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Abstract
Software build systems tackle the problem of building software from sources in a way which is sound (when a build completes
successfully, the relations between the generated and source files are as specified) and optimal (only genuinely required
rebuilding steps are done). In this paper, we explain and exploit the connection between software build and the megamodel
consistency problem. The model-driven development of systems involves multiple models, metamodels and transformations.
Transformations—which may be bidirectional—specify, and provide means to enforce, desired “consistency” relationships
between models. We can describe the whole configuration using a megamodel. As development proceeds, and various models
are modified, we need to be able to restore consistency in the megamodel, so that the consequences of decisions first recorded
in one model are appropriately reflected in the others. At the same time, we need to minimise the amount of recomputation
needed; in particular, we would like to avoid reapplying a transformation when no relevant changes have occurred in the
models it relates. The megamodel consistency problem requires flexibility beyond what is found in conventional software
build, because different results are obtained depending on which models are allowed to be modified and on the order and
direction of transformation application. In this paper,wepropose using an orientationmodel tomake important choices explicit.
We show how to extend the formalised build system pluto to provide a means of restoring consistency in a megamodel, that
is, in appropriate senses, flexible, sound and optimal.

Keywords Megamodel · Build system · Model transformation · Bidirectionality · Orientation model

1 Introduction

Model-drivendevelopment (MDD) is nowwell established in
a number of niches such as automotive software [1]. It has the
potential to fundamentally transform software development
by enabling genuine separation of concerns so that decisions
about software behaviour can be taken by those best placed
to make them, where appropriate without the intervention of
software specialists. However, it has been slow to emerge
from its niches and become the dominant mode of software
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development. There are many reasons for this, some techni-
cal, some organisational.

Among those reasons—with both technical and organisa-
tional aspects—is that we so far lack a good understanding
of how collections of models can be robustly and efficiently
managed. The time taken to apply model transformation tool
chains is already a problem [2], motivating our attention to
optimality, but flexibility is an even greater concern.

The Object Management Group (OMG)’s original ideal
of MDA [3] was basically unidirectional and tree-like: a
highly abstract, platform-independent model would be trans-
formed into a platform-specific model from which code
would be generated. Megamodelling [4] recognises that real
large-scale software development will typically require more
flexibility than was envisaged originally, e.g. models will
be related in graphs, not trees, and there are more relation-
ships than “generates”. A bidirectional transformation (bx)
between adjacent models in the graph captures the appro-
priate notion of consistency between them. The notion of
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consistency maintenance is extremely general. The consis-
tency relation to bemaintainedmight be project-specific, or it
might be a standard one, e.g. conformance between a model
and metamodel. The bx also specifies how to restore consis-
tency when it is lost. Unidirectional transformation is then
a special case; for example, in compilation, the object code
is considered consistent with the source precisely when it
is the result of compiling the source; restoring consistency
means recompiling. Note that throughout this paper, we take
an “everything’s a model” perspective: metamodels, code,
etc. included. Thus, even though in some work on MDD
the “conformance” relation is special, it does not need to
be for all purposes: a metamodel is a model, and the rela-
tion “conforms to” between models and metamodels is a
fine example of a consistency relation. Tools that check and
perhaps even restore conformance fit into our consistency
maintenance approach. This generality is an important aim
of the work: we provide a disciplined approach to combining
uni-, bi- andmulti-directional transformations, whichmay be
heterogeneous, in a network of models. We do not assume
that models, or transformations, share a common technolog-
ical base. This holds promise to enable the combination of
best-of-breed technologies.

Specifically, we are concernedwith settings inwhich there
may be:

– Multiplemodels,maybe used by different people, record-
ing different concerns,

– Several of which are simultaneously “live”, that is, in
which decisions may be recorded,

– And which are not completely orthogonal, so that a deci-
sion recorded in one live model may necessitate a change
to another live model. (Sometimes a distinction is made
between models being related “horizontally” or “verti-
cally”, on the basis of whether they are considered to be
at the same “level of abstraction”. That distinction does
not matter for this paper).

These three factors are identified as the “essence of bidirec-
tionality” in [5].

The collection of models that are relevant to a system, and
the relationships between them, can itself be seen as a model,
which may require and repay explicit attention as a designed
artefact: this is what we mean by a megamodel.

In [6,7], we discussed networks of models connected
by model transformations (which might be bidirectional)
and pointed out, for example, that the result of consistency
restorationwill normally be different, depending on the order
(and direction, for bidirectional transformations) in which
the individual model transformations’ consistency restora-
tion processes are used. This presents management problems
for consistency maintenance in megamodels: it is these prob-
lems that we address in this paper.

MMM

Code Tests

Safety

m conforms to mm

roundtripconforms(m,code)

safeconforms(code,tests,safety)

Fig. 1 Megamodel derived from [6]. (Notation: lower-case model is
instance of upper-case Model)

Here is an example which we will consider in more detail
in Sect. 5. Figure 1 informally illustrates a small megamodel
derived from [6]. The circles represent model spaces within
which different teams work, and the lines represent relation-
ships that are supposed to hold between the models. So, at
some point in development, there may be a design model (m
in M) which is supposed to conform to a metamodel (mm in
MM); there may be some code (in Code) which is supposed
to satisfy some round-tripping relationship with the design
model m, such as providing an implementation for all and
only the classes mentioned in its class diagram; there may
also be a test suite (tests in Tests) and a safety model
(safety in Safety), with a more complex ternary rela-
tionship between them which we will return to. At a certain
point, a modification has been made to the design model,
such that it no longer conforms with the metamodel, nor
satisfies the round-trip relationship. Perhaps a change has
simultaneously been made to the test suite. What should be
done? There is no straightforward answer, because the right
thing to do depends on the circumstances. For example, if
the metamodel to which the model is supposed to conform
is the standard UMLmetamodel, then it is not sensible to try
to restore that conformance relationship by modifying the
metamodel, which should rather be considered authorita-
tive; however, if the model is in an evolving domain-specific
modelling language, it may be. For another example, even
if the individual transformations roundtripconforms
and safeconforms each provide a means of updating
the code to bring it into consistency with the design model,
respectively, with the tests, the result of applying these trans-
formations will in general depend on the order in which
they are applied. Worse, quite likely neither order will pro-
duce a desirable result, and some reconciliation between their
actions will be required. Nevertheless, we would like to do
better than giving up and assuming totally manual control of
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the application of the transformations and the reconciliation
of their results.

As this example illustrates, any approach for maintaining
consistency in a megamodel faces several challenges. Unlike
the situation in conventional software build, in a megamodel
setting the same artefacts that human experts are working
on must sometimes be changed by the automated system:
this is a consequence of separating concerns into models that
nevertheless cannot be perfectly independent. But when? If
the model someone is working on is changed too often, in
a way that is not under their control, this will be frustrating
and confusing and may lead to errors. On the other hand, if
development proceeds too far without reconciliation, effort
may be wasted. Moreover, if the amount of work to reconcile
models and generate software is considerable, the time taken
to do itmay be unacceptably long,which is already a problem
in MDE [2].

It turns out that the concerns that arise when managing
multiple models in an MDD process are related to, yet not
subsumed by, those that arise when managing multiple pro-
gram units in a conventional development process. In this
paper, we bring recent advances in formalisation and opti-
misation of build processes to bear on megamodelling, to
address these concerns. Our contributions are as follows.

1. We clarify the relationship between building software
and maintaining consistency in a megamodel which may
include bidirectional relationships, not just unidirectional
generation relationships.

2. In particular, we discuss the role, in consistency mainte-
nance, of the properties that build systems may or may
not have, discussed in [8].

3. We propose the use of an orientation model to manage
key decisions about how to restore consistency.

4. We show how to adapt the formalism of the sound
and optimal incremental build system pluto1 [9] to this
setting, appropriately combining use of the orientation
model with encapsulated decisions about how to update
each model.

5. We demonstrate that a soundness result and an incremen-
tality result can then (with care) be derived using those
proved in [9], andwediscuss the relevance of these results
in an MDD setting.

Paper organisation The rest of the paper is structured as
follows. First, in Sects. 2 and 3, we discuss related work and
introduce some background ideas. Section 4 discusses how
build system work can be applied in MDD; it discusses some
extra difficulties that arise in the MDD setting, and intro-
duces terminology from [8] and its application in our setting.

1 http://pluto-build.github.io/: not to be confused with Apache Pluto.

In Sect. 5,we describe examples and scenarios, used through-
out. Section 6 summarises the formalisation and relevant
results from [9], and Sect. 7 shows how it is formally adapted
to the megamodel setting. Section 8 gives the soundness and
optimality results. Section 9 relates the custom stamper idea,
key to the pluto work, with some notions known in MDD.
Section 10 adds some further discussion, and Sect. 11 con-
cludes and discusses future work and open problems.

This paper is an extended version of [10], which was pre-
sented at MODELS’18. It has been restructured in order to
allow for better explanation of how it uses the underlying
pluto theory and framework: examples, explanation and dis-
cussion have been added throughout. We expand on the role
of custom stampers and how they might be automatically
generated. We newly discuss the relation with Mokhov et
al.’s paper [8], which appeared after [10] but seems to have
high potential in this area; in Sect. 11, we discuss future work
that will build further on this.

2 Related work from theMDD community

The topic of consistencymaintenance betweenmore than two
models has been gaining attention in the MDD community
[11], especially from theoretically mindedMDD researchers
including Trollmann and Albayrak from a graph transfor-
mation perspective [12] and Diskin and collaborators from a
more purely categorical one [13]. It is conceptually challeng-
ing, and increasingly acknowledged as an essential part of
what must be mastered for MDD to achieve its full potential.
The orientation models we propose here bear a superficial
resemblance to Trollmann and Albayrak’s graph diagrams
[12]. However, all of this previous work has in common that
it makes strong assumptions about the possibility of repre-
senting all the models, and the changes to them, within a
common framework. For example, Diskin’s work, as is nat-
ural in a category–theory framework, is predicated on the
availability of updates describing what has changed in a
model, Trollmann and Albayrak’s requires maintaining cor-
respondences between parts of models. Real-world scenarios
involving multiple models, however, may be arbitrarily het-
erogeneous. We cannot assume that all models are expressed
in languages based on the same meta-meta-modelling lan-
guage, or that we have any control over what tools will be
used to edit themodels, or that it evenmakes sense to describe
changes to different models using the same language. Unlike
the bidirectional transformation literature, the software build
literature has always been forced to confront this lack of con-
trol, and has handled it by a strict separation of concerns; that
is the approach we will take here.

Practically oriented work on the build process within
MDD—that is, on the way in which the application of model
transformations and other modelling related technologies is
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orchestrated—has generally been modelled closely on con-
ventional software build, and has used only unidirectional
model transformations. Representative examples are [14–
16]; note that [16], though it shares an author with [9], does
not build on pluto and has concerns largely orthogonal to
ours.

Turning to the special needs of building in megamodels
that might include automatically interrelated sources, two
recent papers illustrate, in different ways, how far there is to
go. In [6,7], I discussed what is lost by limiting bidirectional
model transformations to relate just two models. I suggested
that in many cases this is tolerable, so that MDD projects
couldworkwith networks of binary bidirectional transforma-
tions, instead of requiring explicitlymulti-directional syntax.
I pointed out that in such networks, many problematic issues
arise. These include the (non-)existence of a globally consis-
tent state, its (un-)reachability by means of the consistency
restoration functions of the bidirectional transformations,
and the fact that different sequences of applications of these
may yield different results. That paper did not attempt to
solve these problems, beyond pointing out some special cases
in which consistency restoration is possible, and it did not
address incrementality.

More positively, Di Rocco et al. [17] described an attempt
at a concrete solution to this problem implemented in the
web-based modelling platform MDEForge [18]. However,
this solution was very limited in scope, because it disallows
the cases identified as problematic by [6]: it requires that a
reachable globally consistent state exists and not only that it
be unique, but more, that it be reachable in only one way. A
related journal paper, Di Rocco et al. [19] has very recently
appeared; however, its focus is orthogonal to ours and it does
not seem to lift the relevant restrictions.

3 Background from the software build
community

In conventional software build, we start from a collection
of human-authored source artefacts (hereinafter we will say
“files”: see Sect. 10.7) and combine these via a number
of intermediate stages into runnable software. Intermedi-
ate stages may involve generating files from a subset of the
sources and/or other generated files. Such a generation step
is a function, which takes some sources and produces one or
more generated files.

We need to be slightlymore precise: it is a partial function.
This is because it may happen that a given set of sources is
inconsistent in the sense that it does not correspond to any
set of generated files: the build step gives an error. However,
the usual expectation is that this arises in relatively rare and
easy-to-fix cases, thanks partly to technicalmechanisms such
as explicit interfaces, and partly to organisational ones such

as the same team being responsible for all the files that are
sources for a given build step. A key insight, explored in [8],
is that partiality is but an example: a build step is an effect-
ful function. Besides partiality, other relevant effects include
non-determinism and dependence on the state of other arte-
facts. It is unusual in the software build setting for one of the
effects of the function to be interactivity, but this may assume
greater importance in an MDD setting.

We may see the build process as being a process of
restoring consistency to the whole collection of files: source,
intermediate and target. Each generated file is considered
consistent with its sources if it has been built from them in
the intended way, and the whole collection is consistent if
this is true of the running software and everything it depends
on (directly or indirectly).2 Problems arise if a source is
changed and something that depends on it is not rebuilt, or
if the intended relationship between sources and generated
file is changed without changing the generated file (and then
everything that depends on it) accordingly. Typically, a clean
build, in which all generated files are deleted and everything
is regenerated from sources, is straightforward to get right,
but expensive. The difficulty is typically to ensure correct
incremental building: when some sources change, we prefer
to save time by rebuilding only the generated files that are
no longer consistent with their sources, iterating this process
appropriately so that thefinal software is correctly built.What
we mean by correctly built is, typically, that it is identical
with what would be achieved by a clean build. Because there
is a clean separation between sources (never automatically
modified) and generated files (nevermanuallymodified), and
because the generation steps are (partial) functions, so that
at each stage there is at most one automatic way to restore
consistency, this is (informally) equivalent to saying that the
whole collection of files is consistent.

Our use of the weasel word “typically” in the previous
paragraph alludes to a complicating factor that we, like other
authors on related topics, shall mostly avoid: cyclicity, where
a file depends indirectly on itself, i.e. there is a cycle in
the dependency graph of files. Achieving a correct build in
such circumstances needs special measures, such as repeat-
ing build steps until (hopefully) a fixed point is reached.
Although familiar to users of LATEX, this is generally seen
as undesirable. As we will mention in Sect. 11, pluto does
incorporate an attempt to permit cyclic builds [9]: butwe, like
Mokhov et al. in [8], will avoid them (by imposing an appro-
priate well-formedness condition on the orientation model).

2 We phrase it this way because of a subtlety: if, in the current configu-
ration, a generated artefact is not used, it may not be required to satisfy
a consistency relation with its sources that would be needed if it were
used. That is, the set of consistency relations that are relevant may, in
general, change.
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4 Towards applying build systemwork in
MDD

MDD separates concerns into different models, which may
be worked on by different people.

As mentioned, the Object Management Group (OMG)’s
original view of Model-Driven Architecture (MDA) [3]
was basically unidirectional: a highly abstract, platform-
independent model would be transformed into a platform-
specific model from which code would be generated. It was
acknowledged that there would sometimes be a need for
bidirectional transformations, such as model-code round-
tripping; but language and tool support for such transfor-
mations have been slow to develop.

Modern MDD, especially what is called megamodelling
[4], recognises that real large-scale software development
will typically be much less regimented than in OMG’s orig-
inal vision. The collection of models that are relevant to a
system, and the relationships between them, can itself be
seen as a model which may require and repay explicit atten-
tion as a designed artefact. (Note that the termmegamodel is
used in several different senses, which can sometimes lead to
confusion: e.g. sometimes for the model, whose elements are
models and relationships between them, and sometimes for
the actual collection of all the models and relationships that
are represented in thatmodel. In Sect. 7, wewill formally dis-
tinguishmegamodel-skeletons,megamodels andmegamodel
instances.) As real-world examples demonstrate [20], the
models in a megamodel often involve overlapping informa-
tion. Thismay showup as an “overlaps” relationship between
models at the same (“horizontal”) level of abstraction, or
conformance, refinement or other “vertical” relationships:
for our purposes, the technical concerns are the same. In
either case, the models have a non-trivial consistency rela-
tionship which needs to be maintained as they are changed
by developers. Maintaining such a relationship is the job of
a model transformation; the simple case in which one model
is generated from another can be seen as a special case, in
which the consistency relationship that must be maintained
between source and target is just that the target is equal to
what is generated from the source. This simple special case
can only pertain, of course, when the information contained
in the target is a subset of that contained in the sources (and
the transformation itself). We are more generally concerned
with situations where each model contains information that
is recorded nowhere else: e.g. information needed only by
the humans who work with this particular model. The model
transformation itself may be fixed, as when a commercial
code generator is used, or may change over time and need to
be managed like any other software artefact.

To get full benefit, we must allow more than one model
to be simultaneously “live”, that is, able to have decisions
recorded in it. Otherwise, the humans who are working with

those models, and recording their decisions in them, cannot
work simultaneously. However, typically, these models are
not perfectly independent: a change in one may necessitate a
change in another. These factors are identified as the “essence
of bidirectionality” in [5]. Today, restoring such models to
a consistent state is often done manually. However, this is
sometimes inconvenient or impossible. The models may be
under the control of different humans, none of whom have
sufficient familiarity with them all to be able to reconcile
them manually easily and safely (e.g. the PIM and PSM in
classic MDA [3]). And/or the notion of consistency between
the models may make the reconciliation required very bur-
densome (e.g. round-tripping between a UML model and
code). In either case, having to restore consistency manually
may negate the benefit of separating the concerns in the first
place.

A bidirectional transformation is, as mentioned, a means
of maintaining consistency between two or more such mod-
els.Manyapproaches to definingbxexist, and, as discussed in
Sect. 10.2, this paper places few restrictions:we focus on how
bx, expressed in whatever formalism, can be used in a disci-
plined way as ingredients in a broader mechanism to restore
consistencywithin amegamodel.Wewill assume that the bx,
at least, specifies a consistency relation between the models,
so that we know when nothing needs to be done. Note that
this relation will not usually be bijective (if it were, the mod-
els would just be recording the same information in different
forms). The bx’s other job is to restore consistency when it
is lost. Depending on the specific formalism chosen for the
bx, it may do this deterministically (probably using the cur-
rent state of more than one model) or non-deterministically,
using search, or even with user interaction; it may or may
not be allowed to fail. One assumption we will make about
our bx: a bx provides a means to restore consistency by mod-
ifying just one model (as do bx in all major bx languages,
and, of course, unidirectional transformations). This is less
of a restriction than might at first appear; we will discuss this
point in Sect. 10.1. Of course, the choice of which model to
modify may be made differently at different times: we say
that to make this choice is to choose the direction in which
to apply the bx.

When, and how often, consistency must be restored is
itself an interesting question (see Sect. 10), but typically a
set of models will have to be consistent by the time code is
generated from it, and indeed, depending on which artefacts
are represented in themegamodel, the generation of code can
be seen as part of the process of restoring consistency. As
“everything’s a model” (including code, compiled code and
executable software), the problem of restoring consistency in
a megamodel subsumes that of conventional software build.
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4.1 Extra difficulties in consistencymaintenance

Thus, consistency maintenance in a megamodel is a problem
related to, but not identical with, the problem of software
build. What further issues do we have to address in meg-
amodel consistency restoration?

The chief assumption that is usual in software build sys-
tems but that does not hold for consistency maintenance in
megamodels is that any source—file or model—is either a
source or a generated file, never both. The distinction is that
sources aremodified bymeans that the build systemmust just
take as given (typically, human choices) and must never be
modified by the build system. The build system only mod-
ifies generated files; indeed, these may (if convenient) be
assumed to be under the complete control of the build sys-
tem. By contrast, a bidirectional transformation reads several
models, and, using information about the state of all of them,
modifies one of them. The modified file is therefore both
source and generated.

This fact, that some models are both read and written
by both humans and the consistency maintenance process,
also presents new questions about how the process should
be administered, so as not to interfere over-much with the
work of humans using the models. Some of these ques-
tions were raised in [21] and subsequently discussed in
the Dagstuhl meeting on multi-directional transformations
reported in [11]. If twomodels are both being activelyworked
on, when, and under what (or whose) control, should con-
sistency between them be restored? Moreover, if there is a
choice of which of them to modify in order to restore consis-
tency, how should that choice be resolved? Since restoring
consistency may involve unavoidable inconvenience to the
users of some model, we may argue that making these deci-
sions is part of over-arching project management: certainly,
we cannot allow people to cause changes to other people’s
models in an undisciplined way.

Notice, however, that the gulf between this situation and
that of a collection of files managed using a software build
system is not quite as wide as one might think at first sight.
Even though the build system does not model, check or
restore consistency between its sources, there are, conceptu-
ally, consistency relations between the sources. For example,
a .h file and a .c file may both be sources to a build system,
but the build will fail unless a certain consistency relation
between the interface described in the .h file and the imple-
mentation in the .c file holds. The build fails, in such a
case, because there is no way to restore this consistency rela-
tion automatically, and hence no way to produce a .o file
consistent with both the .h and the .c. Similarly, when we
maintain consistency between models in a megamodel, we
do not necessarily record and formalise every consistency
relation that must hold. It is normal that some aspects of con-

sistency are maintained manually. Indeed, this is a strength
of the approach, enabling gradual adoption (see Sect. 10.3).

Models which are analogous to sources in software build,
in that they are modified only by humans, never by the
build (rsp. consistency maintenance) system, will be termed
always-authoritative. Models which are not to bemodified in
some particular application of the consistency maintenance
system will be termed authoritative.

4.2 Problems and progress in build systems

Unfortunately, the engineering of conventional build systems
is itself not a solvedproblem. It is recognised that build scripts
are often hard to read and maintain (prominent estimates of
the proportion of development effort devoted to the devel-
opment of build scripts are 12% [22] and 27% [23]!) and
error-prone. Developers using complex build scripts often
end up feeling compelled, in an attempt to avoid being
affected by subtle errors, to do clean rather than incremen-
tal builds (e.g. defaulting to make clean; make all).
Correspondingly, maintainers of build scripts often shy away
from incrementality for fear of introducing subtle problems.
The result is often that builds are unacceptably slow. Heroic
efforts (e.g. [24]) have been made to force make into doing
the right thing as well as to replace it with better systems; yet
problems persist.

Fortunately, in recent years this has been recognised as a
major problem in software build. Hence, it is an area of active
research, and progress is being made. In [9], Erdweg, Lichter
andWeiel succeeded in proving soundness and optimal incre-
mentality in pluto, which is a formalised build system: that
is, pluto comprises both a formalism and a corresponding
(open-source) software framework. In pluto, each generated
file is the responsibility of just one builder, which is capable
of rebuilding the file from its dependencies when the pluto
algorithm detects that it is necessary to do so. The optimality
result is that (subject to certain assumptions) as few builders
(hence, e.g. compilations) will be run as possible, and within
that, as few checks will be carried out as possible. A key
contribution of that work is that they formalise the idea of
custom stamps. Improving on the traditionally used times-
tamps, these give a more general, customisable notion of
what it means for one file to be up-to-date with respect to oth-
ers. Although such custom stamps have not been very widely
used in practice, and (as far as I know) never in the full gener-
ality envisaged in the pluto framework, one related example
is the way the Avaloq DSL Developer toolkit3 uses object
fingerprints for fine-grained dependency analysis, within the
specific context of the building required in xtext-based lan-
guage engineering.

3 https://ddk.tools.avaloq.com/overview.html.
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Most recently, Mokhov et al. [8] have begun to investigate
the commonalities and differences between a collection of
advanced build systems in order to build a common formal-
isation, enabling them to be compared and their advantages
combined. In the process, they make precise and explicit
several properties that build systems may, or may not, have.
Since they also have relevance for the consistency main-
tenance problem, we briefly review them here. The build
system on which we shall build, pluto, has each of these
properties.

Dynamicdependencies. Traditionally,most dependencies—
cases where a change to one file necessitates a change to
another—are known statically; for example, they are writ-
ten explicitly into each rule of a Makefile. If, by contrast,
a dependency may be discovered only when a build step is
executed, it is dynamic. A build system that is able to handle
dynamic dependencies can be more efficient, because there
is no need to specify dependencies so pessimistically; we
avoid rerunning a build step just in case it is necessary to do
so, when in fact the change that prompted the rerunning is
currently not relevant.

In the present work, for comprehension and ease of pre-
sentation, we assume that the megamodel itself is fixed: thus,
for eachmodel, we know statically the (maximal) set of mod-
els onwhich it may depend. However, wemake use of pluto’s
dynamic dependency support to support restoring consis-
tency differently in different circumstances. As we shall see,
the orientation model will record key project management
decisions about, for example, in which direction a bx shall
be applied, and which models may be modified. Thus, it will
be the current content of the orientation model which deter-
mines the build work to be done, including the dependencies.

Self-tracking. A build system may or may not be able to
detect the logical implications of a change to the build task
itself (e.g. the addition of a dependency or a change to a
build rule) and do the necessary rebuilding, even if no source
has changed. Crudely, this can be achieved in almost any
build system by adding the build file itself as a dependency,
but greater granularity is desirable. Three aspects of self-
tracking are relevant to us. Our orientation model, which
records dependencies, is itself a model and, as we shall see,
custom stamping enables the consistency restoration pro-
cess to react to changes in it in an efficient, fine-grained
way. Second, pluto automatically adds dependencies on the
Java classes comprising the builders of each model, which
means that a change to how we want consistency restora-
tion to be done will cause (only) the necessary rebuilding
(up to the hot-swapping capabilities of the underlying JVM).
Third, transformations can themselves be taken as (always-
authoritative) models in the megamodel, and stamped like

any other model, so that a relevant change to an individual
transformation can be acted on appropriately.

Early cut-off. It may happen that a file is rebuilt because it
appeared to be out-of-date, but, in fact, the result of rebuilding
it is that it does not change. If the build system supports early
cut-off, then this lack of change means that tasks that depend
on this task are not caused to rerun. Building on plutomeans
that we get this benefit: in fact, the use of custom stamps
actually gives us a stronger version of early cut-off, in which
a change to afile that is not relevant to something that depends
on the file is also prevented from causing later rebuilding
steps to run. We will see an example of this in Sect. 8.1.

In futurework,we hope to complete fitting the consistency
maintenance work into Mokhov et al.’s ongoing work (see
Sect. 11). However, the key idea of custom stamps is not yet
incorporated in Mokhov et al.’s formalism: although they
make allowance for different means of detecting whether a
source is outdated, they do not allow for the same source to be
used in differentways,with different notions of outdatedness.
Because in our setting it is common that different aspects
of the same model will be relevant to different consistency
relations, this is important to us.

To summarise, build systems are an active and promising
area for consistency maintenance to draw on. In the present
work, we choose to build on pluto because, as well as being
both a formalism and an open-source software framework,
it incorporates two unusual capabilities that are useful in
an MDD setting: the aforementioned custom stamps, and
dynamic dependencies, such as the possibility that the con-
tent of one model determines whether or not a change to a
second model necessitates a change to a third.

5 Examples

In this section, we introduce two examples. The first,
drawn from [17], uses only unidirectional transformations,
but enables us to motivate different scenarios of consis-
tency restoration in which models may be authoritative or
always-authoritative. The second, drawn from [6], involves
bidirectional transformations and enables us to discuss mat-
ters including the use of consistency restoration procedures
that domore than simply apply bidirectional transformations.

5.1 Unidirectional example

Figure 2 illustrates a megamodel, derived from [17], with
a metamodel (mm), two models (m1 and m2), and a delta
(delta). The collection is consistent if: the models con-
form to the metamodel, the delta is the result of applying the
compare operation to the models, and m2 is the result of
applying patch to m1 and delta. Now, as a specification,
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MM

M1

Delta

M2

m1 conforms to mm m2 conforms to mm

compare (m1,m2) = delta

patch (m1,delta) = m2

Fig. 2 Megamodel derived from [17]. (Notation: lower-case model is
instance of upper-case Model)

this is redundant: as explained in [17],compare and patch
have the usual joint specification, where

compare(m1,m2) = delta
iff

patch(m1,delta) = m2.
The main purpose of the compare and patch functions

is that they provide means of restoring consistency when it
is lost.

In [17], the idea is that consistency is restored after every
change, and so the scenarios considered are those that start
from a consistent set of models, just one of which is then
changed. Even then, we must note that there may be a choice
of how to restore consistency. If m1 is changed, we may
either apply the compare function to the new m1 and the
old m2 to get a new delta, leaving m2 unchanged, or we
may apply the patch function to the new m1 and the old
delta to get a new m2, leaving delta unchanged. There
is no a priori reason to prefer one of these solutions over the
other: it depends onwhich of m2 and delta should be taken
to be authoritative.

Figure 3 represents those two situations using what we
will shortly formalise as an orientation model. Solid blobs
represent authoritativemodels; e.g.we suppose that themeta-
modelwill always be authoritative (though as noted inSect. 1,
this is a fact about this example: not every metamodel will
be always-authoritative). Di Rocco et al.’s assumption [17]
is that the changed model, in this case m1, should always
be authoritative; this makes sense in this setting, because we
have no consistency restoration functions available that can
take an old version of a model into account and produce
a new version of that same model, so the only alternative
would be to overwrite the changes just made entirely, which
is presumably undesirable.

MM

M1

Delta

M2

compare (m1,m2) = delta

(a)

MM

M1

Delta

M2

patch (m1,delta) = m2

(b)

Fig. 3 Orientation models (grey = authoritative, black = always-
authoritative)

The megamodel in [17] specifies that the models should
conform to the metamodel, but it provides no operations to
ensure this. The fact that there are no “conforms to” edges
between M1, M2 and MM in the orientation models in Fig. 3
corresponds to this fact: it shows that this aspect of consis-
tency will have to be ensured and checked externally.

5.2 Bidirectional example

Recall from Sect. 1 that Fig. 1 illustrates a megamodel
adapted from [6]. Here, we see a design model m that needs
to conform to a metamodel mm; some code that must be
consistent with the model m via a standard round-tripping
relation; and a more interesting ternary relation between the
code, a test suite tests and a safety model. The idea
is that, at least, the code should pass the tests (otherwise
no triple involving that code and those tests will be con-
sidered consistent) but also that the safety model records
(among much other information not relevant here) whether
or not the system is considered safety-critical. If it is, then
the tests are also required to satisfy a coverage criterion.
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MMM

Code TestsT

Safety

roundtripconforms(m,code)

safeconforms(code,tests,safety)

(a)

MMM

Code Tests

Safety

roundtripconforms(m,code)

safeconforms(code,tests,safety)

(b)

Fig. 4 Orientation models (grey = authoritative, black = always-
authoritative)

Soundness. Even if we are provided with a bidirectional
transformation that can restore each individual relation in the
megamodel, we still need a disciplined way to roll changes
through the network. For example, in Fig. 4b, if we want up-
to-date tests, we must restore roundtripconforms
first, then safeconforms.

Figure 4a represents the situation discussed in Sect. 1. Our
framework allows us to encapsulate the reconciliation of dif-
ferent consistency relations impacting the same model in the
builder of each model (here code). The orientation model
records the contracts of the builders. To restore consistency
respecting the orientation model in Fig. 4a is to modify only
non-authoritative models (here, only code) in such a way
as to make all the consistency relations on the edges hold.
In this simple case, the arrows are redundant; but as Fig. 4b

shows, an arrow might connect two non-authoritative mod-
els, in which case it indicates the priority of changes in the
models, in a way which we will make precise by describing
how consistency restoration is done. Note that such builders
must in general be allowed to fail, as there may be no way to
satisfy all the required relations.

Incrementality. Wemay suppose that checking the relation-
ship between code and tests is expensive (it involves
running tests and computing a coverage metric): we do not
want to redo it more often than necessary. In particular, since
the only change to the safetymodel that is relevant to this
relationship is the one bit record of whether the system is
safety critical or not, we do not want to recheck the relation-
ship between code and m every time safety changes in
any respect: changes to anything in safety that leave that
one bit alone do not require us to do any rechecking. Sim-
ilarly, if the use case diagram part of m changes, but this is
not relevant to the consistency relation between m and code,
we would like our system to be able to detect that there is no
need to recheck that consistency. We can achieve this using
a custom stamp: see Sect. 9.

Flexibility. Conventionally, e.g. in [6], we think about restor-
ing consistency to the whole network. In practice, however,
that may not be the right thing to do. For example, in the case
that an operation changes in the model m, thereby breaking
consistency with code (and tests), it may not be sensible
to update code and tests immediately (especially if, say,
three more changes will follow in quick succession). What
we should be able to ensure is that someonewho is relying on
tests is able to ensure, when they wish to do so, that they
are indeed using an up-to-date version of tests. We will
therefore use a demand-driven approach. Rather than push-
ing the changes from model m to tests, as the approach in
[17] does, we will say: the person who wants to use tests
will submit a build request for tests. This will in turn sub-
mit a build request for any model on which tests depends,
before using those updated models to recheck the consis-
tency relation on tests. The pluto algorithm determines
which builders actually need to be run in order to satisfy the
build request. In this case, requests that tests be brought
up-to-date will require that code is first brought up-to-date,
and this will automatically be done when the build request is
processed by the pluto algorithm.

6 About pluto

We need to introduce some background on pluto, but, of
course, will avoid reproducing the technicalities [9] in full
detail. We explain the parts we need, omitting features we do
not make use of: for example, the reader familiar with pluto
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Fig. 5 pluto concepts and syntax of build units, adapted (to remove
variable input) from [9]

should consider that we take the input type to be unit. Fig-
ure 5 adapts Fig. 5 of [9] accordingly, and introduces standard
concepts and notation which we will refer to throughout. We
refer the reader to [9]4 for more detail and, of course, for
proofs of the correctness and optimality theorems on which
we rely.

We assume given notions of path (the type of operating
system paths to files), file (the type of contents of files), and
value (the type of whatever stamps we like to compute).
Then, a filesystem (an element of type Ω) assigns to each
path its current file contents, or ⊥ if there is currently no file
at that path.

pluto incorporates a build algorithm that accepts a build
request (a request to (re)build a particular generated file)
and determines when to invoke the build method (the build
field) of a builder (of type B). These builders, including their
buildmethods, are provided by a user of the framework. They
must satisfy certain requirements, whichwe shall shortly list.
Provided that they do so, the algorithm guarantees that the
behaviour of the framework overall provides certain sound-
ness and optimality properties.

Each generated file is a responsibility of just one builder,
whose build method describes how its file(s) shall be gener-
ated, including what other builders must be up-to-date to do
this properly. As part of the requirements imposed on it by the
framework, it uses framework-provided methods to record
what files it reads and writes. Before it reads a file which is
itself a generated file—that is, which has its own builder—
this builder must use a framework-provided method to ask
that file’s builder to check that it is up-to-date; this prevents
stale versions of files from being used in the build. Formally,
a build method operates on a file system, and (unless it fails)
produces a record called a build unit (an element of type U )
which it saves for later inspection. The build unit records:
which builder built it (its builder field); a list (its reqs field)
of its dependencies, i.e. what other builders were required
(e.g. breq b indicating that this builder requested that builder
b be rerun if necessary) and what files were read (e.g. freq

4 And/or to a video of the corresponding talk, at https://youtu.be/
QsgLSDMLLTo.

Fig. 6 Dependencies of a build in the context of decisions recorded in
Fig. 4b (cf Fig. 3 of [9])

f indicating that the file at path f was read); and a list (its
gens field, which in our application will always have length
1) of the files written (e.g. gen g indicating that this builder
wrote the file at path g). As well as the path to the file con-
cerned, each freq and gen entry records a stamp to enable
relevant later changes in the files to be detected (see below).
All this information is later used by the pluto algorithm to
decide whether it is necessary to invoke the builder’s build
method again, or whether it is unnecessary, because nothing
it used has changed in a way that the build unit declares that
this builder cares about.

Figure 6 illustrates the gen, freq and breq dependencies
between build units and the files (models) they refer to, in
the context of an orientation model corresponding to Fig. 4b.
Note that this abstracted figure does not show the order in
which the dependencies are recorded in a build unit, which is
important for the operation of the algorithm, nor the stamps
that have been used. We will walk through this in Sect. 8.1.

It is important to understand that requiring (breqing) a
builder does not invoke the build method of that builder
directly: rather, it sends another build request to the pluto
build algorithm, so that it can check whether or not a rebuild
is required. That is done using stamps.

Stamps Each file said to have been read (“freqed”) in the
build unit is identified by giving a path (from P), and, cru-
cially, a stamp (from S). This is a value determined by the
builder for this use of this file.

Each stamp is associated with a stamper (from FS); the
idea is that the builder chooses a stamper, which produces
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the stamp (there are framework-provided stampers that pro-
duce, for example, the last modification time of a file, a hash
of its contents, or a Boolean for whether it exists). Formally
what the stamper has to be able to do is to take a path (in
P) and a file system (in Ω) and compute a stamp for the
file (if any) which is currently found at that path. A key part
of the algorithm’s checking whether a build unit is up-to-
date, i.e. whether its builder needs to be rerun, is: look at the
path and stamp of each file that it records having read; get
the stamper from that stamp; ask the stamper to compute the
stamp associatedwith the path in the current file system; com-
pare this stamp with the one recorded. The file is considered
up-to-date iff the recorded stamp is the same as the current
stamp (e.g. the last modification time has not changed). The
generality of the stamper set-upmeans, however, that a stamp
could be anything convenient.

Thus, the choice of stamp(er) is made by the developer
of the builder, and it is the key element in defining what it
means for the system to be “built correctly”: the choice must
ensure that if two versions of the file at a given path have
the same stamp then they are interchangeable to this builder,
in the sense that a change from one to the other does not
necessitate rerunning it. So the easiest, safest choice for the
developer of a builder is to use the finest possible stamper,
in which any change at all to a file will change the stamp;
last-modified time, supported by the operating system, is tra-
ditional. As in conventional build, this can already avoid a
lot of unnecessary work. In practice, though, it can happen
that a file changes in a way which definitely does not cause
a rebuild to be necessary. For example, if only comments in
a source file change, it is (barring strange compiler bugs!)
unnecessary to recompile it.5 Therefore, we might be able to
save rebuild effort by deciding that a stamp on a file should be
computed ignoring the comments, so that changes to com-
ments alone do not change the stamp. In our megamodel
setting, this kind of thing happens more than in conventional
system build, because it is normal that only part—perhaps
only a small part—of the information contained in a model is
relevant to a particular bidirectional transformation involving
it. For example, if the roundtripconforms relationship
in Fig. 1 only depends on a class diagram part of the model
m, but m also includes other diagrams, the developer of the
builder that builds code might choose to stamp its use of m
with a stamp computed from the class diagram part alone.

We have been talking about the builder’s choice of stamps
to place on freq-ed files, i.e. files read. In fact, in pluto the
builder also chooses a stamp for each generated (gen-ed)
file. However, in our setting we always stamp gen entries
with a stamp fine enough to detect any consistency violation

5 Note that “only comments change” rules out (un)commenting code
since that adds or removes code too!

(in practice, last-modified time will do). We discuss this in
Sect. 10.4.

Correctness, soundness and optimality When a builder
completes, a file it generates (gens) is considered correctly
built, provided every file the builder read (freqed) was
stampedwith the same stamp as is computed from the current
version of the file. The gened file is up-to-date for as long as
this remains true.

A build unit is internally consistent, at a given moment
when the builder returns, if all required and generated files
are up-to-date (i.e. their recorded stamps are indeed equal to
what their stampers produce on the files at this moment), and
build units exist for all required builders.

We elide the details of what it means for a build system
to be sound, but informally, it means that a non-failing build
produces an internally consistent build unit for each build
request, and for any build requests generated in the process
of carrying these out, and that they are all properly linkedwith
no stomping on one another’s files. Crucially, only one build
unit is allowed to have generated the file at any given path. In
our setting, this means that each model is the responsibility
of at most one builder.

Requirements that buildersmust satisfy Conditions that the
developer of a builder must arrange to satisfy are formally
given as requirements on the build unit that the builder pro-
duces; these are then assumed in the proofs of soundness
and optimality. In practice, the software framework provides
considerable support for meeting these requirements. Our
megamodel extension will help even more: we will give a
skeleton form of a build method which ensures all these con-
ditions are met.

C1 breqbefore freq: If anyfile is required that is a generated
file of another builder, then that builder must be required
earlier in the build unit’s list of requirements (reqs) than
the file. This ensures that an out-of-date generated file
is not used.

C2 The builder must either fail, or produce a build unit
which is internally consistent. This is Assumption 4.1
in [9], and enables the soundness result.

C3 Enabling the optimality result, Erdweg et al. [9] has
a further assumption (4.2), essentially that the list of
requirements captures enough information to describe
differences in the dynamic behaviour of the builder. It
states that if a build unit’s reqs list contains a build
requirement breq b, and the only requirements com-
ing before this in reqs are either build requirements, or
file requirements that are up-to-date in the current file
system, then rebuilding this builder in the current file
systemwill give a build unit whose reqs list still includes
breq b.
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The effect of this requirement is that any information that a
build method relies on to determine whether or not to invoke
a builder must itself be recorded as a dependency earlier in
the list: so, if nothing recorded has relevantly changed, then
neither has the need for the builder changed.

7 Adapting pluto for MDD

This section is the heart of the paper (although the reader
should not be tempted to start here: it relies crucially on
material presented earlier). In it, we will

– Give a simple formalisation of a megamodel, suitable for
interpreting in the pluto framework (Sect. 7.1);

– Formalise the concept of orientation model for capturing
(and varying) decisions aboutwhichmodelsmaybemod-
ified, and inwhich direction bxwill be applied (Sect. 7.2);

– Formalise the concept of aMegamodelbuild system based
on a megamodel and an orientation model, including

– Specifying how the build method of each builder in such
a system must be constrained, in order that the system as
a whole will be able to do its job of restoring consistency
in the megamodel instance soundly and optimally. We
first give a definition in terms of the pluto framework,
and then show how such build methods are implemented
using a template method (Sect. 7.3).

– We illustrate this in the context of the example from
Fig. 4a (Sect. 7.4).

– Finally, we add some remarks (Sect. 7.5).

This sets us up to go on in Sect. 8 to prove soundness and
optimality of a consistency restoration system built up in this
way, satisfying these constraints.

7.1 Megamodels

Recall that a megamodel is a way of specifying a collec-
tion of modelling artefacts and relationships between them.
These relationships may include that one model conforms to
another, that one is generated from another, etc. Formally, let
us give a very general description, in which we do not, for
example, assume there are consistency restoration functions,
nor make any distinction between models and metamodels,
nor between different kinds of relationships betweenmodels.

Definition 1 A megamodel-skeleton H comprises:

– A finite set Node, called nodes
– A possibly empty AAuth ⊆ Node, the nodes that are
always-authoritative

– Afinite set Edgeof (directed) (hyper)edges, togetherwith
a function

nodes : Edge → Node∗

such that for every E ∈ Edge,

– |nodes(E)| ≥ 2, and
– The elements of nodes(E) are all distinct.

This function need not be injective, i.e. we do not forbid
multiple edges between the same list of nodes.

Definition 2 A megamodel M over a megamodel-skeleton
H = (Node,AAuth, Edge) comprises:

– A valuation vNode of nodes, giving for each N ∈ Node a
set vNode(N ) of models.

– A valuation vEdge of edges, giving for each E ∈
Edge with nodes(E) = (N1, . . . Nk), a relation on the
model sets the edge connects, i.e. a subset vEdge(E) ⊆
vNode(N1) × · · · × vNode(Nk).

Remark 1 In [10] I combined the concepts of megamodel-
skeleton and megamodel into one (there only ever is one
megamodel per megamodel-skeleton in that paper), and this
led to a little confusion. Here, let us be more pedantic.

Definition 3 An instance of a megamodel M = (vNode,

vEdge) over a megamodel-skeleton H = (Node,AAuth,

Edge) is a collection of one model n in each vNode(N ).
The instance is consistent if all the relations are satis-

fied, i.e. whenever ni1 ∈ vNode(Ni1), . . . , nik ∈ vNode(Nik )

are models in this instance and vEdge(E) ⊆ vNode(Ni1) ×
· · · × vNode(Nik ) is an edge in the megamodel, we have
(ni1 , . . . nik ) ∈ vEdge(E).

Remark 2 The readermay bewondering aboutmodels which
may be absent from an instance, either

– Because they need to be generated from other models in
order to restore consistency to the instance; or

– Because they are genuinely optional according to the
megamodel.

Given the generality of the set-up, this can easily bemodelled
using a special “no information”model, sayΩN ∈ vNode(N ),
to represent the absence of the model. The consistency rela-
tions, recording whether ΩN is consistent or not with the
possible values of othermodels, can capture both of the above
situations.

This is nothing but a slight generalisation of the way the
early bx literature [25] uses a special modelΩN ∈ N in order
to allow a consistency restoration function

−→
R : M×N → N
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to model a situation in which amodel in N must be generated
afresh: given a model m ∈ M , the newly generated model
in N is

−→
R (m,ΩN ). (The alternative approach, used in the

early lens literature [26], requires a lens to provide a special
create function, taking just a view to a source, in addition to
the put function which takes a view and a source to a new
source. The “no informationmodel” approachwe use ismore
notationally convenient, given that we wish to talk explicitly
about consistency relations.)

Remark 3 Notice that this set-up encompasses twoMDD sit-
uations:

1. All the nodes are models, and the transformations
between them are encoded as edges;

2. Some of the nodes themselves represent transformations.
(“Transformations are models!”)

For example, if bidirectional transformation R (the currently
programmed transformation froma setR of transformations)
betweenmodel setsM and N specifies a consistency relation,
we may choose whether or not to encode the transformation
itself as a node. If we do not, we will simply have an edge R
between nodes M and N , specifying that m and n are con-
sistent precisely when R(m, n) holds. If we do, we will have
nodes M , N , and R, with a hyperedge between them speci-
fying that m, n and R are consistent precisely when R(m, n)

holds. The latter gives us the flexibility to react automatically
(without needing to modify builders) to changes in the def-
inition of the transformation. Our framework permits both
variants without further ado.

7.2 Orientationmodel

Typically, there will be some nodes in a megamodel which
it is helpful to include, but never appropriate to change auto-
matically. (e.g. we never want our automated consistency
restoration procedure tomodify theUMLmetamodel). These
are the always-authoritative nodes. For others, whether we
permit them to change, or take them as authoritative, depends
on the situation. We use a special model to capture such vari-
ations in the situation.

Definition 4 An orientation model O over a megamodel-
skeleton H = (Node,AAuth, Edge) comprises:

– All the nodes of the megamodel-skeleton Node
– A possibly empty set of nodes Auth designated authori-

tative, satisfying

AAuth ⊆ Auth ⊆ Node

– A possibly empty set of edges OEdge ⊆ Edge

– An orientation for each edge, i.e. a function

target : OEdge → Node

satisfying target(E) ∈ nodes(E) for each E ∈ OEdge.

It is well-formed if

– It is acyclic, that is, there is no sequence E1 . . . En (n > 1,
each Ei ∈ OEdge) such that target(Ei ) ∈ nodes(Ei+1)

for each i and target(En) ∈ nodes(E1), and
– No target node is authoritative, that is,

target(OEdge) ∩ Auth = ∅.

7.3 Specifying amegamodelbuild system

Given this setting, we can equip our megamodel with pluto
builders (constrained as we shall see) and use the pluto algo-
rithm (unmodified) to restore consistency.

We are about to define builders for our models. As
explained above, a build unit is a record of a successful run of
a builder, which the pluto algorithm consults to see whether
a builder needs to be rerun. In more detail, we have to define:

– A build (partial) function (implemented as a method of
the builder: the implementation might fail, raising an
exception), taking a file system to a build unit and a new
(i.e. possibly modified) file system;

– A path which, in a file system, will either lead to a file
where the latest build unit is stored, or will be undefined
(⊥) in case the last build of this builder failed. That is,
the builder only produces a path to an actual file where
a build unit is stored, if the build succeeded. Hence the
build unit, if it exists at all, may be relied upon.

The path is only interesting in that pluto’s soundness
depends, naturally, on builders not overwriting one another’s
build units (“stomping on one another’s files”); we will say
no more of it, as no new considerations arise in the MDD
context.

The interesting part of defining a builder B is the build
function, i.e. determining, based on the initial state of the file
system, what the build unit and the final file system must be.
To recapitulate:

– The first element, labelled builder, of the build unit is
always the builder that wrote this build unit: there is no
choice for the builder-writer to make.

– The second element, reqs, is a list of build andfile require-
ments: this is the interesting part. Definition 6 explains
how this is determined, and the restrictions on the stamps
that must be used on file requirements.
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Table 1 Correspondence between formalisation and framework

Formalisation Framework

breq requireBuild

freq require

gen provide

– The third element, gens is a list of stamped provided files.
In our setting, however, there is no choice for the builder-
writer to make here. Each builder only generates one file,
viz. the model it is responsible for, and we will always
stamp this unique gen entry with a stamp fine enough
that it changes when the file is modified in any way that
might violate any consistency relation (in practice, last-
modified time will do fine). See Sect. 10.4 for discussion
of this choice.

The modified file system that is returned is just the result
of carrying out the build method and saving each generated
file at the appropriate path. Since in the implementation the
file system may, of course, be modified in ways beyond the
simple saving of a generated file (e.g. running a model trans-
formation engine may produce a log file, which plays no role
in the formalisation), some latitude is needed to match up the
formalisation with reality so that the soundness and optimal-
ity results pertain. Here, the “no stomping on one another’s
files” assumption is again used to match up the actual imple-
mentation behaviour to its simplified formalisation. That is,
it does not matter if the implementation makes unformalised
modifications to the file system, provided that these do not
do any harm to things that are relevant to the formalisation.

In the implementation, the build unit is built up by the
pluto framework, based on the builder’s calls to framework-
provided methods. We shall look at an extract in a moment.
For example, if the builder calls the framework-provided
requireBuild method, this (as well as guiding the pluto
algorithm) writes a breq entry to the build unit. Table 1 sum-
marises the correspondence between build unit entries and
framework methods.

Definition 5 AMegamodelbuild system for a megamodelM
over skeletonH comprises a well-formed orientation model
O forH , together with, for each node M in Node \ AAuth,
a pluto builder whose build method behaves according to
the constraints in Definition 6. Such a builder is called an
M-builder.

Recall that a build method formally reads and writes a file
system and (unless it fails) returns a build unit in which the
builder field simply specifies that this is the builder which
wrote it. Specifically, in a Megamodelbuild system for meg-
amodel M , the build method of the M-builder will read
the current instance of megamodel M , and the orientation

model, from the file system. It may write a modified version
of the model it is responsible for, M , into the instance. Via
the operation of the pluto algorithm, its build requests may
indirectly invoke other builders, causing other models to be
modified too. On successful completion, it returns a build
unit (and saves it to the filesystem).

The contentful work, besides calculating the new model,
is to specify the entries in the reqs and gens field.

Definition 6 Given a file system containing a megamodel
instance and an orientation model O , the build method of
the M-builder must construct a build unit by carrying out the
following steps in this order.

1. freq the orientationmodel O . (That is, enter an freq entry
for the path of the orientation model and the appropriate
stamp (see below) as the first entry on the reqs list of the
build unit being constructed.)

2. Determine, from O , the set E of directed (hyper)edges
having M as target; let N be the set of nodes that are
sources of these edges.

3. breq the N -builder for each N ∈ N (such that N is not
always-authoritative). (That is, append these breq entries
to the reqs list.)

4. freq all the models which are the values of nodes inN in
the current instance. (That is, append these freq entries,
for the paths of these models, with appropriate stamps
(see below), to the reqs list.)

5. Calculate a new version of model m ∈ M that makes all
the relationships in E hold (and save it).

6. gen m, i.e. record that m has been (re)generated. (That
is, make this the sole entry of the gens list in the build
unit being constructed—recall that we always use a fine
stamp on gen entries.)

7. Return (and save) a build unit recording this sequence of
requirements and generation.

The builder must use stamps fine enough to ensure that if
a file changes without changing the stamp, consistency will
not be lost. It may stamp O just with a record of its own
authority status and which edges target it (i.e. E ).

Implementation inMegamodelbuild In the prototype Meg-
amodelbuild system,6 a base class MegaBuilder for
builders, providing a template method for the build method,
is provided. Recall that each builder is responsible for a sin-
gle model. The build method will be invoked if, and only
if, the pluto algorithm has determined that this model may
need to be changed. It must then meet the requirements laid
out in Definition 6 above. Figure 7 summarises the template
method’s code.

6 https://github.com/PerditaStevens/megamodelbuild.
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Fig. 7 Abstract of template
build method

@Override // of the Pluto framework build method
protected Out<File> build(Input input) throws IOException, MegaException {

// set file to be the model this builder is responsible for
// set om to be the orientation model
require(om, getOrientationStamper()); // step 1
// step 2:
String orientationInfo = orientationModel.getInfoFor(getName(), getOrientationStamper());
boolean isAuthoritative = OrientationModel.authoritative(orientationInfo);
if (isAuthoritative) {

// do nothing - steps 3-5 become trivial
report(getName()+" is authoritative, so no resolution to be done");

} else {
// do the actual work - steps 3-5:
restoreConsistency(input, file, orientationInfo);

}
provide(file); // step 6
return OutputPersisted.of(file); // step 7

}

Here,require is the framework-providedmethod corre-
sponding to freq-ing a file. Thus, the template method begins
by requiring the file containing the orientation model, om, as
required by Step 1 of Definition 6. It must specify which
stamper to use against this file requirement, so that later the
pluto algorithm can check whether a change to the file does
or does not require the build method to be rerun. In this
case, the appropriate stamper is the one returned by Meg-
amodelbuild’s getOrientationStamper method, i.e.
a stamper written specifically for stamping orientation mod-
els: it captures, as specified in Definition 6, its own authority
status and which edges target it. From the orientation model,
the build method extracts the information that is relevant to
the model for which this builder is responsible: this is Step 2
of Definition 6.

– If the model is marked as authoritative in the orientation
model, then, since the orientation model is assumed to
be well-formed, the setsN and E are empty: this model
must not bemodified, so there is nothing to be done. Steps
3–5 of Definition 6 become vacuous.

– Otherwise, some specific action must be taken, and this
is encoded in the restoreConsistency method
which is invoked by the template build method, and
will be implemented in a model-specific subclass of
MegaBuilder. This method must carry out steps 3–
5 of Definition 6. It is passed the orientationInfo
which tells it with which models it must restore con-
sistency (i.e. sets N and E ). It must use framework
methods requireBuilder and require to record
those dependencies in the eventual build unit, and then
restore consistency by modifying this model accord-
ingly. How this is done is encapsulated: it is up to the
implementer of the specific builder. If there is a unique
edge incident on this model, and that edge is associated
with an external transformation, then the builder may
simply run that transformation, by invoking an exter-
nal transformation tool. However, the situation may be

more complicated, such as in Fig. 4a, where there are
several separate consistency relations that must simul-
taneously be restored. The restoreConsistency
methodmight invoke several consistency restoration pro-
cedures, perhaps from different external tools, and might
also do arbitrary “fixing up” before determining that the
model has had consistency fully restored, or else failing.
We will see an example in a moment.

After the model has been brought into consistency with
its neighbours, the template method uses the framework-
provided provide method (with a fine, default stamp) to
record that this model has been gen-ed (step 6 of Defini-
tion 6). It saves and returns a build unit (step 7).

7.4 Example in the context of Fig. 4a

Let us fill in a few more details in the specific context of the
orientation model shown in Fig. 4a, as follows. Consider the
task facedby thewriter of theCode-builder,whomust imple-
ment a restoreConsistency method. Sometimes, a
builder-writer’s job will be very easy: the builder will have
to do nothing more than invoke a pre-existing model trans-
formation. On other occasions, restoring consistency may
requiremore intelligence: perhaps there is an availablemodel
transformation but it does not completely do the job, or there
are several that must be combined in the right order, perhaps
with some pre- or post-processing. Or perhaps there is no
model transformation available to help, and the builder-writer
must implement therestoreConsistencymethod from
first principles, manipulating the model explicitly. What is
fixed is the notions of consistency specified by the edges of
the megamodel: in accordance with Step 5 of Definition 6,
the restoreConsistency method of the Code-builder
must produce a version of the Code that is consistent with
the models identified from the orientation model, in this case
m, tests and safety. If it cannot do so, it fails, raising an
exception: the whole build fails.
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In this case, we suppose that the ingredients available to
the writer of the Code-builder’s restoreConsistency
method—whomwewill call Sam from now on, for brevity—
include pre-existing bx roundtripconforms and
safeconforms. These incorporate the required consis-
tency relations on the corresponding edges of themegamodel,
and also provide consistency restoration behaviour, which
Sam may use in combination to restore consistency to code
ondemand.Wenext give somemoredetails about these hypo-
thetical bx, in order to discuss how Sam might decide to use
them.

– Suppose the roundtripconforms edge requires that
every class in m’s class diagram should have a corre-
sponding (in some senseweneed not go into) Java class in
code. When the bx’s consistency restoration is invoked
in the direction of code, then if there is a class in mwith
no corresponding class in code, one will be generated.
No comments will ever be inserted in the Java.

– Thesafeconforms edge requires (amongother things,
as previously discussed) that every Java class in code
corresponds to a test class in tests, unless the Java
class is marked with a special comment (// Not Yet
To Be Tested or similar). When this bx is invoked in
the direction of code, any Java class that has neither that
special comment nor a corresponding test class will be
deleted. If there is a test class that lacks a corresponding
Java class, then a Java class will be generated.

Now, the two consistency restoration procedures are not non-
interfering [7]: that is, applying them in different orders can
yield different results. Sam’s code gets to make the choice
of order; the choice can be made statically, or it might even
depend on the current states of the models.

Note, for example, that each of the two bx will generate
a missing Java class if necessary. Consider the case that the
“same” class exists in m and in tests, but there is currently
no corresponding class incode. Then, applying the twobx in
either order may7 restore consistency: the first one will gen-
erate Java code for the missing class, after which the second
one will find a corresponding class and succeed. However, it
may be that one of the bx is better at generating useful Java
code than the other. Sammight choose to invoke this bx first,
so that the most useful code gets generated in such a case;
then the other bx, invoked second, will find a corresponding
class in code and its less good code generation capabilities
will not be used.

More interestingly, consider a casewhere a class is present
in m, but not in either code or tests. Here, neither order
of application of the available bx, without adjustment, will
succeed in restoring both the consistency relations. For if

7 Elided details prevent us saying definitely “will”.

roundtripconforms is applied first, it will create a Java
class—but because it does not insert the special comment,
application of safeconforms will then delete it again,
breaking consistency according toroundtripconforms.
On the other hand, if safeconforms is applied first, and
then
roundtripconforms, the result will be that a Java class
is present in code, without the special comment, but is not
present in tests, so thesafeconforms consistency rela-
tion does not hold. However, the flexibility to invoke the bx
fromabuildmethodmakes it easy to solve this problem.Most
obviously, restoreConsistency might be written to:

1. Apply the roundtripconforms consistency restora-
tion first, possibly creating new classes in code, then

2. Automatically add the special comment to any such new
classes, before

3. Invoking the safeconforms consistency restoration.

In this way, a fully consistent state may be reached even
though this would not be possible with any combination of
the bx unaided.

7.5 Remarks

1. Generally the M-builder’s newly calculated m will
depend on the old value of m, as well as on any linked
models. This is unusual in conventional build systems,
but essential for bidirectional transformations. A care-
ful read of [9]’s proofs shows that it is unproblematic
and does not require breqing this builder (which would
result in a build cycle) nor freqing this model (m itself).

2. Because an authoritative model is never the target of a
(hyper)edge, the builder of a model that is authoritative
in the current orientation model will, as expected, neither
freq anymodel nor breq any builder, but just restamp this
model (e.g. Test-Builder according to Fig. 4a). We are
using pluto’s dynamic dependency capabilities here: the
builder’s requirements depend on the current contents of
the orientation model.

3. As we saw in the example, the real work is done in Step
5. If there is a single incoming edge, and if the meg-
amodel is associated with a way to restore consistency
along this edge—e.g. the compare or patch function
in Example 5.1, or the consistency restoration function
of an individual bidirectional transformation—then all
the builder has to do is apply it. In practice, this may be
done by invoking a separate transformation engine. In
this way, this approach supports the principled heteroge-
neous combination of different bx technologies.

4. If there is more than one incoming edge (e.g. Code-
Builder according to Fig. 4a), or if the megamodel is not
associated with the means to restore consistency along

123



Connecting software build with maintaining consistency between models: towards sound, optimal… 951

its edges, then, as we saw in the example, more inter-
esting work is required. This might involve adjustment
of the result of applying transformations, search, or even
user interaction. The choice is encapsulated inside this
builder: the requirement is just somehow to deliver a
consistent m. The attempt must be allowed to fail, how-
ever, because as discussed in [6] there might simply
be no solution. Soundness in this setting, as in conven-
tional software build, does not mean that consistency will
always be restored, but rather that if the algorithm suc-
ceeds then the result really is consistent.

8 Soundness and optimality

The builders in aMegamodelbuild system, defined following
Definition 5, will automatically obey requirements C1, C2
and C3; in particular, the sequence of requirements changes
only if the orientation model changes, ensuring C3. These
builders are nowusedwith the standardplutobuild algorithm,
and we get:

Theorem 1 (Soundness) Invoking the pluto build algo-
rithm with a build request for the builder of any model M in
the megamodel will either fail, or produce a new megamodel
instance which is correct, in the sense that consistency holds
in the subgraph of the orientation model from which M is
reachable.

Proof (Sketch) Theorem 5.3 of [9] tells us that the build
request will, unless it fails, result in a totally consistent build
unit for the M-builder: that is, one in which all the stamps
are up-to-date, and the same is true of all the build units to
which this one is transitively linked via breq entries. (Total
consistency also guarantees appropriate book-keeping prop-
erties such as that the build units exist and have the expected
attributes and links. We refer to [9] for full details.)

What we have to show is that this ensures the correctness
we want in the megamodel. We proceed by induction on the
length of the longest directed path in the orientation model,
which is finite since the megamodel-skeleton has finitely
manynodes and thewell-formedorientationmodel is acyclic.
The induction hypothesis is that, if there is a totally consis-
tent build unit for a model N to which the longest directed
path in the orientation model has length at most k ∈ N, then
consistency holds in the subgraph of the orientation model
from which N is reachable. For k = 0, this is vacuously true.
Suppose it is true for k, and that the longest directed path
in the orientation model to M has length k + 1. Consider
any edge in the orientation model targeting M . Total consis-
tency of the build unit tells that the gen and freq stamps on
the involved models are up-to-date. By Definition 5, together
with the fact that the gen stamp we always use is fine enough
to detect any consistency violation, this ensures that consis-

tency holds along this edge. Total consistency tells us that all
linked build units, i.e. the build units for any source models
of edges targeting M , are also totally consistent; since the
orientation model is acyclic, each directed path in the orien-
tation model to one of these build units has length at most k,
so the induction hypothesis applies and we are done.

Note that this is a stronger result than Theorem 5.3 of [9]
because of the additional requirement we put on the meg-
amodel builders, that they restore consistency along certain
relationships (or fail). We cannot get a guarantee that all
relationships in the megamodel hold, because this may be
impossible.

Optimality Theorem 5.7 of [9], which says:

Theorem 2 (Optimality) The number of builders executed
by the build algorithm (in response to any build request) is
minimal.

transfers directly. Informally, this holds because the algo-
rithm caches previous build results, repeating builds only
when they are invalidated because a file changes in a way that
the stamps indicate is significant, and then only when the file
is genuinely required to build the requested artefact. In our
setting, we see in particular that the only builders invoked in
response to a build request for a model M are those of mod-
els from which there is a path to M in the orientation model;
each of these is invoked at most once (by acyclicity), and
only if required. For example, with the orientation model of
Fig. 4b, if from a consistent state just Safety is altered, and
then Test-builder is invoked, the Code-builder will not be
invoked.

Note, however, that minimality means a builder is never
rerun if it should have been apparent from the stamps that this
was unnecessary: in pluto, the stamps specify what it means
for the build to be correct. Of course, we cannot exclude
that the model was, as it happened, still consistent with its
neighbours—manual changes could have “by chance” main-
tained consistency in away that is invisible to thebuild system
until the builder is run.

8.1 Example in the context of Fig. 4b

Fully explaining and reproving the soundness and optimality
result here would involve importing essentially all of the con-
tent of [9], especially fully reproducing the pluto algorithm.
Instead, we will explain how the algorithm operates in an
example: the interested reader is invited to read this explana-
tion alongside Fig. 6 of [9], but the explanation should stand
alone. Figure 6 may be helpful again.

We suppose we are in the context of Fig. 4b, and that a
build request for the Tests-builder has been submitted: that
is, we are restoring consistency to the tests. Suppose that,

123



952 P. Stevens

since this builder was last successfully run, only model m
has changed. Potentially, this might have caused code to
be out-of-date, and tests in turn may need modification.
What will the algorithm do?

Starting with a build request to build tests, the pluto
algorithmwill consult the build unit recording the last opera-
tion of the Tests-builder. We suppose that the build unit
exists, and its reqs field records an freq on the orienta-
tion model, then a breq on the Code-builder, then an freq
on the safety model (recall that, because Safety is
always-authoritative, it does not have a builder, so there is
no corresponding breq) and finally an freq on the code file.
The algorithm checks the status of the gens field of the build
unit; in our system, this list always contains simply the one
file gened by the Tests-builder, viz. tests, the model for
which this builder is responsible. Since we always use a fine
stamp on generated files, any change to tests that could
invalidate any of the consistency relations incident on it will
cause the consistency restoration procedure to be run. In our
scenario, there is no change to tests, so next, each of the
requirements in the Test-builder’s build unit’s reqs list is
checked in turn. In our scenario, the orientation model has
not changed so its freqing does not necessitate any work.

The next requirement to be checked is the breq of the
Code-builder. The algorithm now looks for its build unit,
which it finds. The gens field just records that the builder
is responsible for the code model, which has not changed.
The reqs field records an freq on the orientation model, then
a breq on the M-builder and finally an freq on the m file. Once
again the check of the orientationmodel succeeds as it has not
changed. The algorithm next checks the breq requirement
on the M-builder which means finding its build unit. This
time, when the status of the single generated file m in the
build unit’s gen field is examined, we find that indeed m has
changed. Therefore, the M-builder’s consistency restoration
procedure is run. Because m is authoritative, this does not
make any change to m: the result is a new build unit which
records an freq on the orientation model, no other entries
in the reqs list, and a new stamp on the single entry for m
in the gens list. (The algorithm records that this build unit
is known to be consistent, so that it would not have to be
rechecked if something else breqed the M-builder later, but
that will not happen in our scenario anyway.) Returning to
the checking of the reqs in the Code build unit, we meet
the freq on the m file. At this point, the stamp recorded in
this freq is compared with the stamp produced by the same
stamper on the current version of the m file, to see whether
any relevant change to it has occurred. Let us suppose that,
even thoughwe posited that m had changed, it has not done so
in such a way as to change the stamp—perhaps the changes
to m were only in the use case diagram, and the stamp that
the Code-builder placed on it was computed only from the
class diagram. Then, even though we just reran the M-builder,

this use of the stamp lets the algorithm know that the check
on the freq of m succeeds: no relevant change has occurred.
That concludes the checking of the reqs list in theCode build
unit, so there is no need to rerun the consistency restoration
procedure of the Code-builder: its build unit is recorded as
known consistent.

Returning to the checking of the reqs list in the Tests
build unit: the checking of the freq on the safety model
succeeds because we are supposing that had not changed
and, more interestingly, so does the check on the freq of
the code. (Note that the same would have been true if the
Code-builder had needed to run its consistency restoration
procedure, but the result had not produced a change to the
code that caused it to have a different stamp from the one
recorded in the freq of code in theTests build unit’s reqs.)
Therefore, there is no need to run the consistency restoration
procedure of the Tests builder either. Here, we see how
the use of custom stamps enables early cut-off : even though
there was the potential for the change to m to necessitate
running of both consistency restoration procedures of Code
and Tests, in this case neither had to be done.

(Note that in this example, we have elided mention of
some book-keeping aspects of the pluto algorithm (shown in
Fig. 6 of [9]), especially the validate procedure (Fig. 7
of [9]), which do not give rise to any new considerations in
our setting).

9 Custom stampers and bidirectionality

In this section, we discuss the relationship between custom
stampers as used in pluto and related ideas in MDD. In build
system work, a traditional rule is “if the target is already up-
to-datewith respect to the sources, do not run the builder”. As
explored by [9], the naive version of this, using time stamps,
can lead to inefficiencies: a target may be out-of-date only
because a source has changed in a respect that is irrelevant to
the relationship between source and target. In effect, pluto’s
stamps impose a builder-specific equivalence relation on the
set of possible instances of a file depended on by the builder:
instances are equivalent iff they have the same stamp, and
this indicates that the instances are interchangeable as far as
this particular builder is concerned.

A related idea in MDD is hippocraticness: “if the tar-
get model is already consistent with the source(s), do not
apply a consistency restorer”. This helps avoid disruptive
and unnecessary changes to models, but it does not necessar-
ily save computational effort, because checking consistency
may itself be arbitrarily expensive. For example, checking
whether a given triple of code, tests and safetymodel
are consistent will involve rerunning the tests and comput-
ing a coverage metric. On the other hand, if we know that the
only aspect of the safetymodel that is relevant to this con-
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sistency is the one bit that says the system is safety-critical,
we may safely say that a change to the safety model that
does not flip that bit does not necessitate rechecking the con-
sistency relation, because the two versions of the safety
model are equivalent as far as this consistency relation is
concerned.

In the safety case, therewill be just twoequivalence classes
of the safety model, determined by the safety-critical bit.
Or ifm is a Java source file and R is maintaining consistency
between the Java source file and an HTML documentation
page, we may identify an equivalence class of Java sources
files with the file comprising a particular set of extracted
docstrings, discarding all the code.8

The idea of models being equivalent if they differ only in
ways that never affect their consistency with another model
via a given bidirectional transformation has been explored in
[27], in the setting of simple relational state-base bx. Such
a bx, relating model sets M and N , is formally defined by a
triple:

1. The consistency relation that the bx checks and enforces,
R ⊆ M × N

2. A forward consistency restoration function
−→
R : M ×

N → N
3. A backward consistency restoration function

−→
R : M ×

N → M .

The bx is termed correct if the consistency restorers do
restore consistency, i.e. R(m,

−→
R (m, n)) always holds (and

dually for
←−
R ). The formalisation of hippocraticness is that

if R(m, n) holds then
−→
R (m, n) = n and

←−
R (m, n) = m. In

that setting, as explained by [27], we may define equivalence
relations ∼=R

F and ∼=R
B on M (and mutatis mutandis on N ) by:

– m ∼=R
F m′ iff ∀n ∈ N .

−→
R (m, n) = −→

R (m′, n)—that is, for

every model n, the result of using
−→
R to modify n so as

to be consistent with m is the same as the result of using
R to modifying n to be consistent with m′

– m ∼=R
B m′ iff ∀n ∈ N .

←−
R (m, n) = ←−

R (m′, n)—that is,
any differences betweenm andm′ are such as to be oblit-
erated by synchronisation with any element of N .

It turns out that anymodelm ∈ M is determined by its equiv-
alence classes under these two equivalence relations [27]. In
many (but not all) natural cases, the equivalence class of m
modulo∼=R

F is easily reified as the information fromm that
−→
R

looks at. If this equivalence class could easily be computed
from m, it would serve as a suitable stamp for the N -builder
to use on model m, because a change to m that does not

8 For a concrete example, see the orientation stampers at https://github.
com/PerditaStevens/megamodelbuild.

change its equivalence class does not necessitate a change to
n ∈ N . An interesting challenge in the context of a partic-
ular transformation language (related to slicing) would be:
given a transformation, automatically generate a stamper that
generates stamps corresponding to these equivalence classes.
Indeed, the discussion in Sec. 7.1 of [7] suggests a way to do
this, by statically analysing the text of a model transforma-
tion to determinewhichmodel elements—instances ofwhich
metaclasses—may be relevant: the automatic generation of
an abstraction, or part, of a model that is potentially affected
by a bx would give a (pessimistic) candidate for a section of
the model to inspect for changes in order to decide whether
any change has taken place that might be relevant to the bx. I
am indebted to a reviewer for the suggestion that perhaps the
intents of transformations, in the sense of [28], might also
provide useful information from which stampers could be
derived.

There is, of course, a pragmatic question about the trade-
off between the expense of computing the stamp on a file, and
the expense of rerunning a transformation. We might expect
that in the casewhere a stamp is derived by looking in a safety
model for a single bit, and seeing that it has not changed may
save substantial effort, this is worthwhile; however, using
a custom stamper in the Java/HTML case is less likely to
be useful, because computing the stamp may be almost as
expensive as regenerating the documentation.

10 Discussion

10.1 Bxmodifying just onemodel

Amajor aim of this work is to support consistency restoration
in networks of models that involve heterogeneous technolo-
gies, e.g. various models and transformations whose lan-
guages need not even share a common meta-meta-modelling
language. Yet we have worked on the assumption that restor-
ing consistency along any (hyper)edge in the megamodel
instance involves modifying just one of the models involved.
Is there a contradiction here?

The reason for the restriction is that it is essential to our
adaptation of pluto that anymodel is the responsibility of just
one builder in the system. We cannot, without completely
reworking the framework, allow the same model to be modi-
fied by two different builders under different circumstances.
So if two models must be modified by the same transfor-
mation, they must be the responsibility of the same builder.
In such a case we will then, for practical purposes, regard
them as one combined model.9 Thanks to custom stamps, it

9 A draft of this paper used the word “merged”, but this caused anxi-
ety in a reader familiar with the problems involved in “model merge”.
Here, there is no need for any actual merging—no need for the models
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is still possible to react efficiently to changes. Say, for exam-
ple, that we wish to make use of an existing transformation
whichmodifies both a state diagram and a class diagram; and
suppose we also wish to use a different transformation which
reads only the class diagram. In our framework, there will be
one builder which is responsible for both the class diagram
and the state diagram, but the transformation that only reads
the class diagram may freq the combined model with a cus-
tom stamper which ignores changes to the state diagram, so
that it will not need to be reapplied if only the state diagram
changes.

10.2 State-based versus delta-based approach

Another aspect of this work that might be perceived as
a limitation, but which is in fact a deliberate choice, is
that there is no requirement within the Megamodelbuild
framework for information to be provided about deltas
(“what has changed in a model since last synchronisation?”),
edits (“what command(s) did the person editing this model
issue?”) or traceability links (a.k.a corrs, or correspondence
graphs: “which part(s) of that model are relevant to this
part of this one?”). When such information is available, it
is often possible to use it to make more intelligent decisions
about how to restore consistency than are possible without
it [13,29,30]. However, as mentioned in Sect. 2, real-world
scenarios that involve multiple models may be arbitrarily
heterogeneous. Some of the files in our megamodel instance
might be UML models, some Python programs, some mod-
els in a previously unknown and ad hoc DSL, some text files.
We often cannot assume that all models are expressed as
graphs, or in languages based on the same (meta)∗-modelling
language; or that we have any control over what tools will
be used to edit the models; or that it even makes sense to
describe changes to different models using the same lan-
guage. In Megamodelbuild, the decisions about what needs
to be done to bring a model into consistency with its neigh-
bours are entirely encapsulated inside that model’s builder. If
information about deltas, edits or correspondences is avail-
able (stored in the same file as the model, or in a different
one) it is open to the builder to use it, whether directly or
by passing it to a transformation engine that needs it. But
this is not—and does not need to be—treated specially in the
framework: a file containing such information, if present,
would just be another file used by the builder, to be stamped
appropriately. As far as the framework is concerned, it does
not matter whether a builder achieves its task of bringing

Footnote 9 continued
to be given a common metamodel, for example—so this anxiety is
unnecessary. It is just that the framework, agnostic about how models
are constructed, is a fortiori agnostic about whether someone might
consider this model to be the combination of several smaller models.

its model into consistency with its neighbours using one or
more external transformation engines, using its own internal
programming, or even with the help of user interaction.

10.3 Humans in the loop and gradual adoption

Given the separation of concerns between the builders, which
restore consistency by any means, and the Megamodelbuild
framework which invokes builders as necessary, it is even
possible for a builder’s consistency restoration to involve
human interaction (or search, or any other approach). Pro-
vided that before the restoreConsistency method
returns successfully, it verifies that the relevant consistency
relations have indeed been restored, the guarantees provided
by the framework still hold. In practice, however, it is more
likely that situations where human action is required will be
captured as they are in conventional software build: that is, by
the build failing, so that humans have to take action before
rerunning the build. The approach of this paper allows for
widely varying degrees of automation. At one extreme, it
is possible to use it with no automated consistency restora-
tion at all! That is, every builder’srestoreConsistency
method could merely check whether consistency along the
relevant edges holds already; if so, it returns successfully,
while if not, it fails, i.e. raises an exception that terminates
the build. This already brings benefits: the automated consis-
tency checking is proved sound, and when it fails, it provides
an indication of where in the megamodel instance there is
an inconsistency (which builder failed and what error mes-
sage did it emit?). One could envisage gradual adoption of
the Megamodelbuild framework proceeding on this basis:
initially, builders would be given that minimal check-only
behaviour, and then over time, as a cost-benefit calculation
permitted, the restoreConsistency methods could be
improved to automate more of the consistency restoration
and fail less often.

10.4 Fine stamps on generated files

A design decision in the Megamodelbuild framework is that
the template buildmethod (Fig. 7) does theprovide frame-
work call, and hence, chooses the stamp that is applied to the
gen entry in the build unit. In fact, as can be seen from the
absence of a stamp argument to this call, the current frame-
work implementation always uses the default last-modified
stamp on gen entries. This is more pessimistic than strictly
necessary: the interesting content of the decision is that the
stamp should be fine enough to ensure that, if the stamp on
the file does not change, then neither does the file’s con-
sistency with any other adjacent model in the megamodel.
What we have to ensure is this: if the model is modified by
something other than its builder—e.g. by a human working
on it—and then a build request for it is submitted, the pluto
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algorithm needs to be able to detect that the builder’s build
method does need to be called, in order to check that the
modifications have not broken consistency.

To see why this is necessary, consider again the scenario
presented in Sect. 8.1, but in a modified version where the
tests had been changed by a human in such a way as to
invalidate the safeconforms consistency relation. If the
gen stamp used by Test-builder on tests were so coarse
that it could not detect these human modifications, then the
scenario would play out exactly as presented: in particular,
the restoreConsistency method of the Test-builder
would never be called. Hence, the consistency restoration
would not be correct, because the build would complete
“successfully” but leave a megamodel instance in which
safeconforms would not hold. (Note that this would not
be a problem for soundness in pluto’s sense: for pluto the
stamps, determine what it means for the build to be correct.
The issue is that in our setting, we want to use the stamps
to ensure the kind of correctness we actually care about,
viz. restoration of consistency relations in the megamodel
instance.)

Our choice to use a pessimistically fine gen stamp, within
the template method, frees the builder-writer from the (per-
haps error-prone) obligation to choose a stamp which is fine
enough to catch all potentially consistency-violating exter-
nal changes to the model that this builder controls. It could
result in a build method being called when, in fact, no
work needs to be done (note that this does not violate the
Optimality Theorem, which only rules out work which is
unnecessary according to the stamps). An avoidable call to a
restoreConsistencymethodwill only result, however,
when a builder-controlled, non-authoritative model suffers
an external modification which does not in fact impact con-
sistency. Since such modifications normally will require a
consistency check to be done, our choice seems pragmat-
ically reasonable; nevertheless, it might be interesting to
experiment with more flexibility in future.

Notice that this issue only applies to gen stamps, not to
freq ones: a stamp used on an freq entry is specific to one
use of the file, i.e. to one consistency relation.

10.5 Management of the orientationmodel

Because the orientation model is just a model (though
always-authoritative, i.e. only manually changed!), it will be
managed in a configuration management system as usual,
and edited, probably by a project manager, to reflect current
circumstances of the project, such as which models should
be permitted to be modified by the build system. A typical
project might have several versions of an orientation model
over its lifetime; for example, a model may become author-
itative after it is signed off by a customer. We may even
have several variants that are interchanged as appropriate,

e.g. one that labels a model as authoritative, for use while
its own developers are working on it (so that their work is
not interrupted), another that does not. As we have seen, the
system automatically maintains soundness even if the orien-
tation model changes.

10.6 Changes to themegamodel itself

For simplicity, we have assumed here that the megamodel
does not change, although the orientationmodelmay. That is,
we use pluto’s dynamic dependency capability only to react
to changes in the orientation model. It would be possible,
however, to use it more; it is unclear whether this would be
useful, or rather would diminish the value of the megamodel.

10.7 Files

In order to make use of the existing pluto software, which
is based around the notion of file, we have adopted here the
assumption that models are realised in files, and we have
not considered serialisation and deserialisation explicitly. In
[14], the authors make the point that for practical purposes
it is highly advantageous for a model management workflow
to avoid parsing the same model more than once, and they
discuss how to use features of Ant to make this work. The
concerns are orthogonal to those discussed here, however,
and the use of the file system is not essential to anything we
have proposed.

10.8 Demand-driven versus global consistency
restoration

Following pluto, we have adopted here a demand-driven
approach to consistency restoration:weprovide amechanism
that will not necessarily restore all of the consistency rela-
tions in the megamodel, but only those that must be restored
in order to produce an up-to-date version of the requested
model. This approach is a contrast to earlier work on meg-
amodel consistency, e.g. [6,17]. We think that, for MDD, it
is an advance, but note that it is still possible that a rebuild
of one model forces an update to another (e.g. Test-Builder
in Fig. 4b may cause the code to be rebuilt, if it is currently
inconsistent with the model m). This relates to.

10.9 Always-consistent versus stable

In modern software engineering, there is an interesting ten-
sion between (a) the desire to avoid duplicating information,
and (b) the perceived need to tolerate inconsistency to permit
creative flow [31] that may lead to step improvements. Pri-
oritising (a) leads to a preference for having a “golden copy”
of any piece of data; in an MDD context, it suggests that
any inconsistency should be repaired immediately [17,32].
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Nuseibeh et al. [33], argue for (b); in an MDD context, Kuhn
et al. [2] make the point that engineers want to work inde-
pendently on copies of the same model and then need good
tool support for reintegration of their modified copies. At
issue is the length of time for which it is appropriate for
some expert (group) to proceed with changing an artefact
independently, before bringing it into consistency with all
other artefacts. Too short a time, and nobody achieves flow:
everyone is constantly interrupted by their artefacts changing
underneath them to take account of other people’s decisions.
Too long a time, and development returns to the bad old
days of months-long integration phases. This work does not
offer a silver bullet, but it does help to ease the management
of such decisions, by embodying them in a concrete arte-
fact (the orientation model), giving explicit constraints on
how builders must be written, and providing, in return for
the builder-writer abiding by these constraints, guarantees of
sound and optimal behaviour. Making the pragmatically best
choice in a given setting will inevitably, though, require skill
and experience.

11 Conclusions and future work

Wehave proposed an approach to sound, optimal and flexible
megamodel-based building, extending the work of Erdweg
et al. [9] to tackle the problem of Di Rocco et al. [17], and
to address some of the challenges raised by Stevens [6]. The
soundness and optimality are precise results, based on [9]’s
work. Flexibility is, naturally,more subjective.Here,we have
externalised the decisions about which models are authori-
tative, etc. into the orientation model, which, being a model
like any other, can be changed, such that affected models
can be automatically rebuilt in response to the change while
unaffected ones need not be. We have shown how decisions
about consistency restoration can be encapsulated inside rel-
evant builders. We think this will be more dependable than
using a complex build script, especially where developers
need to automatically reconcile the effects of several trans-
formations, or use transformations provided by vendors or
others and then systematically “tweak” their results.

Since the publication of [10], the appearance of the impor-
tant work by Mokhov et al. [8] has changed the present
author’s future plans. By clarifying key concepts relating to
software build and how they are related in various advanced
build systems, it helps to situate the pluto work and clari-
fies what is important about it. A new project (of the author
and James McKinna) aims to mechanise the formalisation of
[8], extending it with a mechanised formalisation of custom
stamps, and produce machine-verified versions of the sound-
ness and optimality results we have used here. This is a very
ambitious goal, made feasible only by the foundational work
of [8], and it will take some years. In the short term, this will

support an investigation of whether each restriction placed
on the framework is required for soundness or optimality, or
might usefully be relaxed. In the long term, this could then
form the basis for an exploration of even more flexible, yet
still sound, means of restoring consistency in megamodels,
as follows.

Wehave shownhowcertain decisions about the restoration
of consistency can be encapsulated in individual builders. In
our early experimentation with pluto and its formal model,
we explored a more radical proposal than is presented here.
Here, we have presented the use of an orientation model that
specifies, for example, in which direction each relevant bidi-
rectional transformation should be applied, so these decisions
are centralised.We could imagine amegamodel build system
in which these decisions, too, were encapsulated in individ-
ual builders, leading to a radically different and even more
flexible approach to the provably correct building of soft-
ware. In future work, we would like to investigate the extent
to which this is (a) technically feasible and (b) pragmatically
helpful (vs confusing): both are at present uncertain.

For example, an M-builder would have the responsibil-
ity to restore consistency between m and its neighbours in
the megamodel, and would be able to choose to do so by
whatever means were appropriate, e.g. at one time to do so
by modifying m, at another to do so by leaving m alone and
instead asking the builder of a neighbouringmodel to modify
itself. Such decisions might be based on anything the builder
programmer chose, even, for example, local time of day, if
we judge that a change to an expert’s model in the middle
of the night is likely to be less disruptive than one that takes
place during the working day. However, pursuing this idea
turned out to involve heavy use of pluto’s cycle-handling
capabilities, which (unlike the cycle-free case) are described
only informally in [9]. Thus, since the correctness of pluto’s
cycle-handling is delicate and would be crucial, we would
prefer to have a detailed and preferably mechanised proof of
correctness before relying on it to this extent. Assuming that
appropriate soundness results could be proved, understand-
ing whether there are settings and assumptions under which
this would be useful and usable is an intriguing direction for
future work.

More prosaically, a specialised open-source framework
for building from megamodels, on top of pluto, is avail-
able,10 although currently primitive. (Given the retargeting
of future work described above, it is not yet clear whether
future development should be undertaken on the current
pluto basis, however, or whether formal and theoretical work
based on [8] will show a better way to proceed.) Manually
implementing appropriate builders, as described, is routine,
but we would further like to incorporate: wrappers to let
builders invoke existing model transformation engines; auto-

10 https://github.com/PerditaStevens/megamodelbuild.
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matic generation of builders from a megamodel expressed in
an appropriate language such as MegaL/Forge [17]; con-
nections with further megamodelling work such as [34,35];
generation of custom stamps from transformations; valida-
tion of orientation models; exploration of scalability, etc. By
permitting, for low effort, trustworthy and fully incremental
build of model-driven systems, this is a step towards continu-
ous model-driven engineering, as requested, for example, in
[32]. Completing the path towards that goal will, of course,
require further work, both practical and theoretical.
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