ 
      entry/{ progressActionResult = progressAction(); } 
      [progressActionResult == "continue"] -> INPROGRESS; 
      [progressActionResult == "completed"]-> TERMINATING; 
      [progressActionResult == "failed"] -> ABORTED;     
    } 

  ABORTED{ 
      entry /{abortAction();} 
    }   

  TERMINATING{ 
      entry/{terminationActionResult = terminationAction(); } 
      [terminationActionResult] -> TERMINATED; 
      [!terminationActionResult] -> ABORTED; 
    } 

  final TERMINATED{} 
  } 
} 

 

 

 

 



 

 

Chapter 5. Case Studies  181 

 

Listing 78. Building final state machine of the command 

1 
2 
3 
4 

trait CrFwInCmd{ 
  isA BaseStateMachine; 
  isA CrFWInSM <status as baseStateMachine.CONFIGURED>; 
} 

 

 

Listing 78 shows how the composition is performed to obtain the final behavior for 

the command – exactly the same one depicted in Listing 76. The trait CrFwInCmd uses two 

traits BaseStateMachine and CrFWInSM (line 2-3). It is worth pointing out that we could de-

sign CrFwInCmd as a class and also use default implementations for those two state ma-

chines which are BaseStateMachineDefault and CrFWInSMDefault. Line 3 in Listing 78 

shows that the independent state machine status is assigned to the state CONFIGURED. 

There is no need to specify from which trait a state machine and its state come because all 

state machines are considered like local state machines of the trait CrFwInCmd. 

Reporting is another service in the framework; we focus on parts related to the com-

mand here. This enriches the behavior of the command by permitting the users of commands 

to be aware of the different statuses of a command. Therefore, appropriate actions (or re-

ports) need to be defined for this purpose. There are four reports that need to be sent back to 

the user. They are application-specific and are considered as adaptation points in the frame-

work. These are as follows: 

 acceptanceAckReport: sends true if a command is accepted by the provider, 

otherwise, it sends false. 

 startAckReport: sends true if a command starts its execution, otherwise, it 

sends false. 

 progressAckReport: sends three values, continue, completed, and failed 

based on the execution status of a command. 

 terminationAckReport: sends true if a command terminates as expected, 

otherwise, it sends false. 

 

Listing 79 show the Umple model related to the reporting functionality. The trait 

CrFWInSMWithReport uses the trait CrFWInSM (line 2) to get the main functionality of the 

command. Then, it models the state machine status with new required states, guards, transi-
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tions, and actions. For example, the action acceptanceAckReport was added to the transitions 

of the state RECEIVED (line 9 and 10). There is no need for new states, transitions, or guard 

in this case. Two state machines, coming from the client itself and the trait CrFWInSM, are 

merged automatically with each other so that the final state machine can be obtained from it. 

Listing 79. The command state machine with reporting capability 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
 

18 
 

19 
 

20 
21 
22 
 

23 
 

24 
25 
26 

trait CrFWInSMWithReport{ 
  isA CrFWInSM; 
  void acceptanceAckReport(Boolean value); 
  void startAckReport(Boolean value); 
  void progressAckReport(String value); 
  void terminationAckReport(Boolean value); 
  status { 

  RECEIVED{ 
      check[acceptanceCheck()]-> /{acceptanceAckReport(true);} ACCEPTED; 
      check[!acceptanceCheck()]-> /{acceptanceAckReport(false);} ABORTED; 
    } 

  STARTED{ 
      [startActionResult]-> /{startAckReport(true);} INPROGRESS;  
      [!startActionResult]-> /{startAckReport(false);} ABORTED; 
    } 

  INPROGRESS{ 
      [progressAction()=="continue"] -> 
                          /{progressAckReport("continue");} INPROGRESS;  
      [progressAction()=="completed"] -> 
                          /{progressAckReport("completed");} TERMINATING;  
      [progressAction()=="failed"] -> 
                          /{progressAckReport("failed");}ABORTED;      
    } 

    TERMINATING{ 
      [terminationActionResult]-> 
                          /{terminationAckReport(true);} TERMINATED;  
      [!terminationActionResult]->  
                          /{terminationAckReport(false);} ABORTED; 
    } 
  } 
} 

 

 

Listing 80. Building final state machine of the command 

1 
2 
3 
4 

class CrFWInWithReport{ 
  isA CrFwInCmd; 
  isA CrFWInSMWithReport<status as baseStateMachine.CONFIGURED>; 
} 

 

 

As seen, there is no need to repeat the definitions of the states and transitions not af-

fected by the reporting functionality. The trait CrFWInSMWithReport has the entire func-
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tionality related to the command and reporting, but it does not have the behavior of the Base 

State Machine. To obtain this, the same model depicted in Listing 78 is used, but the trait 

CrFWInSM is replaced with CrFWInSMWithReport. It also is possible to use CrFwInCmd if 

it is preferred to encapsulate the trait BaseStateMachine. Listing 80 depicts the Umple model 

related to this definition. The composition algorithm takes care of merging necessary states 

and transitions. 

5.3.3 Results 

In this case study, we were able to model state machines of the CORDET framework in traits 

and use traits to extend state machines based on the specification of the framework. We 

manually evaluated the components of the framework which were generated in Java. The 

results showed the components have the functionality defined for them as specified in the 

framework. 

 

The following shows the satisfaction of goals defined in Section 5.3.1: 

 

1. We confirmed that it is possible and practical to build a system based on state ma-

chines in traits. This comes from the fact that we could model specifications of the 

framework based on state machines and generated code for the CORDET framework. 

2. We showed that state machines in traits can be reused more freely in different scenar-

ios than when they are modeled inside classes and reused based on the concept of in-

heritance. Being able to model state machines in traits and reuse them to build a sys-

tem is a clear sign of this. 

3. We confirmed our flattening algorithm (including composition) for state machines is 

working as we expected. This is observed from the fact that we extended and com-

posed state machines in traits to achieve the specification defined in the framework. 

The final system was what we expected, therefore, it is a fair validation for this goal. 

However, we believe our case study may not cover all cases needed to evaluate the 

composition part of the flattening algorithm. Therefore, more case studies still need 

to be developed as future work. 
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4. We confirmed that if a system is developed by state machines in traits, we can auto-

matically transform it to a target language (in this case Java), that can be executed. 

5. We were able to generate the framework components from our trait-based models 

and run them. This again showed that we can use traits at the modeling level and au-

tomatically implement them in the Java programming language. 

5.4. Testing at the Modeling Level 

In this section, we describe our test-driven development process for validating that require-

ments for model-based traits were implemented correctly. 

5.4.1 Goals 

The main goals of this case study are summarized as follows: 

1. To confirm that the implementation correctly matches the specification  

2. To make sure as Umple progresses, new extensions will not contradict traits syntax 

and semantics (i.e. to avoid regressions) 

5.4.2 Implementation 

Umple, from its inception, was developed using a comprehensive test-driven development 

approach. Separate layers of tests are applied at the syntactic level, semantic analysis 

(metamodel-population) level, code generator level, and by execution of resulting systems. 

The Umple compiler has over 6000 tests that are run every time anyone tries to rebuild the 

compiler. This ensures the Umple compiler remains valid as it is incrementally extended by 

new features.  

We continued Umple’s test-driven-development approach when adding traits. The 

following outlines how we have followed Umple’s multi-layer testing philosophy. The first 

layer of tests concerns the syntax of all elements we have added to traits such as state ma-

chines, operators, and so on. These kinds of test cases make sure that all keywords and op-

erators are parsed properly by the Umple compiler. They also guarantee that the parsing does 

not break when others make extensions in the Umple grammar. The second layer of tests 

deals with semantics. We break this into several categories: 
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The first category ensures that the core semantics of traits is correctly applied based 

on requirements we described in Section 3.1. For example, if a trait has a provided method, 

the provided method must be part of any client that uses the trait. Other tests in this category 

make sure that operators applied to a trait by a specific client will not affect other clients of 

the trait. For example, if a provided method is renamed by a client, the renaming must be 

performed for that client and other clients should obtain the provided method with its origi-

nal name. In other words, these test cases check that model transformation that is performed 

at the Umple compiler level is a correct transformation. 

The second category of semantic test cases is about detecting conflicts that can hap-

pen between traits and their clients. For example, a trait cannot use itself or a trait cannot 

make a bidirectional association with interfaces. These test cases also cover validations relat-

ed to operators. For example, if an operator wants to change the name of a state machine, it 

must be available in the used trait. 

Finally, we have dedicated a category of semantic test cases for the composition algo-

rithm we have developed for state machines. This makes sure the semantics we defined for 

the composition of state machines is valid after model transformation. This category is a 

complicated one because test cases cover a different combination of using state machines 

together or in collaboration with other traits elements.  

We have developed 218 test cases [121] overall (including 426 assertions) and they 

are executed every time the Umple compiler is built. All test cases are passed in the current 

implementation. Since most of elements defined in traits, such as state machines and associa-

tions, have been tested as part of the Umple compiler (see the previous section), there was no 

need to develop test cases for them. This has reduced tremendously the number of test cases 

required for developing traits in Umple. Furthermore, the Umple compiler serves as one of 

our integration tests because it includes traits we have developed for it. In fact, the Umple 

compiler uses its own traits to achieve its functionality. 

We have not developed any test case for code generation related to different target 

languages because they have their own test cases. As long as we give a valid model to those 

code generators, the output of them will be valid as well. As pointed out before, using model 

transformation at the Umple compiler level was a strategic decision to have traits accessible 

in different programming languages supported by Umple. Therefore, there was no need for 
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any unique test cases regarding traits for code generators. Our developed systems as part of 

this validation process are good indicators that the Umple code generator works properly, 

otherwise, we would not be able to execute those system modeled by traits. 

5.4.3 Results 

We were able to develop test cases for requirements of model-based traits and integrate them 

to the testing process of Umple. 

The following shows the satisfaction of goals defined in Section 5.4.1: 

 

1. Our implementation passed all test cases extracted from requirements. This showed 

our implementation is in compliance with requirements. 

2. We integrated our test cases into the testing process of Umple and therefore if chang-

es happens in the syntax and semantics of traits, those test cases will inform develop-

ers. 

5.5. Summary 

In this chapter, we implemented several systems to validate our work. The first system vali-

dated that basic features of traits implemented in Umple are working correctly. The second 

and third systems confirmed that model-based traits can be used to build the same system 

that was built without traits. The forth system investigated whether state machines in traits 

can be utilized to model a system.  In all these systems, we also validated that we can im-

plement systems automatically in the Java programming language. In all these systems, reuse 

functionality or models are encapsulated in traits, increasing flexibility and reducing limita-

tions in comparison to inheritance (the issue with inheritance was discussed in Section 1.1). 

Finally, we demonstrated that we have used test-driven development to make sure our im-

plementation is complete with respect to test cases developed from requirements. 

Although we evaluated several dimensions of our work, there are cases that we were 

not be able to evaluate and consider them as future work. For example, we did not evaluate 

the time that might be gained because of using traits and how easy traits are to be learnt and 
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manipulated by programmers. In order to answer these kinds of questions, we need to design 

an experimental study in which a group of people develop a system with and without traits.     

 

The results of our evaluations in this chapter can be summarized as follow: 

 

 We showed that we can define traits and their required and provided methods. 

 We showed that traits can be used by classes that already have a superclass. 

 We showed that traits can use other traits to achieve some of their functionality. 

 We showed that general traits can be defined through template parameters. 

 We confirmed that our flattening algorithm works for methods. 

 We showed that if methods are in traits, they can be reused in cases that are not pos-

sible with inheritance. 

 We showed that a system modeled by traits can be implemented in the Java pro-

gramming language. 

 We showed that our approach can be used to develop reasonably large systems. 

 We showed that a system modeled with traits can have the same behavior of the same 

system without traits. 

 We showed that it is possible and practical to build a system based on state machines 

in traits. 

 We showed that state machines in traits can be reused more freely in different scenar-

ios than when they are modeled inside classes and reused based on the concept of in-

heritance. 

 We showed our flattening algorithm (including composition) for state machines is 

working as we expected. 

 We showed that if a system is developed using state machines in traits, we can auto-

matically transform it to a target implementation language. 

 

In the next chapter, we discuss features that our approach offers regarding reusability. We 

also explain what challenges we faced while we were developing our approach and what 

challenges developers might face when they want to adopt our approach. This may help peo-

ple who want to use ort approach or want to adopt traits into their own modeling language. 
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Chapter 6. Discussion and Challenges 

In this chapter, we first explain how our extended features can provide better reusability and 

then express some challenges that we have faced so far during our research or that develop-

ers may face while using traits with the extended features. 

6.1. Discussion Regarding Reusability 

In this section, we discuss how our approach can provide better reusability. The goal is to 

show how each part of our solution along with other preliminary features of traits plays its 

role in software reuse. For this purpose, we will make connections between specific parts of 

our approach and the most common concepts in the majority of reuse techniques [58]: ab-

straction, selection, specialization, and integration as defined in Biggerstaff and Richter’s 

framework [25]. 

6.1.1 Abstraction 

Abstraction plays a central role in software reuse so if we would like to reuse software arti-

facts effectively, concise and expressive abstractions are essential [58]. Abstraction reflects 

the point that concealment of details and focusing on the most important factors facilitate 

reusability. Indeed, having a high level of abstraction helps us to have more reusable ele-

ments. In our approach, we concentrate on traits at the modeling level, which is a higher lev-

el than traditional programming. This helps us to put implementation concerns aside and fo-

cus more on reusing functionality. The implementation concerns will be resolved through 

automatic code generation. 

We introduce modeling elements to traits that increase both abstraction of traits and 

reusability opportunity of those elements. Reuse of those elements is not limited anymore by 

the constraints of inheritance as discussed in Section 1.1.3. Furthermore, instead of obtaining 

the functionality of traits only through methods, such functionality can be expressed with 

more abstract elements such as state machines. This results in more abstract traits. 
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Required interfaces can be used in the design of other parts of systems to have or cre-

ate proper clients. This helps developers to understand requirements of traits more easily or 

put restrictions on clients in a modular way. Associations are also more abstract than classic 

code in which developers have to define instance variables and implement the necessary 

APIs. 

6.1.2 Selection 

Selection deals with locating, understanding, comparing, and selecting reusable software arti-

facts. This is covered by our approach in two ways. 

Firstly, developers can select proper traits (e.g., from a repository) according to their 

need and use them inside classes or other traits. They may gain understanding of the traits by 

looking at either their required methods and interfaces or the interfaces needed by template 

parameters. Secondly, developers are also allowed to select from the provided methods of 

each trait.  

6.1.3 Specialization 

Specialization focuses on generalized or generic artifacts and specializes them by inher-

itance, parameters, transformation, constraints, and some other forms of refinement. 

In our approach, inheritance is available through the composition mechanism: Traits 

can extend the behavior of their super-traits (composing traits), and classes can extend their 

traits under the flattening mechanism. Particularly notable benefits of specialization can be 

observed when modeling elements in traits (e.g., state machines and associations) are spe-

cialized in sub-traits. For example, when there is an association in a composing trait and 

there is the same association in the composed trait, then multiplicities of the composed trait 

will affect the composing one. 

Moreover, template parameters allow developers to define generic traits and special-

ize generic traits by binding specific types to parameters. They also let one put restrictions on 

types of parameters by defining required interfaces for parameters. Template parameters are 

used with associations to provide a better configuration mechanism to associate clients of 

traits with other classes. 
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Finally, Umple lets developers customize visibility and names. Renaming provided 

methods allows for the development of domain-specific vocabularies, which helps develop-

ers create more-adaptive systems. It is important to mention that customization is also used 

for conflict resolution. 

6.1.4 Integration 

Integration considers how reusable elements will be integrated into a software system effec-

tively. In other words, how developers combine a collection of selected and specialized arti-

facts into a complete system. This is achieved by knowing more about artifacts’ interfaces. In 

our approach, there are two complementary ways that developers can understand traits. The 

first is required methods and interfaces, which reveal how a trait can be used in what classes 

or traits. The second one is required interfaces for template parameters, which indicate al-

lowable bindings for the parameters. These two features can also be considered a way to se-

lect traits (discussed in Section 6.1.2). Furthermore, as a common way of helping developers 

to know much about reuse artifacts, we can assign comments to either traits or each element 

of traits. 

6.2. Challenges 

There are three categories of challenges regarding our research: Challenges our work will 

help developers overcome, challenges we faced when developing traits, and challenges that 

might be faced by those trying to use our traits in models. 

6.2.1 Developers’ Challenges Our Work Should Help With 

The first category of challenges is the technical challenges we are allowing software engi-

neers to overcome if they use our approach. The following is a partial list: 

Avoiding Multiple Inheritance: developers generally want to avoid multiple inher-

itance for a variety of reasons, yet at the same time reduce duplication in their model, but 

there is a lack of techniques to overcome this if the developer wants to work at the modeling 

level.  
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Moreover, developers who use traits may want to define semantics-level restrictions 

on traits and make them as a part of traits’ usage. On the other hand, our new feature regard-

ing having associations inside traits opens a new design technique which is portable and flex-

ible. For example, we depicted in Listing 68 how the observable pattern can be redesigned. 

Developers who use state machines to develop their systems in an incrementally way 

need to worry about how they compose those modelled state machines. They also need to 

make decision regarding in which classes those state machines must be defined so as to be 

able to reuse them better in other classes (if it is required). Such concerns were discussed in 

Section 1.1.1. Our approach tackles those concerns and allows developers to focus more on 

the way they design the logic of state machines. When it is required to compose state ma-

chines, it will be possible with traits. Developers can even adjust those reused state machines 

based on slightly different requirements of new systems (or classes).  

Finally, being able to implement reusable modeling elements in different program-

ming languages is challenging for developers. They need to make sure elements they reuse 

while modeling can be properly transformed to executable code. In our case, this is per-

formed automatically and developers do not need to worry about it.   

6.2.2 Challenges We Faced in This Work 

The second category of challenges are the technical challenges we faced during our research 

including design and implementation phases. 

Our first challenge was to develop a usable syntax for traits. We had to define the 

necessary keywords inside Umple and there were two options 1) using specific keywords for 

each concept 2) reusing other keywords available in Umple. Since, the main philosophy of 

Umple is simplicity, we defined a minimum of new keywords and reused already-existing 

keywords. For example, instead of having the keywords “required” and “provided” for re-

quired and provided methods, we consider abstract methods as required methods and normal 

methods as provided method. We also re-used the ‘isA’ keyword in several contexts, where 

doing so makes sense. The main reasons for this decision are as follows: 

 Avoiding having lots of different keywords and forcing the modeler to remember 

which is for which.  
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 The isA rule is applied quite nicely if we name traits well. For example,  “isA Com-

parable” (traits Comparable defined in Listing 72) clearly specifies the client wants 

the functionality of being comparable.  

 It is often interchangeable whether the reused unit is class, interface, or trait; using 

the same keyword allows the client to be unchanged if, for example, we turn a super-

class into a trait. 

 In existing languages, there are many ways of specifying reuse of elements; we want-

ed something simple and distinct, and which also is abstract 

 

However, some have doubted the wisdom of our choice of the ‘isA’ keyword. For 

example, readers of the code do not instantly know whether the reused element is a super-

class, interface or trait. However, we think it should not be important for developers to know 

what kind of element is being reused. The most important thing is the functionality obtained. 

The next challenge we faced was developing semantics of traits in the modeling con-

text. The new semantics must be compatible with original Umple/UML semantics and be 

usable and meaningful at the modeling level. Traits semantics had to be extended to admit 

modeling elements as a part of traits definitions. Exploring the soundness of the approach in 

numerous scenarios was challenging. We had to explore the elements’ positive and negative 

effects and then see whether or not each item we introduced is in compliance with the origi-

nal definition of traits. Most incompatibilities came from the fact that finally those elements 

must be flattened to clients and there must be less conflict and more effectiveness for those 

elements. 

Developing rules that show when traits are correct (and producing appropriate error 

messages in other cases) was also another challenge. Our comprehensive list of error and 

warning generated as part of the validation phase is depicted in Table 5 in Appendix I. We 

wanted to check the original rules of traits in addition to the ones we promoted for model-

based traits in an automatic way. This caused us to check both flattened and normal models. 

However, it resulted in a good mechanism for our implementation in which we can show 

both flattened and original models of the final system as alternative views. Having these two 

views ought to have a positive effect on developers regarding their understanding of the final 

system [26]. 
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Adding and composing state machines was also challenging. State machines in traits 

can be reused more than once by clients and so we needed to make sure that operators and 

the composition algorithm will not affect the base definition of traits. Therefore, it was re-

quired to clone traits (deep cloning) when they are reused by clients and then pass them to 

the composition algorithm to compose them with other state machines. We first tried to use 

the Java cloning mechanism to deal with it but soon noticed that state machines have associa-

tions with other Umple classes which are not used when state machines are used in traits. 

Therefore, we developed specific cloning methods for elements of state machines that we 

were interested in. This also helped improve memory use when it comes to the cloning part 

of state machines. 

Implementing operators for state machines and other elements was challenging as 

well because modelers should not be able to apply conflicting operators to elements. Fur-

thermore, there should not be an order in which operators could be applied. This required us 

to perform deep analysis every time a new operator was added to traits. 

6.2.3 Challenges Expected to Be Faced by Adopters 

The third category of challenges is those that might be encountered by adopters of our work. 

We believe that the challenges will be minimal. Traits provide a layer of functionality sitting 

on top of the existing modeling language and so our work allows rational copying of reusable 

elements (flattening) in a controlled way. Previous research has shown that flattening can be 

done with elements such as methods and attributes. We showed how flattening can be per-

formed just as easily with associations and state machines. 

Regarding the learnability of our concepts, developers define traits in a way very sim-

ilar to how they define classes, albeit with a few unique details related to traits. Developers 

will need to learn the rules of applying traits in various class hierarchy contexts and how to 

resolve conflicts through rename/remove operations. These rules are simple, as indicated ear-

lier in this thesis. Furthermore, if developers make mistakes, the compiler will raise relevant 

warnings and error messages – and as mentioned in the last section, the developer can see the 

flattened version of the system to verify their compositions are performed as expected. 

Our syntax has been designed to be straightforward and conflicts are detected auto-

matically by Umple’s compiler. The compiler helps modelers regarding the conflict resolu-
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tion through concrete examples. In our lab, developers showed that they were able to under-

stand how to use traits in their design after a 30-minutes presentation. Of course, an empiri-

cal study ought to be conducted to assess usability of our technique; this is future work. 

6.3. Summary 

In this chapter, we made a connection between features of our work and principles of reuse 

present in the majority of reuse techniques. We argued that our approach brings more ab-

straction to traits, provides mechanisms for developers to select the reuse elements they need, 

allows developers to specialize reuse elements when they need more customization, and fi-

nally offers ways for developers to reason about how to integrate traits into a software sys-

tem. 

In the next chapter, we give an overview of our work, summarizing what we have 

achieved. Finally, we discuss some potential future work. 
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Chapter 7. Conclusion and Future Work 

In this chapter, we summarize what we have achieved during this research and also discuss 

future work. 

7.1. Summary and Conclusion 

In this thesis, we implemented an enhanced mechanism for reuse based on traits. We extend-

ed traits to be abstract and coherent in order to provide better reusability and integration with 

model-driven software development. The contributions can be summarized as follows: 

 

Enhancement of Umple to support traits: We have extended Umple with the 

fundamental structure for supporting traits. This extension includes defining traits, required 

methods, provided methods, attributes, and template parameters. In order to obtain these 

features, we extended the Umple grammar which allows the Umple parser to parse syntax 

related to traits. The Umple metamodel has also been extended to allow having traits as 

modeling elements. Then, we extended the Umple compiler (the analysis phase) to build a 

valid instance of a metamodel for any system developed by traits. 

Required interfaces as a new abstraction in traits: We have extended the basic 

definition of traits to be able to define additional semantic requirements on their clients 

through having required interfaces. This prevents traits from being used in clients that just 

satisfy the signature of required methods. Traits can also use a hierarchy of interfaces for bet-

ter management of their requirements. 

Adding associations to traits: Associations, one of the key modeling elements in 

UML, were added to traits. Traits can have static and dynamic associations with other ele-

ments. Static associations are defined when traits make associations directly with a class or 

an interface. These associations finally will be between candidate clients and those classes 

and interfaces. Dynamic associations are defined when a trait makes an association with a 

template parameter. Therefore, clients can specify the other side of association when they use 
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traits. This kind of associations makes traits more reusable and flexible. Furthermore, traits 

are able to present some of their provided methods implicitly in terms of associations, which 

is more abstract than explicit provided methods. Taken together, all these items enhance how 

traits can be used in model-driven software development. 

Adding state machines to traits: State machines, a second key UML modeling con-

struct, were also added to traits. In order to maximize the benefits of state machines in traits, 

we developed an algorithm that composes state machines of traits when they are used by 

traits or classes. We also combined state machines with template parameters in order to in-

crease reusability of traits. We introduced the concept of superCall for state machines actions 

and activities which allows much better flexibility when state machines are composed. Fur-

thermore, we allow state machines to be used as a way to extend a simple state in order to 

produce composite states. The events of state machines in traits (or classes) serve as provided 

methods that can be used to satisfy the required methods of used traits. This shows how 

modeling and implementation synergistically work together. 

Operators on trait inclusion: We defined and implemented required operators to re-

solve conflicts when they happen, and also allow controlling granularity and reusability of 

traits. These operators allow renaming and selective inclusion. 

Traits in the Umple user-interface: In order to increase the way traits and their el-

ements can be explored, we provided an automatic way to represent traits graphically and 

switch between trait-based and class (flattened) diagrams. 

Programming-language independence of traits: Our model transformation at the 

Umple compiler level allows to have traits at the modeling level and generate implementa-

tions in major programming languages such as Java and C++. Although a key impetus for 

our work is to bring traits to the modeling level, the work we have performed can also allow 

our work to be applied to code that consists of only methods, which looks just like Java or 

C++, or both at the same time.  

Case studies demonstrating the applicability of our work on traits: We evaluated 

Umple traits and our enhanced features through different cases studies. The first case study 

demonstrated that basic features of traits can be utilized in Umple in the same manner as they 

are used in programming languages to develop systems. Then, we extracted traits from two 

systems based on Umple. We re-implemented those systems with traits defined in Umple and 
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achieved the same functionality they had before using traits. This was confirmed by the fact 

that systems generated from model-based traits could pass all test cases that have already 

been developed for them (when they were developed without traits). This demonstrates that 

traits can be used in large and model-based systems. This, in turn, allows us to use our ap-

proach as a generic extension providing traits in languages such as Java. The last case study 

evaluated state machines in traits and our composition algorithm through implementation of 

a framework. We demonstrated how state machines in traits can be used to build systems and 

achieve more reusable state machines. These reusable state machines can be easily used in 

different projects or classes in a different level of hierarchy. 

7.2. Future Work  

There are many opportunities to extend this work or use traits for different applications. 

Some suggested future work is as follows: 

Traits provide a significant flexibility regarding reuse, so they are good candidates to 

be utilized for model-based software product lines. Although other researchers are investigat-

ing various ways to model and generate product lines, our work has capabilities that might 

prove particularly beneficial. Umple traits offer modeling elements such as associations and 

state machines which are good matches for this purpose. We want to extend syntax and se-

mantics along with a good methodology to enable Umple traits to be used for model-driven 

software product lines. The possible option are to achieve this is to extend Umple to support 

feature models that can be expressed based in part on state machines and traits. 

It would be productive to explore the use of traits to the GoF design patterns [43] and 

other design patterns. A preliminary study has shown positive results regarding this. 

Although we have fully implemented and extensively tested traits syntax and seman-

tics in Umple, it would be beneficial from a formal software engineering perspective to have 

a formal definition for our trait extensions like the one defined for basic traits [35]. This also 

includes the formalization of the entire structure and composition algorithm (discussed in 

Section 3.3) in combination with other elements of Umple. This may facilitate the way Um-

ple traits can be adopted by other programming or modeling languages. 

During our case studies, we had to use third-party tools to find duplicated code 

(clones) in source code and then convert them to traits. It would be beneficial to have an 
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Umple extension to let developers automatically discover traits in their already-developed 

systems in Umple and then have them represented by traits automatically. The tool could 

even be extended to allow detecting traits in other languages such as C++.   

Our composition algorithm currently is not capable of fully analysing Boolean ex-

pression to determine when two or more are equivalent, or one subsumes another. Hence 

there remain opportunities to better enable merging of transitions involving guards. We want 

to improve our algorithm to tackle this issue. Furthermore, two equal Boolean expressions 

defined in guards might statically be equal, but they might never be equal at runtime because 

of constraints on the values of involved variables. The formulae become more complicated 

when non-Boolean variables, Boolean variables, and function calls are mixed together.  

These cases are satisfaction issues and have to be dealt with by model checking techniques. 

For these purposes, tools like Choco [113] can be adopted. Choco can be a great can-

didate because a) it is a Java library and so can be used directly during the composition 

process; and b) it just needs variables and satisfaction criteria and those can easily be ob-

tained from the model of the compiled Umple file at runtime. 

Another perspective on the above issue is to detect implications after composition 

through using a model checker. Then, we can iterate over the models and apply desired ac-

tions on them. For example, we can simplify the guards so they can be detected by our native 

comparison algorithm. This process can be performed automatically in Umple, which is part 

of on-going research by another Ph.D. students in our Lab. Indeed, Umple provides a trans-

formation to the formal representation of classes and state machines in nuXmv [4] so models 

can be explored in that tool. The plan is to integrate the model-checking process with our ap-

proach. 

We introduced traits into Umple (a text-oriented modeling language). We also adopt-

ed a simple graphical representation for traits (described in Section 2.2.10) based on the pre-

vious research conducted by Schärli et al. [93] and extended it with our notations. It would 

be interesting to study how graphical model languages can adopt our traits as part of their 

modeling elements. 

During this research we focused on modeling languages (or frameworks) which are 

compatible with the concepts of object-orientation and UML. It would be interesting to study 

whether the philosophy of traits can be used in other modeling frameworks. We suggest 
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studying which elements of those modeling languages can be represented in traits, what 

kinds of conflicts might happen, and what operators are required. 

Although we have applied our approach to a real world system, we have not yet fully 

explored the capabilities of all our operators in case studies. Applying the approach to more 

systems in which state machines have an important role can reveal better scenarios for reus-

ing traits. 

Finally, it would be important to conduct an experimental study to explore how usa-

ble is our approach when practitioners develop systems based on traits. The results of such a 

study may provide feedback on how a methodology should be designed for trait-based soft-

ware systems or what kinds of new operators might need to be added to model-based traits. 
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Appendices 

Appendix I: 
 

Table 5. List of errors and warnings (W) raised by the Umple compiler for traits 

Error or 

warning 

Code 

Description 
Explained 

in 

200 
The name of a trait must be alphanumeric and start with an alpha 

character, or _ . 
3.4 

201W The name of a trait should start with a capital letter. 3.1 

202 The used traits by clients must exist in the system. 3.4.1 

203 The name of a trait must be unique in the system. 3.1 

204 A trait cannot use itself. 3.1.3 

205 A trait cannot use itself even indirectly through its used traits. 3.4.3 

206 
A type bound to a template parameter of a trait by a client must 

implement interfaces defined as constraint on the parameter. 
3.1.7.2 

208 A trait must satisfy required methods of its used traits. 3.1.3 

210 
A client cannot obtain more than one provided method from 

used traits that have the same signature. 
3.4.10 

211 

When a client uses a trait, it cannot apply removing/keeping and 

renaming provided methods more than once on the same provid-

ed method. 

3.1.9.1 

212 
If a client indicates the signature of a method as a part of using a 

trait, that method must exist in the trait. 

3.4.11.1, 

3.4.11.2 

213 
A trait cannot have a bidirectional association with an interface 

obtained through a template parameter. 
3.6 

214 The name of template parameters must be unique. 3.1.7.2 

215 The clients must bind a type to an existing template parameter.  3.1.7.2 

216 
The type of a template parameter cannot be specified more than 

once. 
3.1.7.2 

217 
The name and type of attributes in traits must be kept unique all 

the time. 
3.1.7.2 

218W A client and its used trait cannot have attributes with the same 3.4.7 
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names.  

219 
A client must bind types to all template parameters of its used 

traits. 
3.1.7.2 

220 
When a provided method of a trait is renamed, the new name 

should be unique in the set of provided methods. 
3.1.9.2 

221 
When a client binds a type to a template parameter of its used 

trait, the type must exist in the system. 
3.4.9.2 

222 
When a client uses a trait, it must implement the required inter-

faces of the trait. 
3.7 

223 
When there is a constraint on a template parameter, used class 

and interfaces in the constraint must exist in the system. 
3.4.9 

224 
A multiple inheritance constraint cannot be applied to the bind-

ing type of a template parameter. 
3.1.7.2 

225 
A type bound to a template parameter of a trait by a client must 

be a subclass of the class defined as constraint for the parameter. 
3.1.7.2 

228W 
When two state machines or regions are composed and have dif-

ferent initial states, this informative warning is raised. 
3.5.5.5 

229 
The name of a state machine in a trait cannot be renamed more 

than once by a client. 
3.2.4.2 

230 
When an operator is applied to a state machine or state in a trait, 

the state machine or state must available through that trait. 
3.5.4.1-7 

231 
When an operator is applied to an event of a state machine in a 

trait, the event must exist in the state machine. 

3.2.4.4, 

3.5.4.8 

232 
When an operator is applied to an event of all state machines in 

a trait, the event must exist at least in one of the state machines. 
3.5.4.4 

233 
The initial state of a state machine cannot be removed by an op-

erator. 
3.5.4.6 

234 

The composition algorithm will not compose transitions of state 

machines that cause the composed state machine becomes non-

deterministic. 

3.5.5.2 

235 
When a superCall is used in actions or activities, it must refer to 

a unique action or activity. 
3.5.5.3 

236 
The composition algorithm cannot compose two entries coming 

from two different used traits for a specific state. 

2.1.5.1, 

3.5.5.3 

237 
When a region is renamed, the new name must be unique for the 

including state. 
3.2.4.3 
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Appendix II 
 

This appendix describes the technical requirements used to develop traits for model-driven 

development (MDD). The following is the description of columns related to the requirement 

table. 

 ID: A unique identification code used to identify the requirement. It is also supposed 

to be used as a reference when other requirements need to refer to this requirement. 

 Requirement Description: An imperative statement of the requirement. The modal 

verb “must” and “should” are used in the description to show the functionality of the 

requirement is mandatory. The optional requirements use modal verbs “may” and 

”might” in their description. 

 Justification: Explains the rationale for why the requirement is important when 

providing a traits capability in MDD. 

 Source: Indicates from which source the requirement has been extracted. It has three 

values as follows: 

- original def.: Indicates that the requirement comes from the original definition 

of traits. 

- ext: Indicates that the requirement comes from an extension to the original 

definition that might be proposed by other researchers. 

- new: Indicates it comes from the research performed with the objective of in-

troducing traits in the MDD context (implemented in Umple). 

 Satisfied: Indicates whether the requirement has been implemented in Umple traits. 

 Test case: Indicates whether the requirement has been covered by test cases devel-

oped for validation and verification of the design and implementation of traits in Um-

ple. 
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ID Requirement Description Justification Source 
Satis-

fied 

Test 

case 

R001 

Traits must specify required meth-

ods. 

Some reusable assets depend on the context in which they are reused. They need 

to be able to call other specific functions (methods) to be able to provide the func-

tionality they promise. Traits are reusable assets and they can be reused in differ-

ent contexts. Therefore, they need to specify their required functions. 

original 

def. 
yes yes 

R002 

Required methods of traits must be 

satisfied by classes. 

Since provided functionality needs required methods to provide promised func-

tionality, the required methods must be available (implemented) in any classes that 

want to have the provided functionality. 

It is also invalid to call (invoke) a method that in turn is using another method 

which is not available in the system.  

original 

def. 
yes yes 

R003 

Traits must offer provided methods 

for clients. 

Traits are considered as reusable assets and therefore they need to bring value to 

their clients. This value can be provided by offering methods that provide func-

tionality to clients. 

original 

def. 
yes yes 

R004 

Traits must be able to use required 

methods inside their provided 

methods. 

Traits can define required methods, and therefore those required methods should 

be used by provided methods. Otherwise, there is no benefit of having the concept 

of required methods. 

original 

def. 
yes yes 

R005 

Traits must be able to use provided 

methods inside other provided 

methods. 

Traits might define some local methods to modulate some functionality required 

by several other provided methods. Therefore, it must be possible to achieve such 

a degree of modularity inside traits. 

original 

def. 
yes yes 

R006 

Traits’ names must be unique in the 

system under development (there is 

an exception, check requirement 

R047) 

Traits can be reused several times in the system under development, therefore, 

their names must be unique within the set of clients using each trait so as to be 

able to properly refer to them or reuse them. 

original 

def. 
yes yes 

R007 

The signature of provided methods 

must be unique. 

Provided methods are used by clients or other provided methods of traits; there-

fore, their signatures are required to be unique within the set of clients using each 

trait. 

original 

def. 
yes yes 

R008 

The signature of required methods 

must be unique.  

Required methods are implemented by clients and used in provided methods of 

traits; therefore, their signatures are required to be unique within the set of clients 

using each trait to validate that they are satisfied in clients and uniquely referred to 

in provided methods. 

original 

def. 
yes yes 

R009 

Traits must be able to define attrib-

utes. 

In some situations, provided methods might need to communicate with each other 

through attributes. For example, keeping the state of a variable. Therefore, traits 

should be able to define those attributes. 

ext. yes yes 

R010 

The name and type of attributes in 

traits must be unique.  

An attribute is used by its name in provided methods, therefore, its name and type 

must be unique within the set of clients using any trait. Not having unique names 

and types can cause conflicts when they are compiled by compiler as well. 

ext. yes yes 
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ID Requirement Description Justification Source 
Satis-

fied 

Test 

case 

R011 

Traits must be able to define their 

required attributes through required 

methods 

Traits might prefer not to have attributes to keep states of their activities and re-

quest them from clients that use them. In that case, the required methods must 

return a type which is compatible with the required attribute type. 

original 

def. 
yes yes 

R012 

Traits must be able to define one or 

many template parameters that can 

allow a type referred in a trait to be 

referred by a different name in a 

client. The maximum number is 

255. 

There might be situations in which traits cannot be reused as a result of differences 

in types of provided methods. Therefore, having template parameters will allow 

tackling these cases. The limit of 255 is imposed by the needs of Java as a target 

language. 
ext. yes yes 

R013 

Traits must be able to define con-

straints on template parameters re-

garding what interfaces must be 

implemented by the bound types. 

This is required to make sure the bound types can be used without fault in traits. 

ext. yes yes 

R014 

Traits must be able to define con-

straints on template parameters re-

garding what superclass bound 

types must have. 

This is required to make sure the bound types can be used without fault in traits. 

ext. yes yes 

R015 

Traits must be able to use template 

parameters for types of parameters 

of required methods.  

In order to design general traits, general required methods must be defined. There-

fore, it must be possible to use template parameters as types for parameters of re-

quired methods. In other words, having template parameters for required methods 

makes them adaptable. 

ext. yes yes 

R016 

Traits must be able to use template 

parameters for types of parameters 

of provided methods. 

Designing general traits requires having general provided methods. Therefore, it 

must be possible to use template parameters as types for parameters of provided 

method. In other words, having template parameters for provided methods makes 

them adaptive. 

ext. yes yes 

R017 
Traits must be able to use template 

parameters for types of attributes. 

General provided methods of traits might need to have general attributes. There-

fore, it must be possible to used template parameters as types for attributes. 
ext. yes yes 

R018 

Traits must be able to use names of 

bound types of template parameters 

as strings in the code found in 

method bodies. 

In model-oriented technology it is possible to have model and code together, there 

might be a need to allow executable code to use bound types. For example, being 

able to create an instance of a bound type. This feature allows the achievement of 

such a capability. 

new yes yes 

R019 

Traits must be able to use other 

traits. 

Traits need some functionality to achieve to their goal. That functionality might be 

obtained through using other traits. Therefore, it must be possible for them to use 

other traits. 

original 

def. 
yes yes 

R020 

When a client uses another trait, the 

client’s provided methods must 

have higher priority over the same 

When a client uses another trait, it might be possible to have methods with the 

same signature in the used trait. The client requires their own provided methods, 

therefore, the ones coming from used traits need to be disregarded. Furthermore, 

original 

def. 
yes yes 
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ID Requirement Description Justification Source 
Satis-

fied 

Test 

case 

methods coming from the used trait. the client might have those methods to intentionally overwrite incoming methods. 

R021 

When a client uses another trait, the 

client’s attributes must have higher 

priority over the same attribute 

coming from the used trait. 

When a client uses another trait, it might get attributes with the same names and 

types from the used trait. The client requires their own attributes, therefore, the 

ones coming from the used trait need to be disregarded.  

Note: this case can be problematic because the attribute might be manipulated by 

several unrelated provided methods. This situation must be reported to the devel-

oper. 

ext. yes yes 

R022 

A trait should be able to satisfy the 

required methods of their used traits 

with their own provided methods. 

When a trait uses other traits, it might want to satisfy required methods of those 

used traits. Therefore, the trait needs to define methods for them. These methods 

in fact are provided methods of the trait. 

original 

def. 
yes yes 

R023 

A trait does not need to satisfy re-

quired methods of their used traits. 

Traits are not final elements in the design of systems and they will be used finally 

by classes, therefore, it is logical to be able to postpone satisfaction of those re-

quired methods. This can be useful when a trait uses other traits in order to have 

more functionality, without worries about their requirements. 

original 

def. 
yes yes 

R024 

When a trait uses more than one 

trait, it cannot obtain two or more 

methods with the same signature 

from those traits (there is an excep-

tion, check R025) 

The name of provided methods in traits must be unique. Therefore, it should not 

be allowed to have two methods with the same name. 
original 

def. 
yes yes 

R025 

When a trait uses more than one 

trait, it can accept two or more 

methods with the same signature 

from those traits if they come from 

the same source trait somewhere in 

the use hierarchy of traits. In this 

case, one of them must be consid-

ered in the set of provided methods. 

The name of provided methods in traits must be unique. However, if there are sev-

eral methods which are coming from the same source, keeping one and disregard-

ing the rest should be possible. Technically, all other provided methods will be 

able to use the method and the result will be valid. original 

def. 
yes yes 

R026 

When a trait uses more than one 

trait, it cannot obtain two or more 

attributes with the same signature 

from those traits (there is an excep-

tion, check R027) 

The name of attributes in traits must be unique. Therefore, it should not be allowed 

to have two methods with the same name. 

ext. yes yes 

R027 

When a trait uses more than one 

trait, it can accept two or more at-

tributes with the same signature 

from those traits if they come from 

the same source trait in the trait use 

The name and type of attributes in traits must be unique. However, if there are 

several attributes which come from the same source, keeping one and disregarding 

the rest should be possible. Technically, all other provided methods will be able to 

use the attributes and the output will be valid as well. 

ext. yes yes 
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ID Requirement Description Justification Source 
Satis-

fied 

Test 

case 

hierarchy. In this case, once of them 

must be considered in the set of 

attributes. 

R028 
A class must be able to reuse traits. Classes are central concept in designing object-oriented systems. Since traits are 

considered as reusable assets, classes need to be able to reuse them. 

original 

def. 
yes yes 

R029 

A class must be able to reuse traits 

even it has a superclass  

One of the benefits of traits is that they can be reused when their functionality is 

required. Therefore, there should not be any issue when a class reuses them while 

it has a superclass. 

original 

def. 
yes yes 

R030 

A class must be able to implement 

interfaces through using traits. 

Traits have provided methods which bring functionality to their clients. Provided 

methods are like concrete methods in classes. Therefore, when classes reuse traits 

those provided methods should be able to implement abstract methods of interfac-

es. This will be possible if provided methods and abstract methods in interfaces 

and traits have the same signature. 

original 

def. 
yes yes 

R031 

When clients (classes or traits) use 

traits, they must be able to remove 

provide methods. 

When clients use traits, there might be conflicts because of name collision of pro-

vided methods. Furthermore, clients might not need specific provided methods. 

Therefore, it is logical to be able to remove conflicting or unrequired methods. In 

other words, it is required to be able to control granularity of traits. 

original 

def. 
yes yes 

R032 

When clients (classes or traits) use 

traits, they must be able to remove 

attributes. 

When clients use traits, there might be conflicts because of name collision of at-

tributes. Furthermore, clients might not need specific attributes. Therefore, it is 

logical to be able to remove conflicting or unrequired attributes.  

ext. no no 

R033 

When clients (classes or traits) use 

traits, they must be able to rename 

provided methods. 

When clients use traits, there might be conflicts because of name collision of pro-

vided methods, and clients might want to keep both conflicting methods. Further-

more, clients might need to use provided methods under specific names that are 

more domain specific. Therefore, it is logical to be able to rename conflicting pro-

vided methods. 

original 

def. 
yes yes 

R034 

When clients (classes or traits) use 

traits, they must be able to rename 

provided attributes. 

When clients use traits, there might be conflicts because of name collision of at-

tributes. Furthermore, clients might need to use attributes under specific names 

that are more domain specific. Therefore, it is logical to be able to rename con-

flicting attributes. This is also the way to keep the accessing methods of both con-

flicting attributes. 

ext. no no 

R035 

When clients (classes or traits) use 

traits, they must be able to keep 

only specific provided methods. 

When a trait has many provided methods, it might not be practical to use several 

remove operators to eliminate all but the provided methods that are needed. This 

feature allows the developer to deal with this situation. 

new yes yes 

R036 

When clients (classes or traits) use 

traits, they must be able to keep 

specific attributes. 

When a trait has many attributes, it might not practical to use several remove op-

erators to eliminate all but the attributes that are needed. This feature allows the 

developer to deal with this situation. 

new no no 

R037 When clients (classes or traits) use Clients, specifically classes, might need to have provided methods with a specific new yes yes 
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ID Requirement Description Justification Source 
Satis-

fied 

Test 

case 

traits, they must be able to change 

the visibility of provided methods. 

visibility. For example, they might want to keep provided methods private while 

those provided methods have been defined as public in traits. The opposite scenar-

io might also be possible. 

R038 

When clients (classes or traits) use 

traits, they must be able to change 

visibility of attributes. 

Clients, specifically classes, might need to have attributes under specific visibility. 

For example, they might want to keep attributes private while those attributes have 

been defined as public in traits. The opposite scenario might also be possible. 

new no no 

R039 

When a client removes a provided 

method from the used trait, it 

should not affect other clients that 

use the same trait.  

Traits are reusable assets and therefore the signature of provided methods must 

remain untouched even though they might be used in different clients with the 

remove operator. 

original 

def. 
yes yes 

R040 

When a client renames a provided 

method from the used trait, it 

should not affect other clients that 

use the same trait. 

Traits are reusable assets and therefore the signatures of provided methods must 

remain untouched even though they might be used in different clients under the 

rename operator. 

original 

def. 
yes yes 

R041 

When a client keeps only a particu-

lar provided method from the used 

trait, it should not affect other cli-

ents that use the same trait. 

Traits are reusable assets and therefore the signatures of provided methods must 

remain untouched even they might be used in different clients under the keeping 

operator. 
new yes yes 

R042 

When a client removes an attribute 

from the used trait, it should not 

affect other clients that use the same 

trait.  

Traits are reusable assets and therefore attributes must remain untouched even 

though they might be used in different clients under the remove operator. 
ext. no no 

R043 

When a client renames an attribute 

from the used trait, it should not 

affect other clients that use the same 

trait. 

Traits are reusable assets and therefore attributes must remain untouched even 

though they might be used in different clients under the rename operator. 
ext. no no 

R044 

When a client keeps only a particu-

lar attribute from a used trait, it 

should not affect other clients that 

use the same trait. 

Traits are reusable assets and therefore attributes must remain untouched even 

though they might be used in different clients under the keeping operator. 
new no no 

R045 

When a client uses a trait and the 

trait has provided methods, those 

methods must be considered as na-

tive methods of the client. 

Clients can obtain their required functionality through provided methods of their 

used traits. This functionality must be used freely in the clients. Therefore, the 

most flexible way is to consider provided methods as native elements of clients 

and so all rules relative to native elements can be applied to them. 

original 

def. 
Yes yes 

R046 

When a client uses a trait and the 

trait has attributes, those attributes 

must be considered as native at-

Provided methods of traits uses attributes to achieve some functionality. Clients 

obtain their required functionality through provided methods. When traits are used 

by clients their provided methods become clients’ native methods, therefore, at-

original 

def. 
yes yes 
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ID Requirement Description Justification Source 
Satis-

fied 

Test 

case 

tributed of the client. tributes need to be considered as native elements of clients so provided methods 

could behave properly. 

R047 

Traits must be able to be defined 

under the same name in different 

files or the same file, with different 

parts of the two definitions merged. 

Developing systems in a way that code and model can be arranged in different 

files is a good practice. Therefore, it must be possible to achieve this with traits. 

This feature is called mixin in Umple modeling language. 
New yes yes 

R048 

Provided methods of a trait can 

satisfy required methods of other 

traits. 

A client might use a trait that has some required methods. Those required methods 

might have been implemented by provided methods of other traits. Therefore, the 

client must be able to reuse those traits in order to satisfy required methods of the 

traits. This increases the flexibility of using traits. 

original 

def. 
yes yes 

Requirements related to required interfaces 

R200 

Traits must be able to define their 

required interfaces. The maximum 

number is 255. 

Required functionality of classic traits is defined in terms of required methods. 

They can also be used to put restrictions on classes which will use traits. However, 

some classes might have methods with signatures that can satisfy those required 

methods but traits have not been defined for those classes. In fact, there is a need 

for a new layer of constraint by which traits can semantically specify their final 

classes. The limitation of 255 is imposed by Java as a target language. 

new yes yes 

R201 

The required interfaces of traits 

must be implemented by classes 

that use them. 

Required interfaces have been defined for traits to make sure the correct classes 

will have access to them, therefore, classes need to implement required interfaces.  new yes yes 

R202 

Traits cannot implementation inter-

faces of their used traits. 

Classes implement interfaces and they can use traits to implement them, therefore, 

the constraint must be put on final clients, which are classes. In fact, the constraint 

is on classes to make sure that they are right types when traits are used inside 

them. Traits are not types so it is not required for them. 

new yes yes 

R203 

When traits use other traits, the lat-

ter’s required interfaces become 

required interface of the former. 

Final clients of traits are classes therefore traits are not responsible to implement 

interfaces. Therefore, the required interfaces of their used traits must become their 

required interfaces as well. 

new yes yes 

R204 
When clients use traits, they cannot 

remove their required interfaces. 

Clients cannot remove required interfaces when they use traits because in that case 

the functionality those traits promised will not be valid anymore. 
New yes yes 

R205 
When clients use traits, they cannot 

rename required interfaces. 

Clients cannot rename required interfaces when they use traits because in that case 

the functionality those traits promised will not be valid anymore. 
new yes yes 

R206 

When a class uses several traits and 

all of them have the same required 

interfaces, one implementation of 

those require interfaces must satisfy 

the required interfaces of all used 

traits. 

Defining required interfaces is a way that traits put a constraint on classes. If a 

class uses several traits and those traits have the same required interfaces, imple-

menting those required interfaces by the class satisfies all required interfaces of 

the traits. This is correct technically because a class cannot implement an interface 

twice. 

new yes yes 
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ID Requirement Description Justification Source 
Satis-

fied 

Test 

case 

R207 

When a trait uses several traits and 

all of them have the same required 

interfaces, those required interfaces 

form a set (no duplication). 

Traits cannot implement required interfaces of their used traits. Furthermore, one 

implementation of required interfaces by classes is enough to satisfy required in-

terfaces of used traits (check R206). Therefore, there is no need for duplication of 

required interfaces. Furthermore, it is wrong technically to have more than one 

required interface with the same signature for a trait. 

new yes yes 

Requirements related to associations 

R300 

Traits must be able to define associ-

ations. 

In order to integrate traits into the model-driven development process, it should be 

possible to represent functionality of traits in terms of modeling elements. Associ-

ations are one of the most-used modeling elements and so adding them to traits is 

beneficial. 

new yes yes 

R301 

Traits must be able to define associ-

ations with template parameters. 

In order to have more general associations inside traits, it is necessary to have as-

sociations with elements that can be adaptive. Having associations with template 

parameters is a way to achieve this.  

new yes yes 

R302 

When a trait makes bidirectional 

associations with template parame-

ters, the bound values must only be 

classes. 

Bidirectional associations need references in both ends of associations. Interfaces 

cannot have attributes to keep the references. Therefore, if one end of an associa-

tion is a template parameter, the bound type cannot be an interface. 
new yes yes 

R303 

When a trait makes directional as-

sociations with template parame-

ters, the bound types can be inter-

faces, classes, and primitive types. 

Directional associations need a reference at one end. When associations are de-

fined in traits, the end in which the reference will be saved is traits. Therefore, if 

another end of an association is a template parameter, the bound type can be any 

type. 

new yes yes 

R304 

Traits must be able to make bidirec-

tional associations with classes. 

Traits can have associations; therefore, it should be possible to have bidirectional 

associations with classes. The benefit is that classes can have dynamic associations 

with all clients of traits. 

new yes yes 

R305 

Traits cannot make bidirectional 

associations with interfaces. 

Traits can have associations, but directional association is not allowed for interfac-

es because of need to store data regarding the linked objects. Therefore, such a 

limitation needs to be respected in traits.  

new yes yes 

R306 

Traits must be able to make direc-

tional associations with interfaces 

Traits can have associations; therefore, it should be possible to have directional 

associations with classes. The benefit is that traits can encapsulate objects of clas-

ses without needing to disclose the type of their clients to those classes. 

new yes yes 

R307 

Traits must be able to remove asso-

ciations of their used traits if it is 

needed. 

Clients might use more than one trait and so it is possible to have conflict in asso-

ciations obtained from those used traits. Therefore, traits need to resolve that con-

flict. Furthermore, clients might not need some associations of their used traits, 

therefore, they should be able to remove them. 

new no no 

R308 
Traits must be able to rename role 

name of associations in their used 

Clients might use more than one traits and so it is possible to have conflict in asso-

ciations obtained from those used traits. However, clients might want to keep 
new no no 
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ID Requirement Description Justification Source 
Satis-

fied 

Test 

case 

traits if it is needed. those associations under different names. Therefore, traits need to be able to re-

name associations. Furthermore, clients might want to rename associations of their 

used traits to be closer to the domain in which they are reused. 

R309 

Traits must be able you modify the 

multiplicity of associations in their 

used traits if it is needed. 

Multiplicity of associations is one of the dynamic aspects of them, therefore, being 

able to modify multiplicity of associations in used traits, will make traits more 

flexible reusable assets. 

new no no 

R310 

When a client uses a trait and the 

trait has associations, those associa-

tions must be considered as native 

associations of the client. 

Clients obtain associations of traits when they use them. Along with associations 

many functions come. For example, we can add an element to an association or 

remove an element. Therefore, those associations must be considered as native 

associations for clients. 

new yes yes 

      

Requirements related to state machines 

R400 

Traits must be able to define state 

machines as one of their elements. 

Modern software development approaches use modeling elements such state ma-

chine to model functionality of systems. In order to have the benefits of traits in 

modern software development, it is required to provide functionality of traits in 

terms of state machines. 

new yes yes 

R401 

The name of state machines inside 

traits must be unique. 

A state machine can be referred to when traits are used and trait can have more 

than one state machine, therefore, their names must be unique. Furthermore, when 

state machines are implemented in OO programming languages, they will proba-

bly be converted to instance variables. In these languages, it is invalid to have two 

instance variables with the same name. 

new yes yes 

R402 

Events of state machines in traits 

must be considered like provided 

methods with their own parameters, 

but with a Boolean return type. 

Events in state machines have signatures like methods. They can have parameters 

and return types. In fact, if a class or trait defines a state machine the events of the 

state machine will be the methods of the class or trait. Therefore, it is logical to 

consider events as provided methods. However, we consider a restriction on 

events regarding the fact that they need to return whether they caused a state tran-

sition or not. This forces their return type to be Boolean.  

new yes yes 

R403 

Event of state machines in traits can 

be used to satisfy required methods 

of used traits. 

Since in requirement R402 we consider that events can be considered as provided 

methods, therefore, they can be used to satisfy required methods. new yes yes 

R404 

When a trait is used by a client and 

the trait has state machines, those 

state machines must be considered 

as native state machines for the 

client. 

Clients need some functionality and it can be obtained through state machines in 

traits. This functionality must be used freely in the clients. Therefore, the most 

flexible way is to consider state machines as native elements of clients and so all 

rules relative to native elements can be applied to them as well. 

new yes yes 

R405 
When a trait is used by a class, the 

events of state machines must be 

Since in requirement R402 we consider that events can be considered as provided 

methods, therefore, they can be used to implement abstract methods of interfaces 
new yes yes 
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fied 
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case 

able to satisfy implementation of 

the interfaces that is supposed to be 

implemented by the class. 

that are supposed to be implemented by classes. 

R406 

When a client uses a trait that has a 

state machine, the client must be 

able to add new states to the state 

machine. 

Traits can be composed of other traits, and classes can need state machines inside 

traits to have some extra states to better model the final required functionality. 

Therefore, they need to be able to add new states to the state machines of their 

used traits. 

new yes yes 

R407 

When a client uses a trait that has a 

state machine, the client must be 

able to add new transitions to the 

state machine 

Since in requirement R406 we consider that clients can add new states to the state 

machines of their used traits, therefore, it is required to be able to define transition 

for them as well. 
new yes yes 

R408 

When a client uses a trait that has a 

state machine, the client must be 

able to change the destination of 

transitions. 

Clients might need slightly different functionality of the one obtained from the 

state machines of their used traits. Therefore, they need to be able to change the 

destination of some transitions to achieve this. 
new yes yes 

R409 

When a client uses a trait that has a 

state machine, the client must be 

able to change the action of transi-

tions. 

Clients might need slightly different functionality of the one obtained from the 

state machines of their used traits. Therefore, they need to be able to change the 

actions of some transitions to achieve this. 
new yes yes 

R410 

When a client uses a trait that has a 

state machine, the client must be 

able to change the entry action of 

states. 

Clients might need slightly different functionality of the one obtained obtain from 

the state machines of their used traits. Therefore, they need to be able to change 

the entry actions of some states to achieve this. 
new yes yes 

R411 

When a client uses a trait that has a 

state machine, the client must be 

able to change the exit action of 

states. 

Clients might need slightly different functionality of the one obtained from the 

state machines of their used traits. Therefore, they need to be able to change the 

exit actions of some states to achieve this. 
new yes yes 

R412 

When a client uses a trait that has a 

state machine, the client must be 

able to change the do activity of 

states. 

Clients might need slightly different functionality of the one obtained from the 

state machines of their used traits. Therefore, they need to be able to change the do 

activities of some states to achieve this. 
new yes yes 

R413 

When a client uses a trait that has a 

state machine, the client must be 

able to add regions to composite 

states of the state machine. 

Clients might need to extend functionality of some state machines in their used 

traits. This might be required to add new regions to some composite states. There-

fore, having such a feature allows reuse of traits in a more adaptive way. 
new yes yes 

R414 
When a client uses a trait that has a 

state machine, the client cannot 

Guards are one of the factors used to distinguish one transition from another one. 

Therefore, it must not be possible change guards of transitions. This is a decision 
new yes yes 
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fied 
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change the guard of transitions. made to make sure the way clients can extend the state machines in their used 

traits is valid and controllable. 

R415 

When a client uses a trait that has a 

state machine, the client cannot 

change the event of transitions. 

Events are one of the factors used to distinguish one transition from another one. 

Therefore, it must not be possible change events of transitions. This is a decision 

made to make sure the way clients can extend the state machines in their used 

traits is valid and controllable. 

new Yes yes 

R416 

When a client uses a trait that has a 

state machine, the client must be 

able to add new actions to transi-

tions while still using the transi-

tions’ already-defined actions. 

Clients might need to add some functionality to actions of transitions in the state 

machines of their used traits. Overwriting them will result in not being able to 

have access to those actions defined before. Therefore, clients might duplicate 

those actions again. Therefore, it must be possible to achieve this without duplicat-

ing those actions. 

new yes yes 

R417 

When a client uses a trait that has a 

state machine, the client must be 

able to add new entry actions to 

states while using the states’ al-

ready-defined entry actions. 

Clients might need to add some functionality to entry actions of transitions in the 

state machines of their used traits. Overwriting them will result in not being able 

to have access to those entry actions defined before. Therefore, clients might du-

plicate those entry actions again. Therefore, it must be possible to achieve this 

without duplicating those entry actions. 

new yes yes 

R418 

When a client uses a trait that has a 

state machine, the client must be 

able to add new exit actions to 

states while using the states’ al-

ready defined exit actions. 

Clients might need to add some functionality to exit actions of transitions in the 

state machines of their used traits. Overwriting them will result in not being able 

to have access to those exit actions defined before. Therefore, clients might dupli-

cate those exit actions again. Therefore, it must be possible to achieve this without 

duplicating those exit actions. 

new yes yes 

R419 

When a client uses a trait that has a 

state machine, the client must be 

able to add new do activities to 

states while using the states’ al-

ready defined do activities. 

Client might need to add some functionality to do activities of transitions in the 

state machines of their used traits. Overwriting them will result in not being able 

to have access to those do activities defined before. Therefore, clients might dupli-

cate those do activities again. Therefore, it must be possible to achieve this with-

out duplicating those do activities. 

new yes yes 

R420 

When a client uses a trait that has a 

state machine, the client must be 

able to extend a state with another 

state machines. 

When a system is developed based on state machines it is common to incremental-

ly improve or extend the state machines to achieve the required functionality. Typ-

ically this is performed in the way in which new state machines are created and 

then some of states are extended to be a composite state. It is possible to need that 

extended behavior in some other places. However, it is not possible with current 

techniques. Therefore, it is a big advantage for traits to be able to reuse state ma-

chines defined in other traits and consider them as internal behavior of their or 

other state machines. By doing this, state machines will be more reusable and also 

traits can extend their state machines incrementally.  

new yes yes 

R421 
When a client uses a trait that has a 

state machine, the client must be 

Clients can use traits and so there might be conflicts because of the name collision 

of state machines. Furthermore, clients might not need specific state machines. 
new yes Yes 
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able to remove the state machine. Therefore, it is logical to be able to remove conflicting or unrequired state ma-

chines. In other words, it is required to be able to control granularity of state ma-

chines in traits. 

R422 

When a client uses a trait that has a 

state machine, the client must be 

able to remove states of the state 

machine. 

When clients use several state machines and they need to be composed, the com-

mon state name might be source of conflict. Furthermore, clients might not need 

specific states. Therefore, it is logical to be able to remove conflicting or unre-

quired states from state machines of the used traits.  

new yes yes 

R423 

When a client uses a trait that has a 

state machine, the client must be 

able to remove transitions of the 

state machine. 

Clients can extend the behavior of the state machines in their used traits. This ex-

tension might be required to remove a transition. Furthermore, it can be possible to 

have a situation in which a client uses more than one trait and there are common 

state machines among them. Clients need to compose them but there may be one 

or more problematic or unnecessary transitions. Therefore, it should be possible to 

be able to remove transitions from state machines of the used traits. 

new yes yes 

R424 

When a client uses a trait that has a 

state machine, the client must be 

able to remove regions of a compo-

site states of the state machine. 

Clients can extend the behavior of the state machines in their used traits. This ex-

tension might be required to remove a region. Furthermore, it can be possible to 

have a situation in which a client uses more than one trait and there are common 

state machines among them. Client needs to compose them but there may be one 

or more problematic or unnecessary region. Therefore, it should be possible to be 

able to remove regions from state machines of the used traits. 

new yes yes 

R425 

When a client uses a trait that has 

state machines, the client must be 

able to keep one or several of those 

state machines. 

It is possible to have traits with many state machines and clients might be interest-

ed in one or few of them. Using remove operators might not be a suitable ap-

proach. Therefore, it is beneficial to clearly specify which state machines are 

needed to be kept, removing others.  

new yes yes 

R426 

When a client uses a trait that has a 

state machine, the client must be 

able to keep one or several of states 

of the state machine. 

State machines in traits can have many states and clients might be interested in 

some of those states. Using remove operators might not be a suitable approach. 

Therefore, it is beneficial to clearly specify which states from state machines are to 

be kept, removing others.  

new yes Yes 

R427 

When a client uses a trait that has a 

state machine, the client must be 

able to keep one or several of tran-

sitions of a states of the state ma-

chine. 

State machines in traits can have many states and clients might be interested in 

some of those states. Using remove operators might not be a suitable approach. 

Therefore, it is beneficial to clearly specify which states from state machines are to 

be kept, removing others. 

new yes yes 

R428 

When a client uses a trait that has 

state machines, the client should not 

be able to remove the initial states 

of the state machines. 

Clients have this ability to remove states of state machines in their used traits. 

However, it must not be possible for initial states. The reason is that other states 

will not be reachable. 
new yes yes 

R429 When a client uses a trait that has a The same way that clients cannot remove initial states of state machines in their new yes yes 
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ID Requirement Description Justification Source 
Satis-

fied 

Test 

case 

state machine, the client should not 

be able to remove the initial state of 

the composite states of state ma-

chine. 

used traits, they should not be able to do it for initial states of composite states of 

the state machines. 

R430 

When a client uses a trait that has 

state machines with the same name, 

those state machines must be com-

posed. 

Clients might use several traits and those traits might have state machines. Clients 

might need to have those state machines represented under one state machine. This 

should be possible to achieve. Furthermore, those state machines might have the 

same names but slightly different functionality and clients want to have a com-

posed state machine that have accumulation of that functionality. Therefore, com-

position of state machines is a good feature for traits to be supported. 

new yes yes 

General implementation requirements 

R501 

When traits are used at modeling 

level, they should be implementable 

in object-oriented programming 

languages 

In order to make model-based traits practical, it should be possible to execute such 

models. In order to execute the system, we need to generate code for the model. 

Since traits focus on systems designed based on object-oriented principles, the 

language of generated code should be object-oriented as well. Having this capabil-

ity is critical for its adoption.  

new yes yes 

 

 

 


