
1

Early-Stage Analysis of Cyber-Physical Production

Systems through Collaborative Modelling

Mihai NEGHINA1, Constantin-Bala ZAMFIRESCU1, Ken PIERCE2

1
Lucian Blaga Univ. of Sibiu, Faculty of Engineering, Department of Computer Science and

Automatic Control, Bd. Victoriei nr.10, Sibiu, Zip code 550024, Romania
{mihai.neghina,zbcnanu}@gmail.com

2 School of Computing, Urban Sciences Building, Newcastle University, 1 Science Square,

Newcastle Helix, Newcastle upon Tyne, NE4 5TG, UK

kenneth.pierce@newcastle.ac.uk

Abstract. This paper demonstrates the flexible methodology of modelling Cyber-Physical Systems

(CPSs) using the INTO-CPS technology through co-simulation based on Functional Mock-up Units

(FMUs). It explores a novel method with two main co-simulation phases: homogeneous and

heterogeneous. In the first phase, high-level, abstract FMUs are produced for all subsystems using

a single discrete-event formalism (the VDM-RT language and Overture tool). This approach permits

early co-simulation of system-level behaviours and serves as a basis for dialogue between subsystem

teams and agreement on interfaces. During the second phase, model refinements of subsystems are

gradually introduced, using various simulation tools capable of exporting FMUs. This

heterogeneous phase permits high-fidelity models of all subsystems to be produced in appropriate

formalisms. This paper describes the use of this methodology to develop a USB stick production

line, representing a smart system of systems. The experiments are performed under the assumption

that the orders are received in a Gaussian or Uniform distribution. The focus is on the homogeneous

co-simulation phase, for which the method demonstrates two important roles: first, the homogeneous

phase identifies the right interaction protocols (signals) among the various subsystems, and second,

the conceptual (system-level) parameters identified before the heterogeneous co-simulation phase

reduces the huge size of the design space and creates stable constraints, later reflected in the physical

implementation.

Keywords: Co-Simulation, Cyber-physical Production Systems, Homogeneous and

Heterogeneous Modelling, Design Space Exploration

1. Introduction

In the development of truly complex Cyber-Physical Systems (CPS), a model-based

approach can be an efficient way to master system complexity through iterative and

incremental development. Such systems are often made in an ad hoc manner by combining

different CPSs without explicit and comprehensive coordination among the design teams,

whose expertise and engineering background are often limited to the domain of their

respective subsystem. These domains include their own focus, terminology and modelling

approaches. Engineers of physical systems often use continuous-time (CT) formalisms,

realised as differential equations, to produce high-fidelity simulation of physical

phenomena. Meanwhile, software engineers tend to adopt discrete-event (DE) formalisms,

focusing on the logical behaviours of control systems. To a large extent, these CPSs emerge

and evolve through iterative and incremental developments, from digital models through

multiple, costly physical prototypes where teams are unable to truly collaborate and design

2

faults found at a late stage are extremely costly. This paper provides insights from the

collaborative model-based design of a manufacturing system for assembling USB-OTG

(USB On-The-Go) sticks, developed in the iPP4CPPS innovation project [1], as a

representative example of a distributed and heterogeneous system in which the subsystems

are all cyber-physical in nature [2].

In our previous work [3], we illustrated how the co-simulation technology [4] can be used

to gradually increase the detail in a collaborative model (co-model) following a mixed

“discrete-event first” and “interface first” methodology [5]. The combination of these two

methodologies was needed to accommodate the specific co-simulation approaches with the

general and well-established methodologies for engineering manufacturing systems, such

as agent-oriented and component-based, used by the design teams.

The paper builds on that previous work [3], expanding significantly on the experience of

the design teams. While [3] focused on the digital design and validation of the CPS-based

manufacturing systems, giving a high-level view of the two main phases of development

(the homogeneous co-simulation phase and the heterogeneous co-simulation phase), this

experience report extends it by going into the details of the homogeneous co-simulation,

underlining not only what could be decided and refined at that stage, but also how the co-

simulation helped reduce the huge size of the design space by identifying optimal system-

level parameters that translate into stable constraints, reflected in the physical

implementation of the manufacturing system for the heterogeneous co-simulation.

The remaining part of this paper starts with a brief introduction of the methods for

generating discrete-event first models as part of the INTO-CPS technology [6][7] in Section

2. This is followed in Section 3 by the CPS development approach, with emphasis on the

necessity of having a homogeneous co-simulation phase, as well as underlining the specific

challenges of the subsystems that will be analysed with simulation experiments. Sections

4 and 5 provide the experimental setup, the most important experimental data, and

comparisons and interpretations of the experiment outcomes. Finally, Sections 6 and 7

discuss the implications and limitations of the approach from a methodological point of

view, and offer concluding remarks related to the final, balanced system parameters.

2. Discrete-Event First Modelling with INTO-CPS

This section introduces the main technologies used for building the initial models of the

homogeneous phase of development, including the INTO-CPS co-simulation technology

and the use of Discrete-Event first (DE-first) approach of generating DE models in

Overture [8]. This section also presents shortcomings in directly applying the workflow of

INTO-CPS and the motivation for an alternative approach.

3

2.1 The INTO-CPS technology

The INTO-CPS co-simulation technology is a collection of tools and methods that have

been linked to form a tool chain for model-based design of CPSs. The approach recognizes

the need for software, control and mechatronics engineers to collaborate in the design of

CPSs, while overcoming the fact they each domain has adopted its own formalisms and

vocabularies. Rather than suppress this diversity by requiring all disciplines adopt the same

general-purpose notation, INTO-CPS embraces this diversity by integrating the formalisms

at a semantic level [9][10][11][12][13], allowing engineers to collaborate using familiar

modelling techniques and methods.

Figure 1. General workflow of the INTO-CPS tool chain used for model-based design on CPSs

The overall workflow and services from the INTO-CPS tool chain are illustrated in Figure

1. The INTO-CPS tool chain is centred around co-simulation of heterogeneous models

using the Functional Mock-up Interface (FMI) standard [6]. The FMI standard allows

models from different tools and formalisms to be packaged as Functional Mock-up Units

(FMUs), which can be combined and analysed through co-simulation. Each FMU has a

model description that describes its interface and can be provided as a black-box to protect

Intellectual Property (IP) contained in the details of the model. INTO-CPS includes a co-

simulation engine, called Maestro [14], that fully implements version 2.0 of the FMI

standard and has been successfully tested with over thirty tools [6]. Around this co-

simulation core, the INTO-CPS tool chain links additional tools to support model-based

design throughout development. A Systems Modelling Language profile (also known as a

SysML profile) is provided and supported by the Modelio tool [15], allowing FMU model

descriptions to be captured and linked to requirements. The model descriptions can capture

both physical and cyber parts of the system, can be exported for use in modelling tools [16].

The profile also allows these descriptions of FMUs to configure co-simulations and other

forms of analysis supported by INTO-CPS.

4

Specific support for importing model descriptions and producing skeleton models is

provided by tools in the INTO-CPS tool chain: Overture [8], supporting DE modelling; 20-

sim [17] and OpenModelica [18], both supporting CT modelling. These tools also

guarantee export of FMUs, which can then be used in a co-simulation with Maestro [14].

FMU export is included in an increasing number of industry tools. During the heterogenous

co-simulation in the later stages of our case study we used 4DIAC [19], an open-source

tool for development of industrial control systems, and CATIA [20], an industry-standard

software suite for computer-aided design and manufacturing. Both are shown in their

respective positions within the INTO-CPS tool chain in Figure 1.

2.2 Initial Models

Given the workflow and tool chain described above, a natural step might be to follow it

directly: define a CPS model using the SysML profile; export model descriptions and

import them into the appropriate modelling tools; model the respective components and

behaviours in each; and finally generate FMUs and combine them for co-simulation.

This approach allows different teams to work on the constituent models separately,

however it can be prone to failure. It requires FMUs from all teams to be available before

integration testing through co-simulation can begin. If one or more teams are delayed, all

other teams will be delayed. This can also lead to late discovery of problems, which

collaborative modelling is designed to avoid. Similarly, if there is a single team producing

all FMUs sequentially, again co-simulation is delayed until later in the project.

A potential strategy to mitigate these risks is to have each team produce quick, initial

versions of FMUs as soon as they can and perform integration testing with these models.

The initial models can then be updated in an iterative manner towards more detailed

models, with each team able to move at its own pace, and with previous versions providing

fall-backs in the case of problems and baselines for regression testing. This approach might

be more difficult in some modelling paradigms however, where quick and simple models

might not function sufficiently well for testing.

We adopt a variation on this strategy in this paper, a DE-first approach. This involves the

same style of producing initial FMUs and replacing them as more detailed models become

available, but rather than using each individual formalism, a single DE formalism is used

for all initial models. In this way, a simple and abstract model of the whole system is made

and analysed within a DE modelling environment such as Overture. The behaviour of the

system and the interfaces and functions of the components can be sketched, and

assumptions tested at the beginning of the process. A DE formalism is selected because

these are designed to capture abstract and logical behaviours, often described in terms of

interfaces, and therefore well-suited to this task. Such a DE-first approach is described in

Fitzgerald et al. [21] (using two rather than many models).

5

2.3 Discrete-Event First with VDM-RT/Overture

In applying a DE-first approach to an FMI setting using Overture [8], the principles of the

Vienna Development Method (VDM) [22][23], a set of modelling techniques successfully

applied in both research and industrial application, have been followed. First, given a set

of model descriptions, possibly generated from a SysML model, a single VDM Real-Time

(VDM-RT) [24] project is created, containing: a class for each FMU, with port objects

corresponding to the interface given in the model description for the FMU; a main (system)

class that instantiates appropriate port objects and instances of each FMU class to which it

passes the ports; a world class that provides a method as an entry point for simulation by

starting the threads of the FMU objects and blocks until simulation is complete.

Figure 2 provides class and object diagrams and shows such a set up using two constituent

models, FMU1 and FMU2. Such a model can be simulated within Overture to see how the

FMUs behave and interact. Once sufficient confidence in these initial models is gained,

they can be exported individually as FMUs and integrated in a co-simulation.

Figure 2. Class diagram showing two simplified FMU classes created within a single VDM-RT

project, and an object diagram showing them being instantiated as a test.

The Overture FMI plug-in can then be used to export an FMU from each individual project

unit, these can then be combined in a co-simulation. These FMUs can be revised if

problems are found, then replaced with higher-fidelity models. The models could be

retained for later use and as a fall-back in case of future problems in integration.

6

3. The CPS development approach

The case study was developed as part of iPP4CPPS innovation project [1]. The ambition

of iPP4CPPS project was to contribute to the advancement of engineering methods and

tools employed in manufacturing CPS-based production systems by:

 Demonstrating the proper methodological steps for achieving a working

heterogeneous co-simulation (with units modelled in various dedicated tools) of a

relatively complex system that requires diverse and multidisciplinary teamwork;

 Extending the libraries and functionalities of the employed tools to cope with the

real industrial needs.

This section starts with a brief description of the production line case study. Then, the

particularities of the most important subsystems are discussed, to allow the identification

of the parameters analysed in the experiments. Finally, the general overview of the

development approach is given, with emphasis on the homogeneous co-simulation phase

that the paper is focused on.

3.1 Description of the case study

The case study concerned the manufacture of USB-OTG sticks (shown in Figure 3) as a

tractable but representative production line example. This production line has the classical

characteristics of a smart product, as defined by Mühlhäuser [25]:

 Situated: recognition of situational context, in terms of order identification,

availability of parts and slots, awareness of perturbations (e.g. vibrations) and

malfunctions, etc.;

 Personalized: personalization of USB-OTG sticks according to orders, as well as

the capability of handling cancellations and order modifications during the

production phase;

 Adaptive: adaptation of the line to the customer orders, for instance according to

order urgency and the level of perturbations (vibrations);

 Pro-active: anticipation of the production line owner intentions by restricting

functionality in certain conditions in order to minimize the risk of malfunctioning

or extending the testing in uncertain conditions of luminosity;

 Business-awareness: energy-efficient behaviour unless receiving special urgency

requests by the customers;

 Network capable: although not tested in this project, each production unit has

intrinsic communication capabilities with external products (including similar

production lines).

7

To capture the value-adding processes in Industry 4.0 [16][24][26][27], the case study

includes distinct subsystems to reflect order-placing users, as well as the required

infrastructure that enables the other CPSs to function properly.

Figure 3. Example of USB-OTG unit consisting of three component parts:

1) left cap; 2) middle (body) of the stick; 3) right cap

The subsystems identified as necessary for the case study and represented in Figure 4 (along

with the communication patterns between them) are:

 The Human-Machine-Interface (HMI), which is handling incoming orders, being

responsible for interpreting and transmitting them correctly to the Part Tracker;

 The Part Tracker, which is the infrastructure unit capable of communicating with

the HMI, capable of relaying the order information to the production system and

of gathering data on the status of any order received;

 The Warehouse, which assembles the USB-OTG sticks from the stored parts;

 The Robotic Arm capable of moving parts or assembled USB-OTG sticks;

 The Wagons, which are the transportation units between subsystems of the

production line;

 The Test Station, which is the processing station for checking the conformity to

order requirements.

Figure 4. Connections between subsystem models

8

Additionally, the simulation includes a dynamic 3D graphics unit (created in Unity) for

visualization purposes of the system’s dynamics, in both the homogeneous and

heterogeneous phase. Figure 5 shows the plant layout as depicted in the 3D rendering of

the simulation, as well as the demo stand with the physical units realized during the project.

The communication between units contains both simple (straightforward) messages,

requesting the setting of a certain value or indicating the current value or state of a

subsystem, as well as composed messages that need to be decoded and the information

extracted from them before that information can become useful. The purpose of the

composed messages is twofold: to ensure that certain bits of information arrive

simultaneously (as opposed to them coming on different message lines that may become

unsynchronised or for which further synchronisation logic might be needed) and to account

for the possibility of coded messages (that might be interesting in applications with

significant noise, where error correcting codes might become useful).

For instance, a request from the Part Tracker to the Wagons to assume a certain speed or

the feedback of the Wagon positions to the Part Tracker is done with straightforward

messages (the value requested) on dedicated lines (that only carry these types of messages

and nothing else). On the other hand, the order requests from the HMI to the Part Tracker

or their acknowledgement (feedback) contain multiple pieces of information in each.

Figure 5. Layout of the simulated

production line, as depicted in the Unity

rendering (above), and the physical demo

stand (left), containing:

1) the Warehouse stacks;

2) the Warehouse assembly box;

3) the Warehouse memory boxes;

4) the Robotic Arm;

5) the Wagons on the track;

6) the loading station;

7) the test station;

8) the circular track for the wagons.

9

3.2. The subsystems of the manufacturing plant

As the entire system and its constituent subsystems have been described in detail in [3], the

focus in this section is on the specifics of the implementations relevant to the analyses and

conclusions in later sections.

The Human-Machine-Interface (HMI) subsystem. The case study was provided with

two complementary implementations of the HMI unit, although they cannot be used both

at the same time. The 4DIAC+MQTT implementation is meant for gathering user heuristics

and allowing for real-time placement of orders. However, more useful for the current

analysis is the Overture (VDM-RT) implementation, which reads orders from a file. This

approach is both flexible and powerful. The flexibility stems from the possibility of creating

scenarios with various amounts of orders for covering statistical possibilities, while the

power comes from the repeatability of experiments. Having the same input file, the co-

simulation can be run with various parameters, ensuring that the same input orders come at

the same time, thus generating a detailed picture of the behaviour of the system in

controlled, repeatable experiments.

The Warehouse unit. The Warehouse assembles the USB-OTG sticks from the

component parts. As shown in Figure 6, it contains stacks for each type of component part,

an assembly box for the actual assembly of the items and memory boxes (with the same

number of slots available for each part type) for storing components that do not fit the

current order. The memory boxes may also be a source of component parts for new orders,

if the requested colour is available.

To simplify the analysis initially, the simulated Warehouse is considered to have an

unlimited number of parts in the stacks (there would be no need to re-fill the stacks at any

time). Also, the memory boxes would have the same size (or number of slots) for all part

types (left, middle and right). Upon receiving an assembly order, the Warehouse first looks

in the memory boxes for available parts of requested colours. If these do not exist, either

because the memory boxes are empty or filled with differently coloured parts, the

Warehouse drops the parts from the stacks. However, the parts in the stacks are not arranged

in any specific order. Unless it is a lucky hit, a dropped part has the wrong colour and would

need to be stored in the memory boxes (if a slot is available) or discarded for recycling (if

memory boxes are full). To keep a reasonable symmetry, all part types have the same range

of colours for the users to choose from. Up to eight colours can be selected; if a colour is

available for a component part, it is also available for all other component parts.

10

Figure 6. Mechanical design of the Warehouse, highlighting: 1) storage stacks; 2) actuators that

push available parts from the stack into the assembly tray; 3) the assembly tray; 4) memory boxes

with 11 slots per part type; 5) colour detection sensors; 6) pneumatic actuators for the assembly

The Wagons. The system has been restricted to having three transportation units (wagons),

but each of them has the capacity of carrying one or two assembled sticks from the loading

station (next to the Warehouse) to the Testing Station (close to the end user pick-up point).

As described in [3], it is assumed that the simulated wagons cannot overtake each other and

do not malfunction (e.g. fall off the tracks) in the current analysis. The mechanical design

of a double-capacity wagon is shown in Figure 7.

Figure 7. Mechanical design of a Wagon containing: 1) electronic board for control; 2) electronic

motoreductor; 3) drive wheel; 4) sensor for station detection; 5) driven wheels; 6) motor driver;

7) ultrasonic distance detectors; 8) slots for transporting sticks.

3.3 Phases of development

There are two distinct phases of development, as envisioned in the methodology described

in [3]: the digital model and the construction of the prototype and deployment (Table 1).

For the first phase, the agent-oriented approach was best suited to provide the most

adequate abstractions to design the conceptual model of the prototype by identifying its

main subsystem types (i.e. production machines, order, and factory infrastructure) and

define the interaction protocols among these subsystems. These types are well-established

in agent-based manufacturing control system [28] and are now part of the more complex

and abstract Reference Architecture Model Industry 4.0 [29]. While the first phase was

intended to determine how to build the prototype, in the second phase the prototype was

implemented in its final form. Therefore, each subsystem was developed in a specific

language and tool, suitable to the domain and expertise of the team, by following the

component-based approach to reach its concrete implementation. Table 2 shows the

correspondence between the subsystems and the adequately suited tool for implementing a

complete simulation, as well as the deployment devices considered.

11

Table 1. The general overview of development approach

Dev.

phase

Stages Goals

D
ig

it
al

 m
o

d
el

The requirements model:

a preliminary mechanical model of

the production demo (domain

description). It includes all the

mechanical components to store,

transport and assemble the USB-

OTG sticks. The identification of

the composite simulations from the

production system, together with

their roles and tasks, reflects the

most important component types of

the Reference Architecture Model

Industry 4.0: production machines,

order, and factory infrastructure.

 to identify the compositional structure of

the targeted co-simulation and the best-

suited model/simulation tool for each

component from the production demo;

 to facilitate a shared understanding among

the specialized teams engaged in

implementing the specific simulations.

The homogenous co-simulation

model: the high-level abstraction for

the behaviour of each simulation,

and the interactions among the

composite simulations as described

in the previous section. It includes

distinct simulations for each

component type: production (e.g.

warehouse station, robot,

transporting wagons, and testing

station), orders (e.g. placed via

mobile devices), and factory

infrastructure (e.g. part tracker).

 to validate the interaction protocols among

the composite simulations;

 to have an early working co-simulation

where the specific simulations may be

gradually added, tested and validated;

 to lessen the dependency among the

dispersed teams involved in modelling the

specific simulations;

 to cover the left-over parts of the co-

simulation that are not needed to be

modelled at a high-level of details (e.g. the

test station);

 to identify conceptual (system-level)

parameters that can be used at a later stage

as stable constraints in the design space

exploration for fine tuning.

C
o

n
st

ru
ct

io
n

 a
n

d
 d

ep
lo

y
m

en
t

The heterogeneous co-simulation

implementation model: the detailed

model of each simulation. It

includes both continuous-time (CT)

and discrete-event (DE) models in

various simulation tools (Table 2,

“technology” column).

 to simulate, test and validate from a

holistic perspective and with an increased

level of accuracy an entire system

 to generate code from the specialized

simulation tools of the different

subsystems for specific hardware

implementations

The deployment model: the units

modelled and tested by the

heterogeneous co-simulation have

been deployed in the demo stand for

fine tuning under real-life

conditions

(Table 2, “deployment” column).

 to extend the libraries (e.g. 20-sim and

4DIAC with specific sensors and

communication protocols) and

functionalities (e.g. INTO-CPS, Overture

with visualisation and code-generation

capabilities) of the employed tools to cope

with the real industrial needs

12

Table 2. The simulation technology and deployment infrastructure for each component

Type Unit Simulation

Technology

Deployment Device

Orders HMI 4DIAC + MQTT

Overture (VDM-RT)

Smartphones and tablets

Infrastructure Part Tracker Overture (VDM-RT) NVIDIA Tegra Jetson

Production Warehouse 20-sim Raspberry Pi with UniPi

Expansion Board +

Stäubli robot

Production Wagons 4DIAC Raspberry Pi controlling

DC motors, position

sensors and anti-collision

ultrasonic sensors.

Production Test Station 4DIAC

Camera for image

processing and actuators

connected to a Raspberry

Pi

Overview Unity Unity animation PC

The experimental results reported in this paper are related to the first phase of the

development (the digital model), more specifically the homogenous co-simulation. It is

important to emphasize that the VDM-RT models are not meant to be accurate in the

physical (mechanical / electrical) implementation sense. The VDM-RT models do not need

to have complete functionality for the homogeneous co-simulation, only the bare minimum

from which the communication lines between units and the system-level parameters can be

validated. The incompleteness of the VDM-RT models is related to details of the inner

workings of the components, not necessarily respecting all the constraints of reality.

Examples of incompleteness include randomly generating colours for USB-OTG parts in

the warehouse or randomly considering the test successful or unsuccessful in the Test

Station. Another example is breaking continuity: the physical Warehouse sequentially

drops coloured USB-OTG parts from stacks into the assembly box and instructs the Robotic

Arm to remove the parts if they do not fit the requested colour. When a cancellation occurs,

the physical Warehouse must instruct the Robotic Arm to remove all parts from the

assembly box (if they do not fit the next order) and then it can start dropping new parts

from the stacks. The simulated Warehouse generates random colours for the USB-OTG

parts and will immediately start generating new colours for the next order without

instructing the Robotic Arm to remove existing parts from the assembly box in case they

do not fit. Such aspects of the functionality are minor details with respect to the DE

13

modelling used for the abstract validation. The internal states however are all well-

established, along with the communication patterns and lines between modules, such that

the behaviour of the refined modules does not diverge substantially from the behaviour of

the abstract models. Once established, the communication lines and the types of data they

carry become hard constraints of the simulation that cannot be easily changed, but new

lines of communication could be added if necessary. For instance, new communication

lines have been added later in the development of the project, for transmitting (to the Part

Tracker) the level of vibration recorded by each subsystem.

Another advantage of having only VDM-RT models as the first stage of development is

the possibility of determining conceptual (system-level) parameters before the design space

exploration at the heterogeneous co-simulation stage. The identified parameters of the

production line can be grouped into two categories:

 Conceptual (system-level) parameters, which are independent of (or do not pose

any significant problems for) the physical implementation, such as the number of

colour choices available to the customers, the number of memory box slots in the

Warehouse or the carrying capacity of the wagons. These parameters are suited for

analysis during the homogeneous co-simulation stage.

 Physical (subsystem-level) parameters, which define the physical properties of the

components inside subsystems, such as the parameters of the pneumatic piston

used in the assembly tray of the Warehouse, mechanical and electrical parameters

for the Robotic Arm and Wagons, sensitivity of the sensors used in various parts

of the production line, etc. These parameters are suited for analysis during the

heterogeneous co-simulation stage.

The conceptual parameters can be determined sufficiently accurately even with the

incomplete simulation model. The number of colour choices available to the customers

may influence the stocks of parts required for a good functioning of the assembly line but

is not influencing the physical design in any way. The number of memory box slots and the

carrying capacity of the wagons influence the design of those units, but without increasing

the complexity of the mechanical design. Adding a few slots or a second indentation in the

upper surface of the wagon (for a second USB-OTG stick), although becoming hard

constraints for the heterogeneous simulation and implementation, poses no additional

mechanical difficulty compared to not adding them and therefore does not impact the future

stages of development. With these parameters determined beforehand, the design space

exploration at the heterogeneous stage is constrained and focused on identifying the

physical properties of the components that go into the mechanical, electrical and other

designs of the subsystems.

14

4. Experimental setup

Having a system covering all the important stages of a production line, from orders to

delivery, enabled us to set up two types of analysis scenarios:

 Analysis of the behaviour of the system when varying parameters external to the

system (exogenous parameters)

 Analysis and optimization of the system when varying parameters internal to the

system (endogenous parameters)

4.1 System setup

All simulated experiments have been run for 45000 time units, which correspond to 45000

seconds or 12.5 hours for the physical systems (although the simulation itself took about 6

hours for each experiment). The orders can be placed at any time within the initial 12 hours,

while the remaining 30 minutes were added to allow for the completion of the late or

postponed orders.

The track length is 100 units and the wagons report their positions every 10 seconds. There

are three speed options available to the customer: low (corresponding to the default cruising

speed of the wagons, 0.3 units of length per second), medium (0.7 units of length per

second) and high (1.1 units of length per second). On the considered track, the Warehouse

Waiting Room (loading station) is at position 10, and the Test Station is at position 80 of

the total length of 100 units. When loaded, the wagons attempt to keep the requested speed

as long as crashes are avoided, but on the return track (from the Test Station back to the

Loading Station), they revert to the default speed, considered most energy-efficient.

The exogenous parameters refer to the expected number and distribution of orders. Using

the Overture (VDM-RT) HMI allowed for a good control of both parameters. The orders

have been generated from the Uniform and Normal (Gaussian) distributions, shown in

Figure 8 (a). The Gaussian distribution is justified by the Central Limit Theorem when the

demand comes from many different independent or weakly dependent customers, whereas

the uniform distribution could be the result of orders coming from independent customers

at various time zones (or evenly populated meridians).

The number of orders over a 12-hour period was selected between 200 and 300 orders,

about half of which would be cancelled if the order does not reach the end user within 900

seconds (15 min) from the request. For the uniform distribution, the orders are expected to

come every 144s (for 300 orders) to 216s (for 200 orders) on average. The actual sets of

orders and their distribution, as generated with the Matlab random variable functions, are

shown in Figure 8.

15

(a) (b)

(c) (d)

Figure 8. Distribution probability functions (a) and histogram of orders for (b) 300, (c) 250 and

(d) 200 orders from the Gaussian (blue) and Uniform (orange) distributions.

Additionally, one order (an all-black stick with requested speed “low” and no cancellation)

is inserted in the list at the start, to initialise the system. These sets of orders are used to test

the load and overload of the production line. The other parameters of the orders are fixed:

 the colour choices are random from the discrete uniform distribution

 the speed options are also uniformly distributed (about a third of the orders contain

each option)

The endogenous parameters considered in the current analysis are:

 the number of available colours

 the size of the Warehouse memory box

 the transport capability of wagons

The description and reasonable experimental range of these parameters for the

homogeneous co-simulation is shown in Table 3. The best endogenous values chosen

according to the experiments detailed in the next section are marked in bold font.

16

Table 3. Parameters analysed in the homogenous co-simulation design space exploration

Parameter

Name

Type Description Experimental values

Number of

orders

Exogenous Number of orders received in an

interval of 12 hours

201, 251, 301

Distribution of

orders

Exogenous The distribution of order times

within the interval of 12 hours

Uniform, Gaussian

Colour choices Endogenous The number of colours available

for the users to choose from, for

each part of the USB-OTG stick

4, 6, 8

Memory box

size

Endogenous The number of memory box slots

in the Warehouse for each part

type

10, 25, 40, 50, 60

Wagons

capacity

Endogenous The number of slots available on

the wagons for transporting

assembled USB-OTG sticks to

the Test Station

1, 2

Available colours have been named generically based on the RGB interpretation of the

binary representation of the colour numbers, as shown in Table 4. The number of available

colours has been chosen between 4, 6 and 8, considering that fewer than 4 colours is not an

interesting test, and that more than 8 colours is impossible without re-defining the concrete

message encoding between subsystems. Having a maximum of 8 available colours (limited

due to the structure of the messages between HMI and Part Tracker, as well as between

Part Tracker and various other units such as the Warehouse and the Test Station), the

lowering of the colour set may have a positive impact on the time an order spends in the

Warehouse before being assembled. The size of the Warehouse memory box could also be

adjusted between 10 slots for each part type up to 60 slots for each part type. Unlike the

colours, the memory box size is internal to the Warehouse and can be adjusted freely.

However, large memory boxes may be impractical (may use a lot of space) or undesirable

by the producer.

Table 4. Generic colour names based on the binary representation of their number

Colour

Number

Binary

representation

Generic

Colour

Name

0 0 0 0 Black

1 0 0 1 Blue

2 0 1 0 Green

3 0 1 1 Cyan

4 1 0 0 Red

5 1 0 1 Magenta

6 1 1 0 Yellow

7 1 1 1 White

17

The transport capability of the wagons refers to the number of units that can be loaded on

a wagon. The capacity of each wagon can be maximum two sticks at a time. Of course,

wagons can still carry a single stick, if a second one is not readily available in the Waiting

Room next to the Warehouse. The testing time of the sticks in the Test Station is fixed to

16s per unit and the test result has a theoretical 2% probability of rejection, in which case

the order returns to the Warehouse for re-assembly.

4.2 Cost functions

The improvements of the setups have been quantified by the following cost functions which

would ideally all be at a minimum at the same time.

 CF0: Percentage of cancelled orders

 CF1: Average Lead Time,

 CF2: Number of discarded parts

The percentage of cancelled orders is the most important cost function from a practical

point of view in a real production line, since cancelled orders become unsold items. Only

about half of the orders have cancellation policies (if the order is not received in 900s from

submitting the request). Lead time is considered the length of time between the order

placement and the moment the system delivers the requested unit to the end user. The states

that a stick goes through before reaching the user are <ORDERED>, <WAREHOUSE>,

<WAITING_ROOM>, <WAGON>, <TEST_STATION>, <END_USER>, as shown in

Figure 9. Besides the lead time, the log files allow the computation of times spent in each

state. If the test station rejects a unit, the order returns in <ORDERED> state and the lead

time takes into account both assembly runs.

Figure 9. Lead time and its constituent intervals based on the time of reaching each stage

The number of parts discarded for recycling is an important indicator of both the

Warehouse lead time and the memory box overload. While these measures have been

computed separately, keeping the number of discarded parts low improves both.

Considering the transportation from the Warehouse to the test station, the user has the

option of requesting the speed of the wagons (low, medium or high), which the system does

its best to comply to. The average speed difference is computed as in equation 1, where the

mediation is performed over all transported units (excluding cancelled orders that did not

reach the wagons); 𝑣𝑟𝑒𝑎𝑙 is the speed of the transport between the loading and testing

station, computed based on the track length and arrival times; 𝑣𝑟𝑒𝑞 is the requested speed:

18

4.3 Data extracted from the log files

Each experiment is identified by the five parameters of Table 3. The important data

extracted from each experiment falls under one of the following categories:

- General experiment data, including the experiment inputs, number of cancelled and

successfully delivered orders, distribution of order parameters, etc.

- Time-related data, including minimum, maximum and average lead time and time

spent in each state, both in numerical and graphical form.

- Warehouse data, including the Warehouse memory box capacity and average load,

number of discarded pieces (overall, per colour, per side, etc.), lucky hits, both in

numerical and graphical form.

- Wagon data, including the capacity, average speed difference (compared to the

requested speed), both in numerical and graphical form.

All this data will be shown comparatively between experiments to highlight some

behaviours or improvements of the system.

5. Experimental Results

Even with the small number of system level parameters and choices for each parameter as

described in Table 8 (two exogenous: number and distribution of order, and three

endogenous: number of colour choices, size of memory boxes and wagon capacity), the

number of possible combinations is large (180). Therefore, a series of experiments has been

devised to arrive at the optimal parameters without running all combinations.

The first experiments focused on varying the exogenous parameters to identify when the

system is overloaded (or close to being overloaded), while the second set of experiments

aimed to improve the cost functions by sequentially improving the number of memory box

slots, wagon carrying capacity and number of available colours.

5.1 Analysis of the behaviour of the system when varying exogenous parameters

For the first round of experiments, the size of the memory box (10/25/40 slots) and the

external parameters (order distribution: uniform/Gaussian, and number of orders:

201/251/301) are varied to generate nine experiments per distribution. During these

experiments, the focus is on the external parameters, thus the memory box size is not varied

to the full extent. The uniform distribution experiments do not produce cancelled orders,

and the reason is revealed when analysing the histogram of order times in Figure 8. Even

with the highest number of orders tried, the Uniform distribution rarely goes over 14 orders

in 1500s (25 minutes), whereas the Gaussian distributions concentrate at least 20 orders in

the most loaded 25-minute timeslot, preceded and followed by other crowded timeslots.

19

The number of orders over the whole 12-hour experiment is therefore less indicative of the

number of cancellations than the load in the peak timeslots. The system can handle constant

flows of 10-15 orders per 25-minute timeslot, but when one timeslot goes over 20 orders,

the system is overloaded, and the delays pile up and negatively affect following orders.

Figure 10 shows the relation between the number of orders and the percentage of cancelled

orders in the case of the Gaussian distribution. The size of the Warehouse memory box

seems to have limited effect on this cost function.

Figure 10. Percentage of cancelled orders in the Gaussian distribution experiments

Referring to the lead time cost function, all experiments seem to have similar minimum

lead times (around 100s) stemming from the first orders received with high speed request,

very close to the theoretical minimum. Figure 11 show the average time the components

spend at each stage in graphical form. Memory box sizes have a limited influence on the

average time spent in the <ORDERED> and <WAREHOUSE> states.

(a) Gaussian distribution experiments (b) Uniform distribution experiments

Figure 11. Stacked average times spent by sticks at each stage of production

A more detailed insight into what is happening in the Warehouse can be gained by looking

at the memory box load and the number of parts discarded for recycling because of a lack

of memory space. Although all experiments have this information, Figure 12 shows the

evolution of the memory loads over time and discarded parts only for experiments with

Uniform and Gaussian distribution of 301 orders, eight available colours, 40 memory slots

and single carrying capacity of the wagons as illustrative examples for the conclusions. The

colours mark actual coloured parts, to express not only the load itself, but also the

distribution of colours for parts in the memory boxes at all times. Figure 13 shows the

evolution of discarded parts by colour in the respective colours, as well as the overall

evolution as stacked area. Even at 40 memory slots, the Warehouse box is filled rather

20

quickly once enough orders have been received. In the case of the Uniform distribution,

this happens earlier than for the Gaussian distribution. The uniform distribution generates

a more linear graph for the discarded parts because of the more evenly received orders,

whereas the Gaussian distribution exhibits a sharper increase in discarded parts once more

orders start coming in the middle of the time interval. The number of discarded parts is

comparable between the two distributions and is related only to the overall number of

orders and memory box size, as shown in Table 5.

(a) Gaussian distribution experiment (b) Uniform distribution experiment

Figure 12. Left / Middle / Right memory box loads

(a) Gaussian distribution experiment (b) Uniform distribution experiment

Figure 13. Evolution of left / middle / right parts discarded for recycling

Table 5. Number of discarded parts and average speed difference

Experiment

Parameters

Number of discarded

parts

Average speed difference

Number

Orders

Memory

Slots

Uniform

Distribution

Gaussian

Distribution

Uniform

Distribution

Gaussian

Distribution

201 10 1601 1834 -0.0677 -0.0736

201 25 772 569 -0.0732 -0.0679

201 40 362 396 -0.0740 -0.0664

251 10 2222 1781 -0.0701 -0.0623

251 25 1107 945 -0.0692 -0.0530

251 40 720 560 -0.0667 -0.0669

301 10 2674 2426 -0.0670 -0.0576

301 25 1336 1281 -0.0666 -0.0770

301 40 797 615 -0.0706 -0.0714

21

The average speed difference is computed between the real and requested speed of the

wagons on the part of the track between the loading station (next to the Warehouse) and

the test station. Not surprisingly, as shown in Table 5, the speed difference is quite close to

zero (the Wagon runs with an average speed close to the requested speed, albeit somewhat

slower) and is not varying significantly either with the distribution or with the Warehouse

parameters. Another observation is that the number of pieces transported by each wagon is

close to uniformity in all experiments. For instance, the uniform distribution experiment

has wagon A transport 34.5% of the sticks, wagon B transport 31.3% of the sticks and

wagon C transport 34.2% of the sticks and the Gaussian distribution experiment has wagon

A transport 33.7% of the sticks, wagon B transport 33.3% of the sticks and wagon C

transport 33.0% of the sticks. Wagon usage is therefore balanced. Since all wagons work

equally hard, no imbalance has yet been created due to the number of wagons. Although

not simulated, using three equally hard-working wagons certainly improves the lead time

over one or two wagons, which suggests that the minimum number of wagons chosen for

the production line should be three.

The conclusion of these experiments can be summarized as follows: the number of orders

is less important than the peak load, the size of the memory box has limited effect on the

cancellation percentage, the number of discarded parts is related only to the overall number

of orders and memory box size, and wagon usage is balanced. This demonstrates the benefit

of the homogeneous co-simulation. The next set of experiments is focused on investigating

the effect of the number of memory box slots on the discarded parts.

5.2 Analysis of the system when varying the number of memory box slots

The adjustment of the number of memory box slots makes more sense for the experiments

when the system is close to be overloaded by orders. The experiments shown in Figure 14

focus on the case that 301 orders are made, by varying the size of memory box and

observing the number of cancelled orders, the lead time and the number of discarded parts.

(a) (b) (c)

Figure 14. Evolution of (a) the percentage of cancelled orders, (b) the lead time in seconds and

(c) the number of discarded parts as a function of the memory box size, for 301 orders from the

Gaussian (blue) and Uniform (orange) distributions

22

The most important effect of increasing the memory box size is the reduction of discarded

parts (due to the memory box being large enough to usually hold enough samples of all

colours). However, even this effect is significantly diminishing for memory boxes with

more than 50 slots. The lead time is decreasing due to the lower time spent in or before the

Warehouse. But because the Warehouse time is less significant than the waiting time after

this stage (due to wagons being elsewhere on the track), the decrease in lead time is rather

mild. The number of cancelled orders is not affected as much by this setting, as all memory

box sizes over 10 reduce the cancelled order percentage by about 10%.

The conclusion for this set of experiments is therefore that the only significant cost function

decrease is the number of discarded parts, but even this improvement flattens for memory

box sizes larger than 50.

5.3 Analysis of the system when doubling the load capacity of the wagons

As seen in Figure 11, the most consuming time stage is the waiting for the wagons in the

Waiting Room next to the Warehouse. Table 6 compares the average lead time and the

average time spent in waiting for some experiments with 8 colours available and a memory

box size of 40 or 50, as well as the percentage of cancelled orders. In the table, Single

indicates that wagons can carry a single stick at a time, while Double indicates the doubling

of the capacity.

Table 6. Comparison of Single and Double wagon capacity results

Wagon

capacity:

Single Double Single Double Single Double Single Double

 Percentage of

cancellations

Average lead

time [s]

Average waiting

before Warehouse

Average Waiting

Room time [s]

Gaussian;

40 slots
20.9% 0.7 % 495.26 379.07 17.42 18.05 335.77 96.70

Gaussian;

50 slots
24.3% 0.0 % 478.31 330.07 6.45 14.60 343.39 116.31

Uniform;

40 slots
0.0 % 0.0 % 321.46 286.49 15.87 9.24 121.70 84.75

Uniform;

50 slots
0.0 % 0.0 % 296.57 288.56 7.75 10.21 113.38 88.25

The doubling of the wagon capacity reduces the lead time primarily by reducing the waiting

time after the Warehouse (to approximately a third) and therefore the average lead time is

reduced significantly enough for eliminating almost all cancellations. Doubling the

carrying capacity has no drawback and it can allow for lower sizes of the memory box to

achieve a low number of discarded parts, as will be tested in the next set of experiments.

23

5.4 Analysis of the system when varying the number of colours available to the user

Reducing the number of colours should have a beneficial effect on the lead time by

increasing the probability that a requested part is available in the memory boxes. The effect

of reducing the number of colours will be analysed in conjunction with the dimension of

the memory box, since both operations aim to improve the Warehouse time and reduce the

number of discarded parts. The point of interest for this set of analyses is the balance

between the two parameters, in the sense of identifying the amount by which the memory

box can be downsized when reducing the number of available colours.

Table 7 shows the lead time when both parameters (number of colours available to the user

and size of the memory box) are varied. The experiments use 301 orders, being the most

challenging attempts in their respective distributions, and double wagon capacity, since it

improves the cost functions with no drawback.

Table 7. Average lead time [s] and number of discarded parts for various combinations of

the number of available colours and the size of the memory box
Uniform

Distribution

Size of the memory box

50 slots 40 slots 25 slots 10 slots

N
u

m
b

e
r
 o

f
a

v
a

il
a

b
le

 c
o

lo
u

r
s 8

288.56s

691

parts

286.49s

625

parts

310.75s

1450

parts

360.56s

2696

parts

6
274.35s

216

parts

273.75s

325

parts

284.04s

758

parts

300.60s

1536

parts

4
260.31s

102

parts

266.11s

103

parts

263.60s

149

parts

289.67s

600

parts

Gaussian

Distribution

Size of the memory box

50 slots 40 slots 25 slots 10 slots

N
u

m
b

e
r
 o

f
a

v
a

il
a

b
le

 c
o

lo
u

r
s 8

330.07s

416

parts

379.07s

664

parts

387.12s

889

parts

450.46s

2065

parts

6
315.38s

171

parts

356.74s

180

parts

313.03s

544

parts

417.53s

1340

parts

4
293.20s

20 parts

332.17s

129

parts

309.54s

230

parts

319.22s

475

parts

For almost all experiments (except Gaussian distribution with a memory box of 10 slots),

at most 2 orders were not fulfilled, making the percentage of cancellations reasonable

(under 1%). Regarding the lead time, it is not significantly decreasing with a memory box

of 25 slots or more, regardless of the number of colours. The number of discarded parts

does not decrease as sharply starting with 40 slots in the memory box, while still being

higher for larger numbers of available colours. Therefore, a good balance is achieved when

using 6 colours and 40 slots. The average time the order spends at each stage for these

experiments is shown in Figure 15.

Figure 15. Stacked average times at each stage of production for the considered set of parameters

24

Table 8. Additional information about the experiments for the considered set of parameters

 General Information about the experiment Cost functions

U
n

if
o

rm
 d

is
tr

ib
u

ti
o

n
,
3
0

1
 o

rd
er

s,
 6

 c
o

lo
u

rs
,

4
0

 m
em

o
ry

 s
lo

ts
,
d

o
u

b
le

 c
ar

ry
in

g
 c

ap
ac

it
y

 Requested colours for the Left part:

Black 47 (15.6%), Blue 59 (19.6%), Green 62 (20.6%), Cyan 48 (15.9%), Red 40

(13.3%), Magenta 45 (15.0%), Yellow 0 (0.0%), White 0 (0.0%)

Requested colours for the Middle part:

Black 57 (18.9%), Blue 54 (17.9%), Green 45 (15.0%), Cyan 39 (13.0%), Red 52

(17.3%), Magenta 54 (17.9%), Yellow 0 (0.0%), White 0 (0.0%)

Requested colours for the Right part:

Black 58 (19.3%), Blue 43 (14.3%), Green 55 (18.3%), Cyan 51 (16.9%), Red 47

(15.6%), Magenta 47 (15.6%), Yellow 0 (0.0%), White 0 (0.0%)

Requested speeds: Low 90 (29.9%), Medium 114 (37.9%), High 97 (32.2%)

Number of pieces rejected at test station: 7 (2.33%)

Warehouse Memory Box average load: 73.4% L 75.3%, M 80.7%, R 64.1%

Warehouse Number of discarded pieces: 325 L 177, M 124, R 24

Warehouse Number lucky hit pieces: 241 L 89, M 86, R 66

CF0: cancelled orders

0 (0.0%)

CF1: lead time

Average: 273.75 s

Minimum: 102.00 s

Maximum: 834.00 s

CF2: discarded pieces

325 pieces

G
au

ss
ia

n
 d

is
tr

ib
.,

 3
0
1

 o
rd

er
s,

 6
 c

o
lo

u
rs

,

4
0

 m
em

o
ry

 s
lo

ts
,
d

o
u

b
le

 c
ar

ry
in

g
 c

ap
ac

it
y

 Requested colours for the Left part:

Black 44 (14.6%), Blue 66 (21.9%), Green 45 (15.0%), Cyan 41 (13.6%), Red 54

(17.9%), Magenta 51 (16.9%), Yellow 0 (0.0%), White 0 (0.0%)

Requested colours for the Middle part:

Black 49 (16.3%), Blue 52 (17.3%), Green 49 (16.3%), Cyan 50 (16.6%), Red 54

(17.9%), Magenta 47 (15.6%), Yellow 0 (0.0%), White 0 (0.0%)

Requested colours for the Right part:

Black 52 (17.3%), Blue 56 (18.6%), Green 47 (15.6%), Cyan 43 (14.3%), Red 50

(16.6%), Magenta 53 (17.6%), Yellow 0 (0.0%), White 0 (0.0%)

Requested speeds: Low 100 (33.2%), Medium 94 (31.2%), High 107 (35.5%)

Number of pieces rejected at test station: 7 (2.33%)

Warehouse Memory Box average load: 64.6% L 55.5%, M 72.9%, R 65.5%

Warehouse Number of discarded pieces: 180 L 17, M 97, R 66

Warehouse Number lucky hit pieces: 199 L 68, M 58, R 73

CF0: cancelled orders

0 (0.0%)

CF1: lead time

Average: 356.74 s

Minimum: 104.00 s

Maximum: 830.00 s

CF2: discarded pieces

180 pieces

Additional information given in Table 8 includes:

 the number and percentage of requested colours, almost uniformly distributed;

 requested speeds, about a third of the orders requesting each available speed;

 the number and percentage of pieces rejected at the test station;

 memory box average load, as well as the average loads for the boxes of each part;

 number of discarded pieces and lucky hits (totals as well as per part type);

 number and percentage of cancelled orders (0 for both experiments);

 minimum, maximum and average lead time.

Such information has been recorded for each experiment and the relevant data has been

presented directly or indirectly in graphical form throughout Section 5. However, Table 8

provides full statistics for the experiments with 301 orders (with Gaussian and uniform

distribution over time) and the chosen production line parameters (6 available colours, 40

memory slots, wagons with double carrying capacity).

25

6. Discussion

From the methodological standpoint the case study provides several insights from

employing the model-based approaches to build complex CPS-based manufacturing

systems. Complex co-simulations for production systems requires to rely on more mature

methodologies with relevant track-records in the domain, such as agent-oriented and

component-based. Even if both methodologies (agent-oriented and component-based)

promote the classical features of agile software development (iterative, incremental,

lightweight and collaborative) they use different abstractions that make them suitable to

describe either the conceptual or the implementation model. While the agent-oriented

approach provides the most adequate abstractions to design the conceptual model of the

co-simulation, some of its specifics make it difficult to implement in the available co-

simulation technology which is more related to component-based approaches. In our case

study we have used the agent-oriented approach to identify the subsystems and to structure

the messages among the specific co-simulation units, whilst its implementation is following

the component-based approach. This was needed for at least two reasons:

 The components’ meta-model does not have abstractions for the goals and

components can only use task delegation. In manufacturing systems there are

multiple conflicting objectives at both: system level (e.g. throughput, lead time,

work-in-progress, etc.) and individual level (e.g. energy consumption, degree of

utilization, slack time, etc.). The right balance among all these conflicting

objectives are unknown/underspecified and are usually discovered during the

design space exploration phase. Any predefined way of achieving a goal (task

delegation) may inhibit optimizations. While not tested in our case study, the

possibility to allow internal optimization is available in subsystems, for instance in

the warehouse or the test station. The warehouse receives information about the

requested colours of a USB-OTG stick, but it is not forced to look for the necessary

parts in any specific order. The VDM-RT implementation looks for parts in the

order Left Cap – Middle Part – Right Cap, sequentially, because of the bottleneck

of having a single Robotic Arm capable of moving parts to and from the memory

boxes. The usage of two Robotic Arms, for example, would introduce an

optimization problem where the Warehouse would have to decide which side to

start from. For the test station as well, in the case of the double carrying capacity

of the wagons, the messages from the Part Tracker indicate the two orders available

for testing at that instance, but not the order of testing them. Consequently, goal

delegation may be implemented in the current co-simulation technology.

26

 For agent-oriented approaches, the environment is a first-class abstraction that is a

structural part of an agent’s meta-model, while it is not part of a component’s meta-

model. In manufacturing the infrastructure is part of any referenced architecture

and therefore a special attention has been given to model and simulate the Part

Tracker. The interaction with the environment is different, agents can measure the

environment, while components can react to an event only by defining a relation

with it. Due to the initial requirements in our case study we have not tested the

possibility to react to state changes from the Part Tracker, but it would be feasible

to implement with the current co-simulation technology. For example, an

extension/improvement would be, in the case of multiple Warehouse units, to allow

the wagons to take the decisions themselves whether to wait longer in the loading

station of a particular Warehouse (even if there are no sticks currently in the

corresponding waiting room) or to leave the loading station, for another loading

station (for instance in case another wagon is close enough to the current loading

station). In this scenario, the wagon would acquire by itself the information about

the existence (or not) of ready USB-OTG sticks in the waiting rooms (e.g. by

enquiring the Part Tracker) and would have to be aware of the loading process,

would have to decide on which slot to place the sticks and would know when the

loading is complete (and the sticks are firmly placed in the wagon slots).

There are some recognizable benefits in using the two-phase methodology of the

development as described in this paper, compared to the current state of technology. The

most straightforward benefit is the possibility to simulate, test and validate (from a holistic

perspective and with an increased level of accuracy) an entire production system that needs

cross-functional expertise; in the past, these issues were tackled by experiential learning

from multiple sequential implementations of the automation component; in other words,

the co-simulation facilitates the adoption of agile software development principles for

factory automation. For example, the initial development of a homogeneous co-simulation

in VDM-RT for the iPP4CPPS prototype was particularly useful in driving cooperation and

clarifying the assumptions of the teams involved in modelling specific components. Once

the VDM-RT co-simulation was running, the independent developments of units were

integrated, validated and deployed when ready, since the methodology allowed for their

development in any order. Another benefit is the ability to handle unpredictable events (to

a certain extent). The use of co-simulations when designing an automated production

system avoids the build-up inertia of subsequent design constraints, facilitating the low and

late commitment for these decisions, like the specific microcontrollers or PLCs, as well as

allowing the change of modelling tools for any subsystem at any time during the project.

27

7. Concluding Remarks

The paper presented an experience report on employing the collaborative co-simulation to

design a complex CPS-based production system, focusing on the early-stage homogeneous

co-simulation. Each subsystem was first modelled abstractly in VDM-RT, using the

Overture tool. The goal of this homogeneous co-simulation was twofold: to identify the

right interaction protocols (signals) among the various components (stations) of the

prototype and to identify conceptual (system-level) parameters before the design space

exploration at the heterogeneous co-simulation step.

The experiments were performed under the assumptions that the orders are received in a

Gaussian or Uniform distribution over an interval of 12.5 hours, with balanced distributions

of colours for each side of the stick and balanced requested wagons speeds. Two types of

analysis have been performed:

 Analysis of the behaviour of the system when varying exogenous parameters, to

identify the maximum load that the system is capable of handling.

 Analysis and optimization of the system when varying endogenous parameters, to

find a balanced set of parameters.

The analysis on exogenous parameters revealed that, for eight available colours, reasonably

sized Warehouse memory boxes and single-unit capacity of the wagons, the system can

respond adequately for up to 20 orders per interval of 25 minutes. Doubling the wagon

carrying capacity (i.e. having two slots instead of one, for transporting sticks) improves the

system response also for intervals with a little over 25 orders per interval of 25 minutes.

The analysis on internal parameters allowed the balanced decision of making only six

colours available to the users and having a Warehouse memory box with 40 slots per side,

thus decreasing the number of parts discarded to recycling while at the same time keeping

a good memory box load level. These parameters, when taken into account, reduce by a

considerable amount the design space exploration at the heterogeneous stage, in effect

becoming system constraints for the heterogeneous simulation and the physical model.

Acknowledgements

This work is supported through the DiFiCIL project (contract no. 69/08.09.2016, ID P_37_771, web:

http://dificil.grants.ulbsibiu.ro) co-funded by ERDF through the Competitiveness Operational

Programme 2014-2020, iPP4CPPS project (Horizon 2020, grant agreement no.644400, experiment no.

16-UK-GERS-01) and Lucian Blaga University of Sibiu research grants LBUS-IRG-2018-04.

A special thanks goes to the other members of the iPP4CPPS project who have advanced the production

line beyond the homogeneous co-simulation, including P.G. Larsen, K. Lausdahl, C. Thule (Aarhus

University); V. Ruxandu, O. Savencu, R. Simedru, M. Neamtiu (Continental Automotive Systems Sibiu);

C. Kleijn (Controllab); J. Cabral, H. Pfeifer (Fortiss GmbH.); J. Fitzgerald, C. Gamble (Newcastle

University); B. Pirvu, A. Butean, S. Puscasu, R. Voju, D. Halati (Lucian Blaga University of Sibiu).

We would also like to express our gratitude to the anonymous reviewers for their positive comments, as

well as for their constructive criticism based on which we have endeavoured to improve the writing and

clarity of the paper.

http://dificil.grants.ulbsibiu.ro/

28

REFERENCES

1. iPP4CPPS, Integrated product-production co-simulation for cyber-physical production system,

accessed on September 2018 at http://centers.ulbsibiu.ro/incon/index.php/ipp4cpps/

2. Nof S.Y. (Ed.). Springer Handbook of Automation . Springer-Verlag, 2009. ISBN: 978-

3-540-78831-7

3. Neghina M., Zamfirescu C.B., Larsen P.G., Lausdahl K., Pierce K., Multi-Paradigm Discrete-

Event Modelling and Co-simulation of Cyber-Physical Systems, Studies in Informatics and

Control, ISSN 1220-1766, vol. 27(1), pp. 33-42, 2018.

4. Gomes C., Thule C., Broman D., Larsen PG., Vangheluwe H.: Co-simulation: A Survey, In

Sahni S. (Ed.): ACM Computing Surveys (CSUR), vol.51(3), art. no. 49, 2018

5. Pierce K., Wolff S., Verhoef M., Methods for Creating Co-models of Embedded Systems,

In Collaborative Design for Embedded Systems , Fitzgerald, J., Larsen, P.G., Verhoef, M.

(Eds.), p. 153-183 (2014), Springer Verlag, ISBN 978-3-642-54118-6

6. Blochwitz T.; Otter M.; Åkesson J.; Arnold M.; Clauss C.; Elmqvist H.; Friedrich M.;

Junghanns A.; Mauss J., Neumerkel D.; Olsson H.; Viel A: Functional Mockup Interface 2.0:

The Standard for Tool independent Exchange of Simulation Models, In: 9th International

Modelica Conference, p.173-184, Munchen (2012)

7. Larsen P.G., Fitzgerald J., Woodcock J., Gamble C., Payne R., Pierce K.: Features of

Integrated Model-based Co-modelling and Co-simulation Technology, CoSim-CPS

workshop organised in connection with the SEFM, Trento, Italy, September 2017.

8. Larsen P.G., Battle N., Ferreira M., Fitzgerald J., Lausdahl K., Verhoef M.: The Overture

Initiative – Integrating Tools for VDM. SIGSOFT Softw. Eng. Notes 35(1), 1–6 (2010)

9. Fitzgerald, J., Gamble, C., Larsen, P.G., Pierce, K., Woodcock, J.: Cyber-Physical Systems

design: Formal Foundations, Methods and Integrated Tool Chains. In: FormaliSE: FME

Workshop on Formal Methods in Software Engineering. ICSE 2015, Florence, Italy (May 2015)

10. Larsen P.G., Fitzgerald J., Woodcock J., Fritzson P., Brauer J., Kleijn C., Lecomte T., Pfeil M.,

Green O., Basagiannis S., Sadovykh A.: Integrated Tool Chain for Model-based Design of

Cyber-Physical Systems: The INTO-CPS Project. In: CPS Data Workshop. Vienna, (2016)

11. Larsen P.G., Fitzgerald J., Woodcock J., Lecomte T.: Trustworthy Cyber-Physical Systems

Engineering, Chapter 8: Collaborative Modelling and Simulation for Cyber-Physical

Systems. Chapman and Hall/CRC (September 2016), iSBN 9781498742450

12. Larsen P.G., Fitzgerald J., Woodcock J., Nilsson R., Gamble C., Foster S.: Towards

Semantically Integrated Models and Tools for Cyber-Physical Systems Design, pp. 171–

186. Springer International Publishing, Cham (2016)

13. Fitzgerald J., Gamble C., Payne R., Larsen P.G., Basagiannis S., Mady A.E.D.: Collaborative

Model-based Systems Engineering for Cyber-Physical Systems – a Case Study in Building

Automation. In: INCOSE 2016. Edinburgh, Scotland (2016)

14. INTO-CPS Maestro, accessed on September 2018, available at https://github.com/INTO-CPS-

Association/maestro

15. Modelio, accessed on September 2018, available at https://www.modelio.org/

16. Quadri I., Bagnato A., Brosse E., Sadovykh A.: Modeling Methodologies for CyberPhysical

Systems: Research Field Study on Inherent and Future Challenges. Ada User Journal

36(4), 246–253 (2015)

http://centers.ulbsibiu.ro/incon/index.php/ipp4cpps/
https://github.com/INTO-CPS-Association/maestro
https://github.com/INTO-CPS-Association/maestro
https://www.modelio.org/

29

17. Kleijn C.: Modelling and Simulation of Fluid Power Systems with 20-sim. Intl. Journal of

Fluid Power 7(3) (2006)

18. OpenModelica, accessed on September 2018, available at https://openmodelica.org/

19. Strasser T., Rooker M., Ebenhofer G., Zoitl A., Sunder C., Valentini A., Martel A.:

Framework for distributed industrial automation and control (4diac). In: 2008 6th IEEE

International Conference on Industrial Informatics. pp. 283–288 (2008)

20. Catia, accessed on September 2018, available at https://www.3ds.com/products-services/catia/

21. Fitzgerald J., Larsen PG., Verhoef M. (Eds.): Collaborative Design for Embedded Systems –

Co-modelling and Co-simulation. Springer (2014) ISBN 978-3-642-54117-9

22. Bjørner D.; Cliff B.J.: The Vienna Development Method: The Meta-Language, Lecture

Notes in CS 61. Berlin, Heidelberg, New York: Springer. (1978) ISBN 978-0-387-08766-5.

23. Fitzgerald J., Larsen P.G.: Modelling Systems: Practical Tools and Techniques in Software

Engineering. Cambridge University Press, (1998) ISBN 0-521-62348-0

24. Verhoef M., Larsen P.G., Hooman J.: Modeling and Validating Distributed Embedded

RealTime Systems with VDM++. In: Misra, J., Nipkow, T., Sekerinski, E. (eds.) FM 2006:

Formal Methods. pp. 147–162. Lecture Notes in CS 4085, Springer-Verlag (2006)

25. Mühlhäuser M.: Smart Products: An Introduction, in Constructing Ambient Intelligence,

Mühlhäuser M., Ferscha A., Aitenbich E. (Eds.) Springer Berlin Heidelberg, pp. 158-164 (2008)

26. Zamfirescu, C.B., Parvu, B.C., Schlick, J., Zühlke, D.: Preliminary Insides for an

Anthropocentric Cyber-physical Reference Architecture of the Smart Factory, Studies in

Informatics and Control, vol. 22 (3), pp. 269-278, 2013

27. Hermann M., Pentek T., Otto B.: Design Principles for Industrie 4.0 Scenarios. In: 2016 49th

Hawaii International Conference on System Sciences (HICSS). pp. 3928–3937

28. Leitão P., Karnouskos S. (Eds.).: Industrial Agents. Emerging Applications of Software

Agents in Industry. Elsevier, 2015

29. Referenzarchitekturmodell Industrie 4.0 (RAMI4.0), DIN SPEC 91345:2016-04, available

at https://www.plattform-i40.de/I40/Redaktion/DE/Downloads/Publikation/din-spec-rami40.html

https://openmodelica.org/
https://www.3ds.com/products-services/catia/
https://www.plattform-i40.de/I40/Redaktion/DE/Downloads/Publikation/din-spec-rami40.html

