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Abstract To develop complex systems and tackle their in-
herent complexity, (executable) modelling takes a prominent
role in the development cycle. But whereas good tool sup-
port exists for programming, tools for executable modelling
have not yet reached the same level of functionality and ma-
turity. In particular, live programming is seeing increasing
support in programming tools, allowing users to dynamically
change the source code of a running application. This sig-
nificantly reduces the edit-compile-debug cycle and grants
the ability to gauge the effect of code changes instantly, aid-
ing in debugging and code comprehension in general. In
the modelling domain, however, live modelling only has
limited support for a few formalisms. In this paper we pro-
pose a multi-paradigm modelling approach to add liveness
to modelling languages in a generic way, which is reusable
across multiple formalisms. Live programming concepts and
techniques are transposed to (domain-specific) executable
modelling languages, clearly distinguishing between generic
and language-specific concepts. To evaluate our approach,
live modelling is implemented for three modelling languages,
for which the implementation of liveness substantially dif-
fers. For all three cases, the exact same structured process
was used to enable live modelling, which only required a
“sanitization” operation to be defined.
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1 Introduction

Complex software-intensive systems are becoming more and
more pervasive in our daily lives [32]. Modelling, and in par-
ticular domain-specific modelling [18] (DSM), has proven to
be an essential technique to avoid the accidental complexity
incurred when using traditional programming techniques, by
allowing domain experts to specify systems in a notation they
are familiar with. Historically, models were mostly used for
documentation. More recently, they are increasingly used
for execution, for example through code generation [18] or
simulation/interpretation, often implemented using model
transformation [39]. This brings forth the need for debug-
ging the execution, as seen in the programming community.
While there is a growing interest in model verification, not
all models can be verified due to the size of the state space,
or due to lacking (efficient) tool support. Furthermore, model
verification can indeed aid in finding whether a system is
correct, but it is often unable to track down the source of the
violation. As such, debugging will remain a vital part of the
modelling process.

Commercial modelling and simulation tools often pro-
vide limited support for debugging. The research community
has recently made several contributions that enable specific
debugging features for several types of formalisms [22,8,
34,51,2]. Compared to code debugging, which has a wide
variety of debugging operations [52], current modelling ap-
proaches and tools supporting them are still in their infancy
in terms of features, applicability, and usability. It is therefore
tempting for system developers to debug the automatically
generated code directly, instead of the model itself [10].
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Live programming [43] is an advanced feature of sev-
eral programming tools, allowing programmers to modify
the code of applications while the application is running,
immediately having the new code integrated in the running
application. There is no apparent compile and re-run cycle,
reducing the cognitive gap between program code and exe-
cution. Additionally, the state of the running application is
transparently transferred from the running program to the
newly compiled version of the code, thereby, removing the
need to redo all operations up to the point in time where the
change was made. While there are already several tools that
support live programming, making a programming language
“live” is done ad-hoc, and is refered to as a black art [5]. As
such, it is difficult to transpose liveness techniques between
languages.

In this paper, we transpose the essence of live program-
ming to the modelling domain, in a generic way. Contrary to
live programming, where only a single language is consid-
ered most of the time, domain-specific modelling raises the
need for many different domain-specific formalisms. Many
of these domain-specific formalisms only have a handful of
users, rendering the investment for implementing live mod-
elling techniques in an ad-hoc way difficult to justify. There-
fore, live modelling should be implemented in a generic way,
making it applicable to many modelling formalisms with
minimal effort. Support for live modelling was identified
as a key feature to advance the usability of model-driven
techniques [19]. The research question thus is “how can live
programming concepts be ported to the modelling domain,
making them generically applicable”. Despite mostly being
presented as a debugging operation in this paper, live for-
malisms can be applied to other situations as well, such as
education or model comprehension in general.

To effectively support live modelling in the context of
domain-specific formalisms, we deconstruct the traditional
live programming process, and reconstruct it in the context
of modelling by applying concepts and techniques from live
programming to executable modelling formalisms. All activ-
ities related to liveness are distilled into a single operation,
which we term sanitization. To make a formalism live, only
the sanitization operation should have to be updated, while
reusing all other aspects of live modelling. Note that liveness
only applies to executable modelling formalisms, and we
therefore limit ourselves to these in this paper.

We present a Multi-Paradigm Modelling (MPM) [49,
30] approach to live modelling. MPM advocates the explicit
modelling of all pertinent parts and aspects of complex sys-
tems. It adresses and integrates three orthogonal dimensions:
(1) multi-abstraction modelling, concerned with the relation-
ships between models (e.g., refinement and generalization);
(2) multi-formalism modelling, concerned with the coupling
of and transformation between models described in differ-
ent formalisms (e.g., multi-view and multi-component); and

(3) explicitly modelling the often complex, concurrent work-
flows. We present an explicitly modelled framework for the
definition of live modelling formalisms: all aspects of the
approach, including the process [23], are explicitly modelled.
Our approach therefore relies on MPM tool support. Addi-
tionally, our approach is especially useful in the context of
MPM, where various domain-specific formalisms are used
and processes can be enacted.

We distinguish between three types of executable mod-
elling formalisms for which the implementation of the san-
itization operation is fundamentally different. For each, we
present a representative example, which we use through-
out this paper as a running example: Finite State Automata
(FSAs) [17], Discrete Time Causal Block Diagrams (DTCBDs) [7],
and Continuous Time Causal Block Diagrams (CTCBDs) [7].

These modelling formalisms, and their live implemen-
tation, are implemented in the Modelverse [47], our Multi-
Paradigm Modelling environment [48]. The Modelverse pro-
vides full support for Multi-Paradigm Modelling, thereby
providing the necessary tool support for language engineer-
ing, model transformations, process enactment, and the use
of multiple flexible interfaces. All code is available online.1

The remainder of this paper is organized as follows. Sec-
tion 2 introduces the necessary background on live program-
ming and executable modelling. Section 3 presents three
running examples: a Finite State Automata model, a Dis-
crete Time Causal Block Diagrams model, and a Continuous
Time Causal Block Diagrams model. Section 4 presents our
approach to live modelling, explaining our concepts and
method, and demonstrates its application to our running ex-
amples. Section 5 presents a prototype implementation of our
approach for the three examples. Section 6 presents related
work, and Section 7 concludes the paper.

2 Background

As this paper combines techniques from the live program-
ming and executable modelling domain, both domains are
first briefly introduced.

2.1 Live Programming

Live, or interactive programming aims to bridge the “gulf
of evaluation” [21,42]. It allows users to update the source
code of an application while it is running, with changes being
applied instantly in the running application. There is therefore
no need to manually recompile, restart, and rerun the program
up to the point of execution when the modification was made.
This has several advantages, such as decreasing the length of

1 https://msdl.uantwerpen.be/git/yentl/
modelverse

https://msdl.uantwerpen.be/git/yentl/modelverse
https://msdl.uantwerpen.be/git/yentl/modelverse
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the edit-compile-debug cycle, and offering users immediate
insight in the effect of code changes. An example of live
programming, as implemented by ElmScript [9], can be seen
online.2

Basically, the process of live programming is as follows.

1. A developer writes code in a programming language.
2. The (valid) code is compiled to instructions for the spe-

cific machine.
3. The instructions are loaded into memory, and storage is

allocated for execution.
4. The program is executed, which performs operations on

the program and its state.
5. The developer modifies the code of the program, concur-

rently with execution.
6. The modified code is compiled to new instructions.
7. The program merges its old instructions and state with

the new instructions.
8. The program executes the new instructions.

With the exception of the 7th item, these steps are iden-
tical to the workflow of normal programming. Normally,
however, the new instructions are only executed in a new
invocation of the program. The merge operation, therefore,
is the only new operation in live programming (from a func-
tional point of view). The merge operation alters a running
program to incorporate changes unknown at compilation
time, by merging the updated set of instructions with the old
state of the running program. Specifically, new instructions
that do not have an execution context are merged with old
instructions and their associated execution state. As data is
also merged, such as the value of variables, information from
the old program must be combined with the new instructions.

Data merging is intentionally left vague, as many ap-
proaches exist. Three categories were proposed [26], de-
pending on how much data is copied: no live programming,
recorded event, and real-time. We illustrate all three with a
game example, similar to the ElmScript example. The game
is a simple platform game, where the jump height of the
character is updated during execution. The game’s current
state is shown in Figure 1a, where the character jumped onto
the platform and, in the meantime, collected one coin. If the
character were to jump, the coin is collected and the score is
increased to 2.

No live programming is the most basic, where no infor-
mation is passed between executions. Upon recompilation,
the currently running application is terminated and restarted
afresh. This approach does not implement live programming
at all, and can easily be replicated without any modification
to the programming language itself. All that is required is an
automatic restart of the application after a change is detected.
In the game example, the character is respawned at the be-
ginning and the score is initialized to zero. This is shown in

2 http://debug.elm-lang.org/

Figure 1b, where the character has respawned and all coins
have been reset as well. From this point onwards, the jump
height is reduced and the character will be unable to jump on
the platform. In conclusion, no state is retained.

Recorded event takes over the history of all inputs sent
to the old running application. The new program is then
executed with these simulated events, making it seem as if the
inputs sent to the old program were sent to the new program.
This approach is used in programming languages such as
ElmScript [9]. For performance reasons, the program is often
not completely re-executed, but only dependent functions
are re-evaluated. In the game example, our character might
switch location and score, depending on what these values
would be if the exact same inputs were given in the new
application. When the jump height parameter is decreased,
we suddenly find the character below the platform, instead
of on top of it. This is shown in Figure 1c, where we see the
character below the platform: the jump we did before did
not reach the same height, which made the character unable
to reach the platform. Subsequent actions, such as moving
to the right, were still replicated, but in a different context:
below instead of on top of the platform. In conclusion, the
input history part of the state is retained.

Real-time takes over the complete history of the old run-
ning program, but merges in new instructions to be used in
the future. The new program is effectively a rewritten version
of the old program, which just continues computation. This
approach is used in programming languages such as Small-
talk [14], and is often also termed fix and continue. In the
game example, our character will be at the same location and
have the same score as before, but changes will take effect
from that point onwards. When the jump height parameter is
decreased, we find it impossible to jump as high as we could
before, though our current location remains unchanged. This
is shown in Figure 1d, where we see no immediate change.
From this point onwards, however, we are unable to get the
coin right above us, as the character can no longer jump that
high. In conclusion, the complete state is retained.

In the remainder of this paper, we will mostly consider
real-time live programming, as this was previously identified
as being the most appropriate for simulation [26].

2.2 Executable Modelling

Modelling has historically mostly been used in the form of
documentation of a separate coded application. Recently,
however, executable modelling has gained popularity, where
the model itself becomes the final application, without addi-
tional coding effort. In this case, the model is not necessarily
used as documentation or to generate skeleton code, but its
execution becomes detached from programming. In essence,
models have gained semantics, for which two main categories
exist: denotational and operational semantics.

http://debug.elm-lang.org/
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SCORE: 1

(a) Original configuration.

SCORE: 0

(b) No live programming.

SCORE: 0

(c) Recorded event.

SCORE: 1

(d) Real-time.

Fig. 1: State of the game before and after decreasing the jump height parameter.

Denotational semantics, or translational semantics, con-
sists of mapping the model to a different formalism, for which
a semantics does exist. For example, if the model is trans-
lated to programming code, this is denotational semantics.
The semantics is then only concerned with the translation in
itself: generating code. How this code is executed, is beyond
the scope of denotational semantics. Denotational semantics
is mostly used to employ existing knowledge and formalisms.
For example, it is popular to generate code (leveraging exist-
ing code execution platforms) or map it to different domain-
specific formalisms, such as Petri nets [31] (leveraging ex-
isting analysis methods). Chaining is possible, where the
target formalism has denotational semantics itself, as long as
eventually we end up with a formalism that has operational
semantics defined.

Operational semantics defines the semantics by executing
the model directly: the model is transformed from one valid
configuration to another. For example, a current state flag
is kept for all elements, which is moved along the model
to indicate the currently executing state. Contrary to deno-
tational semantics, operational semantics does not rely on
other formalisms, but it requires additional data to be stored
somewhere. For this purpose, a distinction is often made
between a design and runtime metamodel.

The design metamodel is the metamodel that is used by
the designer when creating the model. It has all the necessary
constructs for design, but is not concerned with the execu-
tion. For example, in Finite State Automata (FSAs), a State
only has a name and initial attribute. The runtime metamodel,
however, has additional information required for execution.
For example, the state now still has its name and initial at-
tribute, but additionally has a current attribute. This attribute
stores a boolean containing whether or not this is the current
state of the execution. While this information is required
for the execution, as it needs to be stored somewhere, it is
invisible to the designer.

Due to the distinction between these two types of meta-
models, multiple models are actually required for operational
semantics: the design model is first translated to a runtime
model, thereby initializing it (e.g., setting the current attribute

to the initial attribute). The actual operational semantics is
subsequently executed on this intermediate runtime model.

3 Running Examples

In this section, we present the formalisms used as running
example throughout the remainder of the paper. For all for-
malisms, we present a simple model on which we use live
modelling. Modelling formalisms can have widely varying se-
mantics, including non-determinism, event-driven behaviour,
timing, etc. While implementing live modelling techniques
for each of these categories will be different, one essential
difference that has an effect on live modelling is the types
of changes that can be made. We identify three types of
formalisms: two that gain semantics through operational se-
mantics (i.e., they manage the state themselves), with support
for breaking and non-breaking changes, and one that gains
semantics through denotational semantics (i.e., it delegates
execution and states to another formalism). The distinction
between breaking and non-breaking changes stems from the
language evolution community [28], where changes to the
metamodel can be considered to break the instances. With
breaking changes, the instances have to be adapted, for exam-
ple when adding a new mandatory attribute to a class. This
can be either resolvable (e.g., when the attribute has a de-
fault value) or non-resolvable (e.g., when the attribute has no
default value). With non-breaking changes, the instances do
not have to be adapted, for example when adding an optional
attribute to a class.

With operational semantics and breaking changes, con-
forming changes on the design model might result in non-
conforming changes on the runtime model. For example, in
live programming, the currently executing line of code can
be removed. In this case, the change in the design model
(source code) is a valid piece of program code, but when this
same change is mapped to the runtime model, the current in-
struction pointer is also removed, making the runtime model
invalid. To solve inconsistent states after such a change, a
new line of code must be selected as the currently execut-
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ing line of code, which can often not be done automatically.
As a representative example of a formalism with breaking
changes, we choose Finite State Automata.

With operational semantics and non-breaking changes,
conforming changes on the design model always result in
conforming changes on the runtime model. For example, in
live programming, variables can be added or removed, and
their values cannot be changed. In this case, the change in
the design model (source code) is a valid piece of program
code, and when the same changes are mapped to the runtime
model, the runtime model stays valid. Note that it is not
possible to change the values of variables themselves, as we
only have access to the source code, not to the execution
information. As a representative example of a formalism
with non-breaking changes, we choose Discrete Time Causal
Block Diagrams.

With denotational semantics, execution is delegated to
another formalism. For example, in live programming, the
codebase can be first translated to another programming form-
alism, for which live programming is supported. To solve the
inconsistent state, the functionalities of the target formalism
can be used as-is. In the end, however, the modeller is likely
only an expert in the source formalism, and might even be
unaware of the existence of a target formalism. As a represen-
tative example of a formalism with denotational semantics,
we choose Continuous Time Causal Block Diagrams, which
we map to Discrete Time Causal Block Diagrams through
discretization and optimization.

For readability, we present our approach using these three
different formalisms. Of course, our approach is applicable
for other formalisms as well. Many formalisms support dif-
ferent types of changes, such as some that are breaking (e.g.,
the executing line of code) and others that are non-breaking
(e.g., variable values). Therefore, a composite merge rule
is often required, which handles all aspects simultaneously.
We explain all used formalisms next, along with an example
model.

These three types of formalisms are exhaustive: a change
is either breaking (i.e., requires changes to be applied to
the model) or non-breaking (i.e., the model can be used
as-is). For breaking changes, two resolution methods exist,
both of which are handled in this paper. Denotational seman-
tics does not consider the difference between breaking and
non-breaking changes, as it merely relies on the underlying
semantics for this. As such, denotational semantics is only
considered in combination with one type of changes in this
paper.

Note that we only consider the feasibility and general
structure of live modelling for these formalisms. Different
applications naturally raise new challenges. For example,
one of the major challenges in live programming is efficient
recompilation, as this takes a significant amount of time.

State
name : String
initial : Boolean
current : Boolean

Transition
raise : String
trigger : String

$State.allInstances().one(s|s.current=true)$
$State.allInstances().one(s|s.initial=true)$

Fig. 2: Abstract Syntax of Finite State Automata. Runtime-
only concepts are shown in bold.

3.1 Finite State Automata

The Finite State Automata (FSA) formalism [17] is used to
model reactive systems with discrete state. Its building blocks
are:

– States, which represent the state a system is in. There is
exactly one initial state, where execution starts.

– Transitions between states that model the flow of the
system. A transition is triggered by an event from the
environment, consuming it as the transition is taken. Only
transitions whose source state is the current state can fire.
After triggering, the target of the transition becomes the
new current state. A transition can additionally raise an
output event to the environment.

Its abstract syntax is shown in Figure 2. Note the notation
for Transition, which is an association going from a State
to another State, having two attributes: a raise and trigger
string. A pseudo-code version of its semantics is shown in
Algorithm 1.

Algorithm 1 FSA operational semantics.
function SIMFSA(M )

state ← INITIALSTATES(M).pickOne()
while state 6∈ FINALSTATES(M) do

wait for input
state ← TARGET(M, input)

end while
end function

A frequently used visualization is as a state diagram,
where states are represented as circles and transitions as
arrows, labelled with their trigger and output event. The
initial state is pointed to by an arrow starting from a small
black dot. An example is shown in Figure 3, where a simple
home security alarm system is modelled. In the idle mode,
the alarm system can be armed by the user. If someone is
detected in the armed mode, the alarm goes off, until the user
inputs the correct combination. The alarm can be disabled
by sending the Disable event, but only when no intrusion is
detected.

The FSA formalism is an example formalism with po-
tential breaking changes: the only state of the model is the
current state, which is explicitly present and can thus be re-
moved. If the user deletes the current state, execution can only
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idle armed detected

Arm

Disable

PersonDetected /
SoundAlarm

WrongCode

CorrectCode /
DisableAlarm

Fig. 3: Example FSA of a home security alarm system.

ICBlockBlock

Addition Multiplication

Negation Inversion

Constant

value : Float

Probe
name : String

Delay

Link
InitialConditionsignal : Float last_in : Float

Time
time : Float

Fig. 4: Abstract Syntax of Discrete Time Causal Block Dia-
grams. Runtime-only concepts are shown in bold.

resume when another state is chosen as the current state. This
can be resolved either manually (breaking, non-resolvable)
or automatically (breaking, resolvable).

3.2 Discrete Time Causal-Block Diagrams

The Discrete Time Causal Block Diagrams (DTCBD) form-
alism [7] is a dataflow formalism, where signals are propa-
gated through a network of connected blocks. It allows to
model systems by defining them as a set of equations. The
semantics is given by a set of continuous signals. Blocks
implement atomic mathematical operations, which take their
input signals and generate, instantaneously, a single output
value. The mathematical concepts modelled by these blocks
include constants, addition, negation, multiplication, and in-
version. Additionally, a delay block is provided which holds
the value for a single iteration, thus introducing the notion of
“next step”. At initialization, the block uses the value coming
into it via the Initial Condition (IC) port. Connections be-
tween blocks indicate dependencies: the output of the source
block is used as input by the target block.

Its abstract syntax is shown in Figure 4. Pseudo-code for
its operational semantics is shown in Algorithm 2.

Figure 5a presents a simple DTCBD model representing
the equations shown in Figure 5b. The equation for y is
reduced to y = x−y, which is a direct feedback loop (termed
“algebraic loop”). While this seems a trivial model to map to
code, this is not the case: the algebraic loop must be resolved
first. Indeed, in code, the statement y = x - y translates
to the equation y(t) = x(t− 1)− y(t− 1), as the old values

Algorithm 2 DTCBD operational semantics.
function SIMULATECBD(M,maxIters,∆t)

clock ← 0
state ← INITSIGNALS(M)
numIters ← 0
while numIters < maxIters do

g ← DEPGRAPH(M,numIters)
s ← LOOPDETECT(g)
for c in s do

if c = {gblock} then
state ← COMPB(c, state)

else
state ← COMPL(c, state)

end if
end for
clock ← clock +∆t
numIters ← numIters + 1

end while
return clock , state

end function

x
1

D
IC

+

-

z

y

(a) Example DTCBD, containing an algebraic loop.
y(t) = x(t)− y(t)

z(t) =

{
x(t) if t = 0

y(t− 1) if t > 0

(b) The equations represented by the example DTCBD model.

Fig. 5: Example DTCBD.

of x and y are used. To actually implement the equation
y = x − y, the algebraic loop must be solved to y = x

2 ,
which can be implemented in code. Programmers therefore
have to manually solve the set of linear equations to come up
with the code to solve this system of equations. Small changes
in the system of equations can result in large changes on the
resulting solution.

In contrast, DTCBDs handle linear algebraic loops na-
tively, solving y = x− y automatically and generating the
necessary code. To solve linear algebraic loops, the loop is
detected as a strongly connected component, and a linear
system of equations is constructed. In the case of Figure 5a,
for example, we construct the set of equations shown in Fig-
ure 5b. These equations are automatically solved and code
can be generated.
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ICBlockBlock

Addition Multiplication Derivation

Negation Inversion Integration

Constant

value : Float

Probe
name : String

Delay

Link
InitialCondition

Fig. 6: Abstract Syntax of Continuous Time Causal Block
Diagrams.

The DTCBD formalism is an example of a formalism
with exclusively non-breaking changes: delay blocks have
a memory of their previous iteration, but this is no longer
necessary when the block is deleted. The runtime state of the
model is an aggregation of the memory values, which the
user cannot manipulate directly. When a delay block is added,
the state needs to be updated accordingly by initializing a
new state variable. Similarly, when a delay block is removed,
part of the state is removed. It is impossible for a conforming
design model to result in a non-conforming runtime model.

3.3 Continuous Time Causal-Block Diagrams

The Continuous Time Causal Block Diagrams (CTCBD)
formalism [7] is an extension to DTCBDs, introducing two
continuous blocks: an integrator and derivator. Its abstract
syntax is shown in Figure 6. As denotational semantics is
used, no runtime-only elements are present in the abstract
syntax. While intuitively this could be implemented by ex-
tending the operational semantics of DTCBDs as well, this
has several disadvantages. First, the operational semantics
would have to be mostly duplicated, as it is mostly identical
(e.g., topological sorting, algebraic loop detection, and iter-
ation), meaning that there is code duplication, resulting in
poor maintainability. Second, by mapping to DTCBDs, all
operations on DTCBDs can be reused, such as live modelling,
but also other techniques such as debugging. Third, the alge-
braic loop detection algorithm would have to be expanded
as well, as algebraic loops can also exist in CTCBDs, where
an integrator or derivator is part of the loop. By mapping
them to DTCBDs, all algebraic loop detection and resolution
algorithms can be reused as-is, without further additions.

Figure 7a presents a simple CTCBD model representing
the equations shown in Figure 7b. These equations model the
behaviour of a mass attached to a spring, which is going up
and down. Most important is the addition of the integrator
blocks, which were not possible in DTCBDs. When map-
ping this CTCBD to a DTCBD, the integrator blocks are
expanded to a discretized version of the integrator, for exam-
ple using the forward Euler approach. While both formalisms

y0

v0

k X

m X ∫ ∫1
x

g X +

-

v y

1

10

1

1

20

(a) Example CTCBD model.{
v(t) =

∫ t
0
m·g−k·y(t)

m
dt

y(t) =
∫ t
0
v(t)dt

(b) The equations represented by the example CTCBD model.

Fig. 7: Example CTCBD.
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?

t
0.1

?

0
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∫

?
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0 1
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3

∫?

?
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IC 2

Fig. 8: Expand rule for an integrator block.

1
x ?

1
x

?

k
x

k
x

1/k
1/x

0
1 2 3

4

0
1 2

5 6
4

Fig. 9: Optimize rule for an invertor block.

look similar, there is a non-trivial translation step between
them: discretization. Additionally, while discretizing, it is
possible to perform an optimization step for constant folding,
dead-block removal, and flattening [33]. Two example model
transformation rules are shown for expansion (Figure 8, map-
ping 1 CTCBD element to multiple DTCBD elements) and
optimization (Figure 9, mapping multiple CTCBD elements
to one DTCBD element).

The CTCBD formalism is an example with denotational
semantics: to execute the model, it is first translated to an
equivalent DTCBD (with respect to some properties), which
is then executed instead. It does not matter whether the target
formalism has breaking or non-breaking changes, or has
denotational semantics itself, as live modelling is assumed to
be supported for that formalism already. As such, we build
on top of the live modelling functionality that was developed
for our other running example.
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While we acknowledge that DTCBDs and CTCDBDs
look similar, there is a non-trivial n-to-n mapping between
both formalisms. Even though many concepts can be reused
between the two, the mapping exhibits most of the complex-
ities normally associated with traceability links in denota-
tional semantics.

4 Live Modelling

We start our approach to live modelling by deconstructing
the current process for live programming schematically, and
then generalize the concepts and processes to modelling. This
results in a general framework for live modelling, that can
be applied to any (domain-specific) modelling formalism.
Programming languages also fit this framework, as they can
themselves be seen as an executable modelling formalism.

4.1 Deconstructing Live Programming

The first step in our work is the deconstruction of the live
programming process. This process consists of artefacts (i.e.,
files or structures in memory) and modifications (i.e., opera-
tions on these artefacts). An overview is shown in Figure 10.

4.1.1 Artefacts

We distinguish three artefacts: code, instructions, and the
running program.

The code is the textual notation that represents a program,
created by the developer. Code is often persisted as a text file.
It is the only artefact programmers should edit; they should
not edit any subsequent (automatically generated) artefacts.
An example is a C++ source code file.

The instructions are the result of compiling the code.
Consisting of a set of instructions and data, which can be
interpreted by the machine. Execution-time concepts are not
yet considered: variables have no value, nor is there a cur-
rently executing line of code. The compiled program is only
an “intermediate” form: it is an optimized version of the orig-
inal code, and is easier to read for a computer. As part of
the compilation process, the program is instrumented with
extra information, such as mapping variables to registers.
An example is a compiled C++ program in ELF format. It
is important to note that these instructions are semantically
equivalent to the original code.

The running program is the actual program loaded in
memory, including its state. It is executed by the machine
and is very similar to the compiled program, but it includes
runtime information (the state). Multiple versions of the
same program can execute at the same time without shar-
ing state (i.e., memory): each program runs independently of
the others. Even when the instructions are changed (i.e., in

self-modifying code), these changes only take effect on the
running instance. Thus, program execution can be defined as
the continuous updating of the artefact itself. An example is
the memory used for executing an ELF file, encompassing
both the instructions and the execution data.

4.1.2 Operations

We distinguish five operations between these artefacts: com-
pilation, initialization, execution, modification, and merging.

Compilation (code to instructions) transforms a human-
readable piece of code to a machine-readable representation.
This process involves steps such as making implementation
decisions and register allocation. The generated machine
code remains semantically equivalent to the original code.

Initialization (instructions to running program) loads a
compiled program into memory and initializes its state at
the start of execution. Apart from initializing the state, the
machine code is copied to memory.

Execution (modification of running program) modifies
the program by changing the data, or by changing the instruc-
tions (self-modifying programs). Execution typically only
alters the state of the variables contained in the program.

Modification (modification of code) represents the changes
a user makes to the original source code artefact. Arbitrary
changes are supported, as long as the result is still a valid
instance of the original language (i.e., it can be compiled).

Merging (instructions and running program to a running
program) merges the state of a running program with an up-
dated set of instructions. The merge operation is specific to
live programming: the currently executed program is merged
with the updated instructions. Afterwards, the “new” program
resumes execution where the “old” program left off, thereby
replacing it. This can be seen as a generalization of the initial-
ization operation: as part of the merge, the state is initialized
for new instructions, while it is modified if instructions are
removed or updated. We therefore consider initialization a
merge with an “empty program”.

The live programming process is shown in Figure 10,
where we explicitly mention the type of artefacts for a spe-
cific scenario. That way, the signature of the operations be-
comes apparent. While live programming environments often
offer additional features for performance reasons, such as
incremental compilation, these are not functionally required.

4.2 Transposition to Modelling

Taking this diagrammatic process, we generalize to the do-
main of modelling. We port these concepts to the modelling
domain: instead of using programming languages and execu-
tion on actual machines, we make it platform-independent.
Whereas we used a language such as C++ before, we now as-
sume the artefacts as instances of a formalism. Our approach
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Fig. 10: Diagrammatic overview of live programming. Full
lines represent operations, dotted lines represent typing rela-
tions.

is a generalization: it can also be applied to programming lan-
guages, since they can be seen as a formalism. Their syntax
is defined in the language’s grammar (cf. metamodel), while
their semantics is defined by their mapping onto machine
code.

4.2.1 Artefacts

First, we transpose the artefacts, which gives us three kinds
of models: the design model (code), partial runtime model
(instructions), and full runtime model (running program).

The Design Model is the equivalent of the code. Similar
to code, it is the only artefact that the user can edit, and thus
also the one that is seen as the “master” copy of the program.
Our previous examples of an FSA, DTCBD, and CTCBD
model, presented in Figure 3, Figure 5a, and Figure 7a, re-
spectively, are expressed in the design language.

The Partial Runtime Model is the equivalent of the in-
structions. Similar to instructions, it has the same meaning
as the design model, though it might be pre-processed. If
operational semantics is defined for this formalism directly,
it can be seen as a retyping operation. In general, however,
the structure of both might vary significantly (as was the case
with C++ and ELF). In the FSA and DTCBD formalisms,
the partial runtime models are equivalent to the design mod-
els, since both formalisms have operational semantics. In
the CTCBD formalism, the partial runtime model differs, as
it is a model in the target formalism: DTCBDs. Figure 11
presents a discretized version of the original CTCBD model,
in the DTCBD formalism.

The (Full) Runtime Model is the equivalent of the run-
ning program. Similar to the running program, the full run-
time model is a copy of the partial runtime model, extended
with additional elements representing the execution state. In
Figure 12, the full runtime models of the running examples
are shown.

For FSAs (Figure 12a), a pointer to the current state is
added. In the figure, the model is currently in the detected
state. For execution, the model is updated by changing the
current state based on the input events received from the
environment.
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Fig. 11: The partial runtime model of the example CTCBD,
as an instance of the DTCBD formalism.

For DTCBDs (Figure 12b), more runtime information
is added, as they have a notion of time, represented by the
number of iterations. The time is incremented each time
an iteration is executed. Each iteration, the signal values are
(re)computed based on the new input values. For most blocks,
their output signal value only depends on their current input
values and hence they are stateless. One exception is the
delay block, whose output value depends on its input value
in the previous iteration. A mem runtime variable keeps track
of this value, which must be initialized as well.

For CTCBDs (Figure 12c), the situation is identical to
DTCBDs now, as the model was effectively translated to the
DTCBD domain.

4.2.2 Operations

Second, we transpose the various operations on these arte-
facts: retyping (compilation), simulation (execution), mod-
ification (modification), and sanitization (initialization and
merging).

The Retype operation is the equivalent of the compile
operation. Similar to compilation, it creates a semantically
equivalent copy of a model, while retyping it to a runtime
model. It does not necessarily have to be a trivial retyping,
as potentially the design and partial runtime model have a
slightly different structure (e.g., flattening hierarchy). Retyp-
ing is thus also responsible for making this translation. As
explained before, the partial runtime models for both the FSA
and DTCBD formalism do not contain additional informa-
tion. The retyping operation is therefore trivial in this case.
For CTCBDs, the retyping actually casts the model to a form-
alism for which semantics exists. This operation involves
discretization (one CTCBD element is mapped to multiple
DTCBD elements) and optimization (multiple CTCBD ele-
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Fig. 12: The full runtime models of the examples.

ments are mapped to one DTCBD element). After this dis-
cretization, however, the case becomes identical to DTCBDs
for the remainder of the live modelling process. In all cases,
traceability links are created between the various elements
to help in future operations. For example, in the FSA, the
design state is linked to the equivalent partial runtime state,
such that on subsequent operations, it is known that this state
has already been converted before, and therefore does not
need to be recreated again.

The Simulation operation is the equivalent of the execu-
tion operation. Simulation computes the next state of the full
runtime model and updates it in-place. For the FSA form-

alism, the next state of the model is computed by processing
an event from the environment, and executing an enabled
transition by changing the current state and (optionally) rais-
ing output events to the environment. For the DTCBD and
CTCBD formalism, there is no external input or output. The
next state of the model is computed by, for each block, com-
puting the output signal value based on its input values. This
requires detecting loops and solving them if they represent
a set of linear equations. For delay blocks, the output value
is equal to its value in memory (or the initial condition at
the first iteration when the memory value has not been set
yet). The memory value is overwritten by the current input
value of the delay block. At the end of computing the next
value of all blocks’ output signal values, the iteration counter
is incremented. As we are operating on models, and not on
generated code, we do not need to consider the technical
aspects of replacing executing code: the model is updated
in-place and the simulation algorithm picks up these changes
in the next step. Note, however, that the simulation algorithm
does not take care of initialization, as is usually the case.
Indeed, normally the first step of simulation is to initialize
variables, which is now unnecessary: all information is stored
and read out from the model itself. Some parts of the simula-
tion algorithm still need to be done, which are not related to
initialization of the model, but initialization of the simulation
algorithm, such as topological sorting for DTCBDs.

The Modification operation is the equivalent of the modi-
fication operation in programming. Similar to modification in
the programming domain, users can only modify the design
model. Since all other artefacts are automatically generated,
the design model is the only artefact they are familiar with.
While the user never edits the partial or full runtime mod-
els directly, the design model can be freely modified. As
usual, Create-Read-Update-Delete (CRUD) operations are
supported on the model. This boils down to Creating new
elements and attributes, Updating the values of attributes,
and Deleting elements and attributes. Note that reading does
not modify the model, and is therefore ignored.

To highlight the various types of changes, each formalism
has a different type of change. For the FSA formalism, users
can change the triggers on transitions, remove transitions,
create new states, and so on. A modified FSA design model
is shown in Figure 13a, where the detected state is removed
(Delete). For the DTCBD formalism, users can instantiate
new blocks, delete existing blocks, add or remove dependen-
cies, and so on. A modified DTCBD design model is shown
in Figure 14a, where the value of y(t) is multiplied by two,
thereby changing the algebraic loop (Create). For the CTCBD
formalism, users can instantiate new blocks (including the in-
tegrator and derivator), delete existing blocks, add or remove
dependencies, and so on. A modified CTCBD design model
is shown in Figure 15, where the gravitational constant is
altered (Update). For all formalisms, the design models must
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conform after the modifications. Note that different types
of operations were applied for each formalism: removing a
structural element in FSAs, creating several structural ele-
ments in DTCBDs, and changing a parameter in CTCBDs.
This highlights the various types of operations that can be
done on the design model, all of which are reflected in the
running simulation.

The Sanitization operation is the equivalent of the merge
operation. While it is indeed a merge operation, it was re-
named to sanitization to prevent confusion with the existing
term model merging [4]. The operation creates a full runtime
model from a (new) partial runtime model and an (old) full
runtime model. As the sanitization is domain-specific, it is
difficult to make general claims about this operation: it is
whatever the language engineer wants it to be. Nonetheless,
the sanitization function can be sure that both input models
will conform to their metamodel (which the language engi-
neer can define), and must ensure its output conforms to the
full runtime metamodel. Sanitization includes initialization
(where the runtime state is empty) and the live modelling
“merge”, where the runtime state is taken into account. As
discussed previously, sanitization is fundamental to live mod-
elling support, and as such, it is discussed in detail next. As
was the case with the retyping operation, sanitization makes
use of traceability links, linking elements from the partial
runtime to the full runtime. Traceability links are used to
correctly migrate the state of the full runtime model to the
right elements in the partial runtime model. For example, in
the FSA, a state in the partial runtime model without any
traceability link is considered to be a new element, while a
state in the full runtime model without a traceability link is
considered to be removed, possibly triggering a problematic
situation when this was the current state of the simulation.

4.2.3 Sanitization

The sanitization operation is largely dependent on the types of
changes to be merged (i.e., breaking or non-breaking), but re-
mains a formalism-specific operation. Therefore, a manually
defined version needs to be created for each new formalism.
Nonetheless, our decomposition has shown that this is the
only operation that needs to be added, in order to provide
live modelling for that formalism. Depending on how the
sanitization operation is implemented, any of the three types
of live modelling (i.e., none, recorded event, or real-time)
can be implemented. We leave open the medium in which
this operation is expressed (e.g., procedurally using code or
declaratively using model transformations). The presented
code snippets therefore do not restrict sanitization to a proce-
dural approach. In this subsection, we present the sanitization
operations for both types of state, using our running example:
the FSA, DTCBD, and CTCBD formalisms. For all three,
we present real-time live modelling. Note that, similar to live
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Fig. 13: Sanitization in FSAs.

programming, sanitization can only happen when the state is
consistent (i.e., inbetween two execution steps).

We have opted for an operational approach to define the
sanitization operation, mostly for didactic reasons. Another
approach would be denotational, for example through con-
straint solving. In that case, the models, metamodels, and all
semantics would have to be encoded in a constraint system.

Breaking Changes When breaking changes are possible, the
runtime model might have to be made conforming to its meta-
model again. For example, when users remove the current
state in the design model, the equivalent state in the runtime
model also has to be removed, thereby violating the con-
straint that the runtime model has exactly one current state.
In that case, a new state of the updated running system must
be defined. Changes to any other aspect of the design model
are irrelevant to the running system, and are just taken over.

Algorithm 3 The FSA sanitize operation.
function SANITIZEFSA(M new

P ,M old
F )

if isInitialized() then
currState← getCurrentState(M old

F )
if not currState ∈M new

P then
if automaticResolution then

currState← getInitialState(M new
P )

else
if disallowChange then

raise Exception
else

currState← userChoice(M new
P )

end if
end if

end if
else

currState← initializeState(M new
P )

end if
end function

Resolving this breaking change is the core task of the
sanitization operation. There are several options: reset the
current state to the initial state or pick the last known state
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Fig. 14: Sanitization in DTCBDs.

(automated, so resolvable), prompt the user for a new state
(manual, so non-resolvable), disallow the change completely
(disallow breaking changes), and so on. For the new design
model in Figure 13a and the old full runtime model in Fig-
ure 12a, the first two options are presented. Figure 13b shows
automatic resolution where, in this case, the system chooses
the initial state (the “idle” state) as the new current state.
Figure 13c shows manual resolution, where the user chooses
the “armed” state as the new current state. Figure 3 shows
the pseudocode of a sanitize operation for FSAs, allowing
for three different sanitization options.

Changes resulting in an undefined current state could also
be explicitly disallowed. We did not pursue the direction of
disallowing design model changes, as we explicitly want all
modifications to be possible.

Non-Breaking Changes. For non-breaking changes, any change
the user makes always reflects on a conforming runtime
model. In contrast to breaking changes, where resolution
is required, non-breaking changes don’t require significant
changes to the runtime model.

In our example DTCBD formalism, only operations on
the integrator, derivator, and delay blocks have any influence.
Since each block and connection has its own signal and mem-
ory, removing a block or connection only affects that specific
signal. In further simulation steps, however, the change will
of course have its effects on other elements as well, as it
propagates through the system. It is possible, however, to add
new parts to the state (i.e., add new blocks or connections) or
remove parts of the state.

When sanitizing, we take the structure from the partial
runtime model, which we augment with the runtime data
from the full runtime model. In the case of DTCBDs, the

Algorithm 4 The DTCBD sanitize operation.
function SANITIZECBD(M new

P ,M old
F )

for all block ∈M new
P do

if block ∈M old
F then

oldSignal← getSignal(M old
F , block)

setSignal(Mnew
P , block, oldSignal)

else
initializeSignal(M new

P , block)
end if

end for
if isInitialized() then

iterations← getNumberOfIterations(Mold
F )

setNumberOfIterations(M new
P , iterations)

else
initializeNumberOfIterations(M new

P )
end if

end function

runtime information consists of (1) the current simulation
time; and (2) the memory of delay blocks, derivators, and
integrators. Blocks that were not present in the full runtime
model are initialized as usual, since they are new. Blocks that
were present, however, have their state copied from the full
runtime model. The pseudocode of the sanitize operation for
DTCBDs is shown in Algorithm 4.

An example of sanitization is shown in Figure 14. In this
figure, we see the new design model in Figure 14a, and the
resulting full runtime model in Figure 14b. The full runtime
model consists of the structure of the partial runtime model,
combined with the values of the old full runtime model. In
this case, the value of the t variable (representing the current
iteration of the simulation), as well as the memory value of
the delay block, are copied.

Denotational Semantics. For denotational semantics, the san-
itization is done at the level of the target formalism, and will
therefore be any of the previously mentioned approaches.
Sanitization might require traceability information to be
present. This information links the various models to be
merged together, as indeed the source and target partial run-
time models can vary significantly. Using traceability links,
elements in different formalisms can be connected to their
equivalent counterparts. Some elements, such as the inte-
grator in CTCBDs, will have traceability links to multiple
elements in the DTCBD partial runtime model, as it was
expanded (1-to-n mapping). Other elements, such as a con-
stant block in CTCBDs, might have traceability links to a
shared element in the DTCBD partial runtime model, as it
was partially optimized away (n-to-1 mapping).

The sanitization process is completely identical to that
of operational semantics in terms of traceability information:
information is stored during retyping and sanitization, and is
subsequently used in the next sanitization phase to identify
equivalent elements. The only difference is that there is no
longer a 1-to-1 mapping, but an n-to-n mapping. Nonetheless,
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during all phases of live modelling, traceability links are still
created. Using this information, it is still possible to find
out which design element(s) was the source of the current
element in the full runtime model. As for each element in the
full runtime model the design element is known, it is possible
to find out which elements are identical and should have their
state copied.

No new sanitize operation is presented, as the DTCBD
sanitization operation is reused.

4.3 Live Modelling Process

An overview of the approach, for each case, is shown in Fig-
ure 16 for FSAs, in Figure 17 for DTCBDs, and in Figure 18
for CTCBDs.

More generally, Figure 19 shows an FTG+PM [23] model
describing both the different formalisms and processes of live
modelling for any formalism. The left side shows the Form-
alism Transformation Graph (FTG), describing the different
formalisms and the transformations between them. The right
side shows the Process Model (PM), describing the sequence
of operations done by the user and the data dependencies. It
includes the artefacts, how they are related, and the process
describing the (automatic or manual) operations. The sanitize
operation has a dual colour: it is mostly automatic, though it
can be manual for non-resolvable breaking changes, where
the user is prompted. In the PM, simulation and modifica-
tion run concurrently: modifications can be made throughout
simulation. This is typical for live modelling, in contrast to
the mostly linear development process of a single model in
ordinary modelling.

4.4 Relation to Multi-Paradigm Modelling

Our approach can be considered a Multi-Paradigm Modelling
(MPM) approach to live modelling for several reasons.

On the one hand, this approach builds on MPM, as it
requires all techniques that are present in MPM: language
engineering (e.g., for domain-specific modelling), activities
(e.g., for model transformations), and processes (e.g., for

enactment). Language engineering is required for the various
formalisms that are used by the approach: design metamodel,
partial runtime metamodel, and the full runtime metamodel.
All these formalisms must be created within the tool and
should have support for maintaining them. Activities are re-
quired to relate the various formalisms and models together,
thereby automatically applying the approach. Activities can
be implemented in different ways, such as through declara-
tive model transformations or a procedural action language,
and are executed to translate between the various models.
Processes are required to structure the approach, thereby
preventing it from being ad-hoc as the majority of other ap-
proaches to liveness. With support for enactment, it even
becomes possible to automatically perform the complete live
modelling approach. In conclusion, all relevant aspects of the
approach are modelled explicitly, as proposed by MPM.

On the other hand, this approach is desirable in an MPM
context, as MPM requires the use of the most appropriate
formalism(s) for a problem. The most appropriate formalism,
however, is likely to be domain-specific and have a rather
limited application domain. As such, the number of users of
these formalisms is small, making it hard to justify the effort
ordinarily required to make formalisms live. With the pro-
posed generic approach, formalisms can more easily be made
live with the addition of a “sanitize” operation, significantly
lowering the threshold to live modelling and increasing the
usability of the formalism. Increasing the usability of a form-
alism naturally makes the formalism more appropriate for its
use, thereby strengthening the MPM approach.

5 Implementation

To assess the feasibility of our approach, we implemented
live modelling for the three running examples. Our prototype
consists of a single visual modelling and simulation front-
end, in which multiple formalisms can be loaded, including
FSAs, DTCBDs, and CTCBDs. This front-end is unaware
of live modelling. All operations are defined in the Model-
verse [47], our Multi-Paradigm Modelling (MPM) tool. The
Modelverse implements all aspects of MPM [48], making it
possible to use all aspects of language engineering, model
transformations, and process modelling, as required by our
approach.

In our prototype tool, users start the live modelling pro-
cess relevant to the formalisms they want to use. The process
can be parameterized with an input model, which is the ini-
tial model. If no input model is provided, users start from
an empty model. Independent of the initial model, simula-
tion is always started anew, as only the design models are
stored. Enactment completely resembles the usual modelling
interface, but instead of only having a modelling window,
a simulation window is now also present. This simulation
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Fig. 17: Overview of our approach applied to a DTCBD model, including traceability links.

window is merely an external program that visualizes the
simulation results obtained.

Even during modelling, simulation is progressing, and
users will see that the simulation window is updated in real-
time. Changes made by the user are not immediately commit-
ted to the actual design model, as users might want to group a
set of operations together into a transaction. As soon as users
are satisfied with the design model, and wish to propagate the
changes to the running simulation, they commit the design
model. In our prototype implementation, committing can be
done by closing the modelling window. When the window is

closed, the manual “edit” activity is finished, and the process
enactment continues by stopping the current execution and
performing the required translations. Once these are com-
pleted, simulation is resumed and a new modelling window
is opened with the current version of the design model. Users
will immediately see that their simulation is resumed, but
now taking into account the new model.

For all the three examples presented below, the exact
same tool is used, with the exact same (parameterized) FTG+PM
model. Apart from the usual operations that have to be imple-
mented for any formalism (i.e., runtime metamodels, opera-
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Fig. 18: Overview of our approach applied to a CTCBD model. Only some interesting traceability links are shown.
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Fig. 19: Overview of our approach, as an FTG+PM model.

tional semantics, denotational semantics), only the sanitize
operation is new, and had to be defined for each formalism
individually. As for the visual interfaces, these are untouched
when implementing live modelling, as everything is based on
process enactment.

5.1 Finite State Automata

The implementation of our FSA live modelling environment
is shown in Figure 20. To the left, the modelling window is
shown, which contains a visual representation of the design
model. To the right, the simulation window is shown, which
is continuously updated with results from the running sim-
ulation. The trace shows the current state throughout time.
Although FSAs are untimed, input events can be raised by
the user through the simulation interface. The state of the
system is constant in between such events; the time plotted
on the x-axis is wall-clock time. The FSA model itself is
oblivious of the current time.

During exection, the current state (“idle”) is removed and
the new initial state is set to “armed”. Upon committing this
change, the model and trace is updated as shown in Figure 21.
It is shown that, upon making that change, sanitization sets
the new current state to the new initial state, which is “armed”
in this case. Note that there will always be a single initial state,
as this is part of the constraints imposed by the metamodel.
The history of the simulation is left as-is, since the history is
not rewritten with real-time live modelling. Nonetheless, the
current state has no effect on the result of sanitization.

5.2 Discrete Time Causal Block Diagrams

The implementation of our DTCBD live modelling environ-
ment is shown in Figure 22. It is similar to the FSA live
modelling environment, as they reuse a lot from the Model-
verse and our generic approach. Actually, the only difference
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Fig. 20: Live modelling for FSAs, before change.

Removed current state

New initial state

Change current state

Fig. 21: Live modelling for FSAs, after removing current state and setting new initial state.

related to live modelling is the sanitize operation. Of course,
the formalisms also differ, just like the simulation viewer,
though these are all independent of live modelling, and would
be required anyway, even without live modelling. In the sim-
ulation view, probed signals are plotted. It is possible for
signals to appear or disappear throughout simulation, when a
probe block is added or removed during simulation. This is a
design consideration of the simulation viewer if it wants to
support live modelling.

During execution, the algebraic loop is resolved and sets
both y and z to 1

2 . After some time, the algebraic loop in the
DTCBD model is extended with an additional multiplication
block and constant 2. The value for z now becomes the output
of the addition block, while the value for y becomes the result
of the multiplication block. After all elements are connected
and changes are committed, the trace is updated, as shown in
Figure 23. Again, the algebraic loop is solved transparently
to the user, resulting in a y value of 2

3 and a z value of 1
3

5.3 Continuous Time Causal Block Diagrams

The implementation of our CTCBD live modelling environ-
ment is shown in Figure 24. It is identical to the DTCBD
live modelling environment, but now we have access to the
derivator and integrator blocks. To the user, it is indistinguish-
able whether this live modelling functionality was provided
by using an operational or denotational semantics approach.
Similarly, the simulation viewer from DTCBDs is reused.

Up to time 60, the simulation executes the model shown
in Figure 24, showing the results on the trace in Figure 25.
We notice the harmonic oscillator behaviour that is expected
of such a system. At time 60, however, the CTCBD model is
altered by changing the value of constant g from 10 to 30, ef-
fectively being a sudden increase in gravitational force. This
has an immediate effect on the simulation trace, as shown
in Figure 25 after time 60: instead of having a decreasing
velocity, the velocity starts increasing again. Results stay con-
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Fig. 22: Live modelling for DTCBDs, before change.

New elements

Updated values

Fig. 23: Live modelling for DTCBDs, after adding and connecting the multiplication block.

tinuous, though a difference in behaviour is clearly observed
at the point in simulation where the change was made.

5.4 Discussion

Given that our generic tool could be used for three differ-
ent domain-specific formalisms, while all using the same
(parameterized) FTG+PM model, we believe our approach
to be applicable to a wide variety of modelling formalisms.
Indeed, our structured approach required no modification for
these three types of semantics, making us believe that it can
be applied for other formalisms as well. We can therefore
assume that our approach provides structure to the currently
ad-hoc process of making a formalism live.

Sanitization was the only activity that was further re-
quired; its logic was described in the previous sections. The
goal of the sanitization function is conceptually clear: com-
bine the currently executing model (with state information)
with an uninitialized runtime model. In the limit, this sani-
tization function can be seen as an advanced initialization
function, which can take an existing simulation model as
input. We can therefore assume that our approach can make
existing formalisms live with little additional work for the
language engineer.

As presented in this paper, the sanitization operations
are relatively small in size and easy to understand, but of
course these are still relatively simple example formalisms.
In our examples, the sanitization operation is actually rather
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Fig. 24: Implementation of live modelling for CTCBDs.

Fig. 25: Simulation trace, where the constant “g” is changed
at around time 63.

efficient as well, given its low time complexity. Note that per-
formance of the simulation is not impeded, as the simulation
activity in itself is not modified at all: it only pauses upon
changes, where the model has to be reloaded. This is partic-
ularly obvious with CTCBDs, where the translation is only
done once, and the execution stays at the level of DTCBDs.
As such, there is no negative impact on normal simulation
performance.

6 Related Work

Our contribution provides a formalism-neutral overview of
liveness, thus enabling liveness for domain-specific formalisms.
Two categories of related work exist: live programming and
(live) executable modelling.

In the live programming domain, the concept of live-
ness is well-studied. One of the most important distinctions
between different approaches is how they handle time: a dis-
tinction is made between real-time and recorded event [26].
In real-time mode, the past is left unaltered, and only future
executions of the code are influenced. This is often termed fix
and continue, as implemented by Lisp [38], Smalltalk [14],
Erlang [1], and SELF [44]. In recorded event, all past input
events are recorded and replayed, resulting in a completely
new history. This is implemented in languages such as Elm-
Script [9] and YinYang [26]. We only implement the real-
time live modelling approach, as recorded live modelling has
been shown not to be ideal for simulation [26]. Nonetheless,
further investigation into recorded event live modelling might
be interesting for other types of formalisms.

A lot of work is spent towards making live programming
usable. This requires research as to which representation is
most usable, such as textual or graphical formalisms [25,35,
15,11]. Therefore several kinds of formalisms have been
made live: graphical formalisms such as VIVA [43] and
Flogo [16], textual formalisms such as ElmScript [9] and
Smalltalk [14], and hybrid formalisms such as Subtext [11].
Our approach does not commit itself to textual, graphical, or
hybrid formalisms. It is implemented on the abstract syntax
of models, and does not require a specific visualization. If
required, our live simulator can be coupled to multiple inter-
faces, possibly with different representations (e.g., textual,
graphical).

Another important usability aspect of live programming
is the need for immediate feedback to the user [43], result-
ing in the need for effective visualization and tight latency
constraints [25,40]. Latency is considered harmful when it
becomes too large, with the threshold being defined some-
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where between 50ms [26] and 500ms [25]. For this reason,
a lot of work has focused on optimizing specific aspects, such
as incremental compilation [26] and code hotswapping [12].
Our framework focuses exclusively on the functional require-
ments of live modelling, without considering performance,
visualization, and so on. While these concerns are certainly
important, we consider them as future work.

Many challenges related to live modelling are tackled
only for specific cases or specific formalisms. An example
issue is the question how the state needs to be retained [12,
41], and what needs to be recomputed [6]. Making an exist-
ing programming language live is often done through ad-hoc
modifications, often turning liveness into a black art [5]. With
our approach, we provide an overview of the steps required
to make a formalism live. And while not fully automated,
since some domain information remains necessary, the ap-
proach becomes structured and easier for language engineers
to understand and implement.

In the modelling domain, the focus has primarily been on
the theoretical foundations of (meta-)modelling [20] and how
(domain-specific) modelling can help developers [18]. Nowa-
days, focus starts shifting to model execution [27] and debug-
ging [24]. And whereas model debugging is often formalism-
specific, such as for Causal Block Diagrams [50] and Parallel
DEVS [46], recently new approaches have been developed
that try to (partially) automate the addition of debugging
to formalisms [45]. Advanced tracing facilities for domain-
specific formalisms have been developed [3], which enable
omniscient, or backwards-in-time debugging [2]. Closer to
our approach is [42], in which the author explores how for-
malisms can be made live with “semantic deltas”. The system
is capable of translating source program modifications (so-
called deltas) to operations on the running code. While the
paper presents a prototype demonstrating the approach, it
does not present a structured way to add live modelling to
formalisms. Similarly, another approach is based on textual
differences [37], where existing textual difference algorithms
are leveraged to update the executing model. While that ap-
proach is also relatively generic, it focuses exclusively on
textual formalisms, and is only evaluated in the context of one
kind of finite state automaton. Since live modelling is rarely
implemented, or at best in an ad-hoc way, we contribute by
providing a general framework for merging liveness into ex-
isting modelling formalisms, paired with an implementation
for three example formalisms.

Similar to reflection and code hotswapping, the mod-
elling community is starting to acknowledge the existence
of models at runtime. These models, however, are mostly
used for self-managing systems [36,29], and do not directly
apply to live modelling. Specifically, models at runtime make
the changes internally, as a part of pre-defined, correct be-
haviour. Live modelling, on the other hand, makes changes
due to external operations, knowing that some part of the

model may be incorrect. Additionally, models at runtime
techniques are used to express dynamicly changing systems,
whereas live modelling is used for modifiable systems (e.g.,
for debugging or education). Due to this mismatch in applica-
tion domain, their requirements severely differ. For example,
models at runtime do not need to cope with changes at the
design model, but applies changes on the full runtime model,
rendering sanitization unnecessary.

Finally, model evolution [13], and in particular language
evolution, has similar challenges to code hotswapping. When
swapping code, but retaining the state, the old state might
not be understandable for the new code operating on it [12].
Similarly, language evolution tries to tackle the problem of
existing models not being updated after a language change.
Sanitization, as part of model co-evolution [28], tackles such
changes semi-automatically. Our sanitization approach is
similar, as we also need to adapt a model under execution to
an evolved design model.

7 Conclusion

In this paper, we have argued in favour of live modelling:
live programming transposed to modelling. Our framework
is based on a deconstructed process of live programming,
which was reconstructed for modelling. The reconstruction
process transposes operations on programming artefacts (e.g.,
compilation, initialization, and execution) to equivalent op-
erations on model artefacts. As we do not require specific
formalism features, our framework is applicable to many for-
malisms, including general-purpose programming languages
and domain-specific modelling formalisms. Using our ap-
proach, adding liveness to (domain-specific) modelling for-
malisms becomes more structured and reproducible, though
still necessarily manual. The effort of making a formalism
live is completely shifted to defining a sanitize operation,
with all previously defined operations remaining untouched.
Domain-specific modelling formalisms profit from this con-
tribution, as it becomes easier to add advanced concepts to
formalisms with a small user base. Due to the sheer number
of domain-specific modelling formalisms that we envision in
the near future, a structured approach will certainly help to
make them live.

As an example of our approach, we have applied this
framework to three formalisms: Finite State Automata (op-
erational semantics with breaking changes), Discrete Time
Causal Block Diagrams (operational semantics with non-
breaking changes), and Continuous Time Causal Block Di-
agrams (denotational semantics). All these modelling for-
malisms have distinct characteristics, demonstrating that our
approach is widely applicable. For each, a new sanitize ac-
tivity was defined, while reusing all other operations and
processes, which was sufficient to support live modelling.
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Further research is required to improve the performance
of our approach, as this was not an objective of this work.
There are two time-consuming operations in our approach:
the “retype” operation, which has to operate on the com-
plete model, and the “sanitize” operation. Incremental ap-
proaches to retyping might serve in the modelling community
to speed things up, particularly in combination with incre-
mental model transformations. The performance of the san-
itize operation depends significantly on the formalism, as
this might range from trivial (e.g., reset to the initial state)
to complex (e.g., use constraint satisfaction to find the new
state).

The combination of live modelling with other debugging
operations is another interesting direction, as these features
might interact with each other. For example, omniscient de-
bugging allows users to step back in time to inspect the state
before the bug manifests itself. In combination with live mod-
elling, this would require model changes to be taken into
account as well, thereby stepping not only through states, but
also through model structures.

Denotational semantics could possibly also be used to
map domain-specific formalisms onto a live programming
language, thereby making the model live, while relying on
existing live programming techniques.
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8. Chiş, A., Denker, M., Gı̂rba, T., Nierstrasz, O.: Practical domain-
specific debuggers using the Moldable Debugger framework. Com-
puter Languages, Systems & Structures 44(A), 89–113 (2015)

9. Czaplicki, E.: Elm: Concurrent FRP for functional GUIs.
https://www.seas.harvard.edu/sites/default/
files/files/archived/Czaplicki.pdf (2012)
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