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Abstract. This paper demonstrates the flexible methodology of modelling Cyber-Physical Systems 

(CPSs) using the INTO-CPS technology through co-simulation based on Functional Mock-up Units 

(FMUs). It explores a novel method with two main co-simulation phases: homogeneous and 

heterogeneous. In the first phase, high-level, abstract FMUs are produced for all subsystems using 

a single discrete-event formalism (the VDM-RT language and Overture tool). This approach permits 

early co-simulation of system-level behaviours and serves as a basis for dialogue between subsystem 

teams and agreement on interfaces. During the second phase, model refinements of subsystems are 

gradually introduced, using various simulation tools capable of exporting FMUs. This 

heterogeneous phase permits high-fidelity models of all subsystems to be produced in appropriate 

formalisms. This paper describes the use of this methodology to develop a USB stick production 

line, representing a smart system of systems. The experiments are performed under the assumption 

that the orders are received in a Gaussian or Uniform distribution. The focus is on the homogeneous 

co-simulation phase, for which the method demonstrates two important roles: first, the homogeneous 

phase identifies the right interaction protocols (signals) among the various subsystems, and second, 

the conceptual (system-level) parameters identified before the heterogeneous co-simulation phase 

reduces the huge size of the design space and creates stable constraints, later reflected in the physical 

implementation.  

Keywords: Co-Simulation, Cyber-physical Production Systems, Homogeneous and 

Heterogeneous Modelling, Design Space Exploration 

1. Introduction 

In the development of truly complex Cyber-Physical Systems (CPS), a model-based 

approach can be an efficient way to master system complexity through iterative and 

incremental development. Such systems are often made in an ad hoc manner by combining 

different CPSs without explicit and comprehensive coordination among the design teams, 

whose expertise and engineering background are often limited to the domain of their 

respective subsystem. These domains include their own focus, terminology and modelling 

approaches. Engineers of physical systems often use continuous-time (CT) formalisms, 

realised as differential equations, to produce high-fidelity simulation of physical 

phenomena. Meanwhile, software engineers tend to adopt discrete-event (DE) formalisms, 

focusing on the logical behaviours of control systems. To a large extent, these CPSs emerge 

and evolve through iterative and incremental developments, from digital models through 

multiple, costly physical prototypes where teams are unable to truly collaborate and design 
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faults found at a late stage are extremely costly. This paper provides insights from the 

collaborative model-based design of a manufacturing system for assembling USB-OTG 

(USB On-The-Go) sticks, developed in the iPP4CPPS innovation project [1], as a 

representative example of a distributed and heterogeneous system in which the subsystems 

are all cyber-physical in nature [2].  

In our previous work [3], we illustrated how the co-simulation technology [4] can be used 

to gradually increase the detail in a collaborative model (co-model) following a mixed 

“discrete-event first” and “interface first” methodology [5]. The combination of these two 

methodologies was needed to accommodate the specific co-simulation approaches with the 

general and well-established methodologies for engineering manufacturing systems, such 

as agent-oriented and component-based, used by the design teams.   

The paper builds on that previous work [3], expanding significantly on the experience of 

the design teams. While [3] focused on the digital design and validation of the CPS-based 

manufacturing systems, giving a high-level view of the two main phases of development 

(the homogeneous co-simulation phase and the heterogeneous co-simulation phase), this 

experience report extends it by going into the details of the homogeneous co-simulation, 

underlining not only what could be decided and refined at that stage, but also how the co-

simulation helped reduce the huge size of the design space by identifying optimal system-

level parameters that translate into stable constraints, reflected in the physical 

implementation of the manufacturing system for the heterogeneous co-simulation. 

The remaining part of this paper starts with a brief introduction of the methods for 

generating discrete-event first models as part of the INTO-CPS technology [6][7] in Section 

2. This is followed in Section 3 by the CPS development approach, with emphasis on the 

necessity of having a homogeneous co-simulation phase, as well as underlining the specific 

challenges of the subsystems that will be analysed with simulation experiments. Sections 

4 and 5 provide the experimental setup, the most important experimental data, and 

comparisons and interpretations of the experiment outcomes. Finally, Sections 6 and 7 

discuss the implications and limitations of the approach from a methodological point of 

view, and offer concluding remarks related to the final, balanced system parameters.   

2. Discrete-Event First Modelling with INTO-CPS  

This section introduces the main technologies used for building the initial models of the 

homogeneous phase of development, including the INTO-CPS co-simulation technology 

and the use of Discrete-Event first (DE-first) approach of generating DE models in 

Overture [8]. This section also presents shortcomings in directly applying the workflow of 

INTO-CPS and the motivation for an alternative approach. 
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2.1 The INTO-CPS technology 

The INTO-CPS co-simulation technology is a collection of tools and methods that have 

been linked to form a tool chain for model-based design of CPSs. The approach recognizes 

the need for software, control and mechatronics engineers to collaborate in the design of 

CPSs, while overcoming the fact they each domain has adopted its own formalisms and 

vocabularies. Rather than suppress this diversity by requiring all disciplines adopt the same 

general-purpose notation, INTO-CPS embraces this diversity by integrating the formalisms 

at a semantic level [9][10][11][12][13], allowing engineers to collaborate using familiar 

modelling techniques and methods. 

 

Figure 1. General workflow of the INTO-CPS tool chain used for model-based design on CPSs 

 

The overall workflow and services from the INTO-CPS tool chain are illustrated in Figure 

1. The INTO-CPS tool chain is centred around co-simulation of heterogeneous models 

using the Functional Mock-up Interface (FMI) standard [6]. The FMI standard allows 

models from different tools and formalisms to be packaged as Functional Mock-up Units 

(FMUs), which can be combined and analysed through co-simulation. Each FMU has a 

model description that describes its interface and can be provided as a black-box to protect  

Intellectual Property (IP) contained in the details of the model. INTO-CPS includes a co-

simulation engine, called Maestro [14], that fully implements version 2.0 of the FMI 

standard and has been successfully tested with over thirty tools [6]. Around this co-

simulation core, the INTO-CPS tool chain links additional tools to support model-based 

design throughout development. A Systems Modelling Language profile (also known as a 

SysML profile) is provided and supported by the Modelio tool [15], allowing FMU model 

descriptions to be captured and linked to requirements. The model descriptions can capture 

both physical and cyber parts of the system, can be exported for use in modelling tools [16]. 

The profile also allows these descriptions of FMUs to configure co-simulations and other 

forms of analysis supported by INTO-CPS.  
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Specific support for importing model descriptions and producing skeleton models is 

provided by tools in the INTO-CPS tool chain: Overture [8], supporting DE modelling;  20-

sim [17] and OpenModelica [18], both supporting CT modelling. These tools also 

guarantee export of FMUs, which can then be used in a co-simulation with Maestro [14]. 

FMU export is included in an increasing number of industry tools. During the heterogenous 

co-simulation in the later stages of our case study we used 4DIAC [19], an open-source 

tool for development of industrial control systems, and CATIA [20], an industry-standard 

software suite for computer-aided design and manufacturing. Both are shown in their 

respective positions within the INTO-CPS tool chain in Figure 1. 

2.2 Initial Models 

Given the workflow and tool chain described above, a natural step might be to follow it 

directly: define a CPS model using the SysML profile; export model descriptions and 

import them into the appropriate modelling tools; model the respective components and 

behaviours in each; and finally generate FMUs and combine them for co-simulation.  

This approach allows different teams to work on the constituent models separately, 

however it can be prone to failure. It requires FMUs from all teams to be available before 

integration testing through co-simulation can begin. If one or more teams are delayed, all 

other teams will be delayed. This can also lead to late discovery of problems, which 

collaborative modelling is designed to avoid. Similarly, if there is a single team producing 

all FMUs sequentially, again co-simulation is delayed until later in the project.  

A potential strategy to mitigate these risks is to have each team produce quick, initial 

versions of FMUs as soon as they can and perform integration testing with these models. 

The initial models can then be updated in an iterative manner towards more detailed 

models, with each team able to move at its own pace, and with previous versions providing 

fall-backs in the case of problems and baselines for regression testing. This approach might 

be more difficult in some modelling paradigms however, where quick and simple models 

might not function sufficiently well for testing.  

We adopt a variation on this strategy in this paper, a DE-first approach. This involves the 

same style of producing initial FMUs and replacing them as more detailed models become 

available, but rather than using each individual formalism, a single DE formalism is used 

for all initial models. In this way, a simple and abstract model of the whole system is made 

and analysed within a DE modelling environment such as Overture. The behaviour of the 

system and the interfaces and functions of the components can be sketched, and 

assumptions tested at the beginning of the process. A DE formalism is selected because 

these are designed to capture abstract and logical behaviours, often described in terms of 

interfaces, and therefore well-suited to this task. Such a DE-first approach is described in 

Fitzgerald et al. [21] (using two rather than many models).  
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2.3 Discrete-Event First with VDM-RT/Overture 

In applying a DE-first approach to an FMI setting using Overture [8], the principles of the 

Vienna Development Method (VDM) [22][23], a set of modelling techniques successfully 

applied in both research and industrial application, have been followed. First, given a set 

of model descriptions, possibly generated from a SysML model, a single VDM Real-Time 

(VDM-RT) [24] project is created, containing: a class for each FMU, with port objects 

corresponding to the interface given in the model description for the FMU; a main (system) 

class that instantiates appropriate port objects and instances of each FMU class to which it 

passes the ports; a world class that provides a method as an entry point for simulation by 

starting the threads of the FMU objects and blocks until simulation is complete. 

Figure 2 provides class and object diagrams and shows such a set up using two constituent 

models, FMU1 and FMU2. Such a model can be simulated within Overture to see how the 

FMUs behave and interact. Once sufficient confidence in these initial models is gained, 

they can be exported individually as FMUs and integrated in a co-simulation. 

 

  

 
Figure 2. Class diagram showing two simplified FMU classes created within a single VDM-RT 

project, and an object diagram showing them being instantiated as a test. 

 

The Overture FMI plug-in can then be used to export an FMU from each individual project 

unit, these can then be combined in a co-simulation. These FMUs can be revised if 

problems are found, then replaced with higher-fidelity models. The models could be 

retained for later use and as a fall-back in case of future problems in integration. 
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3. The CPS development approach 

The case study was developed as part of iPP4CPPS innovation project [1]. The ambition 

of iPP4CPPS project was to contribute to the advancement of engineering methods and 

tools employed in manufacturing CPS-based production systems by:  

 Demonstrating the proper methodological steps for achieving a working 

heterogeneous co-simulation (with units modelled in various dedicated tools) of a 

relatively complex system that requires diverse and multidisciplinary teamwork;   

 Extending the libraries and functionalities of the employed tools to cope with the 

real industrial needs.  

This section starts with a brief description of the production line case study. Then, the 

particularities of the most important subsystems are discussed, to allow the identification 

of the parameters analysed in the experiments. Finally, the general overview of the 

development approach is given, with emphasis on the homogeneous co-simulation phase 

that the paper is focused on. 

3.1 Description of the case study 

The case study concerned the manufacture of USB-OTG sticks (shown in Figure 3) as a 

tractable but representative production line example. This production line has the classical 

characteristics of a smart product, as defined by Mühlhäuser [25]: 

 Situated: recognition of situational context, in terms of order identification, 

availability of parts and slots, awareness of perturbations (e.g. vibrations) and 

malfunctions, etc.; 

 Personalized: personalization of USB-OTG sticks according to orders, as well as 

the capability of handling cancellations and order modifications during the 

production phase; 

 Adaptive: adaptation of the line to the customer orders, for instance according to 

order urgency and the level of perturbations (vibrations); 

 Pro-active: anticipation of the production line owner intentions by restricting 

functionality in certain conditions in order to minimize the risk of malfunctioning 

or extending the testing in uncertain conditions of luminosity; 

 Business-awareness: energy-efficient behaviour unless receiving special urgency 

requests by the customers; 

 Network capable: although not tested in this project, each production unit has 

intrinsic communication capabilities with external products (including similar 

production lines). 
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To capture the value-adding processes in Industry 4.0 [16][24][26][27], the case study 

includes distinct subsystems to reflect order-placing users, as well as the required 

infrastructure that enables the other CPSs to function properly. 

 
Figure 3. Example of USB-OTG unit consisting of three component parts:  

1) left cap; 2) middle (body) of the stick; 3) right cap 

  

The subsystems identified as necessary for the case study and represented in Figure 4 (along 

with the communication patterns between them) are: 

 The Human-Machine-Interface (HMI), which is handling incoming orders, being 

responsible for interpreting and transmitting them correctly to the Part Tracker; 

 The Part Tracker, which is the infrastructure unit capable of communicating with 

the HMI, capable of relaying the order information to the production system and 

of gathering data on the status of any order received; 

 The Warehouse, which assembles the USB-OTG sticks from the stored parts; 

 The Robotic Arm capable of moving parts or assembled USB-OTG sticks; 

 The Wagons, which are the transportation units between subsystems of the 

production line; 

 The Test Station, which is the processing station for checking the conformity to 

order requirements. 

 

Figure 4. Connections between subsystem models 
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Additionally, the simulation includes a dynamic 3D graphics unit (created in Unity) for 

visualization purposes of the system’s dynamics, in both the homogeneous and 

heterogeneous phase. Figure 5 shows the plant layout as depicted in the 3D rendering of 

the simulation, as well as the demo stand with the physical units realized during the project. 

The communication between units contains both simple (straightforward) messages, 

requesting the setting of a certain value or indicating the current value or state of a 

subsystem, as well as composed messages that need to be decoded and the information 

extracted from them before that information can become useful. The purpose of the 

composed messages is twofold: to ensure that certain bits of information arrive 

simultaneously (as opposed to them coming on different message lines that may become 

unsynchronised or for which further synchronisation logic might be needed) and to account 

for the possibility of coded messages (that might be interesting in applications with 

significant noise, where error correcting codes might become useful). 

For instance, a request from the Part Tracker to the Wagons to assume a certain speed or 

the feedback of the Wagon positions to the Part Tracker is done with straightforward 

messages (the value requested) on dedicated lines (that only carry these types of messages 

and nothing else). On the other hand, the order requests from the HMI to the Part Tracker 

or their acknowledgement (feedback) contain multiple pieces of information in each.  

 

 

  

Figure 5. Layout of the simulated 

production line, as depicted in the Unity 

rendering (above), and the physical demo 

stand (left), containing:  

1) the Warehouse stacks;  

2) the Warehouse assembly box;  

3) the Warehouse memory boxes;  

4) the Robotic Arm;  

5) the Wagons on the track;  

6) the loading station;  

7) the test station;  

8) the circular track for the wagons. 
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3.2. The subsystems of the manufacturing plant 

As the entire system and its constituent subsystems have been described in detail in [3], the 

focus in this section is on the specifics of the implementations relevant to the analyses and 

conclusions in later sections.  

 

The Human-Machine-Interface (HMI) subsystem. The case study was provided with 

two complementary implementations of the HMI unit, although they cannot be used both 

at the same time. The 4DIAC+MQTT implementation is meant for gathering user heuristics 

and allowing for real-time placement of orders. However, more useful for the current 

analysis is the Overture (VDM-RT) implementation, which reads orders from a file. This 

approach is both flexible and powerful. The flexibility stems from the possibility of creating 

scenarios with various amounts of orders for covering statistical possibilities, while the 

power comes from the repeatability of experiments. Having the same input file, the co-

simulation can be run with various parameters, ensuring that the same input orders come at 

the same time, thus generating a detailed picture of the behaviour of the system in 

controlled, repeatable experiments. 

The Warehouse unit. The Warehouse assembles the USB-OTG sticks from the 

component parts. As shown in Figure 6, it contains stacks for each type of component part, 

an assembly box for the actual assembly of the items and memory boxes (with the same 

number of slots available for each part type) for storing components that do not fit the 

current order. The memory boxes may also be a source of component parts for new orders, 

if the requested colour is available. 

To simplify the analysis initially, the simulated Warehouse is considered to have an 

unlimited number of parts in the stacks (there would be no need to re-fill the stacks at any 

time). Also, the memory boxes would have the same size (or number of slots) for all part 

types (left, middle and right). Upon receiving an assembly order, the Warehouse first looks 

in the memory boxes for available parts of requested colours. If these do not exist, either 

because the memory boxes are empty or filled with differently coloured parts, the 

Warehouse drops the parts from the stacks. However, the parts in the stacks are not arranged 

in any specific order. Unless it is a lucky hit, a dropped part has the wrong colour and would 

need to be stored in the memory boxes (if a slot is available) or discarded for recycling (if 

memory boxes are full). To keep a reasonable symmetry, all part types have the same range 

of colours for the users to choose from. Up to eight colours can be selected; if a colour is 

available for a component part, it is also available for all other component parts. 
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Figure 6. Mechanical design of the Warehouse, highlighting: 1) storage stacks; 2) actuators that 

push available parts from the stack into the assembly tray; 3) the assembly tray; 4) memory boxes 

with 11 slots per part type; 5) colour detection sensors; 6) pneumatic actuators for the assembly  

 

The Wagons. The system has been restricted to having three transportation units (wagons), 

but each of them has the capacity of carrying one or two assembled sticks from the loading 

station (next to the Warehouse) to the Testing Station (close to the end user pick-up point). 

As described in [3], it is assumed that the simulated wagons cannot overtake each other and 

do not malfunction (e.g. fall off the tracks) in the current analysis. The mechanical design 

of a double-capacity wagon is shown in Figure 7. 

 
Figure 7. Mechanical design of a Wagon containing: 1) electronic board for control; 2) electronic 

motoreductor; 3) drive wheel; 4) sensor for station detection; 5) driven wheels; 6) motor driver;  

7) ultrasonic distance detectors; 8) slots for transporting sticks.  

3.3 Phases of development 

There are two distinct phases of development, as envisioned in the methodology described 

in [3]: the digital model and the construction of the prototype and deployment (Table 1). 

For the first phase, the agent-oriented approach was best suited to provide the most 

adequate abstractions to design the conceptual model of the prototype by identifying its 

main subsystem types (i.e. production machines, order, and factory infrastructure) and 

define the interaction protocols among these subsystems.  These types are well-established 

in agent-based manufacturing control system [28] and are now part of the more complex 

and abstract Reference Architecture Model Industry 4.0 [29]. While the first phase was 

intended to determine how to build the prototype, in the second phase the prototype was 

implemented in its final form. Therefore, each subsystem was developed in a specific 

language and tool, suitable to the domain and expertise of the team, by following the 

component-based approach to reach its concrete implementation. Table 2 shows the 

correspondence between the subsystems and the adequately suited tool for implementing a 

complete simulation, as well as the deployment devices considered. 
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Table 1. The general overview of development approach 

Dev. 

phase 

Stages Goals 

D
ig

it
al

 m
o

d
el

 

The requirements model:  

a preliminary mechanical model of 

the production demo (domain 

description). It includes all the 

mechanical components to store, 

transport and assemble the USB-

OTG sticks. The identification of 

the composite simulations from the 

production system, together with 

their roles and tasks, reflects the 

most important component types of 

the Reference Architecture Model 

Industry 4.0: production machines, 

order, and factory infrastructure. 

 to identify the compositional structure of 

the targeted co-simulation and the best-

suited model/simulation tool for each 

component from the production demo;  

 to facilitate a shared understanding among 

the specialized teams engaged in 

implementing the specific simulations. 

The homogenous co-simulation 

model: the high-level abstraction for 

the behaviour of each simulation, 

and the interactions among the 

composite simulations as described 

in the previous section. It includes 

distinct simulations for each 

component type: production (e.g. 

warehouse station, robot, 

transporting wagons, and testing 

station), orders (e.g. placed via 

mobile devices), and factory 

infrastructure (e.g. part tracker). 

 to validate the interaction protocols among 

the composite simulations;  

 to have an early working co-simulation 

where the specific simulations may be 

gradually added, tested and validated;  

 to lessen the dependency among the 

dispersed teams involved in modelling the 

specific simulations;  

 to cover the left-over parts of the co-

simulation that are not needed to be 

modelled at a high-level of details (e.g. the 

test station); 

 to identify conceptual (system-level) 

parameters that can be used at a later stage 

as stable constraints in the design space 

exploration for fine tuning. 

C
o

n
st

ru
ct

io
n

 a
n

d
 d

ep
lo

y
m

en
t 

The heterogeneous co-simulation 

implementation model: the detailed 

model of each simulation. It 

includes both continuous-time (CT) 

and discrete-event (DE) models in 

various simulation tools (Table 2, 

“technology” column). 

 to simulate, test and validate from a 

holistic perspective and with an increased 

level of accuracy an entire system 

 to generate code from the specialized 

simulation tools of the different 

subsystems for specific hardware 

implementations 

The deployment model: the units 

modelled and tested by the 

heterogeneous co-simulation have 

been deployed in the demo stand for 

fine tuning under real-life 

conditions  

(Table 2, “deployment” column). 

 to extend the libraries (e.g. 20-sim and 

4DIAC with specific sensors and 

communication protocols) and 

functionalities (e.g. INTO-CPS, Overture 

with visualisation and code-generation 

capabilities) of the employed tools to cope 

with the real industrial needs 
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Table 2. The simulation technology and deployment infrastructure for each component 

Type Unit Simulation 

Technology 

Deployment Device 

Orders HMI 4DIAC + MQTT  

Overture (VDM-RT) 

Smartphones and tablets 

Infrastructure Part Tracker Overture (VDM-RT) NVIDIA Tegra Jetson 

Production Warehouse 20-sim Raspberry Pi with UniPi 

Expansion Board + 

Stäubli robot 

Production Wagons 4DIAC Raspberry Pi controlling 

DC motors, position 

sensors and anti-collision 

ultrasonic sensors. 

Production Test Station 4DIAC 

  

Camera for image 

processing and actuators 

connected to a Raspberry 

Pi 

Overview Unity Unity animation PC 

 

The experimental results reported in this paper are related to the first phase of the 

development (the digital model), more specifically the homogenous co-simulation. It is 

important to emphasize that the VDM-RT models are not meant to be accurate in the 

physical (mechanical / electrical) implementation sense. The VDM-RT models do not need 

to have complete functionality for the homogeneous co-simulation, only the bare minimum 

from which the communication lines between units and the system-level parameters can be 

validated. The incompleteness of the VDM-RT models is related to details of the inner 

workings of the components, not necessarily respecting all the constraints of reality. 

Examples of incompleteness include randomly generating colours for USB-OTG parts in 

the warehouse or randomly considering the test successful or unsuccessful in the Test 

Station. Another example is breaking continuity: the physical Warehouse sequentially 

drops coloured USB-OTG parts from stacks into the assembly box and instructs the Robotic 

Arm to remove the parts if they do not fit the requested colour. When a cancellation occurs, 

the physical Warehouse must instruct the Robotic Arm to remove all parts from the 

assembly box (if they do not fit the next order) and then it can start dropping new parts 

from the stacks. The simulated Warehouse generates random colours for the USB-OTG 

parts and will immediately start generating new colours for the next order without 

instructing the Robotic Arm to remove existing parts from the assembly box in case they 

do not fit. Such aspects of the functionality are minor details with respect to the DE 
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modelling used for the abstract validation. The internal states however are all well-

established, along with the communication patterns and lines between modules, such that 

the behaviour of the refined modules does not diverge substantially from the behaviour of 

the abstract models. Once established, the communication lines and the types of data they 

carry become hard constraints of the simulation that cannot be easily changed, but new 

lines of communication could be added if necessary. For instance, new communication 

lines have been added later in the development of the project, for transmitting (to the Part 

Tracker) the level of vibration recorded by each subsystem. 

Another advantage of having only VDM-RT models as the first stage of development is 

the possibility of determining conceptual (system-level) parameters before the design space 

exploration at the heterogeneous co-simulation stage. The identified parameters of the 

production line can be grouped into two categories: 

 Conceptual (system-level) parameters, which are independent of (or do not pose 

any significant problems for) the physical implementation, such as the number of 

colour choices available to the customers, the number of memory box slots in the 

Warehouse or the carrying capacity of the wagons. These parameters are suited for 

analysis during the homogeneous co-simulation stage. 

 Physical (subsystem-level) parameters, which define the physical properties of the 

components inside subsystems, such as the parameters of the pneumatic piston 

used in the assembly tray of the Warehouse, mechanical and electrical parameters 

for the Robotic Arm and Wagons, sensitivity of the sensors used in various parts 

of the production line, etc. These parameters are suited for analysis during the 

heterogeneous co-simulation stage. 

The conceptual parameters can be determined sufficiently accurately even with the 

incomplete simulation model. The number of colour choices available to the customers 

may influence the stocks of parts required for a good functioning of the assembly line but 

is not influencing the physical design in any way. The number of memory box slots and the 

carrying capacity of the wagons influence the design of those units, but without increasing 

the complexity of the mechanical design. Adding a few slots or a second indentation in the 

upper surface of the wagon (for a second USB-OTG stick), although becoming hard 

constraints for the heterogeneous simulation and implementation, poses no additional 

mechanical difficulty compared to not adding them and therefore does not impact the future 

stages of development. With these parameters determined beforehand, the design space 

exploration at the heterogeneous stage is constrained and focused on identifying the 

physical properties of the components that go into the mechanical, electrical and other 

designs of the subsystems. 
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4. Experimental setup 

Having a system covering all the important stages of a production line, from orders to 

delivery, enabled us to set up two types of analysis scenarios: 

 Analysis of the behaviour of the system when varying parameters external to the 

system (exogenous parameters) 

 Analysis and optimization of the system when varying parameters internal to the 

system (endogenous parameters) 

4.1 System setup 

All simulated experiments have been run for 45000 time units, which correspond to 45000 

seconds or 12.5 hours for the physical systems (although the simulation itself took about 6 

hours for each experiment). The orders can be placed at any time within the initial 12 hours, 

while the remaining 30 minutes were added to allow for the completion of the late or 

postponed orders. 

The track length is 100 units and the wagons report their positions every 10 seconds. There 

are three speed options available to the customer: low (corresponding to the default cruising 

speed of the wagons, 0.3 units of length per second), medium (0.7 units of length per 

second) and high (1.1 units of length per second). On the considered track, the Warehouse 

Waiting Room (loading station) is at position 10, and the Test Station is at position 80 of 

the total length of 100 units. When loaded, the wagons attempt to keep the requested speed 

as long as crashes are avoided, but on the return track (from the Test Station back to the 

Loading Station), they revert to the default speed, considered most energy-efficient. 

The exogenous parameters refer to the expected number and distribution of orders. Using 

the Overture (VDM-RT) HMI allowed for a good control of both parameters. The orders 

have been generated from the Uniform and Normal (Gaussian) distributions, shown in 

Figure 8 (a). The Gaussian distribution is justified by the Central Limit Theorem when the 

demand comes from many different independent or weakly dependent customers, whereas 

the uniform distribution could be the result of orders coming from independent customers 

at various time zones (or evenly populated meridians). 

The number of orders over a 12-hour period was selected between 200 and 300 orders, 

about half of which would be cancelled if the order does not reach the end user within 900 

seconds (15 min) from the request. For the uniform distribution, the orders are expected to 

come every 144s (for 300 orders) to 216s (for 200 orders) on average. The actual sets of 

orders and their distribution, as generated with the Matlab random variable functions, are 

shown in Figure 8. 
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(a) (b) 

  

(c) (d) 

Figure 8. Distribution probability functions (a) and histogram of orders for (b) 300, (c) 250 and 

(d) 200 orders from the Gaussian (blue) and Uniform (orange) distributions. 

 

Additionally, one order (an all-black stick with requested speed “low” and no cancellation) 

is inserted in the list at the start, to initialise the system. These sets of orders are used to test 

the load and overload of the production line. The other parameters of the orders are fixed:  

 the colour choices are random from the discrete uniform distribution 

 the speed options are also uniformly distributed (about a third of the orders contain 

each option) 

The endogenous parameters considered in the current analysis are: 

 the number of available colours 

 the size of the Warehouse memory box 

 the transport capability of wagons 

The description and reasonable experimental range of these parameters for the 

homogeneous co-simulation is shown in Table 3. The best endogenous values chosen 

according to the experiments detailed in the next section are marked in bold font. 
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Table 3. Parameters analysed in the homogenous co-simulation design space exploration 

Parameter 

Name 

Type Description Experimental values 

Number of 

orders 

Exogenous Number of orders received in an 

interval of 12 hours 

201, 251, 301 

Distribution of 

orders 

Exogenous The distribution of order times 

within the interval of 12 hours 

Uniform, Gaussian  

Colour choices Endogenous The number of colours available 

for the users to choose from, for 

each part of the USB-OTG stick 

4, 6, 8 

Memory box 

size 

Endogenous The number of memory box slots 

in the Warehouse for each part 

type 

10, 25, 40, 50, 60 

Wagons 

capacity  

Endogenous The number of slots available on 

the wagons for transporting 

assembled USB-OTG sticks to 

the Test Station 

1, 2 

 

Available colours have been named generically based on the RGB interpretation of the 

binary representation of the colour numbers, as shown in Table 4. The number of available 

colours has been chosen between 4, 6 and 8, considering that fewer than 4 colours is not an 

interesting test, and that more than 8 colours is impossible without re-defining the concrete 

message encoding between subsystems. Having a maximum of 8 available colours (limited 

due to the structure of the messages between HMI and Part Tracker, as well as between 

Part Tracker and various other units such as the Warehouse and the Test Station), the 

lowering of the colour set may have a positive impact on the time an order spends in the 

Warehouse before being assembled. The size of the Warehouse memory box could also be 

adjusted between 10 slots for each part type up to 60 slots for each part type. Unlike the 

colours, the memory box size is internal to the Warehouse and can be adjusted freely. 

However, large memory boxes may be impractical (may use a lot of space) or undesirable 

by the producer. 

 
Table 4. Generic colour names based on the binary representation of their number 

Colour 

Number 

Binary 

representation 

Generic 

Colour 

Name 

0 0 0 0 Black 

1 0 0 1 Blue 

2 0 1 0 Green 

3 0 1 1 Cyan 

4 1 0 0 Red 

5 1 0 1 Magenta 

6 1 1 0 Yellow 

7 1 1 1 White 
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The transport capability of the wagons refers to the number of units that can be loaded on 

a wagon. The capacity of each wagon can be maximum two sticks at a time. Of course, 

wagons can still carry a single stick, if a second one is not readily available in the Waiting 

Room next to the Warehouse. The testing time of the sticks in the Test Station is fixed to 

16s per unit and the test result has a theoretical 2% probability of rejection, in which case 

the order returns to the Warehouse for re-assembly. 

4.2 Cost functions 

The improvements of the setups have been quantified by the following cost functions which 

would ideally all be at a minimum at the same time. 

 CF0: Percentage of cancelled orders 

 CF1: Average Lead Time,  

 CF2: Number of discarded parts 

The percentage of cancelled orders is the most important cost function from a practical 

point of view in a real production line, since cancelled orders become unsold items. Only 

about half of the orders have cancellation policies (if the order is not received in 900s from 

submitting the request). Lead time is considered the length of time between the order 

placement and the moment the system delivers the requested unit to the end user. The states 

that a stick goes through before reaching the user are <ORDERED>, <WAREHOUSE>, 

<WAITING_ROOM>, <WAGON>, <TEST_STATION>, <END_USER>, as shown in 

Figure 9. Besides the lead time, the log files allow the computation of times spent in each 

state. If the test station rejects a unit, the order returns in <ORDERED> state and the lead 

time takes into account both assembly runs. 

 

Figure 9. Lead time and its constituent intervals based on the time of reaching each stage 

The number of parts discarded for recycling is an important indicator of both the 

Warehouse lead time and the memory box overload. While these measures have been 

computed separately, keeping the number of discarded parts low improves both. 

Considering the transportation from the Warehouse to the test station, the user has the 

option of requesting the speed of the wagons (low, medium or high), which the system does 

its best to comply to. The average speed difference is computed as in equation 1, where the 

mediation is performed over all transported units (excluding cancelled orders that did not 

reach the wagons); 𝑣𝑟𝑒𝑎𝑙 is the speed of the transport between the loading and testing 

station, computed based on the track length and arrival times; 𝑣𝑟𝑒𝑞 is the requested speed: 
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4.3 Data extracted from the log files 

Each experiment is identified by the five parameters of Table 3. The important data 

extracted from each experiment falls under one of the following categories: 

- General experiment data, including the experiment inputs, number of cancelled and 

successfully delivered orders, distribution of order parameters, etc. 

- Time-related data, including minimum, maximum and average lead time and time 

spent in each state, both in numerical and graphical form. 

- Warehouse data, including the Warehouse memory box capacity and average load, 

number of discarded pieces (overall, per colour, per side, etc.), lucky hits, both in 

numerical and graphical form. 

- Wagon data, including the capacity, average speed difference (compared to the 

requested speed), both in numerical and graphical form. 

All this data will be shown comparatively between experiments to highlight some 

behaviours or improvements of the system. 

5. Experimental Results 

Even with the small number of system level parameters and choices for each parameter as 

described in Table 8 (two exogenous: number and distribution of order, and three 

endogenous: number of colour choices, size of memory boxes and wagon capacity), the 

number of possible combinations is large (180). Therefore, a series of experiments has been 

devised to arrive at the optimal parameters without running all combinations. 

The first experiments focused on varying the exogenous parameters to identify when the 

system is overloaded (or close to being overloaded), while the second set of experiments 

aimed to improve the cost functions by sequentially improving the number of memory box 

slots, wagon carrying capacity and number of available colours.  

5.1 Analysis of the behaviour of the system when varying exogenous parameters  

For the first round of experiments, the size of the memory box (10/25/40 slots) and the 

external parameters (order distribution: uniform/Gaussian, and number of orders: 

201/251/301) are varied to generate nine experiments per distribution. During these 

experiments, the focus is on the external parameters, thus the memory box size is not varied 

to the full extent. The uniform distribution experiments do not produce cancelled orders, 

and the reason is revealed when analysing the histogram of order times in Figure 8. Even 

with the highest number of orders tried, the Uniform distribution rarely goes over 14 orders 

in 1500s (25 minutes), whereas the Gaussian distributions concentrate at least 20 orders in 

the most loaded 25-minute timeslot, preceded and followed by other crowded timeslots.  
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The number of orders over the whole 12-hour experiment is therefore less indicative of the 

number of cancellations than the load in the peak timeslots. The system can handle constant 

flows of 10-15 orders per 25-minute timeslot, but when one timeslot goes over 20 orders, 

the system is overloaded, and the delays pile up and negatively affect following orders. 

Figure 10 shows the relation between the number of orders and the percentage of cancelled 

orders in the case of the Gaussian distribution. The size of the Warehouse memory box 

seems to have limited effect on this cost function. 

 
Figure 10. Percentage of cancelled orders in the Gaussian distribution experiments 

 

Referring to the lead time cost function, all experiments seem to have similar minimum 

lead times (around 100s) stemming from the first orders received with high speed request, 

very close to the theoretical minimum. Figure 11 show the average time the components 

spend at each stage in graphical form. Memory box sizes have a limited influence on the 

average time spent in the <ORDERED> and <WAREHOUSE> states. 

 

  

(a) Gaussian distribution experiments (b) Uniform distribution experiments 

Figure 11. Stacked average times spent by sticks at each stage of production 

A more detailed insight into what is happening in the Warehouse can be gained by looking 

at the memory box load and the number of parts discarded for recycling because of a lack 

of memory space. Although all experiments have this information, Figure 12 shows the 

evolution of the memory loads over time and discarded parts only for experiments with 

Uniform and Gaussian distribution of 301 orders, eight available colours, 40 memory slots 

and single carrying capacity of the wagons as illustrative examples for the conclusions. The 

colours mark actual coloured parts, to express not only the load itself, but also the 

distribution of colours for parts in the memory boxes at all times. Figure 13 shows the 

evolution of discarded parts by colour in the respective colours, as well as the overall 

evolution as stacked area. Even at 40 memory slots, the Warehouse box is filled rather 
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quickly once enough orders have been received. In the case of the Uniform distribution, 

this happens earlier than for the Gaussian distribution. The uniform distribution generates 

a more linear graph for the discarded parts because of the more evenly received orders, 

whereas the Gaussian distribution exhibits a sharper increase in discarded parts once more 

orders start coming in the middle of the time interval. The number of discarded parts is 

comparable between the two distributions and is related only to the overall number of 

orders and memory box size, as shown in Table 5. 

  

(a) Gaussian distribution experiment (b) Uniform distribution experiment 

Figure 12. Left / Middle / Right memory box loads 

 

  

(a) Gaussian distribution experiment (b) Uniform distribution experiment 

Figure 13. Evolution of left / middle / right parts discarded for recycling 

 

Table 5. Number of discarded parts and average speed difference 

Experiment 

Parameters 

Number of discarded 

parts 

Average speed difference 

Number 

Orders 

Memory 

Slots 

Uniform 

Distribution 

Gaussian 

Distribution 

Uniform 

Distribution 

Gaussian 

Distribution 

201 10 1601 1834 -0.0677 -0.0736 

201 25 772 569 -0.0732 -0.0679 

201 40 362 396 -0.0740 -0.0664 

251 10 2222 1781 -0.0701 -0.0623 

251 25 1107 945 -0.0692 -0.0530 

251 40 720 560 -0.0667 -0.0669 

301 10 2674 2426 -0.0670 -0.0576 

301 25 1336 1281 -0.0666 -0.0770 

301 40 797 615 -0.0706 -0.0714 
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The average speed difference is computed between the real and requested speed of the 

wagons on the part of the track between the loading station (next to the Warehouse) and 

the test station. Not surprisingly, as shown in Table 5, the speed difference is quite close to 

zero (the Wagon runs with an average speed close to the requested speed, albeit somewhat 

slower) and is not varying significantly either with the distribution or with the Warehouse 

parameters. Another observation is that the number of pieces transported by each wagon is 

close to uniformity in all experiments. For instance, the uniform distribution experiment 

has wagon A transport 34.5% of the sticks, wagon B transport 31.3% of the sticks and 

wagon C transport 34.2% of the sticks and the Gaussian distribution experiment has wagon 

A transport 33.7% of the sticks, wagon B transport 33.3% of the sticks and wagon C 

transport 33.0% of the sticks. Wagon usage is therefore balanced. Since all wagons work 

equally hard, no imbalance has yet been created due to the number of wagons. Although 

not simulated, using three equally hard-working wagons certainly improves the lead time 

over one or two wagons, which suggests that the minimum number of wagons chosen for 

the production line should be three. 

The conclusion of these experiments can be summarized as follows: the number of orders 

is less important than the peak load, the size of the memory box has limited effect on the 

cancellation percentage, the number of discarded parts is related only to the overall number 

of orders and memory box size, and wagon usage is balanced. This demonstrates the benefit 

of the homogeneous co-simulation. The next set of experiments is focused on investigating 

the effect of the number of memory box slots on the discarded parts. 

5.2 Analysis of the system when varying the number of memory box slots 

The adjustment of the number of memory box slots makes more sense for the experiments 

when the system is close to be overloaded by orders. The experiments shown in Figure 14 

focus on the case that 301 orders are made, by varying the size of memory box and 

observing the number of cancelled orders, the lead time and the number of discarded parts. 

   

(a)  (b)  (c)  

Figure 14. Evolution of (a) the percentage of cancelled orders, (b) the lead time in seconds and 

(c) the number of discarded parts as a function of the memory box size, for 301 orders from the 

Gaussian (blue) and Uniform (orange) distributions 
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The most important effect of increasing the memory box size is the reduction of discarded 

parts (due to the memory box being large enough to usually hold enough samples of all 

colours). However, even this effect is significantly diminishing for memory boxes with 

more than 50 slots. The lead time is decreasing due to the lower time spent in or before the 

Warehouse. But because the Warehouse time is less significant than the waiting time after 

this stage (due to wagons being elsewhere on the track), the decrease in lead time is rather 

mild. The number of cancelled orders is not affected as much by this setting, as all memory 

box sizes over 10 reduce the cancelled order percentage by about 10%. 

The conclusion for this set of experiments is therefore that the only significant cost function 

decrease is the number of discarded parts, but even this improvement flattens for memory 

box sizes larger than 50. 

5.3 Analysis of the system when doubling the load capacity of the wagons 

As seen in Figure 11, the most consuming time stage is the waiting for the wagons in the 

Waiting Room next to the Warehouse. Table 6 compares the average lead time and the 

average time spent in waiting for some experiments with 8 colours available and a memory 

box size of 40 or 50, as well as the percentage of cancelled orders. In the table, Single 

indicates that wagons can carry a single stick at a time, while Double indicates the doubling 

of the capacity. 

Table 6. Comparison of Single and Double wagon capacity results 

Wagon 

capacity: 

Single Double Single Double Single Double Single Double 

 Percentage of 

cancellations 

Average lead 

time [s] 

Average waiting 

before Warehouse 

Average Waiting 

Room time [s] 

Gaussian; 

40 slots  
20.9% 0.7 % 495.26 379.07 17.42 18.05 335.77 96.70 

Gaussian; 

50 slots 
24.3% 0.0 % 478.31 330.07 6.45 14.60 343.39 116.31 

Uniform; 

40 slots 
0.0 % 0.0 % 321.46 286.49 15.87 9.24 121.70 84.75 

Uniform; 

50 slots 
0.0 % 0.0 % 296.57 288.56 7.75 10.21 113.38 88.25 

 

The doubling of the wagon capacity reduces the lead time primarily by reducing the waiting 

time after the Warehouse (to approximately a third) and therefore the average lead time is 

reduced significantly enough for eliminating almost all cancellations. Doubling the 

carrying capacity has no drawback and it can allow for lower sizes of the memory box to 

achieve a low number of discarded parts, as will be tested in the next set of experiments. 
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5.4 Analysis of the system when varying the number of colours available to the user 

Reducing the number of colours should have a beneficial effect on the lead time by 

increasing the probability that a requested part is available in the memory boxes. The effect 

of reducing the number of colours will be analysed in conjunction with the dimension of 

the memory box, since both operations aim to improve the Warehouse time and reduce the 

number of discarded parts. The point of interest for this set of analyses is the balance 

between the two parameters, in the sense of identifying the amount by which the memory 

box can be downsized when reducing the number of available colours. 

Table 7 shows the lead time when both parameters (number of colours available to the user 

and size of the memory box) are varied. The experiments use 301 orders, being the most 

challenging attempts in their respective distributions, and double wagon capacity, since it 

improves the cost functions with no drawback. 

Table 7. Average lead time [s] and number of discarded parts for various combinations of  

the number of available colours and the size of the memory box 
Uniform 

Distribution 

Size of the memory box 

50 slots 40 slots 25 slots 10 slots 

N
u

m
b

e
r
 o

f 
a

v
a

il
a

b
le

 c
o

lo
u

r
s 8 

288.56s 

 

691 

parts 

286.49s 

 

625 

parts 

310.75s 

  

1450 

parts 

360.56s 

  

2696 

parts 

6 
274.35s 

 

216 

parts 

273.75s 

  

325 

parts 

284.04s 

 

758 

parts 

300.60s  

 

1536 

parts 

4 
260.31s  

 

102 

parts 

266.11s 

  

103 

parts 

263.60s  

 

149 

parts 

289.67s  

 

600 

parts 
 

Gaussian 

Distribution 

Size of the memory box 

50 slots 40 slots 25 slots 10 slots 

N
u

m
b

e
r
 o

f 
a

v
a

il
a

b
le

 c
o

lo
u

r
s 8 

330.07s  

 

416 

parts 

379.07s 

 

664 

parts 

387.12s  

 

889 

parts 

450.46s 

 

2065 

parts 

6 
315.38s 

  

171 

parts 

356.74s  

 

180 

parts 

313.03s  

 

544 

parts 

417.53s 

  

1340 

parts 

4 
293.20s  

 

20 parts 

332.17s  

 

129 

parts 

309.54s 

  

230 

parts 

319.22s 

  

475 

parts 
 

 

For almost all experiments (except Gaussian distribution with a memory box of 10 slots), 

at most 2 orders were not fulfilled, making the percentage of cancellations reasonable 

(under 1%). Regarding the lead time, it is not significantly decreasing with a memory box 

of 25 slots or more, regardless of the number of colours. The number of discarded parts 

does not decrease as sharply starting with 40 slots in the memory box, while still being 

higher for larger numbers of available colours. Therefore, a good balance is achieved when 

using 6 colours and 40 slots. The average time the order spends at each stage for these 

experiments is shown in Figure 15.  

 

Figure 15. Stacked average times at each stage of production for the considered set of parameters 
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Table 8. Additional information about the experiments for the considered set of parameters 

 General Information about the experiment Cost functions 
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  Requested colours for the Left part:  

Black 47 (15.6%), Blue 59 (19.6%), Green 62 (20.6%), Cyan 48 (15.9%), Red 40 

(13.3%), Magenta 45 (15.0%), Yellow 0 (0.0%), White 0 (0.0%) 

Requested colours for the Middle part:  

Black 57 (18.9%), Blue 54 (17.9%), Green 45 (15.0%), Cyan 39 (13.0%), Red 52 

(17.3%), Magenta 54 (17.9%), Yellow 0 (0.0%), White 0 (0.0%) 

Requested colours for the Right part:  

Black 58 (19.3%), Blue 43 (14.3%), Green 55 (18.3%), Cyan 51 (16.9%), Red 47 

(15.6%), Magenta 47 (15.6%), Yellow 0 (0.0%), White 0 (0.0%) 

Requested speeds: Low 90 (29.9%), Medium 114 (37.9%), High 97 (32.2%) 

Number of pieces rejected at test station: 7 (2.33%) 

Warehouse Memory Box average load: 73.4%   L 75.3%, M  80.7%, R  64.1% 

Warehouse Number of discarded pieces: 325   L 177, M 124, R 24 

Warehouse Number lucky hit pieces: 241   L 89, M 86, R 66 

CF0: cancelled orders 

0 (0.0%)  

CF1: lead time 

Average: 273.75 s 

Minimum: 102.00 s 

Maximum: 834.00 s 

CF2: discarded pieces 

325 pieces 
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  Requested colours for the Left part:  

Black 44 (14.6%), Blue 66 (21.9%), Green 45 (15.0%), Cyan 41 (13.6%), Red 54 

(17.9%), Magenta 51 (16.9%), Yellow 0 (0.0%), White 0 (0.0%) 

Requested colours for the Middle part:  

Black 49 (16.3%), Blue 52 (17.3%), Green 49 (16.3%), Cyan 50 (16.6%), Red 54 

(17.9%), Magenta 47 (15.6%), Yellow 0 (0.0%), White 0 (0.0%) 

Requested colours for the Right part:  

Black 52 (17.3%), Blue 56 (18.6%), Green 47 (15.6%), Cyan 43 (14.3%), Red 50 

(16.6%), Magenta 53 (17.6%), Yellow 0 (0.0%), White 0 (0.0%) 

Requested speeds: Low 100 (33.2%), Medium 94 (31.2%), High 107 (35.5%) 

Number of pieces rejected at test station: 7 (2.33%) 

Warehouse Memory Box average load: 64.6%   L 55.5%, M  72.9%, R  65.5% 

Warehouse Number of discarded pieces: 180   L 17, M 97, R 66 

Warehouse Number lucky hit pieces: 199   L 68, M 58, R 73 

CF0: cancelled orders 

0 (0.0%)  

CF1: lead time 

Average: 356.74 s 

Minimum: 104.00 s 

Maximum: 830.00 s 

CF2: discarded pieces 

180 pieces 

 

 

Additional information given in Table 8 includes: 

 the number and percentage of requested colours, almost uniformly distributed; 

 requested speeds, about a third of the orders requesting each available speed; 

 the number and percentage of pieces rejected at the test station; 

 memory box average load, as well as the average loads for the boxes of each part; 

 number of discarded pieces and lucky hits (totals as well as per part type); 

 number and percentage of cancelled orders (0 for both experiments); 

 minimum, maximum and average lead time. 

Such information has been recorded for each experiment and the relevant data has been 

presented directly or indirectly in graphical form throughout Section 5. However, Table 8 

provides full statistics for the experiments with 301 orders (with Gaussian and uniform 

distribution over time) and the chosen production line parameters (6 available colours, 40 

memory slots, wagons with double carrying capacity). 
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6. Discussion  

From the methodological standpoint the case study provides several insights from 

employing the model-based approaches to build complex CPS-based manufacturing 

systems. Complex co-simulations for production systems requires to rely on more mature 

methodologies with relevant track-records in the domain, such as agent-oriented and 

component-based. Even if both methodologies (agent-oriented and component-based) 

promote the classical features of agile software development (iterative, incremental, 

lightweight and collaborative) they use different abstractions that make them suitable to 

describe either the conceptual or the implementation model. While the agent-oriented 

approach provides the most adequate abstractions to design the conceptual model of the 

co-simulation, some of its specifics make it difficult to implement in the available co-

simulation technology which is more related to component-based approaches. In our case 

study we have used the agent-oriented approach to identify the subsystems and to structure 

the messages among the specific co-simulation units, whilst its implementation is following 

the component-based approach. This was needed for at least two reasons: 

 The components’ meta-model does not have abstractions for the goals and 

components can only use task delegation. In manufacturing systems there are 

multiple conflicting objectives at both: system level (e.g. throughput, lead time, 

work-in-progress, etc.) and individual level (e.g. energy consumption, degree of 

utilization, slack time, etc.). The right balance among all these conflicting 

objectives are unknown/underspecified and are usually discovered during the 

design space exploration phase. Any predefined way of achieving a goal (task 

delegation) may inhibit optimizations. While not tested in our case study, the 

possibility to allow internal optimization is available in subsystems, for instance in 

the warehouse or the test station. The warehouse receives information about the 

requested colours of a USB-OTG stick, but it is not forced to look for the necessary 

parts in any specific order. The VDM-RT implementation looks for parts in the 

order Left Cap – Middle Part – Right Cap, sequentially, because of the bottleneck 

of having a single Robotic Arm capable of moving parts to and from the memory 

boxes. The usage of two Robotic Arms, for example, would introduce an 

optimization problem where the Warehouse would have to decide which side to 

start from. For the test station as well, in the case of the double carrying capacity 

of the wagons, the messages from the Part Tracker indicate the two orders available 

for testing at that instance, but not the order of testing them. Consequently, goal 

delegation may be implemented in the current co-simulation technology.  
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 For agent-oriented approaches, the environment is a first-class abstraction that is a 

structural part of an agent’s meta-model, while it is not part of a component’s meta-

model. In manufacturing the infrastructure is part of any referenced architecture 

and therefore a special attention has been given to model and simulate the Part 

Tracker. The interaction with the environment is different, agents can measure the 

environment, while components can react to an event only by defining a relation 

with it. Due to the initial requirements in our case study we have not tested the 

possibility to react to state changes from the Part Tracker, but it would be feasible 

to implement with the current co-simulation technology. For example, an 

extension/improvement would be, in the case of multiple Warehouse units, to allow 

the wagons to take the decisions themselves whether to wait longer in the loading 

station of a particular Warehouse (even if there are no sticks currently in the 

corresponding waiting room) or to leave the loading station, for another loading 

station (for instance in case another wagon is close enough to the current loading 

station). In this scenario, the wagon would acquire by itself the information about 

the existence (or not) of ready USB-OTG sticks in the waiting rooms (e.g. by 

enquiring the Part Tracker) and would have to be aware of the loading process, 

would have to decide on which slot to place the sticks and would know when the 

loading is complete (and the sticks are firmly placed in the wagon slots).  

There are some recognizable benefits in using the two-phase methodology of the 

development as described in this paper, compared to the current state of technology. The 

most straightforward benefit is the possibility to simulate, test and validate (from a holistic 

perspective and with an increased level of accuracy) an entire production system that needs 

cross-functional expertise; in the past, these issues were tackled by experiential learning 

from multiple sequential implementations of the automation component; in other words, 

the co-simulation facilitates the adoption of agile software development principles for 

factory automation. For example, the initial development of a homogeneous co-simulation 

in VDM-RT for the iPP4CPPS prototype was particularly useful in driving cooperation and 

clarifying the assumptions of the teams involved in modelling specific components. Once 

the VDM-RT co-simulation was running, the independent developments of units were 

integrated, validated and deployed when ready, since the methodology allowed for their 

development in any order. Another benefit is the ability to handle unpredictable events (to 

a certain extent). The use of co-simulations when designing an automated production 

system avoids the build-up inertia of subsequent design constraints, facilitating the low and 

late commitment for these decisions, like the specific microcontrollers or PLCs, as well as 

allowing the change of modelling tools for any subsystem at any time during the project.  
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7. Concluding Remarks 

The paper presented an experience report on employing the collaborative co-simulation to 

design a complex CPS-based production system, focusing on the early-stage homogeneous 

co-simulation.  Each subsystem was first modelled abstractly in VDM-RT, using the 

Overture tool. The goal of this homogeneous co-simulation was twofold: to identify the 

right interaction protocols (signals) among the various components (stations) of the 

prototype and to identify conceptual (system-level) parameters before the design space 

exploration at the heterogeneous co-simulation step. 

The experiments were performed under the assumptions that the orders are received in a 

Gaussian or Uniform distribution over an interval of 12.5 hours, with balanced distributions 

of colours for each side of the stick and balanced requested wagons speeds. Two types of 

analysis have been performed: 

 Analysis of the behaviour of the system when varying exogenous parameters, to 

identify the maximum load that the system is capable of handling. 

 Analysis and optimization of the system when varying endogenous parameters, to 

find a balanced set of parameters. 

The analysis on exogenous parameters revealed that, for eight available colours, reasonably 

sized Warehouse memory boxes and single-unit capacity of the wagons, the system can 

respond adequately for up to 20 orders per interval of 25 minutes. Doubling the wagon 

carrying capacity (i.e. having two slots instead of one, for transporting sticks) improves the 

system response also for intervals with a little over 25 orders per interval of 25 minutes. 

The analysis on internal parameters allowed the balanced decision of making only six 

colours available to the users and having a Warehouse memory box with 40 slots per side, 

thus decreasing the number of parts discarded to recycling while at the same time keeping 

a good memory box load level. These parameters, when taken into account, reduce by a 

considerable amount the design space exploration at the heterogeneous stage, in effect 

becoming system constraints for the heterogeneous simulation and the physical model. 
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