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Abstract Live programming is a style of development char-
acterized by incremental change and immediate feedback.
Instead of long edit-compile cycles, developers modify a
running program by changing its source code, receiving
immediate feedback as it instantly adapts in response. In this
paper, we propose an approach to bridge the gap between
running programs and textual domain-specific languages
(DSLs). The first step of our approach consists of applying
a novel model differencing algorithm, TMDIFF, to the textual
DSL code. By leveraging ordinary text differencing and ori-
gin tracking, TMDIFF produces deltas defined in terms of the
metamodel of a language. In the second step of our approach,
the model deltas are applied at run time to update a running
system, without having to restart it. Since the model deltas
are derived from the static source code of the program, they
are unaware of any run-time state maintained during model
execution. We therefore propose a generic, dynamic patch
architecture, RMPATCH, which can be customized to cater for
domain-specific state migration. We illustrate RMPATCH in a
case study of a live programming environment for a simple
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1 Introduction

The “gulf of evaluation” represents the cognitive gap between
an action performed by a user and the feedback provided to
her about the effect of that action [23]. Live programming
aims to bridge the gulf of evaluation by shortening the feed-
back loop between editing a program’s textual source code
and observing its behavior. In a live programming environ-
ment, the running program is updated instantly after every
change in the code [34]. As a result, developers immediately
see the behavioral effects of their actions and learn predict-
ing how the program adapts to targeted improvements to the
code. In this paper, we are concerned with providing generic,
reusable frameworks for developing “live DSLs”, languages
whose users enjoy the immediate feedback of live execu-
tion. We consider such techniques to be first steps toward
providing automated support for live languages in language
workbenches [8].

In particular, we propose two reusable components, TMD-
IFF and RMPATCH to ease the development of textual live
DSLs, based on a foundation of metamodeling and model
interpretation. TMDIFF is used to obtain model-based deltas
from textual source code of a DSL. These deltas are then
applied at run time by RMPATCH to migrate the execution of
the DSL program [38]. This enables the users of a DSL to
modify the source and immediately see the effect.
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Fig. 1 How to get from a textual difference between source code ver-
sions to a runtime difference in behavior?

The first component of our approach is the TMDIFF algo-
rithm [43]. TMDIFF employs textual differencing and origin
tracking to derive model-based deltas from changes in textual
source code. A textual difference is translated to a difference
on the abstract syntax of the DSL, as specified by a meta-
model. As a result, standard model differencing algorithms
(e.g., [1]) can be applied in the context of textual languages.

The second component, RMPATCH, is used to dynamically
adapt model execution to changes in the source code. This
is achieved by “patching” the execution using the deltas pro-
duced by TMDIFF. We call differences applied to running
programs executable deltas. To apply executable deltas, we
require that a language is implemented as a model inter-
preter [30]. In particular, we require that every class defined
in a language’s metamodel has an implementation coun-
terpart in some programming language (we use Java). The
RMPATCH architecture supports applying an executable delta
on the instances of those classes while the model is inter-
preted. To support run-time state, we allow the run-time
classes to extend the classes of the metamodel with addi-
tional attributes and relations. Since the deltas produced by
TMDIFF are unaware of those attributes and relations, the
RMPATCH engine is designed to be open for extension to cater
for migrating such domain-specific run-time state. RMPATCH
has been applied in the development of a prototype live pro-
gramming environment for a simple state machine DSL. A
state machine definition can be changed while it is running,
and the runtime execution will adapt instantly.

The key contribution of this paper is the combination of
textual model differencing and run-time model patching for
adapting models at run time with “live” textual DSLs, and to
this end:

— We reiterate how textual differencing can be used to
match model elements based on origin tracking infor-
mation and provide a detailed description of TMDIFF,
including a prototype implementation (Sect. 3).

— We present a generic architecture for run-time patching
of interpreted models (Sect. 4).

— We illustrate the framework using a live DSL environ-
ment for a simple state machine language (Sect. 5).
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Fig. 2 Applying TMDIFF to obtain model-based deltas and RMPATCH
to migrate models at runtime

This article is an extended version of our previous work
“Origin Tracking + Text Differencing = Textual Model Dif-
ferencing,” published in Theory and Practice of Model Trans-
formations, ICMT, 2015 [43]. In particular, the present paper
extends the work with the patch architecture (RMPATCH), as
well as the live state machine case study. For the evaluation
of TMDIFF itself, we refer to the original paper [43].

2 From text differencing to live models at run time

We motivate our work by taking the perspective of develop-
ers who use textual DSLs to iteratively modify and improve
programs. Figure 1 gives an overview of the challenge of
bridging the gap between a developer’s textual model edits
and the associated program behavior that the developer needs
to quickly observe, understand and improve.

A developer writes a program (foo) in some language
(lang), which can be executed to obtain its behavior. The
developer then evolves the program to a new version (foo’) by
updating its source, yielding a textual difference. In a tradi-
tional setting, the effect of the change can only be observed by
re-executing the program. However, this involves compiling
and executing the program from scratch. This can be a time-
consuming distraction, losing all dynamic context observed
while running foo. In particular, all run-time state accumu-
lated during the execution of program version foo is lost when
its next version foo’ is executed (again). We aim to make this
experience more fluid and live by obtaining a “run-time diff”
from the textual “diff” between successive program versions
(foo and foo’) and then migrating its execution (from Behav-
ior(foo) to Behavior(foo’)) at run time.

Figure 2 shows an overview of our solution to this prob-
lem. The foo program is mapped to an instance of a metamodel
(MM), through parsing and name resolution. Parsing con-
structs an initial containment hierarchy of the program in the
form of an abstract syntax tree (AST). Name resolution, on
the other hand, creates cross-references in the model based
on the (domain-specific) referencing and scoping rules of
the language, yielding an abstract syntax graph (ASG). The
model is then executed by an interpreter, which creates a
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run-time model corresponding to foo. This run-time model
is an instance of an enhanced metamodel (MM™), represent-
ing run-time state as additional attributes and relations. We
require that MM is an extension of MM.

Whenever the developer evolves the program’s source,
the textual difference between foo and foo’ is now mapped
to a model-based delta over the metamodel MM using TMD-
IFF. Such a delta consists of an edit script which changes
the model of foo to a model representing foo’. That delta is
then applied as an executable delta to the executing run-time
model of foo by RMPATCH. Because the executing model
has additional run-time state that could become invalid,
RMPATCH needs to be augmented with language-specific
migrations. The generic part of RMPATCH will only migrate
the parts defined by MM; the domain-specific customization
defines what to do with the extensions defined by MM™. At
specific points during execution, the interpreter will swap out
the old version of the model and start executing the new one,
without having to restart, and without losing state.

Note that the parts in boxes are the components that are
language specific. This includes parsing and name resolution,
which often need to be defined anyway, and a model-based
interpreter. TMDIFF is completely language parametric and
thus can be reused for multiple live DSLs. RMPATCH is par-
tially generic: it is generically defined for deltas produced
by TMDIFF, but needs to be extended for dealing with the
run-time state extensions defined by MM™.

The rest of the paper is structured as follows. Next in
Sect. 3, we describe how TMDIFF works. In Sect. 4, we
show how the deltas produced by TMDIFF are applied at run
time using the generic patch architecture of RMPATCH. The
customization of this architecture to support run-time state
migration is described as part of our case study based on
state machines in Sect. 5. We show how this enables a live
programming environment for state machines using a proto-
type interpreter. We conclude the paper with a discussion of
related work and an outline for further research.

3 TMDIiff: textual model diff
3.1 Overview

TMDIFF is a novel differencing algorithm that leverages
ordinary text differencing and origin tracking to derive
model-based deltas from textual source code. Traditional
model differencing algorithms (e.g., [1]) determine which
elements are added, removed or changed between revisions
of a model. A crucial aspect of such algorithms is that
model elements need to be identified across versions. This
allows the algorithm to determine which elements are still
the same in both versions. In textual modeling [11], models

are represented as textual source code, similar to DSLs and
programming languages.

The actual model structure represented by an abstract syn-
tax graph (ASG) is not first-class, but is derived from the text
by a text-to-model mapping, which apart from parsing the
text into an abstract syntax tree (AST) specifying a contain-
ment hierarchy also provides for reference resolution. After
every change in the text, the corresponding structure needs
to be derived again. As a result, the identities assigned to
the model elements during text-to-model mapping are not
preserved across versions, and model differencing cannot be
applied directly.

Existing approaches to textual model differencing are
based on mapping textual syntax to a standard model rep-
resentation (e.g., languages built with Xtext are mapped to
EMF [9]) and then using standard model comparison tools
(e.g., EMFCompare [3,6]). As a result, model elements in
both versions are matched using name-based identities stored
in the model elements themselves. One approach is to inter-
pret such names as globally unique identifiers: match model
elements of the same class and identity, irrespective of their
location in the containment hierarchy of the model. Other
approaches are to match elements in collections at the same
position in the containment hierarchy, to use similarity-based
heuristics or to construct a purpose-built algorithm.

Unfortunately, each of these approaches has its limita-
tions. In the case of global names, the language cannot have
scoping rules: it is impossible to have different model ele-
ments of the same class with the same name. On the other
hand, matching names relative to the containment hierarchy
entails that scoping rules must obey the containment hier-
archy, which limits flexibility in terms of scoping. While
similarity-based matching techniques can deal with scopes,
these may also require fine-tuning the heuristic to obtain more
accurate results for specific languages and uses.

TMDIFF is a language-parametric technique for model dif-
ferencing of textual languages with complex scoping rules,
but at the same time is agnostic of the model containment
hierarchy. As aresult, different elements with the same name
but in different scopes can still be identified. TMDIFF is based
on two key techniques:

— Origin tracking In order to map model element identi-
ties back to the source, we assume that the text-to-model
mapping applies origin tracking [13,40]. Origin tracking
induces an origin relation which relates source locations
of definitions to (opaque) model identities. Each semantic
model element can be traced back to its defining name in
the textual source, and each defining name can be traced
forward to its corresponding model element.

— Text differencing TMDIFF identifies model elements by
textually aligning definition names between two versions
of a model using traditional text differencing techniques
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1 machine doors €D d1: Mach

2 state closed®

3 open => opened

4 P P | d2: State d3: State |
N y

5 state opened @® ? >< ?

6 close => closed :Trans :Trans

7 end event: "open" event: "close"

Fig. 3 Doors;: a simple textual representation of a state machine and
its model

(e.g., [28]). When two names in the textual represen-
tations of two models are aligned, they are assumed to
represent the same model element in both models. In
combination with the origin relation, this allows TMDIFF
to identify the corresponding model elements as well.

The resulting identification of model elements can be passed
to standard model differencing algorithms, such as the one
by Alanen and Porres [1].

TMDIFF enjoys the important benefit that it is fully lan-
guage parametric. TMDIFF works irrespective of the specific
binding semantics and scoping rules of a textual modeling
language. In other words, how the textual representation is
mapped to model structure is irrelevant. The only require-
ment is that semantic model elements are introduced using
symbolic names, and that the text-to-model mapping per-
forms origin tracking.

Here we introduce textual model differencing using a sim-
ple motivating example that is used as a running example
throughout the paper. Figure 3 shows a state machine model
for controlling doors. It is both represented as text (left) and
as object diagram (right). A state machine has a name and
contains a number of state declarations. Each state declara-
tion contains zero or more transitions. A transition fires on
an event and then transfers control to a new state.

The symbolic names that define entities are annotated with
unique labels d,,. These labels capture source locations of
names. That is, a name occurrence is identified with its line
and column number and/or character offset.! Since identifiers
can never overlap, labels are guaranteed to be unique, and the
actual name corresponding to a label can be easily retrieved
from the source text itself. For instance, the machine itself is
labeled d;, and both states c1 osed and opened are labeled
d> and d3, respectively.

The labels are typically the result of name analysis (or
reference resolution), which distinguishes definition occur-
rences of names from use occurrences of names according
to the specific scoping rules of the language. For the pur-
pose of this paper, it is immaterial how this name analysis
is implemented, or what kind of scoping rules are applied.

! For the sake of presentation, we use the abstract labels d; for the rest
of the paper, but keep in mind that they represent source locations.
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. 1 machine doors ®
1 machine doorsCB 2 state closed @
2  state closed® 3 open => opened
3 open => opened 4 lock => locking.locked
4 lock => locked 5
5 6 state opened
6 state opened @® 7 close => closed
7 close => closed 3
8 9  locking G {
9 state locked @ 10 state locked €GB
10 unlock => closed 11 unlock => closed
11 12 }
12 end 13 end

(a) Doors; (b) Doorss

Fig. 4 Two new versions of the simple state machine model Doors|

The important aspect is to know which name occurrences
represent definitions of elements in the model.

By propagating the source locations (d;) to the fully
resolved model, symbolic names can be linked to model
elements and vice versa. On the right of Fig. 3, we have
used the labels themselves as object identities in the object
model. Note that the anonymous transition objects lack such
labels. In this case, the objects do not have an identity, and
the difference algorithm will perform structural differencing
(e.g., [45]), instead of semantic, model-based differenc-
ing [1].

Figure 4 shows two additional versions of the state
machine of Fig. 3. First, the machine is extended with a
locked state in Doors; (Fig. 4a). Second, Doors3 (Fig. 4b)
shows a grouping feature of the language: the 1ocked state
is part of the 1ocking group. The grouping construct acts
as a scope: it allows different states with the same name to
coexist in the same state machine model.

Looking at the labels in Figs. 3 and 4, however, one may
observe that the labels used in each version are disjoint. For
instance, even though the defining name occurrences of the
machine doors and state closed occur at the exact same
location in Doorsy and Doorss, this is an accidental result
of how the source code is formatted. Case in point is the
name 1ocked, which now has moved down because of the
addition of the group construct.

The source locations, therefore, cannot be used as (stable)
identities during model differencing. The approach taken by
TMDIFF involves determining added and removed definitions
by aligning the textual occurrences of defining names (i.e.,
labels d;). Based on the origin tracking between the textual
source and the actual model, we identify which model ele-
ments have persisted after changing the source text.

This high-level approach is visualized in Fig. 5. src; and
srcy represent the source code of two revisions of a model.
Each of these textual representations is mapped to a proper
model, m; and m>, respectively. Mapping text to a model
induces origin relations, origin; and origin,, mapping model
elements back to the source locations of their defining names
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Fig. 5 Identifying model elements in m; and m> through origin track-
ing and alignment of textual names

--- a/doors2.sl
--- a/doorsl.sl +++ b/doors3.sl
+++ b/doors2.sl @@ -4 +4
e -3,0 +4 lock => locked
+ tock => locked + lock => locking.locked
f@ -6,0 +8,3 @@ -8,0 +9
+ locking {
+ state locked @@ -10,0 +12
+ unlock => closed s}

Fig. 6 Textual diff between Doors; and Doors;, and Doors; and
Doorss. The diffs are computed by the di £ f tool included with the git
version control system. We used the following invocation: git diff
--no-index --patience --ignore-space-change
--ignore-blank-lines --ignore-space-at-eol -U0
<o0ld> <new>

in srcy and srco, respectively. By then aligning these names
between src; and srca, the elements themselves can be iden-
tified via the respective origin relations.

TMDIFF aligns textual names by interpreting the output of
atextual di f £ algorithm on the model source code. The diffs
between Doors| and Doors;, and Doorsy and Doorss, are
shown in Fig. 6. As we can see, the diffs show for each line
whether it was added (“+”) or removed (“-”). By looking
at the line number of the definition labels d;, it becomes
possible to determine whether the associated model element
was added or removed.

For instance, the new locked state was introduced in
Doors;. This can be observed from the fact that the diff on
the left of Fig. 6 shows that the name “locked” is on a line
marked as added. Since the names doors, closed and
opened occur on unchanged lines, TMDIFF will identify the
corresponding model elements (the machine, and the 2 states)
in Doors| and Doors. Similarly, the diff between Doors; and
Doors3 shows that only the group 1ocking was introduced.
All other entities have remained the same, even the 1ocked
state, which has moved into the group locking.

With the identification of model elements in place, TMDIFF
applies a variant of the standard model differencing intro-
duced in [1]. Hence, TMDIFF deltas are imperative edit scripts
that consist of edit operations on the model. Edit operations
include creating and removing of nodes, assigning values to

create State d7

d7 = State("locked",[Trans("
unlock", d2)])

d2.out[1] = Trans("lock", d7)

dl.states[2] = d7

create Group dl1l

d1ll = Group("locking", [d7])
remove d4.states[2]
d4.states[2] = dl1

(a) tmdiff Doors; Doors, (b) tmdiff Doorsy Doorss

Fig. 7 TMDIFF differences between Doors; and Doors;+1 (i € {1,2})

fields, and inserting or removing elements from collection-
valued properties. Figure 7 shows the TMDIFF edit scripts
computed between Doors and Doors, (a), and Doors, and
Doorsz (b). The edit scripts use the definition labels d, as
node identities.

The edit script shown in Fig. 7a captures the difference
between source version Doorsy and target version Doors,. It
begins with the creation of a new state d7. On the following
line d7 is initialized with its name (1ocked) and a fresh col-
lection of transitions. The transitions are contained by the
state, so they are created anonymously (without identity).
Note that the created transition contains a (cross-)reference
to state d». The next step is to add a new transition to the out
field of state d» (which is preserved from Doors1). The target
state of this transition is the new state dy. Finally, state d7 is
inserted at index 2 of the collection of states of the machine
d; in Doors;.

The edit script introducing the grouping construct
locking between Doors, and Doors3 is shown in Fig. 7b.
The first step is the creation of a new group d . Itis initialized
with the name “1locking”. The set of nested states is ini-
tialized to contain state d7 which already existed in Doors>.
Finally, the state with index 2 is removed from the machine
ds in Doors3, and then replaced by the new group dj;.

In this section, we have introduced the basic approach of
TMDIFF using the state machine example. The next section
presents TMDIFF in more detail.

3.2 TMDiff in more detail
Top-level algorithm

Figure 8 shows the TMDIFF algorithm in high-level pseu-
docode. Input to the algorithm is the source texts of the

1 list[Operation] tmDiff(str srcy, str srca, obj my, obj my) {
2 <A, D, M> = match(srcy, srca, my, ma)

3 A = [ new Create(d,, d,.class) | d, <A ]

4 M =M+{<ds d;>|ds <A}

5 A += [ new SetTree(d,, build(d,, M")) | d, +A ]

6 for (<d1, dr> <—M)

7 A += difFNOdeS(dl, dy, dy, [], M’)

8 A += [ new Delete(d;) | dy <D ]

9 return A

0

}

Fig. 8 TMDIFF

1
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1 Matching match(str srcy, str srcp, obj my, obj my) {
2 P, = project(m;)

3 P, = project(my)

4 <Lggd, Lger> = split(diff(srcy, srep))

5

6 i=0j=0A={}D={sI=0

7 while (i < |P1| V j<|P|) {

8 if (i < ‘P|| A Py [i].line S Ldel)

9 D += {P\[i].object}; i += 1; continue
10 if (j < ‘P2| A Pz[ ] lil’l€) S Ladd)
11 A += {P]j].object}; j += 1; continue
12 if (Pi[i].object.class = P,[j].object.class)
13 I += {<P[i].object, P,[j].object>}
14 else
15 D += {P[i].object}; A += {P;[j].object}
16 i+=1,j+=1
17}
18 return <A, D, [>;
19 }

Fig. 9 Matching model elements based on source text diffs

models (srcy, srcp), and the models themselves (m 1, m»).
The first step is to determine corresponding elements in 711
and m» using the matching technique introduced above. We
further describe the match function later in this section.

Based on the matching returned by match (line 2), TMD-
IFF first generates global Create operations for nodes that
are in the A set (line 3). After these operations are cre-
ated, the matching M is “completed” into M’, by mapping
every added object to itself (line 4). This ensures that reverse
lookups in M’ for elements in my will always be defined.
Each entity just created is initialized by generating SetTree
operations which reconstruct the containment hierarchy for
each element d,; using the build function (line 5). The func-
tion diffNodes then computes the difference between each
pair of nodes originally identified in M (lines 6-7). The edit
operations will be anchored at object d; (first argument). As
aresult, diffNodes produces edits on “old” entities, if possi-
ble. Finally, the nodes that have been deleted from mz result
in global Delete actions (line 8).

Matching

The match function uses the output computed by standard
diff tools. In particular, we employ a di f£ £ variant called
Patience Diff> which is known to often provide better results
than the standard, LCS-based algorithm [31].

The matching algorithm is shown in Fig. 9. The function
match takes the textual source of both models (srcy, srcp)
and the actual models as input (m1, my). It first projects out
the origin and class information for each model (lines 1-2).
The resulting projections Py and P, are sequences of tuples
(x, c, 1, d), where x is the symbolic name of the entity, c is its

2 See: http://bramcohen.livejournal.com/73318 html.
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class (e.g., state, machine, etc.), [ is the textual line it occurs
on, and d is the object itself.

As an example, the projections for Doors| and Doors, are
as follows:

[ (doors, Machine, 1, dy),

P = (closed, State, 2 dy),
(opened, State, dz) |

[ (doors, Machine, 1, d4),

Py = (closed, State, 2, ds),

(opened, State, 6 de),
(locked, State, d7) ]

The algorithm then partitions the textual di f £ in two sets
Lgaq and Ly, of added lines (relative to srcp) and deleted
lines (relative to srcy) (line 4). The main while-loop then
iterates over the projections Pj and P; in parallel, distributing
definition labels over the A, D and I sets that will make up
the matching (lines 6-17). If a name occurs unchanged in
both srcy and srcy, an additional type check prevents that
entities in different categories are matched (lines 12—15).

The result of matching is a triple M = (A, D, I), where
A C L,,, contains new elements in my, D C L,,, contains
elements removed from m, and I € L,,, x L,,, represents
identified entities, where L,,, and L,,, are labels of elements
in m and m», respectively.

For instance, the matchings between Doors| and Doors,
and between Doors, and Doorss, are:

My = {d7}, {}, {{d1, da), {d2, d5), (d3, ds)})
M35 = ({d11}, {}, ({d4, dg), (ds, do), (de, d10), {d7, d12)})

Next we explain how the matching result is used for dif-
ferencing nodes.

Differencing

The heavy lifting of TMDIFF is realized by the diffNodes
function. It is shown in Fig. 10. It receives an existing entity
as the current context (ctx), the two elements to be compared
(m1 and my), aPath p whichis alistrecursively built up out of
names and indexes and the matching relation to provide ref-
erence equality between elements in m and m,. diffNodes
assumes that both m and m, are of the same class (line 3).
The algorithm then loops over all fields that need to be dif-
ferenced (lines 5—17). Fields can be of four kinds: primitive
(lines 6-7), containment (lines 8—12), reference (lines 13—
14) or list (lines 15-16). For each case, the appropriate edit
operations are generated, and in most cases the semantics
is straightforward and standard. For instance, if the field is
list-valued, we delegate differencing to an auxiliary function
diffLists (not shown) which performs longest common sub-
sequence (LCS) differencing using reference equality. The
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1 list[Operation] diffNodes(obj ctx, obj m;, obj m,, Path p,
2 Matching M) {

3 assert mj.class = my.class;

4 A=)

5 for (f <—mj.class.fields) {

6 if (f.isPrimitive && m[f] # mz[f])

7 A += [new SetPrim(ctx, p+[f], ma[f])];

8 else if (f.isContainment)

9 if (m;[f].class = my[f].class)

10 A += diffNodes(ctx, m\[f], ma2[f], p+[f], M)
11 else

12 A += [new SetTree(crx, p+[f], build(mz[f], M))]
13 else if (f.isReference && | M~ [my[f]] # mi[f] ‘)
14 A 4= [new SetRef(ctx, p+ [f], | M~ [ma[f]] ]
15 else if (f.isList)

16 A += diffLists(ctx, m[f], mz[f], p+[f], M)
17}

18  return A

19 3}

Fig. 10 Differencing nodes

interesting bit happens when differencing reference fields.
References are compared via the matching M, highlighted in
Fig. 10.

In order to know whether two references are “equal”,
diffNodes performs a reverse lookup in M on the reference
in mo (line 13). If the result of that lookup is different from
the reference in #1, the field needs to be updated. Recall that
M was augmented to M’ (cf. Fig. 8) to contain entries for
all newly created model elements. As a result, the reverse
lookup (line 14) is always well-defined. Either we find an
already existing element of m 1, or we find a element created
as part of m», highlighted in Fig. 10.

3.3 Implementation in RASCAL

We have implemented TMDIFF in RASCAL, a functional pro-
gramming language for metaprogramming and language
workbench for developing textual DSLs [16]. The code for
the algorithm, the application to the example state machine
language, and the case study can be found on GitHub.3

Since RASCAL is a textual language workbench [7], all
models are represented as text and then parsed into an
abstract syntax tree (AST). Except for primitive values
(string, Boolean, integer etc.), all nodes in the AST are auto-
matically annotated with source locations to provide basic
origin tracking.

Source locations are a built-in data type in RASCAL (loc)
and are used to relate sub-trees of a parse tree or AST back to
their corresponding textual source fragment. A source loca-
tion consists of a resource URI, an offset, a length, and
begin/end and line/column information. For instance, the
name of the closed state in Fig. 4 is labeled:

3 https://github.com/cwi-swat/textual-model-diff .

|project://textual-model-diff/input/doors1.sl|
(22,6,<2,8>,<2,14>)

Because RASCAL is a functional programming language,
all data are immutable and first-class references to objects are
unavailable. Therefore, we represent the containment hierar-
chy of a model as an AST and represent cross-references
by explicit relations rel[loc from, loc to], once again using
source locations to represent object identities.

In prior work [43], we have evaluated TMDIFF on the ver-
sion history of file format specifications written in Derric, a
real-life DSL that is used in digital forensics analysis [37]. We
found that TMDIFF reliably computes small deltas between
consecutive versions of the Derric specifications of JPEG,
GIF, and PNG.

4 RMPatch: generic run-time model patching
4.1 Overview

The previous section described the TMDIFF algorithm to
obtain model-based deltas from textual source files. Here
we introduce RMPATCH, a generic architecture to apply these
deltas to run-time models that drive the execution of the mod-
els of alanguage. During interpretation of such a model, users
edit the textual model using a live programming environ-
ment that embeds TMDIFF for generating deltas for successive
model versions, as shown in Fig. 11 on the left. These edit
scripts are applied by RMPATCH to migrate the model as part
of the running program to reflect the new version of the source
code, as shown in Fig. 11 on the right. Together TMDIFF and
RMPATCH provide a foundation for the design and imple-
mentation of live programming environments, where textual
models can be edited while they are executing.

In order to provide a unified approach for recording and
replaying model differences, we record a run-time history of
events such as user interactions and changes in the source
code as edit operations on the run-time model. This history
can be used for implementing “undo,” persisting applica-
tion state (cf. event sourcing), and back-in-time debugging.
When the developer edits a textual model and saves a mod-
ified version, the programming environment applies TMDIFF
to the current and the previous version of the textual model. It

Programming Environment

@ Textual @
Model

Running Program

Fig. 11 Approach: using TMDIFF and RMPATCH for live programming
with textual models
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then passes the resulting delta to RMPATCH, which pauses the
interpreter, applies the delta to the run-time model, possibly
migrating run-time state, and continues the interpreter. Sim-
ilarly, we also represent the effects of other events as deltas,
e.g., resulting from a user pressing a button or a sensor firing.
In Fig. 11, the oval “events” represents these cases.

4.2 Models at run time

Live programming environments enable adapting models at
run time as text. Specifically, a model is an instance of a static
metamodel of a language represented by an ASG, which
is obtained from text through parsing and name resolution.
RMPATCH requires that a model interpreter is implemented
in an object-oriented language, like Java. In particular, it
requires reflection for interpreting executable deltas that
create objects and assign values to fields. The interpreter exe-
cutes a model as a run-time model, an instance of a run-time
metamodel, which extends the static metamodel of the lan-
guage by adding additional attributes and relations to model
run-time state, and methods that implement behavior.

For instance, a state machine can be executed by interpret-
ing incoming events and updating a current state attribute. In
between such transitions, the run-time model may need to be
migrated, however, because, in a live programming environ-
ment, the source code of the state machine may have changed
in the meantime. At dedicated points in the execution, the
interpreter must check for pending deltas (as produced by
TMDIFF), and if there are any, apply them to the run-time
model, before continuing execution.

4.3 Applying deltas at run time

The deltas produced by TMDIFF are converted to run-time
edit operations that can be evaluated against an instance of
the run-time metamodel. Every change computed by TMDIFF
can be mapped to a change at run time, because the model of
the source is subsumed by the run-time model. Applying a
run-time delta contributes a sequence of atomic edits to the
run-time history of the running program. The edit operations
produced by TMDIFF, however, are unaware of any additional
state maintained in the run-time models. For avoiding infor-
mation loss and invalid run-time states, RMPATCH can be
extended with custom state migrations. Migration effects are
represented as model edits too, making them part of the run-
time history.

Recall that TMDIFF produces edit scripts as shown in Fig. 7:

create State d7 /] create
d7 = State("locked",[Trans("unlock", d2)]) // setTree
d2.out[1] = Trans("lock", d7) // insertTree
di.states[2] =d7 // insertRef}
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Such a script is represented as a list of edits, such as
create, setTree, insertTree and insertRef. In
addition to these four, TMDIFF generates delete, set Prim,
remove, insertRef and setRef operations. Create
and delete are global operations, creating or deleting
objects from the model, respectively. The other, relative oper-
ations traverse a path through the features of their owner
object, the object operated on (e.g., d7, da, or d1 ), and modify
the traversed field accordingly. For instance, the last opera-
tion in the edit script above inserts state d7 in the machine’s
(dy) list of states at index 2.

The edit operations setTree and insertTree take
trees as arguments. Java makes no distinction between a tree
argument’s containment references and cross-references and
encodes both as object references. We therefore flatten tree
operations to a sequence of create, setPrim, setRef
and insertRef operations. As a result, RMPATCH only
implements these operations, and delete and remove.

Owner objects are represented using opaque identities
used internally by TMDIFF. RMPATCH maintains an object -
Space table that maps these identities to Java objects. The
create and delete operations, respectively, add and
remove objects in this table. Since the identities are not sta-
ble across versions of a model, RMPATCH uses the TMDIFF
matching (see Sect. 3.2) information to adjust the object
space to reflect the situation after the edit operations have
been applied.

Applying the edit operations to the run-time model is
implemented using the Visitor pattern [10]. A base visi-
tor defines visit methods for each type of edit operation
and modifies the current model according to the seman-
tics of the operation. When an edit has been applied, it
is added to the global history object to support undo and
replay.

The application of edit operations to a run-time model is
unaware of invariants concerning the run-time state exten-
sions of that model. Naively applying a TMDIFF delta to the
run-time model of a DSL program might bring its execu-
tion in an inconsistent state. For instance, in the case of state
machines, what happens if the current state is removed? What
happens if the last remaining state is removed? These ques-
tions cannot be answered in a generic, language independent
way. We therefore allow the base visitor to be extended with
custom state migration logic to address such questions. If
such additional migration steps are realized as edit opera-
tions as well, they can also be added to the global application
history, to ensure that undo and replay maintain consis-
tency.

The next section describes how these technique have been
applied in the development of a live programming environ-
ment for the state machine language of Sect. 3.
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5 Case study: live state machine language
5.1 Overview

Here we present a case study based on the simple state
machine language (SML) used as the running example in
Sect. 3. We have used both TMDIFF and RMPATCH to obtain
a live programming environment for SML, called LiveSML.
The static and run-time metamodels of SML are shown in
Fig. 12.

The run-time model (Fig. 12b) can be seen as an extension
of the static metamodel (Fig. 12a); itincludes all the attributes
and relations of the static model. However, to represent run-
time state, there are additional attributes and relations that
do not exist in the static metamodel. For instance, run-time
machines (Mach objects) have a state field, representing the
current state. Furthermore, the State objects are extended
with a count field, indicating how many times this state has
been visited.

LiveSML consists of two application components, shown
in the top row of Fig. 13. On the left, Fig. 13a shows the
programming environment of LiveSML, which consists of an
Eclipse-based IDE for editing state machines, implemented
in RASCAL. The editor shows the Doors; state machine.

On the right, Fig. 13b shows the execution of Doors; as
an interactive GUI. The user can click buttons corresponding
to events defined in the state machine. The main window
shows a textual rendering of the state machine in tabular form.
An asterisk indicates which state is the current one, and the
column marked with the pound symbol indicates how many
times a state has been visited. The bottom row shows the
actual Doors; state machine models. Figure 13c shows the

1
1

1 ’

Mach  [—— Mach
1
1

— name: String | state
1
? states '
*
1
Element '
* 1
— name: String :
states 4 !
1
L | ! 4
1 ’
Group State < State
.. A
transitions — count: int
target
Trans

— event: String

(a) Meta model (b) Runtime extension

Fig. 12 Static and run-time metamodel of SML

Source code perspective Run-time perspective
® @ Rascal - textual-model-diff/input/d... ® @ State Machine: doors
= [ doorsi.sml 3 ¥ IDE.rsc = = open close
1 machine doors
= state closed
open => opened | State | # | Events
state opened PR i, St
close => c105e4 * | closed | 1 | [open]
6 end | opened | @ | [close]
e WB s ETH
(a) Editing Doors) (b) Running Doors,
state
d1: Mach
d1: Mach
d2: State d3: State
[ d2: state | [ d3: state | count: 1 count: 0
t > ¢t t > ¢t
:Trans :Trans :Trans :Trans
event: "open" event: "close" event: "open" event: "close"
(¢) Static model of Doors; (d) Runtime model of Doors|

Fig. 13 LiveSML.: the left shows the source code perspective with the
IDE at the fop and the static model at the bottom. The right shows the
run-time perspective with the state machine GUI at the fop, and the
(extended) run-time model at the bottom

static state machine model that represents the textual source
code of Doors; shown in the editor. Figure 13d shows the
same state machine, represented as a dynamic model that is
executing at run time, which is shown in the GUIL

When a developer edits a textual model and saves a mod-
ified version, the programming environment applies TMDIFF
to the current and the previous version of the textual model.
It then passes the resulting delta to the executing program
that embeds RMPATCH. Similarly, when the user triggers an
event, the program calculates its own delta for updating its
model elements. As a result, runtime model transformations
result either from textual model edits or user-level application
events.

5.2 Migrating domain-specific run-time state

Since the deltas produced by TMDIFF only take the static
metamodel of the source into account, the generic RMPATCH
system needs to be extended to support dealing with the state
and count attributes. Note that in most cases, RMPATCH will
simply leave these attributes intact, but in special cases, the
outcome would lead to an inconsistent state of the execution.

We define domain-specific state migration logic by extend-
ing the ApplyDelta visitor provided by RMPATCH, as shown
in Fig. 14. The class ApplyDelta defines a visit method for
each kind of edit supported by RMPATCH. For LiveSML, we
address the following cases:

@ Springer



R. van Rozen, T. van der Storm

1 class MigrateSML extends ApplyDelta {

2 private Mach machine; //run-time model to migrate
3

4 Q@Override

5 public void visit(Create create) {

6 super.visit(create);

7

3 Object x = create.getCreated(this);

9 if (x instanceof Mach) { //new machine
10 this.machine = (Mach) x;
11
12 else if (x instanceof State) { //new state
13 Edit e = new SetPrim(reverseLookup(x),
14 new Path(new Field("count")), 0);
15 e.accept(this);
16
17}
18

19 ©Override
20 public void visit(Insert insert) {

21 super.visit(insert);

22

23 Object owner = insert.getOwner(this);

24 if (machine != null && machine.state == null
25 && owner == machine) {

26 // Added a group or state to a machine
27 // without a current state.

28 goTolnitialState();

29 }

30 3

31

32 @Override
33 public void visit(Delete delete) {

34 super.visit(delete);

35

36 Object x = delete.getDeleted(this);

37 if (machine != null && x == machine.state) {
38 // Deleted the current state.

39 goTolnitialState();

40 1

41 3}

42

43 private void goTolnitialState(){

44 State s = machine.findInitial();

45 Edit el = new Set(reverseLookup(machine),
46 new Path(new Field("state")), s);

47 el.accept(this); //Set the current state.

48

49 if (s != null){

50 Edit e2 = new Set(reverseLookup(s),

51 new Path(new Field("count")), s.count+1);
52 e2.accept(this); //Increment current state count.
53

s4 )

55 %}

Fig. 14 MigrateSML extends ApplyDelta for SML state migration

— Creation of a new machine Initially there is no machine
because we start with an empty object space. We store a
reference to the machine when it is first created (lines 9
and 10).

— Creation of a new state The count attribute is initialized
to 0 (lines 12—15).
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— Insertion of an element in an uninitialized machine When
a state or group is inserted into a machine that has no
current state (lines 24-29), it is initialized to the initial
state (lines 43-54). The initial state is the first state in the
textual model.

— Deletion of the current state When a machine’s current
state is deleted (lines 36-37), it is reinitialized to the ini-
tial state (lines 43-54).

Each domain-specific migration is represented using edit
operations. For each required side effect, new edit objects
are created. For instance, initializing the count field of a new
state to 0 is enacted by a SetPrim edit, anchored at the new
state, with a path to field “count”. Applying these operations
through the extended visitor (MigrateSML) adds them to the
application history of LiveSML.

5.3 Evolving and using state machines with LiveSML

The key point of LiveSML is that state machines can be edited
and used at the same time. In a sense, the source and run-
time models coevolve in lockstep: changes in the code are
interleaved with user events—both transform the run-time
model using deltas. To illustrate this coevolution, we present
a prototype live editing scenario with LiveSML.

Figure 15 shows its general time line. The top row shows
five successive versions of the state machine definition, start-
ing in the version where there is no state machine at all (9).
The bottom row shows successive states of the executing
state machine. Some state changes are triggered by source
changes (e.g., from sq to s1), while others result from user
interactions (e.g., s2—53).

The details of the application state transitions are listed
in Table 1. The first two columns indicate the start source
model and run-time model state. The third column (“event”)
captures what happened (“saving” or “clicking an event but-
ton”). Each event causes a sequence of edits §; to be applied
to the run-time model. Edits correspond directly to the opera-
tions generated by TMDIFF. One additional operation (rekey)
is used to realign the internal object identities of the run-time
model with the opaque identities used by TMDIFF; this oper-
ation is needed because the TMDIFF identities are not stable
across revisions. The last column shows the origin of the
edit operations: an edit can originate from a TMDIFF delta,
a migration side effect (as described in Sect. 5.2), or a user
action. The sequence of §; (i € 1...41) represents the full
history of run-time model transformations.

Finally, Table 2 shows, yet again, the sequence of source
models and program states of the LiveSML session—this
time showing both the editor and the runtime GUI. From left
to right, the upper row shows states so—s3, and the bottom
row s4—s7. An empty cell indicates that nothing has changed
in the editor with respect to the previous state.
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Fig. 15 Interleaved
coevolution of models Doors,,
and application run-time states
S, over time

M

1
click click click

open close

Table 1 Interleaved coevolution of models Doors,;, and run-time states S,, over time

>%

e e e e CT S [ S

Model State Event Edit operation Origin
[ S0 Save Doors 81 create lang.sml.runtime.State d2 TMDIFF §} Doors
8 d2.count=0 Side effect
83 create lang.sml.runtime.State d3
84 d3.count=0 Side effect
35 create lang.sml.runtime.Mach d1
86 d2 = State(name(“closed”),[Trans(“open”,d3)])
87 d3 = State(name(“opened”),[Trans(“close”,d2)])
83 d1 = Mach(name(“doors”),[d2,d3])
89 di1.state = d2 Side effect
810 d2.count =1 Side effect
Doors S1 Click open 811 d1.state = d3 User action
812 d3.count =1
Doors 52 Click close 813 d1.state = d2 User action
814 d2.count =2
Doors 53 Save Doors; 815 create lang.sml.runtime.State d7 TMDIFF Doors| Doors,
816 d7.count=0 Side effect
817 d7 = State(name(“locked”),[Trans(“unlock”,d2)])
318 insert d2.transitions[1] = Trans(“lock”,d7)
819 insert d1.states[2] = d7
820 rekey d1 — d4
821 rekey d2 — d5
82 rekey d3 — d6
Doorsy S4 Click lock 823 d4.state = d7 User action
824 d7.count =1
Doors, S5 Save Doors3 825 create lang.sml.runtime.Group d11 TMDIFF Doorsy Doors3
826 d11 = Group(“locking”,[d6])
827 remove d4.states[2]
828 insert d4.states[2] = dO
829 rekey d4 — d8
830 rekey d5 — d9
831 rekey dé6 — d10
832 rekey d7 — d12
Doors; S6 Save Doorsy 833 remove d8.states[2] TMDIFF Doorss Doors
834 remove d9.transitions[1]
835 delete d11
836 delete d12
837 d13.state = d9 Side effect
838 d9.count=3 Side effect
839 rekey d8 — d13
840 rekey d9 — d14
841 rekey d10 — d15
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Table 2 Sequence of screen shots of LiveSML’s programming environment (top) and running application (bottom) while in application state s;
(i €0,...,7) of the interactive session with LiveSML

S0

s

52

53

[ ] @ Rascal - textual-model-difffinput/...

o @ Rascal - textual-model-diff/input/...

[ doors1.sml 53 | & IDE.rsc =& [ doors1.sml 53 | ¥ IDE.rsc = ®
1 1 machine doors
2 state closed
3 open => opened
4 state opened
5 close => closed
6 end
® © @ State machine @® O @ State Machine: doors @® © @ State Machine: doors ® © @ State Machine: doors
open close open close open close
| State | # | Events | State | # | Events | State | # | Events
B e o fommpmmmmm e | e e o= mmmmm e ee
* | closed | 1 | [open] | closed | 1 | [open] * | closed | 2 | [open]
| opened | @ | [close] * | opened | 1 | [close] | opened | 1 | [close]
S4 S5 S6 57

[ J @ Rascal - textual-model-diff/input/...

™) doors1.sml £3 | #¥ IDE.rsc =
1 machine doors
state closed
3 open => opened
4 lock => locked|
5 state opened
€ close => closed
state locked
unlock => closed
) end

® © @ State Machine: doors

open lock close
unlock
| State | # | Events
o o me o e e e s oo e e e e e
* | closed | 2 | [open, lock]
| opened | 1 | [close]
| locked | @ | [unlock]

® © @ State Machine: doors

open lock close
unlock
| State | # | Events
et oL DL LT e A Ll

| closed | 2 | [open, lock]
| opened | 1 | [close]
* | locked | 1 | [unlock]

@® © @ Rascal - textual-model-diff/input/...

=] doors1.sml 3 #¥ IDE.rsc =
1 machine doors
2 state closed
3 open => opened
4 lock => locking.locked
5 state opened
6 close => closed

7 locking

8 {

9 state locked

10 unlock => closed
11 Y

12 end

[ ] @ Rascal - textual-model-diff/input/...

[7] doors1.sml &3 ' &¥ IDE.rsc Dud
1 machine doors
2 state closed
3 open => opened|
4 state opened
5 close => closed
6 end

@® © @ State Machine: doors

open close

| State | # | Events
e e L i

* | closed | 3 | [open]

| opened | 1 | [close]

We now briefly describe how each run-time model state
s, in the sequence results from textual model edits and user

actions.

— so The application starts and the initial model is . Both
the editor and GUI are empty.

— 51 Doors; is entered into the editor and saved. In
response, the environment computes the difference TMD-

IFF ) Doors| . As aresult, the GUI shows the execution of

Doors. Both state count attributes are initialized to zero
(82 and 84). The machine’s initial state is closed (marked
by *), and its count is set to one (89 and &1p).

— s2 The user clicks button open, which triggers the transi-
tion and produces §11 and §17.
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— s3 The user clicks button close, which triggers the tran-
sition and produces 813 and &14.

s4 The model is modified such that it becomes Doors;.

In response, the environment computes the difference
between Doors| and Doorsy. The count attribute of the
locked state is initialized to zero (§16). The UI now also
displays buttons for the lock and unlock events.

— s5 The user clicks button lock, which triggers the transi-
tion and produces operations §>3 and 824.

s¢ The model is modified such that it becomes Doorss.

In response, the environment computes the difference
between Doorsy and Doorss. This time, there are no
migration side effects because the change has no seman-
tic effect: grouping is just a scoping mechanism.
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— 57 Finally, the model is modified such that it becomes
Doorsy again. As aresult of applying the differences, the
current state locked is removed and therefore the current
state is reinitialized to the first state closed (637). Accord-
ingly, its count is set to three (83g). Note that the buttons
lock and unlock have been removed from the Ul since no
such events exist anymore.

The sequence of states of this LiveSML session shows the
fine-grained interleaving of edit operations originating from
different sources. The execution of the state machine adapts
to both user events and changes in the source code. As such,
LiveSML provides a very fluid developer experience. Long
edit-compile cycles are completely eliminated.

6 Discussion and related work

This paper presents an approach for live programming envi-
ronments for textual DSLs that builds on two reusable
components: TMDIFF and RMPATCH. We reflect on limita-
tions, challenges and future work, and discuss related work.

6.1 Toward live domain-specific languages

Live DSLs aim for a low representation gap between domain,
notation and run time. Users can adapt run-time models
directly from the textual source. We assume that the run-time
metamodel extends the static language metamodel, such as
is the case in LiveSML. This design choice facilitates apply-
ing changes in the source code to the running program. The
assumption does not hold in general, however. For instance,
imperative languages have more complex mappings between
code and execution. Such languages therefore offer less direct
affordances over a program’s execution, breaking the contin-
uous link between the mental model of the programmer, the
code and the running program.

Edit scripts are commonly used to encode model differ-
ences between versions of models representing the abstract
syntax of a language. Edit scripts precisely encode what
changed and in which order, but not why these effects happen.
Typically, language semantics refers to a formal definition
that does include the precise causal relationships from which
these run-time changes result, which also enables formal
proofs. In our approach, the behavioral evolution of executing
models is influenced by the way model differences are com-
puted. When entities are not detected as “the same” between
versions, the corresponding run-time objects will be removed
or added, even if this was not the behavior intended by the
user of the modeling language. This problem is not unique
to our application of TMDIFF, since any differencing algo-
rithm will have to use heuristics to match model elements.
We hypothesize, however, that in the context of live program-

ming where immediacy of feedback is paramount, changes
tend to be small and local, reducing the risk of unintuitive
matchings.

One question is whether replacing TMDIFF by an alterna-
tive algorithm would provide a better programmer experi-
ence. For instance, SiDiff [15,36], DSMDiff [24] or EMF-
Compare [6] may result in a more accurate matchings for
specific circumstances. SiDiff in particular would be a can-
didate since it is independent from any kind of scoping rules
used to create references between model elements. SiDiff can
be configured to make the algorithm perform better based
on certain language features. Unfortunately, adjusting the
weights used in comparing language features often requires
substantial empirical testing [17].

The question is whether similarity-based heuristics would
offer more predictable differences, and as a result more pre-
dictable run-time adaptation. Our hypothesis is that TMDIFF
has the benefit that its mechanism for identifying model ele-
ments stays close to the textual source representation of a
model, which is precisely the material the modeler is manip-
ulating. Comparing alternative differencing approaches in
terms of predictability and run-time performance is part of
future work.

Our experience in using TMDIFF and RMPATCH shows that
migrating run-time state is complex. Even for a relatively
simple language like LiveSML, the extensions of RMPATCH
to migrate state must account for many possible transforma-
tion scenarios. Since edit operations are applied in sequence,
one must make careful assumptions about the existence or
absence of objects and references. The key question is then
whether the correct interleaving of migration edits with the
original edits produced by TMDIFF could be automatically
derived. In future work, we plan to address this challenge
by separately modeling and maintaining migration scenar-
ios that abstract from underlying edits, and use dependency
analysis to derived possible orderings of run-time model
modifications.

Assessing whether RMPATCH scales to larger systems
requires additional case studies on real-world live DSLs,
in particular those whose source and run-time metamodels
differ more substantially than in the case of LiveSML. To
investigate this question further, we plan to apply RMPATCH to
Micro-Machinations, a visual language and execution engine
that enables game designers to adapt a game’s mechanics
while it is running [42]. Its live programming environment
is called Mechanics Design Assistant (MeDeA) [41].

The run-time metamodel of Micro-Machinations adds a
new level of dynamic instantiation: at runtime there are
“instance” level models which are not directly represented
by textual source code, but which depend on source-defined
entity definitions. Such languages require a pipeline of cou-
pled transformations between source and run-time. The
question is how modification effects propagate in a well-
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defined way. This problem is not unlike migrating objects
after a change in class (e.g., in Smalltalk), or database migra-
tion upon schema change. In fact, these kinds of migrations
are instances of the general class of coupled transforma-
tions [19] where a transformation of one model induces a
“coupled” transformation on another (possibly over a dif-
ferent metamodel). Further research is needed to formalize
run-time patching presented here using this framework. This
could help to precisely delineate the scope and limitations of
RMPATCH-like run-time adaptation.

Reversible transformations support features for program-
ming environments such as undoing edits, rollback, restoring
system states, replaying and debugging. RMPATCH operations
can be augmented with extra information to make every edit
operation—and thus complete edit scripts—reversible. The
question is to what extent such features can be supported
by generic, reusable components. Although it is clear how to
“unapply” edit operations on the run-time model, performing
this same operation on the textual source code requires more
advanced machinery, such as origin tracking, source code
formatting and reversing source-to-source transformations.

At this time, TMDIFF and RMPATCH offer no special support
for model merging, which, for instance, would be interesting
for hypothetical exploration of dynamic what-if scenarios.
Further research is needed to investigate how different deltas
produced by TMDIFF can be combined for this purpose and
how to resolve merge conflicts at runtime.

6.2 Limitations of TMDiff

Unlike RMPATCH, the TMDIFF algorithm can be used indepen-
dently. In this section, we identify a number of limitations of
TMDIFF as a separate component and discuss directions for
further research.

The matching of entities uses textual deltas computed by
diff as a guiding heuristic. In rare cases, this affects the
quality of the matching. For instance, diff works at the
granularity of a line of code. As a result, any change on a
line defining a semantic entity will incur the entity to be
marked as added. The addition of a single comment may
trigger this incorrect behavior. Furthermore, if a single line
of code defined multiple entities, a single addition or removal
will trigger the addition of all other entities. Nevertheless, we
expect entities to be defined on a single line most of the time.

If not, the matching process can be made immune to
such issues by first pretty-printing a textual model (with-
out comments) before performing the textual comparison.
The pretty-printer can then ensure that every definition is on
its own line. Note, that simply projecting out all definition
names and performing longest common subsequence (LCS)
on the result sequences abstracts from a lot of textual con-
text that is typically used by diff-like tools. In fact, this
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was our first approach to matching. The resulting matchings,
however, contained significantly more false positives.

Another factor influencing the precision of the match-
ings is the dependence on the textual order of occurrence
of names. As a result, when entities are moved without any
further change, TMDIFF will not detect it as such. We have
experimented with a simple move detection algorithm to
mitigate this problem; however, this turned out to be too
computationally expensive. Fortunately, edit distance prob-
lems with moves are well researched, see, e.g., [35]. A related
problem is that TMDIFF will always see renames as an addition
and removal of an entity. In general, edit scripts consisting of
long sequences of atomic operations are hard to understand.
However, user-level composite operations such as renaming
and more complex refactorings can be detected in existing
sequences of atomic operations, e.g., using the approach pro-
posed by Langer et al. [21], or the rule-based semantic lifting
approach proposed by Kehrer et al. [14].

6.3 Related work

The key contribution of this paper intersects two areas of
related work: model differencing and dynamic adaptation of
models at runtime. Below we discuss important related work
in both these areas.

6.3.1 Model differencing

Much work has been done in the research area of model com-
parison that relates to TMDIFF. We refer to a survey of model
comparison approaches and applications by Stephan and
Cordy for an overview [33]. In the area of model comparison,
calculation refers to identifying similarities and differences
between models, representation refers to the encoding form
of the similarities and differences, and visualization refers to
presenting changes to the user [17,33]. Here we focus on the
calculation aspect.

Calculation involves matching entities between model
versions. Strategies for matching model elements include
matching by (1) static identity, relying on persistent global
unique entity identifiers; (2) structural similarity, comparing
entity features; (3) signature, using user defined compar-
ison functions; (4) language-specific algorithms that use
domain-specific knowledge [33]. With respect to this list,
our approach represents a new point in the design space:
matching by textual alignment of names.

The differencing algorithm underlying TMDIFF is directly
based on Alanen and Porres’ seminal work [1]. The identifi-
cation map between model elements is explicitly mentioned,
but the main algorithm assumes that model element identities
are stable. Additionally, TMDIFF supports elements without
identity. In that case, TMDIFF performs a structural diff on the
containment hierarchy (see, e.g., [45]).
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TMDIFF’s differencing strategy resembles the model merg-
ing technique used Enso [39]. The Enso “merge” operator
also traverses a spanning tree of two models in parallel and
matches up object with the same identity. In that case, how-
ever, the objects are identified using primary keys, relative
to a container (e.g., a set or list). This means that matching
only happens between model elements at the same syntac-
tic level of the spanning tree of an Ensd model. As a result,
it cannot deal with “scope travel” as in Fig. 4c, where the
locked state moved from the global scope to the 1ocking
scope. On the other hand, the matching is more precise,
since it is not dependent on the heuristics of textual align-
ment.

Epsilon is a family of languages and tools for model
transformation, model migration, refactoring and compari-
son [18]. Itintegrates HUTN [32], the OMG’s Human Usable
Text Notation, to serialize models as text. As result, which
elements define semantic identities is known for each textual
serialization. In other words, unlike in our setting, HUTN
provides a fixed concrete syntax with fixed scoping rules.
TMDIFF allows languages to have custom syntax and custom
binding semantics.

Lin et al. [24] describe DSMDiff, a signature-based
differencing approach which is intended specifically for
Domain-Specific Modeling Languages. DSMDiff uses a
signature-based matching over node and edge model ele-
ments, augmented by structural matching when the signature-
based matching produces multiple matching candidates.

Maoz et al. [26] propose semantic differencing, an
approach that defines diff operators for comparing two mod-
els where the resulting differences are presented as a set
of semantic diff witnesses, instances of the first model that
are not instances of the second. These instances are con-
crete examples explaining how the models differ. Maoz and
Ringert [25] relate syntactic changes to semantic witnesses
by defining necessary and sufficient sets of change opera-
tions.

Langer et al. present a general approach for semantic
differencing that can be customized for specific modeling
languages. This approach is based on the behavioral seman-
tics of a modeling language [20]. Two versions of a model are
executed to capture execution traces that represent its seman-
tic interpretation. Comparing these traces then provides a
“semantic” interpretation of the difference between the two
versions. In contrast, our approach starts at the opposite end:
instead of using execution traces to explain syntactic differ-
ences, we use syntactic differences to drive the execution in
the first place.

Cicchetti et al. [4] propose a representation of model
differences which is model based, transformative, compo-
sitional and metamodel independent. Differences are repre-
sented as models that can be applied as patches to arbitrary
models. Although no special extension points are offered for

supporting run-time state migrations, the model-based dif-
ferences themselves could be used to represent them.

6.3.2 Dynamic adaptation

“Models at run time” is a well-researched topic, as, for
instance, witnessed by the long running workshop on Mo-
dels@run.time [12]. Executable modeling can be considered
a subdomain of models at run time, where a software sys-
tem’s execution is defined by a model interpreter. Executable
modeling was pioneered in the context of the Kermeta sys-
tem [5,30]. Kermeta is also the basis for recent work on
omniscient debugging features for xDSMLs [2]. Omniscient
debuggers allow the execution of a program or model to be
reversed and replayed. This work can be positioned on an
orthogonal axis of “liveness,” where the focus is on providing
better feedback through time travel. We consider our delta-
based approach to be a fruitful ground for further exploration
of such features. In the LiveSML case study, we already have
implemented a reversible history of application state. How-
ever, a particular challenge will be to apply reversed edits
back to the source code of a DSL program.

Models at run time in general are often motivated from
the angle of dynamic adaptation. For instance, Morin et
al. [29] describe an architecture to support adaptation at run
time through aspect weaving. However, this work focuses on
adapting behavior and dynamically selecting alternative vari-
ants of behavior, rather than changing the run-time models
themselves.

The specific requirements for run-time metamodeling are
explored by Lehmann et al. [22]. The authors present a
process to identify the core run-time concepts occurring in
run-time models. In particular, they propose to identify pos-
sible model adaptations at run time, to explicitly address
potential run-time consistency issues. In our case, we allow
any kind of modification, but leave the door open to imple-
ment arbitrary run-time state migration policies.

RMPATCH requires the run-time metamodel to be an
“extension” of the static metamodel. This relation is similar
to the concept of “subsumption” in description logics [27].
Although we have not yet explored this link in more detail, it
would allow formal checking of whether a run-time meta-
model is suitable for live patching. Another assumption
underlying RMPATCH is that it should be possible to pause
the model interpreter at a stable point in the execution in
order to apply the runtime modifications. This is related to
the concept of quiescence explored in the area of dynamic
software updating [44].

7 Conclusion

Live programming promises to improve developer experi-
ence through immediate and continuous feedback. These
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benefits have not yet been explored from the perspective
of executable domain-specific modeling languages. In this
paper, we have described a framework for developing “live
textual languages,” based on ametamodeling foundation. Our
framework consists of two components.

First, we presented TMDIFF, a novel model differencing
algorithm, based on textual differencing and origin track-
ing. Origin tracking traces the identity of an element back
to the symbolic name that defines it in the textual source
of a model. Using textual differencing, these names can be
aligned between versions of a model. Combining the origin
relation and the alignment of names is sufficient to identify
the model elements themselves. It then becomes possible to
apply standard model differencing algorithms. TMDIFF is a
fully language parametric approach to textual model differ-
encing. A prototype of TMDIFF has been implemented in the
RASCAL metaprogramming language [16].

The second component, RMPATCH, represents an architec-
ture for dynamically adapting run-time models which encode
the execution of the model. RMPATCH receives model deltas
from TMDIFF and evolves the execution accordingly. To avoid
information loss and invalid run-time states, RMPATCH can
be extended to define custom, language-specific migration
policies. RMPATCH is used in the development of a live state
machine DSL, which allows simultaneous editing and using
of state machine definitions.

To the best of our knowledge, this paper is the first work
connecting the worlds of model differencing and dynamic
adaptation of models at run time. Nevertheless, some impor-
tant directions for further research remain. The most impor-
tant directions are formalizing the relation between static
metamodel and (extended) run-time metamodel of a DSL,
investigating how dependencies between edit operations can
be inferred and used to (re)order their application, and deter-
mining how to separately model and maintain run-time
state migration scenarios at a higher level of abstraction.
Ultimately, we expect that delta-based run-time adaptation
provides a fertile foundation for developing live program-
ming support for executable DSLs.

Acknowledgements We thank the reviewers for their insightful com-
ments that helped improve this paper.
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