1910.11756v1 [cs.SE] 25 Oct 2019

arXiv

Noname manuscript No.
(will be inserted by the editor)

Model-Driven Process Enactment for NFV Systems
with MAPLE

Sadaf Mustafiz - Omar Hassane -
Guillaume Dupont - Ferhat Khendek -
Maria Toeroe

Abstract The Network Functions Virtualization (NFV) advent is making
way for the rapid deployment of network services (NS) for telecoms. Automa-
tion of network service management is one of the main challenges currently
faced by the NFV community. Explicitly defining a process for the design,
deployment, and management of network services and automating it is there-
fore highly desirable and beneficial for NFV systems. The use of model-driven
orchestration means has been advocated in this context. As part of this ef-
fort to support automated process execution, we propose a process enactment
approach with NFV systems as the target application domain. Our process en-
actment approach is megamodel-based. An integrated process modelling and
enactment environment, MAPLE, has been built into Papyrus for this purpose.
Process modelling is carried out with UML activity diagrams. The enactment
environment transforms the process model to a model transformation chain,
and then orchestrates it with the use of megamodels. In this paper we present
our approach and environment MAPLE, its recent extension with new features

S. Mustafiz
SCS, Ryerson University, Toronto, ON, Canada
E-mail: sadaf.mustafizQryerson.ca

O. Hassane
ECE, Concordia University, Montreal, QC, Canada
E-mail: o_assane@encs.concordia.ca

G. Dupont
ECE, Concordia University, Montreal, QC, Canada
E-mail: gdupont@encs.concordia.ca

F. Khendek
ECE, Concordia University, Montreal, QC, Canada
E-mail: ferhat.khendek@concordia.ca

M. Toeroe
Ericsson Inc., Montreal, QC, Canada
E-mail: maria.toeroe@ericsson.com

2 S. Mustafiz, O. Hassane, G. Dupont, F. Khendek, and M. Toeroe

as well as application to an enriched case study consisting of NS design and
onboarding process.

Keywords Process Enactment - Megamodelling - Papyrus - Network
Functions Virtualization (NFV)

1 Introduction

Automating the end-to-end management of network services (NS), in other
words, enacting the workflow or process for network service management with-
out manual intervention is highly desirable in the telecommunications domain
and remains a major challenge for network operators and service providers [11}
38]. Network Function Virtualization (NFV) builds on cloud computing and
has the ultimate goal of automating provisioning and management of net-
work services - an essential feature for 5G systems. The European Telecom
Standards Institute (ETSI) has recently launched a zero-touch network and
service management group. As stated in [23], the challenges of 5G will trigger
the need for a radical change in the way networks and services are managed
and orchestrated.

We believe the application of model-driven engineering (MDE) methods
and tools is essential to further such developments in the NFV domain [8]/31].
MDE advocates the use of models as first class citizens in the engineering
process. The models are manipulated via transformations which form the
backbone for automation in MDE. ETSI has recently released an informa-
tion model for NFV [22]. Leveraging these models can substantially benefit
the NFV systems by reducing their development and management efforts.
Moreover, explicit modelling of the process not only allows for the automation
of the NS management process but also paves the way for streamlining and
optimization. Such a process model (PM) can potentially be mapped to model
transformation chains hence enabling NS management and orchestration via
model-driven process enactment [7.{20}46].

Previously, we have proposed a model-based process for NS design and
deployment [41]. The proposed workflow is compliant with the NFV reference
framework, and is a first step towards the necessary automation of the NS
design and deployment process for NFV systems. We followed up the work
in [40] by elaborating on a method for NS design and proposing an initial
approach for enacting the NS design, deployment and management process.
In this paper, we focus on the enactment approach and present an integrated
process enactment environment for NFV systems. MAPLE (MAGIC Process
Modelling and Enactment Environment) provides support for model manage-
ment with the use of megamodels. We demonstrate the use of MAPLE on
the NS design and onboarding process, which represents a portion of the NS
management process. We adapt the Papyrus [19] environment to provide tool
support for process enactment. Papyrus is the tool of choice of ETSI NFV.

This paper is an extension of [39] and focuses on addressing the follow-
ing challenges in process enactment: enactment of PMs with hierarchy, and

Process Enactment for NFV Systems with MAPLE 3

enactment of heterogeneous (cross-technology) transformation chains. It in-
troduces new features in MAPLE along with an extended and more complex
NFV application. We have added support to allow enactment of a PM with
multiple activities as well as enactment of a heterogeneous model transfor-
mation chain. We have integrated a Java handler which enables MAPLE to
detect and execute Java transformations in addition to ATL (ATLAS Trans-
formation Language) transformations. We have also incorporated a process
module for running executable processes as part of a PM enactment. The
megamodel is now updated on-the-fly during enactment with the new gen-
erated instances. We have extended the NFV case study used as the target
application by adding the NS onboarding part. A demo video covering the new
features and the extended case study has been made available. In addition, we
provide more details on the approach and the backend, and also expanded the
related work section.

The rest of the paper is structured as follows: Section [2] gives a brief back-
ground on process modelling, megamodelling, and transformation chaining.
Section [3] presents the enactment approach. Section [f] discusses the tool sup-
port and the MAPLE architecture. Section [5| presents our NFV case study,
and demonstrates the use of the environment on the NS design and onboard-
ing process. Section [6] discusses and compares related work. Finally, Section [7]
concludes with some future work.

2 Background

This section provides a brief background on some of the underlying concepts,
namely process models, megamodels, and transformation chains.

2.1 Process Models

In our work, we use UML 2.0 Activity Diagrams [?] to represent and visual-
ize a process model. Activity Diagrams are typically used to model software
and business processes. They allow the modelling of concurrent processes and
their synchronization with the use of fork and join nodes. Both control-flow
and object-flow can be depicted in the model. An activity node can either be
a simple action (representing a single step within an activity) or an activity
(representing a decomposable activity which embeds actions and/or other ac-
tivities). An activity specifies a behaviour that may be reused, i.e., an activity
can be included in other activity diagrams to invoke behaviour. Along with
the activities, the input and output models associated with each activity are
also clearly identified via input and output parameter nodes (denoted by rect-
angles on the activity border). Since UML 2.0 Activity Diagrams are given
semantics in terms of Petri Nets [?], the precise formal semantics allow the
activity diagrams to be simulated and analyzed.

4 S. Mustafiz, O. Hassane, G. Dupont, F. Khendek, and M. Toeroe

We use Papyrus [19] to create process models. Papyrus is an open-source
Eclipse-based UML 2 modelling environment which mainly provides a graphi-
cal editor for creating UML 2 compliant diagrams, but also includes extensive
support for SysML, UML-RT as well as other UML-based domain-specific lan-
guages. One of the core ideas of Papyrus is that it is completely customizable:
appearance, diagrams, palettes, etc. Everything (in theory) can be tweaked,
allowing one to use this tool as a base for building custom environments fairly
easily. Nowadays, Papyrus is widely used in industry, and it is thus far more
interesting and useful to develop plug-ins for this platform than to create
standalone, isolated programs.

2.2 Megamodels

Model management approaches typically use megamodels which provide struc-
tures to avoid the so-called ‘meta-muddle’ [9]. The philosophy behind meg-
amodels is that everything is a model - models themselves, of course, but
also metamodels, transformations and even other resources - and models can
be linked together through relations (such as, conformance or derivation).
A megamodel contains artifacts (which are models), relations between them
(which may be transformations), and other relevant metadata. It can be seen
as a map to find and link together all involved models. It forms a repository
of models, transformations, and even tools.

It also can be used to enforce conformance and compatibility checks be-
tween the various models and transformations. It is also useful for reusing and
composing transformations in transformation chains.

2.3 Transformation Chains

Model transformations (MT) can be composed, typically in a pipeline archi-
tecture, as a model transformation composition - generally, referred to as a
model transformation chain [13]. In such a composition, the output of a trans-
formation becomes the input of a subsequent transformation and so on. This
results in a chain of model-to-model and/or model-to-text transformations.
Such chains enable integration of transformations developed in multiple lan-
guages [27].

Transformation chaining is the preferred technique for modelling the or-
chestration of different model transformations [10]. Orchestration languages
are used for the composition of the transformations in order to model the
chain as sequential steps of transformations. Complex chains can incorporate
conditional branches and loops, and can also model composite chains.

Such transformation chains are very useful for decomposing a process into
simpler modules (divide and conquer) in order to provide better maintainabil-
ity, reusability, and extensibility [10]. Similarly, MT chains can also be used
to build complex transformations based on existing transformations. Textual
languages, such as ANT [16], are often used to define MT chains.

Process Enactment for NFV Systems with MAPLE 5

|

Derive

=> MgM

Process Model (PM) Meg\;’g;"'v‘l);‘el Transformation Chain Models

Fig. 1: Process enactment approach

3 Process Enactment Approach

In MAPLE, process enactment is carried out with the use of transformation
chain orchestration in combination with model management means. Figure [I]
gives an overview of our enactment approach.

As mentioned earlier, in our work we use UML Activity Diagrams (AD)
to represent and visualize Process Models. ADs are typically used to model
software and business processes. It is suitable for modelling dynamic system
behaviour and for capturing software design and architecture-level details.
Process models created using such a formalism has the added advantage of
enabling synchronization with other UML architectural models. It is also pos-
sible for such processes to be modelled with some other workflow modelling
language, for instance BPMN [43].

The Eclipse Papyrus Activity Diagram environment is used to create a PM.
The PM instance conforms to the UML 2.0 Activity Diagram language. Each
PM includes a set of activities which can be defined with one or more actions.
In our work, the behaviour of each of these activities is typically implemented
with a set of model transformations. However, it is also possible that some of
the activities/actions reuse existing source code (for instance, written in Java,
C, or Python). For our purpose, we need to associate these actions with the
model transformations or the executables which implement them. We use the
attributes of the activity nodes in the diagram to add information about the
associated transformations.

Each action in the PM is also associated with a set of input and output
models. Papyrus requires all metamodels to be mapped to profiles to allow
model instances to be created and to be used as source or target models of the
transformations. As per the ETSI NFV modelling guidelines, our models also
adhere to the NFV Papyrus OpenModelProfile .

6 S. Mustafiz, O. Hassane, G. Dupont, F. Khendek, and M. Toeroe

3.1 Deriving the Megamodel (MgM)

One of the main issues we address in this work is related to resource manage-
ment: how can we centralize information about resources we need so that we
can easily access them? The problem induced by this question is actually not
trivial: a transformation involves several metamodels that can be expressed us-
ing heterogeneous technologies. The transformation itself can be considered as
a model conforming to a specific metamodel, for instance ATL [29], QVT [44],
Epsilon [34], etc. Besides, transformations define a very precise configuration
as to what must be fed in and produced, something we need to be aware
of whenever we run the transformations. To effectively handle the multitude
of models that we are dealing with in our approach, we employ the use of
megamodels for model management in MAPLE.

An MgM is derived in two steps: 1) by registering the resources, and then
2) by registering the PM and weaving the PM/MgM.

Registering the resources. To begin with, the resources which are part of
the project (metamodels/profiles) are registered in the MgM. This is car-
ried out automatically by going through the project workspace (referred to
as workspace discovery), and an initial MgM is derived at this stage.

Registering the PM. Following the workspace discovery, the MgM is incremen-
tally built by carrying out a PM discovery. This step involves registering the
PM and the associated model transformations and executables in the MgM.

Weaving the PM and the MgM. The PM needs to be linked with the elements
of the MgM so that we can reach, when needed, every information relevant
to enact it. However, we do not want any constraint on the shape of the
PM, effectively decoupling its metamodel as much as possible from the MgM
metamodel. Therefore, the MgM should be ideally independent from the PM,
since it is meant for keeping track of resources. We do not want to (and actually
cannot) refer to the MgM in the PM, but we still need a link between these
two entities. This link is created by weaving the PM and the MgM, and storing
the details in a weave model. A weave model is a special kind of model that
defines relationships between the objects and relations of other distinct models
(at least two) [14,30]. The weave model binds every relevant element of the PM
to their corresponding resources in the MgM, without touching the structure
of either of them. The weave model is dependent on the PM. In other words,
the weave metamodel is always specific to the PM language it weaves. Thus,
if we had to adapt the environment for another PM language (e.g., expressed
with BPMN), it would be necessary to create a new weaver to bind the new
type of PM with the MgM.

The PM representation (modelling language that it conforms to) is only
known following the PM registration step, hence the weaver to use can only be
identified at this point. Since the weaving is carried out after the registration of
the PM, the weave model and its metamodel are only added to the MgM later

Process Enactment for NFV Systems with MAPLE 7

and does not show up in the base MgM. This supports out goal was to make
the environment generic and extensible for other potential PM representations.
The weave metamodel currently supported is specific to a subset of UML
Activity Diagrams (i.e. it weaves elements of the UML AD to elements of the
MgM).

3.2 Building the Transformation Chain

The PM is given translational semantics by mapping it to a transformation
chain. The chain is in essence a schedule with the required details (sequence
of actions, transformations used, inputs and outputs of the transformations).
This allows us to build a generic enacter, instead of having an enacter for each
kind of PM. Having a generic enacter also leaves scope for integrating other
formalisms for modelling the PM.

The translation from a PM to a transformation chain is implemented as an
ATL model transformation, which takes as input various data (the PM, the
weave model, the MgM and if applicable, additional environment information)
and yields the corresponding transformation chain.

3.3 Executing the Transformation Chain

Executing the Chain. Once the transformation chain is created, we need to
be able to execute the chain in order to enact the PM. For this purpose, we
developed an enacter, which is simply a program that can execute the correct
actions in the right order, based on a schedule, namely the transformation
chain model.

Similar to UML 2 Activity Diagrams, the generated chain is also given
token-based semantics. Therefore, the enacter developed is based on control-
ling the tokens and activating the actions when needed. Concurrent access to
the same model instance is resolved at this stage to avoid model inconsisten-
cies.

Updating the Megamodel (MgM). The MgM is first derived based on existing
resources (prior to enactment). During enactment, the MgM gets dynamically
updated with new resources. With each model transformation execution, the
generated artifacts are added to the MgM. The MgM is updated with a refer-
ence to each new model instance. The conformance links to the metamodels
for the new instances are also retained in the MgM.

4 Tool Support

This section covers the support provided by the MAPLE environment and the
backend architecture of MAPLE.

8 S. Mustafiz, O. Hassane, G. Dupont, F. Khendek, and M. Toeroe

4.1 Language Support

With regards to the language support in MAPLE, our main goal was to have
an extensible cross-platform environment, which would allow any technology,
transformation type/engine, and PM language to be adapted and accommo-
dated at a later time.

A process model can be composed of one to many activities running in
sequence or in parallel. The activities themselves can be composed of actions
and/or sub-activities. Hence, a PM can have nested PMs. Initially MAPLE
allowed the enactment of a PM without hierarchy only. The enactment was
also only possible of a PM in which actions were implemented as ATL trans-
formations. To enact more complex PMs, we needed MAPLE to support the
notion of hierarchy and also execution of actions implemented in different
transformation languages.

Recently, support for Java was also integrated in MAPLE. This allows the
behaviour of activities in the PM to be implemented in Java. In order to sup-
port implementations written in various languages in MAPLE, we have come
up with a programming language agnostic module that provides support for
enacting PMs which include executable actions, i.e., actions associated with
operating system processes. Similar to the support for ATL and Java transfor-
mations, the executable code associated with an action needs to be identified as
an attribute of the action in the Papyrus Activity Diagram environment. The
specification of the language is optional. The details including the language,
input parameters, and output parameters need to be defined in a separate
configuration file. The base megamodel has been extended to recognize these
executable processes. Currently, all executables conform to a base metamodel
named process in the megamodel.

We have extended MAPLE with a built-in module, referred to as the pro-
cess executable module which allows transformations written in any special-
ized model transformation language (e.g., Epsilon, QVT, Kermata) or general-
purpose programming language (e.g., Java, Python, C) to be enacted as part
of the PM. The ezecutable process is created as a file having the “.process” ex-
tension. Its main component is the process element which has a command and
a name attribute. The command attribute takes as input the OS command to
launch, and the name attribute which represents the name of the ezecutable
process. Each process element in the process module file can contain parame-
ters which represent the command arguments.

In order to run the executable process file, the information including the
OS command, input parameters, and output parameters (which can be of
type UML or of any other type, such as Ecore or XMI) need to be specified.
Fig.[2| shows a sample ezecutable process file in which the root process element
contains input and output parameters. The root process element defines the
command to execute as shown in Fig.[3] as for the parameters (shown in Fig. |4),
they define the direction of the model, i.e., whether it is an input or an output,
its metamodel and a model reference that matches the corresponding model
reference in the PM.

Process Enactment for NFV Systems with MAPLE 9

v @ platform:/resource/Transformations/uploadMSD process

v 4 Process UploadhsD Property Value
~ <4 Ordered Parameter 0 Command '= java, -cp, \eclipse\plugins, etlExec.etlExecutable
4 Model Value NSDInfln Name 'S UploadM5sD

w4 Ordered Parameter 3
4 Model Value NSDInf

4 Ordered Parameter 1 Fig. 3: Process element properties in a

4 Ordered Parameter 2
Fig. 2: A sample .process executable fileProcess executable file

While this extension makes it easy to incorporate executable files and use it
within the PM, it should be noted that in this case no information is retained
in the MgM regarding the transformation language used.

Property Value
Direction '= |nput
Meta Model '= /Profiles/NsdGenProfiles/NSDInfo.profile.uml
Meta Model Reference = N5Dinfo
Maodel !

Model Reference 1= NSDInfln

Fig. 4: Process parameters properties in a process executable file

4.2 Architecture

The backend architecture of the enactment extension developed for Papyrus
(Neon Release) is shown in Fig. |5l In the figure, the core functionalities are
represented using rountangles (rounded-corner rectangles). The optional func-
tionalities (extensions) are represented by rectangles. The architecture is open
for future extensions.

Model Loading. This part corresponds to the blue boxes in Fig. [5| and is cen-
tered around the loading engine. The goal of this subsystem is to provide a high
level interface with the actual resources of the system (i.e., the file system). It
is able to recognize the correct way of loading a file, and to extract from the
file data, which could be interesting to have in the megamodel, for example.
Typically, when trying to register a file in the MgM, the discovery engine asks
the loading engine to load the file to be able to extract data. Defining load-
ers (such as, EcoreLoader, UMLLoader, ATLLoader, JavaLoader) allows for
different technologies to be incorporated in the global system, making it able
to understand new formats. In the case of Java, the Java loader parses Java
programs which conform to the EMF Java metamodelT}

To address executable processes, we defined an executable process loader re-
sponsible for reading related configuration files and extracting useful data from

I https://download.eclipse.org/modeling/emf/emf/javadoc/2.6.0/org/eclipse/emf/java/package-
summary.html

10 S. Mustafiz, O. Hassane, G. Dupont, F. Khendek, and M. Toeroe

i Enactment Core

' i Megamodel Weave
: '
' Chain | !
; Eracter | €= | 0
: !
: !
‘ !
!

WorkspaceDiscoverer

: Discovery Engine @
Launcher } I PMDiscoverer

!

EcorelLoader

[ProcessHandler [JavaHandler ‘ ‘ ATLHandler ‘
TranslationEngine Loading Engine —® < UMLLoader
- == =
oy Use 1 ATLLoader
“=> DirectAccess ,—T—\ L
—e ExtensionPoint RiTianslacer Resources JavaLoader
—

Extension

ProcessLoader

Fig. 5: Backend architecture

them (such as the command to be executed, the references of the metamodels
to which the in/out instances conform to, etc). These executables are seen as
resources conforming to a base metamodel named process in the MgM.

The MAPLE backend is designed such that it is modular and easily exten-
sible. This makes it possible to add new loaders without “touching” the core
loading engine or the existing loaders. Note that one has to extend the base
MgM with the metamodels of the new loaders.

Discovery. This is centered around the discovery engine and corresponds to
the green boxes in Fig. |5} The discovery is the process by which a resource
is added to the MgM. It includes the recognition of the resource (determin-
ing that it is a metamodel, a transformation, a profile, etc.) as well as the
extraction of its data (URI, name, inputs and outputs, etc.) with the help of
the loading engine. As in the case of the loaders, it is possible to develop a
custom discoverer (for instance, as shown in Fig. [5| WorkspaceDiscoverer or
PMDiscoverer). This allows the tool to be extended with discoverers for other
kinds of workflow modelling languages.

This is also the process that can initiate the weaving of the PM and the
MgM.

Weaving the PM and the MgM. This part corresponds to the yellow boxes in
Fig.[5l The weave engine creates a weave model containing mappings of several
types: ActionMapping (to link the action in the PM and the transformation in
the MgM), ObjectNodeMapping (to link the object flow in the PM to the cor-
responding model in the MgM), and InOutMapping (to link an input/output
pin to an object flow to determine the input/output of the transformation it
is linked to).

As the weave is entirely dependent on the PM language, it should be noted
that the weaving process is completely devolved to the discoverer, which must

Process Enactment for NFV Systems with MAPLE 11

provide both a specific weaver (an implementation) as well as fill it. In our
case, the weave model conforms to a variant of the UML Activity Diagram
formalism.

Megamodel Management. This is centered around the megamodel manager,
the orange part in Fig. |5| It allows the user to access the MgM: request to
register a resource, create or delete an MgM, etc. It also includes an extensive
API for manipulating the MgM, ensuring its validity throughout the process.

Translation. This revolves around the translation engine, the purple boxes in
Fig. [p] The goal is to carry out the translation of a PM to a transformation
chain that can be enacted. It exposes an extension point that allows anyone
to plug his own translation means, which is required if ever we want to use
another type of PM. MAPLE supports hierarchy in process models. A process
model with multiple activities and/or with nested activities is recognized by
the translation engine, flattened and mapped to a transformation chain. The
resulting chain includes forks and joins to model concurrent actions.

Scheduling and Enactment. This part corresponds to the red part in Fig. [5
It is composed of two subparts: a generic enacter (Enacter), independent
from the project (inside the dashed box labelled “Enactment Core”), and an
interface between this enacter and the remaining part of the project, through
the ProcessModelEnacter part.

It should be noted that the ProcessModelEnacter is not an independent
enacter, but a layer on top of the generic enacter, providing it with specific
behaviour as to what to do with each action; that is, actually executing the
transformations they correspond to, using interfaces with different transfor-
mation engines defined as extensions (e.g.: ATLHandler, JavaHandler). For
instance, the JavaHandler compiles and executes the loaded Java source code
accordingly. A ProcessHandler which is responsible for launching specific ex-
ecutable actions in the PM has been added to MAPLE.

Launcher. The gray rectangle in Fig. [5|is what orchestrates everything needed
to execute the PM. It includes the translation to a model transformation chain
and the enactment of the chain. Enactment configurations (data associated
with the PM to translate and enact it) are generated and stored as a standard
Eclipse launch configuration, which are also managed by this part of the tool.

5 NFV Case Study

We have used MAPLE to model and enact part of the Network Service Man-
agement (NSM) PM proposed in [41]. In this section, we demonstrate the
enactment of the NS design and onboarding process which are the initial ac-
tivities of the NS management process. NS management includes activities
on a running system hence the execution is time constrained. This NFV case

12 S. Mustafiz, O. Hassane, G. Dupont, F. Khendek, and M. Toeroe

study illustrates the use of MAPLE for enacting a PM composed of multiple
activities implemented with a heterogeneous set of transformation languages.

5.1 Network Service Design and Onboarding

NS Design. A network service (NS), such as VoIP, is a composition of in-
terconnected network function(s) The interconnections explicitly describe the
traffic flow between the components. Virtualized Network Functions (VNF)
are software pieces representing the resource aspect of network functions in
NFV (e.g., a virtual firewall). They are the building blocks of an NS. The
design of an NS consists of defining an NS Descriptor (NSD), a deployment
template which captures the information relevant to NFV. This template is
provided to the NFV Orchestrator for the NS lifecycle management.

Coming up with the deployment template for an NS is not an easy task for
an inexperienced tenant who has limited knowledge regarding the details of
the target NS. Instead of these details, the tenant may request at some level of
abstraction the functional and non-functional characteristics of the targeted
NS. The gap between these NS requirements (NSReq) and the NS deployment
template is filled with an automated NS design method. With the help of a
network function ontology (NFOntology), it is indeed possible to fill this gap
and design automatically NSDs from NSRegs. The NSReq decomposition is
guided by the NFOntology to a level where proper network functions can be
selected from an existing VNF catalog. After the selection of the VINF's, the
method continues with the design of the traffic flows given the characteristics
of the selected VINFs and their dependencies. These flows are refined further
based on the non-functional requirements in the NSReg, resulting in the target
NSD. As a final step, the ontology is enriched with the new decompositions.
It is also possible to enrich the ontology with new standards and new services.
Please note that the goal of this paper is not to describe the details of the NS
design method but to show how the process is enacted using our tool. The NS
design process and the associated modelling languages which are part of the
NS Design PM are described in details in [40]. A revised version of the PM is
shown in Fig. [0}

NS Onboarding. This activity is triggered by the NFV Orchestrator due to
an incoming NSD (generated by the NS Design activity). This step is essential
in NFV systems since the NSD needs to be validated to ensure that it con-
forms to the service provider’s platform and then onboarded to the provider’s
catalog (or repository) of network services. The onboarding activity creates
the onboarded NSD artifact (NSDInfo [22]). Once created, the NSD (which is
added to the associated NSDInfo) is uploaded and validated. The validation
ensures that the VNFs which are part of the deployment template (to be used
during instantiation) exist in the provider’s VNF catalog. Once the validation
passes, the NSD is successfully onboarded and added to the NS Catalog. The

Process Enactment for NFV Systems with MAPLE 13

Fig. 7: NS Onboarding PM

Fig. 6: NS Design PM [40]

target artifacts conform to the ETSI NFV defined information elements. The
behaviour of the NS onboarding process is shown in Fig. [7}

5.2 Using MAPLE for NS Design and Onboarding

The enactment approach is demonstrated here with a slice of the NSM PM
shown in Fig. [8] the NS design and onboarding PM. The PM includes two
activities in sequence, the NS design activity followed by the NS onboarding
activity, presented in Fig. [f]and Fig. [7]respectively. Each of these activities are
composed of a set of actions in sequence or in parallel. The enactment process
with MAPLE consists of three main steps: deriving the megamodel (MgM),
generating the transformation chain corresponding to the PM, and enacting
the PM (via the transformation chain) using these resources.

Deriving the Megamodel. Prior to registering any resources, the base MgM ini-
tially consists of metamodels of the loaders used to load resources needed for
the enactment (see Fig. E[) This MgM includes the meta-metamodels (UML
and Ecore pre-loaded in the base MgM) and conformance links. In the MgM,
the metamodels are represented in orange, UML profiles in green, transfor-
mation models in brown, and other models (PM, weave model) in gray. The
dashed links represent conformance relationship, and the solid black links rep-
resent object flow.

We begin by registering the NS design and onboarding resources (profiles
for NSReq, NFOntology, etc.) that are used in the process by creating an initial
MgM. Once we register the profiles, a conformance relation between the profiles
and the UML metamodel is created in the MgM (see graphical view of the

MgM in Fig. .

14 S. Mustafiz, O. Hassane, G. Dupont, F. Khendek, and M. Toeroe

55 NSM-PM

NSDesign

[Requirement : NSReq] - [RefinedOntology : NFOntolog)
L] NFOntology o
scriptor
[pstack : ProtocolstacH]

iNSD

ProtocolStack

NS Onboarding

£reateNSDinfoRequestDath
[ontology : NFOntologyl > {
- -
[Catalogue : VnfCatalogus

:NSD

> NSDOnboardingNotification
VnfCatalogue

- ‘]NSDInfo

[Request : createNSDinfoRequestData}

[vnfCat : VnfCatalogu

[NSCat : NsCatalogus

INSDChNot : NSDChangeNotificatior

%socmngmaununo

[onoNSCat : NsCatalogus

v-«cm\ogfzc :"‘lscnllogue
NsCatalogue hPrsio

= (l \ [NSDOnbFailNot NswnnoardmgranureNmmanc;i

Fig. 8: NSM PM Slice: NS Design and Onboarding PM

|Pmcess | UML | | JAVA | ATL ‘
. 7

N \ / e
. \ / -

~ -

~. \Q D’ 7/

Ecore !

Fig. 9: Base Megamodel (MgM)

|N§n{‘ ingFai ificati [|Ncn{‘

|Pmloeolsmk| |anAmhiwch|mlDe | JanCamlugue

| NFOntology ‘ | ‘VnfPackageResources | ‘E’

NSDInfo

S Ny

NSDChangeNotification -
o . 1
e 3

Fig. 10: NS Design and Onboarding: Initial MgM

‘ createNSDInfoRequestData |

The next step is to register the PM which automatically refines the MgM
based on information available in the PM. Each action in the NS Design ac-
tivity is implemented as an ATL transformation. The NS onboarding is im-
plemented with a heterogeneous set of transformations written in Java, ATL,
and Epsilon. Each associated transformation is stored as an attribute of the
corresponding activity node. Since there is no handler available for Epsilon
transformations in MAPLE, the executable process module (discussed in Sec-
tions and is used to execute the Epsilon transformation.

The PM itself is also added as a resource (see Fig. . While discovering
and registering the PM, whenever an object flow links two pins and that flow
and pins do not have any assigned name, MAPLE can detect it and create an
intermediate model. The weaving of the NS Design and Onboarding PM and
the MgM is also carried out at this stage resulting in a weave model containing

Process Enactment for NFV Systems with MAPLE 15

various mappings. Samples of the mappings part of the generated weave model
are shown in Fig. [T2]

This main step results in creating an initial repository of models, NFV-
specific languages, and tools, along with the relationships between the arti-
facts.

Enacting the PM. Once the resources (profiles, transformations and PM) are
registered in the MgM, the PM can be enacted. MAPLE based on the PM gen-
erates a launch configuration dialog box (see Fig. to fill in the parameters
needed for the execution of the PM (such as the different model instances).
MAPLE can then start the process of enacting by mapping the NS design and
onboarding PM to a transformation chain (see Fig. .

Orchestration of the chain is carried out with the use of the embedded or-
chestration engine. The process execution begins by taking an NSReq model as
input and creating an intermediate model, SolutionMap, which is incremen-
tally refined. Once the initial NSD is created, MAPLE allows NSD refinement
and ontology enrichment to be carried out concurrently since they are inde-
pendent of each other, hence optimizing deployment time. The ATLHandler
is invoked to execute the actions which lead to the generation of the NSD.
The execution of the chain continues with the NS onboarding transforma-
tions. MAPLE now invokes the JavaHandler to execute the action to cre-
ate a skeleton NSDInfo. The enactment continues with the invocation of the
ProcessHandler in order to execute the action (implemented in Epsilon)
which uploads the NSD. Finally, the ATLHandler is invoked again to execute
the next action which involves validating the NSD and updating the catalogs.
The enactment ends with the generation or update of the target models, NSD,
NFOntology, NSDInfo and the NSDOnboarding Notifications (not shown
here). These model instances are dynamically added to the MgM as they are
generated.

With this environment, NFV users with limited modelling expertise and
minimal knowledge about the underlying transformations can generate a tar-
get NSD with basically a few clicks and onboard it. The configurations for
ATL, Java, and Epsilon, ensures that the correct models are passed into each
transformation, do not need to be handled by the user. The same PM can be
enacted again with different inputs if desired, and it can also be reused as part
of another PM if required.

A demo video of the enactment environment is availablePl The new features
of MAPLE are demonstrated in another video Bl

In [39], MAPLE was only used to enact a single activity which included a
set of non-decomposable actions. The NS design and onboarding application
demonstrates the use of MAPLE on a larger subset of the PM. This validates
that the approach and environment works for 1) PMs with composite activities,
2) PMs implemented with a heterogeneous set of model transformations, and
3) PMs with executable actions.

2 https://users.encs.concordia.ca/~magic/maple-demo.php
3 https://users.encs.concordia.ca/~magic/maple-demo-new.php

https://users.encs.concordia.ca/~magic/maple-demo.php
https://users.encs.concordia.ca/~magic/maple-demo-new.php

16

S. Mustafiz, O. Hassane, G. Dupont, F. Khendek, and M. Toeroe

B
Fig. 11: NS Design and Onboarding: Updated MgM

Process Enactment for NFV Systems with MAPLE 17

V [&] mappings

xsi:type Weave:ActionMapping
inouts //@mappings.67 //@mappings.68 //@mappings.69 //@mappings.70
¥ [e] transformation
@ href ../megamodel.mgm#//@resources.44
¥ (] action
(@ href platform:/resource/ProcessModel/NSM-PM.uml#_Ulg2ECaFEei8sfAudc8 WhA
¥ [e] mappings
xsi:type Weave:ObjectNodeMapping
¥ [e] model
href ../megamodel.mgm#//@resources.38
¥ [e] metamodel
href ../megamodel.mgm#//@resources.2
v [e] profiles
href ../megamodel.mgm#//@resources.11
¥ [e] source
xsi:type uml:ActivityParameterNode
href platform:/resource/ProcessModel/NSM-PM.uml#_3iR2QEEvEeiftZaafoaupQ
V [e] targets
xsi:type uml:InputPin
href platform:/resource/ProcessModel/NSM-PM.uml#_gBUysEEvEeiftZaafoaupQ

Fig. 12: NSM PM Weave Model: Sample Mappings

This work sets the basis for the enactment of the entire NS design, de-
ployment and management process. Each activity in the NS lifecycle involves
a complex chain of tasks. We are working on modelling the behaviour of the

= u] X

Enactment Configuration

€ You must fill in every field!

Requirement:

PStack:

Ontology:

Catalogue:

NSDescriptor:

RefinedOntology:

NSCat:

NSDOnbNot:

NSDChNot:

NSDOnbFailNot:

OnbNSCat:

Request:

\
\
\
\
\
]
OnbNSDinfo: |
\
\
\
\
\
\
\

‘ ~

VnfCat:

Fig. 13: MAPLE Launch Configuration Dialog

18 S. Mustafiz, O. Hassane, G. Dupont, F. Khendek, and M. Toeroe

resource /Transformations/NSReq2SM.atl
IN NSRegq.uml
ouT TempSM1.uml

resource /Transformations/SM20nto.atl
IN TempSM1.uml

IN1 NFOntology.uml

ouT TempSM2.uml

resource /Transformations/GeneratingFG.atl

IN TempSM2.uml
IN1 VNFCatalog.uml
IN2 PStack.uml

OouUT TempSM3.uml

resource /Transformations/SM2NSD.uml

IN TempSM3.uml
IN1 PStack.uml
ouT TempNSD.uml

ouUT1 TempSM4.uml

resource /Transformations/NSDRef.uml resource /Transformations/OntoUpdate.uml
IN TempNSD.uml IN NFOntology.uml

IN1 TempSM4.uml IN1 TempSM4.uml

IN2 PStack.uml IN2 TempNSD.uml

ouT NSD.uml ouT refinedOnto.uml

OouUT1 SM.uml

resource /Transformations/createNSDInfo.java
IN requestModel.uml
OUT TempNSDInfo.uml

resource /Transformations/uploadNSD.process
IN NSD.uml
IN1 VNFCatalog.uml
IN2 TempNSDInfo.uml
OUT TempNSDInfo1.uml

resource /Transformations/ProcessNSD.atl

IN TempNSDInfo1.uml
IN1 NSCatalog.uml
IN2 TempNSDInfo.uml|
ouT NSDInfo.uml
ouT1 OnbNSCat.uml
0ouT2 Notif1.uml

OuUT3 NotifFail.uml
OUT4 NSDChangeNotif.uml

Fig. 14: NS Design and Onboarding: Generated Transformation Chain

other activities, e.g. NS Instantiation and VNF Instantiation. The entire PM
can then be mapped on to a composite chain of transformations along with
an extended MgM to allow for automated deployment and management of
network services. When the NS management PM is enacted using MAPLE,
the resulting MgM is a useful repository of NFV-related models, languages,
and tools for NFV projects in the industry and academia.

Process Enactment for NFV Systems with MAPLE 19

5.3 Discussion

In the NFV community, application of MDE is still at the initial stages where
information modelling with class diagrams and state machines are more typ-
ical. Advanced applications of MDE in this domain is minimal. This work
is meant to set the pillars for a project which can advance greatly with the
appropriate use of MDE, as well as provide much-needed inspiration to the
open-source NFV industry projects to embrace MDE methods and technology.

The proposed enactment support, MAPLE, has been built into a main-
stream, open-source, industry standard tool which is also ETSI NFV’s tool of
choice - Eclipse Papyrus. MAPLE requires the PM to be created using UML
Activity Diagrams in Papyrus. Once the PM is created, enacting it is fairly
intuitive using our environment and as elaborated earlier in this section, only
requires a few steps on the user end. For the process to be enacted, the ac-
tions which are part of an activity need to be implemented. MAPLE allows
enactment of PMs with multiple activities composed of actions. The activities
can be developed using a single language or multiple languages. Model trans-
formations (implemented with ATL or Java) or executables (Java, C, etc.)
can be used for the actions. The latter allows existing code to be integrated
and used within the PM. This also enables implementations in other model
transformation languages to be handled during the PM enactment.

MAPLE is easily extensible, and we plan on providing support for other
transformation languages including Epsilon and QvT. The tool can also be
extended to support other workflow modelling languages. One of the main
contributions is the underlying support for model management. NFV systems
involves numerous heterogeneous and interrelated artifacts which evolve over
time. The complexities that arise with the management of such a large and
evolving collection of models can be handled with megamodelling techniques.
The megamodel forms a repository of models, metamodels, and tools for the
NFV domain, which can be of great use in this domain. The generated models
are also persisted and dynamically added to the repository to be inspected,
compared, or used in transformations at a later time. The MgM makes it
possible to explicitly deal with dependencies between models. It is used to carry
out type checks between the metamodels of the models to be transformed and
to check the compatibility between the metamodels and the transformations
by querying the MgM. In case of activities which include a heterogeneous set
of transformations, the MgM determines which transformation engine should
execute the transformation.

In addition to being useful for carrying out conformance and compatibility
checks, the created MgM can be used for advanced traceability information
generation and analysis. Work is in progress to extend the tool for this purpose.
Such a feature would indeed be beneficial for NFV systems.

20 S. Mustafiz, O. Hassane, G. Dupont, F. Khendek, and M. Toeroe

6 Related Work

In this section, we first discuss some of the available work on applying MDE
in the NFV domain. We then elaborate on how our work compares with the
existing approaches and tools for process modelling and enactment in the MDE
area.

6.1 Model-Driven Orchestration Support for NF'V Systems

We have covered the state of the art with regards to NFV management and
orchestration in [41]. We only mention relevant model-based or model-driven
approaches here. A few model-based continuous integration and deployment
methods and tools have been proposed with cloud as the target domain [5,(24],
which use domain-specific languages to model the deployment of cloud ap-
plications and provide means to adapt the models for use in the runtime
environment. Some other model-based approaches exist in the NFV litera-
ture [11},42,/52]. These approaches do not support process modelling.

According to Mijumbi et al. [38], existing NFV industry solutions lack
real support for flexibility, interoperability, orchestration and/or automation,
which are the core requirements for NFV. Model-driven orchestration has been
recently promoted for NFV, and viewed as a more robust method than busi-
ness process workflows for NFV orchestration [8]. BPMN-like workflows are in
general implementations of specific task-oriented cases which are appropriate
for immutable business processes as stated in [8]. In software defined envi-
ronments [?] which evolve rapidly, such workflows bring about difficulties and
risks.

Recently, several open-source initiatives have been taken by the telecom
industry. In particular, the Open Network Automation Platform (ONAP)E|
project was formed as an effort to harmonize the telecom industry and provide
a common platform for network service orchestration [12]. ONAP plans on
automating both design and management of network services by deploying
model-based methods and tools. A multi-cloud infrastructure orchestration
support will be provided with the integration of the Cloudifyﬂ platform (a
TOSCA-based model-driven orchestration platform). Incorporating workflow
modelling means is also part of the ONAP roadmap to enable orchestration.

However till date, the application of advanced MDE techniques, such as
model management and transformation chain orchestration, is minimal for
NFV systems. With this work, we aimed to show how MDE means can be used
in the NFV domain to further the vision of automating end-to-end network
service management.

4 https://www.onap.org
5 https://cloudify.co

https://cloudify.co

Process Enactment for NFV Systems with MAPLE 21

6.2 Model Management and Process Enactment Support

Extensive research has been carried out by the model transformations com-
munity on composing and executing transformation chains [4,/20}28.|45./46l/56].
The Model Control Center (MCC) is Eclipse plugin for creating and exe-
cuting transformation compositions [32]. The Juniper project also introduces
means for generic transformation chaining [51]. MoTCoF [49] is a dedicated
model transformation composition framework supporting chaining of black-
box transformations. It allows specification of loosely coupled and heteroge-
neous transformation chains. Similar to our work, some approaches proposed
or used a workflow modelling language to define transformation chains at a
higher level of abstraction. In [54], the authors propose a modelling language
for defining transformation chains based on a variant of UML Activity Dia-
grams. This work later progressed into the transformation chaining framework,
UNiTi [53] (discussed later in this section). The Wires* framework [46] also
adopted the use of UML Activity Diagrams to model transformation com-
positions. However, UNiTi and Wires* are both data-flow oriented and do
not address process-flow. Tools supporting workflow or transformation chain
orchestration also existed at some point [18}45/46L(53].

AMMA (Atlas Model Management Architecture) 3] is a model manage-
ment platform with a component for global resource management, known as
the AtlanMod MegaModel Management (AM3) tool. AM3 supported auto-
mated megamodel discovery and was used for execution of compositions of
ATL model transformations. Subsequently, other frameworks and tools for
model management emerged, such as [33}35,47,/48]. There exists some work
in the MDE literature which apply megamodelling in specific domains [25150].
ExecUtable RuntimE MegAmodels (EUREMA) [55] provides an MDE infras-
tructure for building self-adaptive software with the use of runtime megamod-
els. In order to manage the interconnection of the different models within the
running system, EUREMA provides a runtime megamodel containing the re-
lated models as well as activities processing those models. This megamodel
is automatically synchronized at runtime and executed to launch feedback
loops linking design and runtime models. Similar to this work, our approach
also supports dynamic update of the megamodel during enactment which will
make it possible to link design and runtime models during NS deployment and
management.

The MegaM@Rt2 ECSEL project [1] is working on a model-based frame-
work for continuous development and runtime validation of complex systems.
They use megamodels for traceability management with the goal of interre-
lating design and runtime models. It is not clear as yet what, if any, process
modelling, enactment and transformation chaining means is covered.

A combination of transformation chaining and model management means
has been used in the MDE community in different contexts with varying
goals [26},36},/53]. The Epsilon framework [17] supports orchestration of chains
using Ant scripts |[16] and also offers tools for model management.

22 S. Mustafiz, O. Hassane, G. Dupont, F. Khendek, and M. Toeroe

The MDPE Workbench [26] is a framework for end-to-end performance
decision support which uses model transformation chains for incorporating
decision support in process modelling tool chains. The goal of this work is to
create and analyze a process modelling tool chain by building a transformation
chain of process models defined using BPMN, Process Flow, and JPass.

UNiTi [53], part of the MARTES project [6], is a model-based approach to
construct, reuse and execute transformation chains in a technology indepen-
dent way allowing loose coupling between implementation and specification.
UNiTi focuses on data-flows and provides model management with the use of
megamodels. In MAPLE, we go beyond that and cover both data and control
flows explicitly in the process model.

The FTG+PM framework [36] which supports process execution based on
an FTG (Formalism Transformation Graph - a subset of megamodels) is sim-
ilar to our approach. Both data-flow and control-flow modelling is supported.
However, the FTG and PM is defined as a single combined formalism, and so
the FTG needs to be created together with the PM. There is no support for au-
tomated derivation or dynamic update of the MgM (which is a core part of our
approach), and the research tool developed only supports execution of T-Core
transformations. The FTG+PM, however, supports manual transformations
during enactment, which we do not cover as yet.

Process enactment is a widely adopted method in the business process
modelling domain. The model-based methods and tools in this domain mostly
support SPEM/BPMN processes and use BPEL for orchestration [2//37]. UML
Activity Diagrams together with MDE enablers, such as model transforma-
tions, are not widely used in this area for modelling and enacting processes.
SPEM4MDE [15] is a process modelling language and environment for mod-
elling MDE software processes. Process enactment is also supported based
on UML state machines and QVT. ModelBus [2] supports definitions of tool
chains and execution of software processes based on orchestration of transfor-
mation chains and process enactment. Model management is not available in
these approaches.

MAPLE has been built on concepts taken from process modelling, process
enactment, transformation chain orchestration, and model management with
megamodelling. In essence, it is a megamodel-driven process enactment ap-
proach. It provides support for both control flow and data flow modelling and
for execution of loosely coupled heterogeneous model transformation chains.
MAPLE offers direct support for ATL and Java transformations, and indi-
rectly with the use of the ezxecutable process module, it can support orchestra-
tion of chains implemented in a wide array of languages. The megamodel is
dynamically updated during enactment which we believe makes it very useful
for network service management. To the best of our knowledge, none of the
projects, approaches, and tools covered in this section provide such support.

Our initial intention was to reuse and integrate existing components to
build the MAPLE environment. However to the best of our knowledge, no
working tools to serve our purpose exist at the moment. We looked into
Eclipse-based tools including MoDISCO/AM3, UNiTi, TraCo for megamod-

Process Enactment for NFV Systems with MAPLE 23

elling support and Wires*, MWE2 (Modelling Workflow Engine), ATLFlow
for orchestration support. None of the tools with megamodelling support were
usable (incompatible with Eclipse Papyrus, unavailable, or failed to work) at
the time of this work. Orchestration engines available were not adequate for
our needs, since we wanted to support concurrent executions of model trans-
formations. With regards to the translation engine, Wires* could have been
adapted for our purpose since it supported orchestration of ATL transforma-
tion chains derived from UML Activity Diagrams. However, the tool is no
longer maintained and not available for use. For this reason, we developed
our own translation engine and orchestration engine as well as the underlying
model management support which allowed us to offer a flexible and extensible
integrated environment for process modelling and enactment in Papyrus.

In Table [I} we summarize and compare the related approaches using four
criteria. The first criterion is about support for model management using meg-
amodels. We further refine this criterion to see whether the approach supports
automatic discovery of the resources and dynamic update of megamodels. The
second criterion addresses two aspects of transformation chaining support:
availability of automated support for chaining and execution, and model trans-
formation languages supported. The approaches tagged as ‘generic’ supports
execution of heterogeneous chains. The third criterion is on process modelling
support using UML Activity Diagrams or other notations. Finally, we have
also investigated whether each approach supports process enactment. As can
be deduced from the comparison table, none of the related approaches and
environments satisfies all the four criteria, while MAPLE has been designed
to provide support for all of these features.

7 Conclusion

Automating NS management is one of the challenges in the NFV domain, and
this is what we have aimed to address in this paper. This work resulted in a
comprehensive and extensible environment, MAPLE, for model-driven process
enactment. We have used the existing UML Activity Diagram environment in
Papyrus and integrated process enactment means with it.

In our approach, we followed the model-driven paradigm all through. The
core of the approach combines orchestration of model transformation chains
with model management means. We begin with a process which is modelled as
a UML Activity Diagram (referred to as the PM). The activities in the PM are
associated with model transformations. Input and output objects are model
instances of some existing domain-specific language. For model management,
we build a megamodel (MgM) of the target system. This MgM contains in-
formation of all MDE resources that are being used by the process, as well as
the link(s) between these resources. The PM itself is also a resource which is
registered in the MgM. To enact the PM, the MgM is used along with the PM
to build a model transformation chain. Token-based enactment means have
been implemented to orchestrate the MT chain.

24

S. Mustafiz, O. Hassane, G. Dupont, F. Khendek, and M. Toeroe

Table 1: Comparison of the approaches (supports (v'), does not support (X) ,
unknown/unclear (_))

Approach Model Management MT Chaining Process Modelling Process
En-
act-
ment

MgM| Auto. Dynamic| Auto. | MT UML Other
Dis- Up- Lan- AD
covery date guage(s)
UNIiTi [53] 4 x X ATL 7(only X _
data
flow)

AM3 [3] v - X v ATL X X X

MegaM@Rt2 [1]| / v v X - X - —

MCC [32] X x X 7 generic X X _

FTG+PM [36] v x X v T- v X 4

Core in
AToMPM

EUREMA [55] v v v X X X X X

Epsilon |35| v X X v Epsilon X v (only -

data flow)

MoScript [33] v - v v ATL, X X X

QVT

MDEForge v - X X I3 X X

147]

[MoTCoF |49] N x X % generic X N x

Wires* (46| X 3 X v ATL X v (only v

data flow)

MMINT [48] 7 X 7 x x X X X

Etien et X X X v QVTo X X X

al. [20]

Wagelaar |56| X X X v generic X v (only X

data flow)

TraCo |28| X v ATL X v (only v

data flow)

Aranega et X X v v generic X X X

al. |4]

Juniper [51] X X X v generic X X X

MWE 2 [18] X x X 7 MWE X X X

Fritzsche et v - X v ATL v vBPMN, v

al. [25] JPASS,

SAP pro-
prietary
languages

Simmonds et v X X v ATL v vSPEM 4

al. |50]

Fritzsche et v v X v ATL v vNetWeaver| v

al. [26] BPM

Maciel et X X X v ATL X VSPEM 2 v

al. |37]

Aldazabal et X LS X - - X vSPEM, v

al. [2] BPMN

SPEMMDE [15]| X X X - QVT X vVSPEM v

Oldevik et v X X v generic X X X

al. [45)

[MAPLE v | v | v v | generic | v | v v

The enactment support has been created with NFV systems as the target
domain. The approach along with the tool support is not restricted to NFV,
and can be used in various domains for process enactment. We have demon-
strated the use of MAPLE on a network service design and onboarding case
study. The environment designed and implemented is not closed; it will be
improved, extended further and validated.

Acknowledgements This work is partly funded by NSERC and Ericsson, and carried out
within MAGIC, the NSERC/Ericsson Industrial Research Chair in Model Based Software

Management.

Process Enactment for NFV Systems with MAPLE 25

References

1.

10.

11.

12.

13.

14.

15.

16.
17.
18.

19.
20.

W. Afzal, H. Bruneliere, D. D. Ruscio, A. Sadovykh, S. Mazzini, E. Cariou, D. Truscan,
J. Cabot, D. Field, L. Pomante, and P. Smrz. The MegaMart2 ECSEL project: Meg-
amodelling at runtime - a scalable model-based framework for continuous development
and runtime validation of complex systems. In 2017 Euromicro Conference on Digital
System Design (DSD), pages 494-501, Aug 2017.

. Aitor Aldazabal, Terry Baily, Felix Nanclares, Andrey Sadovykh, Christian Hein, and

Tom Ritter. Automated model driven development processes. In ECMDA workshop on
Model Driven Tool and Process Integration, pages 50-52, 2008.

. Freddy Allilaire, Jean Bézivin, Hugo Bruneliere, and Frédéric Jouault. Global model

management in Eclipse GMT/AMS3. In Eclipse Technology eXchange Workshop (eTX)
- a ECOOP 2006 Satellite Event, July 2006.

. Vincent Aranega, Anne Etien, and Sebastien Mosser. Using feature model to build

model transformation chains. In Robert B. France, Jiirgen Kazmeier, Ruth Breu, and
Colin Atkinson, editors, Model Driven Engineering Languages and Systems, pages 562—
578, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

. Matej Arta¢, Tadej Borovsak, Elisabetta Di Nitto, Michele Guerriero, and Damian A.

Tamburri. Model-driven continuous deployment for quality DevOps. In 2nd Interna-
tional Workshop on Quality-Aware DevOps, QUDOS 2016, pages 40—41. ACM, 2016.

. Stefan Van Baelen, Bert Vanhoof, Johan Devos, Kari Tiensyrja, Martin Host, Thierry

Saunier, and Fernando Lopez. MARTES: Specification of the Model Driven Engineering
Process D1.7. Technical report, ITEA, June 2007. EUREKA - ITEA 04006.

. Francesco Basciani, Davide Di Ruscio, Ludovico Iovino, and Alfonso Pierantonio. Au-

tomated chaining of model transformations with incompatible metamodels. In 17th
International Conference, MODELS 2014, pages 602—618, Cham, 2014. Springer Inter-
national Publishing.

. Arthur Berezin. Utilizing Declarative Model-Driven TOSCA Orchestration for NFV.

DZone, March 2017.

. Jean Bézivin, Frédéric Jouault, Peter Rosenthal, and Patrick Valduriez. Modeling in the

large and modeling in the small. In European Conference on Model Driven Architecture:
Foundations and Applications, MDAFA’03, pages 33—46. Springer-Verlag, 2005.
Marco Brambilla, Jordi Cabot, and Manuel Wimmer. Model-Driven Software Engi-
neering in Practice. Morgan & Claypool Publishers, 1st edition, 2012.

YuLing Chen, Yinghua Qin, Mark Lambe, and Wenjing Chu. Realizing network func-
tion virtualization management and orchestration with model-based open architecture.
In 11th International Conference on Network and Service Management (CNSM ’15),
pages 410-418. IEEE, 2015.

Cloudify. ONAP: Orchestration for Real Results - A Guide to ONAP Ar-
chitecture and Use Cases. https://cloudify.co/wp-content/uploads/2018/02/
ONAP-Orchestration-Architecture-Use-Cases-WP-Feb-2018.pdf, 2018.

Krzysztof Czarnecki. Generative programming: Methods, techniques, and applications
tutorial abstract. In Cristina Gacek, editor, Software Reuse: Methods, Techniques, and
Tools, pages 351-352, Berlin, Heidelberg, 2002. Springer Berlin Heidelberg.

Marcos Didonet Del Fabro and Patrick Valduriez. Semi-automatic model integration
using matching transformations and weaving models. In ACM Symposium on Applied
Computing, SAC ’07, pages 963-970, New York, NY, USA, 2007. ACM.

Samba Diaw, Rdouane Lbath, and Bernard Coulette. Specification and implementa-
tion of spem4mde, a metamodel for mde software processes. In SEKFE, pages 646—653.
Knowledge Systems Institute Graduate School, 2011.

Eclipse. Apache Ant. https://ant.apache.org. Accesed: 2019-01-29.

Eclipse. Epsilon. https://www.eclipse.org/epsilon/. Accesed: 2019-01-29.

Eclipse. Modeling Workflow Engine 2 (MWE 2). https://www.eclipse.org/Xtext/
documentation/306_mwe2.html. Accesed: 2018-12-01.

Eclipse. Papyrus. https://eclipse.org/papyrus/. Accesed: 2018-12-01.

Anne Etien, Vincent Aranega, Xavier Blanc, and Richard F. Paige. Chaining model
transformations. In Analysis of Model Transformations Workshop, AMT ’12, pages
9-14. ACM, 2012.

https://cloudify.co/wp-content/uploads/2018/02/ONAP-Orchestration-Architecture-Use-Cases-WP-Feb-2018.pdf
https://cloudify.co/wp-content/uploads/2018/02/ONAP-Orchestration-Architecture-Use-Cases-WP-Feb-2018.pdf
https://ant.apache.org
https://www.eclipse.org/epsilon/
https://www.eclipse.org/Xtext/documentation/306_mwe2.html
https://www.eclipse.org/Xtext/documentation/306_mwe2.html
https://eclipse.org/papyrus/

26

S. Mustafiz, O. Hassane, G. Dupont, F. Khendek, and M. Toeroe

21.

22.

23.
. N. Ferry, H. Song, A. Rossini, F. Chauvel, and A. Solberg. CloudMF: Applying MDE

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

ETSI. Network Functions Virtualisation (NFV) Release 2; Information Modeling; Pa-
pyrus Guidelines: ETSI GR NFV-IFA 016 V2.1.1, March 2017.

ETSI. Network Functions Virtualisation (NFV) Release 2; Management and Orches-
tration; Report on NFV Information Model: ETSI GR NFV-IFA 015 V2.1.1, January
2017.

ETSI. Zero-touch Network and Service Management, December 2017.

to tame the complexity of managing multi-cloud applications. In IEEE/ACM 7th In-
ternational Conference on Utility and Cloud Computing, pages 269-277, Dec 2014.

M. Fritzsche, H. Bruneliere, B. Vanhooff, Y. Berbers, F. Jouault, and W. Gilani. Apply-
ing megamodelling to model driven performance engineering. In 16th IEEE Engineering
of Computer Based Systems, ECBS 2009, pages 244-253, April 2009.

Mathias Fritzsche and Wasif Gilani. Generative and Transformational Techniques in
Software Engineering II1: International Summer School, GTTSE 2009, chapter Model
Transformation Chains and Model Management for End-to-End Performance Decision
Support, pages 345-363. Springer, 2011.

Victor Guana Garces. End-to-end Fine-grained Traceability Analysis in Model Trans-
formations and Transformation Chains. PhD thesis, University of Alberta, 2017.
Florian Heidenreich, Jan Kopcsek, and Uwe Assmann. Safe composition of transforma-
tions. Journal of Object Technology, 10:7:1-20, 2011.

Frédéric Jouault and Ivan Kurtev. Transforming models with ATL. In Satellite Events
at the MoDELS 2005 Conference, pages 128—138. Springer, 2006.

Frédéric Jouault, Bert Vanhooff, Hugo Bruneliere, Guillaume Doux, Yolande Berbers,
and Jean Bezivin. Inter-DSL coordination support by combining megamodeling and
model weaving. In Proceedings of the 2010 ACM Symposium on Applied Computing,
SAC ’10, pages 2011-2018, New York, NY, USA, 2010. ACM.

Amar Kapadia. https://www.aarnanetworks.com/single-post/2017/11/02/
The-Magic-of-Model-Driven-Design-in-0ONAP, November 2017.

Anneke Kleppe. Mcc: A model transformation environment. In Arend Rensink and Jos
Warmer, editors, Model Driven Architecture — Foundations and Applications, pages
173-187, Berlin, Heidelberg, 2006. Springer Berlin Heidelberg.

Wolfgang Kling, Frédéric Jouault, Dennis Wagelaar, Marco Brambilla, and Jordi Cabot.
Moscript: A dsl for querying and manipulating model repositories. In Anthony Sloane
and Uwe Afimann, editors, Software Language Engineering, pages 180-200, Berlin, Hei-
delberg, 2012. Springer Berlin Heidelberg.

Dimitrios S. Kolovos, Richard F. Paige, and Fiona A. C. Polack. The Epsilon trans-
formation language. In Theory and Practice of Model Transformations, pages 46—60.
Springer, 2008.

Dimitrios S. Kolovos, Richard F. Paige, and Fiona A. C. Polack. A framework for
composing modular and interoperable model management tasks. In In Model-Driven
Tool and Process Integration Workshop, pages 79-90, 2008.

Levi Lucio, Sadaf Mustafiz, Joachim Denil, Hans Vangheluwe, and Maris Jukss.
FTG+PM: An integrated framework for investigating model transformation chains. In
SDL 2013: Model-Driven Dependability Engineering: 16th International SDL Forum,
pages 182—202. Springer, 2013.

R. S. P. Maciel, B. C. d. Silva, A. P. F. Magalhes, and N. S. Rosa. An integrated approach
for model driven process modeling and enactment. In XXIII Brazilian Symposium on
Software Engineering, pages 104—114, Oct 2009.

Rashid Mijumbi, Joan Serrat, Juan-Luis Gorricho, Steven Latre, Marinos Charalam-
bides, and Diego Lopez. Management and orchestration challenges in network functions
virtualization. IEEE Communications Magazine, 54(1):98-105, January 2016.

Sadaf Mustafiz, Guillaume Dupont, Ferhat Khendek, and Maria Toeroe. MAPLE: An
integrated process modelling and enactment environment for nfv systems. In 14th
European Conference on Modelling Foundations and Applications (ECMFA 2018),
Toulouse, France, June 2018, Proceedings, pages 164—178. Springer International Pub-
lishing, June 2018.

Sadaf Mustafiz, Navid Nazarzadeoghaz, Guillaume Dupont, Ferhat Khendek, and Maria
Toeroe. A model-driven process enactment approach for network service design. In SDL

https://www.aarnanetworks.com/single-post/2017/11/02/The-Magic-of-Model-Driven-Design-in-ONAP
https://www.aarnanetworks.com/single-post/2017/11/02/The-Magic-of-Model-Driven-Design-in-ONAP

Process Enactment for NFV Systems with MAPLE 27

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

2017: Model-Driven Engineering for Future Internet - 18th International SDL Forum,
volume 10567 of LNCS, pages 99-118. Springer, 2017.

Sadaf Mustafiz, Francis Palma, Maria Toeroe, and Ferhat Khendek. A network service
design and deployment process for NFV systems. In 15th IEEE Network Computing
and Applications, NCA 2016, pages 131-139. IEEE Computer Society, 2016.

OASIS. TOSCA Simple Profile for Network Functions Virtualization (NFV) Version
1.0, May 2017. OASIS Committee Specification Draft 04.

Object Management Group. Business Process Model and Notation (BPMN 2.0), 2011.
Object Management Group. Meta Object Facility 2.0 Query/View/Transformation
Specification, 2011.

Jon Oldevik. Transformation composition modelling framework. In Distributed Appli-
cations and Interoperable Systems: 5th IFIP W@ 6.1 International Conference, DAIS
2005, pages 108-114. Springer, 2005.

José E. Rivera, Daniel Ruiz-Gonzalez, Fernando Lopez-Romero, José Bautista, and
Antonio Vallecillo. Orchestrating ATL model transformations. In MtATL 2009, pages
34-46, July 2009.

J. Di Rocco, D. Di Ruscio, L. Iovino, and A. Pierantonio. Collaborative repositories
in model-driven engineering [software technology]. IEEE Software, 32(3):28-34, May
2015.

Alessio Di Sandro, Rick Salay, Michalis Famelis, Sahar Kokaly, and Marsha Chechik.
MMINT: A graphical tool for interactive model management. In MoDELS 2015 Demo
and Poster Session co-located with ACM/IEEE MoDELS 2015), volume 1554 of CEUR
Workshop Proceedings, pages 16-19. CEUR-WS.org, 2015.

Andreas Seibel, Regina Hebig, Stefan Neumann, and Holger Giese. A dedicated language
for context composition and execution of true black-box model transformations. In
Anthony Sloane and Uwe Afmann, editors, Software Language Engineering, pages 19—
39, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

Jocelyn Simmonds, Daniel Perovich, Maria Cecilia Bastarrica, and Luis Silvestre. A
megamodel for software process line modeling and evolution. In Model Driven Engi-
neering Languages and Systems (MODELS), 2015, pages 406-415. IEEE, 2015.
SOFTEAM. JUNIPER: D5.4 Specification of Model Transformation Chain. Technical
Report 318763, May 2015.

F. van Lingen, M. Yannuzzi, A. Jain, R. Irons-Mclean, O. Lluch, D. Carrera, J. L. Perez,
A. Gutierrez, D. Montero, J. Marti, R. Maso, and a. J. P. Rodriguez. The unavoidable
convergence of NFV, 5G, and Fog: A model-driven approach to bridge cloud and edge.
IEEE Communications Magazine, 55(8):28-35, August 2017.

Bert Vanhooff, Dhouha Ayed, Stefan Van Baelen, Wouter Joosen, and Yolande Berbers.
UniTI: A unified transformation infrastructure. In 10th International Conference on
MoDELS, pages 31-45. Springer, September 2007.

Bert Vanhooff, Stefan Van Baelen, Aram Hovsepyan, Wouter Joosen, and Yolande
Berbers. Towards a transformation chain modeling language. In Stamatis Vassiliadis,
Stephan Wong, and Timo D. Hamaél4inen, editors, Embedded Computer Systems: Ar-
chitectures, Modeling, and Simulation, pages 3948, Berlin, Heidelberg, 2006. Springer
Berlin Heidelberg.

Thomas Vogel. Model-Driven Engineering of Self-Adaptive Software. PhD thesis, Uni-
versity of Potsdam, Germany, 2018.

Dennis Wagelaar. Blackbox composition of model transformations using domain-specific
modelling languages. In 1st European Workshop on Composition of Model Transfor-
mations (CMT), pages 15-19, 2006.

	1 Introduction
	2 Background
	3 Process Enactment Approach
	4 Tool Support
	5 NFV Case Study
	6 Related Work
	7 Conclusion

