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Abstract
Traditionally, the preferred means of documentation used by safety engineers have been sheets- and text-based solutions.
However, in the last decades, the introduction of model-driven engineering in conjunction with Component-Based Design
has been influencing the way safety engineers perform their tasks; especially in the area of fault analysis, model-driven
approaches have been developed aimed at coupling fault trees with architecture models. Doing this fosters communication
between engineers, may reduce design effort, and makes artifacts easier to maintain and reuse. In this paper, we want to move
forward in this direction and take another step in the modeling of Component Fault Trees in combination with the modeling
of the architecture design. We propose a hazard-centric approach for the definition of multiple realization views for fault
analysis using Component Fault Trees. The approach is composed of a modeling method and a tool solution. We illustrate
our approach with a real-life example from the automotive industry.

Keywords Model-driven engineering · Component-based · Hazard-centric · Component Fault Trees · Realization view

1 Introduction

The development of safety-relevant functions in the automo-
tive domain is faced with increasing complexity as the result
ofmore intelligent features,more automation, andmore func-
tions realized by software. Component-based development
has proven to be effective in handling the complexity of such
systems by fostering modularity and thereby reuse.

Because of the increasing interaction between the archi-
tecture and the safety life cycles, safety engineers have had
a hard time maintaining design and analysis artifacts. Tradi-
tionally, this has been the case for fault trees [1], as they are
not strongly related to architecture designmodels. In order to
tackle this issue, several approaches have been proposed in
recent years. With the aim of modularizing fault trees, Com-
ponent Fault Trees (CFTs) [2] were introduced. In [3], [4],
and [5], Component Integrated Fault Trees (C2FT) extended
this modularization concept and presented the means to
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associate modular UML constructs like SysML blocks with
Component Fault Trees. In 2018, the paper “Advances in
Component Fault Trees” [6] summarized the most impor-
tant contributions with respect to CFTs since their definition.
Moreover, the authors (including the original contributors of
CFT and C2FT) agreed, for the sake of simplicity, on keeping
the original name of the technique (namely CFT), which we
will use throughout this article.

The previous studies on CFTs did not investigate how
models could be structured in order to facilitate information
exchange, maintenance, and review processes.

The most important idea in this regard was to use as refer-
ence the architecture models (specifically a logical network)
to drive the composition of associated CFTs. With the aim of
achieving a better separation of concerns and coping with
the complexity of the analysis and review processes, we
introduce in this work the idea of using hazards to drive the
definition of several realization views for CFTs (one view per
hazard). Giving the compositionality ofCFTs, this separation
of concerns might also occur along the hierarchical compo-
sition (i.e., at sub-CFTs) and will be influenced according to
the reuse possibilities of those sub-CFTs.

This paper is structured as follows: In Chapter 2, we intro-
duce the relevant model-based design and fault tree concepts,
followed in Chapter 3 by a description of the problem. In
Chapter 4, we present a solution concept, followed by an
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example use case in Chapter 5. Finally, Chapters 6 and 7
present related work and our conclusions, respectively.

2 Preliminaries

2.1 Foundations of model-driven engineering

Model-driven engineering is typically associated with auto-
matic generation or transformation of higher-level models
into low-level artifacts (e.g., source code generation) [7]. In
the context of this work, we focus primarily on the modeling
aspect and less on the generation or transformation aspect.
Therefore, we will concentrate on the idea that models con-
form to meta-models, from which modeling languages can
be defined [8].

In the world of model-based design, the Unified Mod-
eling Language (UML) is one of the best-known and most
commonly used languages within the field of software engi-
neering. Due to its great versatility, UML is considered a
General Purpose Language (GPL) that can be used in dif-
ferent fields. However, due to its high level of abstraction,
it is not usually practical in real-world engineering projects.
For this reason, Domain Specific Languages (DSLs) are used
quite often [9]. A DSL is a modeling language tailored to a
particular subject area or a certain group of stakeholders. The
idea behind a DSL is to create models that help to raise the
performance of the stakeholder’s tasks. As part of GPLs and
DSLs, different viewpoints are often defined to emphasize
the modeling of one aspect or another. In the IEEE1471/ISO
42010 standard [10, 11], a distinction is made between the
terms View and Viewpoint; see Fig. 1. Viewpoints relate to
the languages (i.e., models, notations, product types) used to
define views. Viewpoints are generally defined with the con-
cerns of a specific stakeholder inmind.Viewpoints restrict, in
a certain manner, the information displayed through a view,
which can be seen as a projection of the system under devel-
opment.

UML, for example, uses different diagram types to focus
on one aspect or another of the system. For instance, class
diagrams are used to depict logical structures and component

diagrams focus on the composition and sequence diagrams
on the behavior. Generally, systems are too complex to show
everything in one diagram (i.e., the view). For this reason, it
is common to see a functional or logical structuring of the
views, leading to a large collection of partial views that, taken
together, sum up the system definition.

2.2 Foundations of Fault Tree Analysis

Fault Tree Analysis (FTA) is a technique recommended for
use in the development of safety-critical systems [12, 13]
to identify faults within a system [1]. To use this technique,
the first step is to define a top event (black triangle in Fig. 2),
which represents an undesired event (typically a hazard). The
system is then analyzed and the combinations of faults (i.e.,
basic events, blue circles in Fig. 2) that might lead to that
event are linked through Boolean logic. Usually, only OR
and AND gates are used, but negative logic can also be used
by means of NOT or XOR gates. Figure 2 shows the FTA of
a simplified airbag system.

Generally, two problems are associated with airbag sys-
tems: failure to deploy and unwanted deployment. The
former is generally considered less critical because only that
part of the injury that could have been prevented by proper
deployment, presumably a severe injury, is compensable. The
latter case, i.e., undesired activation, is investigated in Fig. 2.
This is a dangerous situation because the force generated
during deployment can cause an accident, serious injury, or
even death (if children are affected).

Component Fault Trees (CFTs) [2] represent the evolu-
tion of FTA with respect to the handling of complexity in
large systems. By applying component-based principles [14,
15], CFTs integrate modularization and instantiation con-
cepts into the modeling of fault trees. Figure 3 presents the
added modeling constructs.

CFTs encapsulate the failure behavior of a component.
They depict incoming failures as Input Failure Modes and
outgoing failures as Output Failure Modes. This defines the
interface of the CFT, which can be exposed bymeans of CFT
Instances when integrated into the CFT of a larger system.
Figure 4 presents the CFT of the airbag system.

Fig. 1 IEEE1471/ISO 42010 standard meta-model
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Fig. 2 FTA of a simplified
airbag system

Fig. 3 CFT modularization constructs

At the top, Fig. 4a presents the logical network of the sys-
tem. Figure 4b depicts the CFT of the system integrating the
CFTs of the components through CFT instances and depicts
the failure propagation through the connectors. This way of
documenting the system faults makes it easier to understand
the source of consequences (compared to FTA) and facilitates
the planning of where to integrate safety measures in order
to prevent or correct the identified issues. Figure 4c presents
the CFTs of the components, depicting their specific failure
behavior. The dotted lines establish the relationship between
failure modes and logical interfaces.

One of themain goals of CFTs [3] is to bring designers and
safety engineers closer, given their natural dependency. The
goal of a safety engineer is to guarantee that faults identified
through fault trees are removed or mitigated. In this sense,
FTA influences the design, since the identified faults lead
to the definition of safety requirements for which new func-
tions/components will be integrated into the architecture. In
order to enhance the interaction between these stakeholders,
CFTs propose the use of a component-centricmodularization
approach where the composition of functions or components
(e.g., Logical/Hardware), as provided by the system’s archi-
tecture design, is used to structure the Fault Tree Analysis.
Therefore, the techniques explicitly associate CFT modules
with architecture modules as well as their interfaces, see
Fig. 4. Each interface from the architecture is analyzed and
failures modes are identified and linked.

One further advantage of CFTs with respect to FTA is
that the construction effort can be distributed over several
modelers. In this sense, it would be possible to carry out

the analysis almost in parallel, since one person will only
deal with a certain part of the system at a time. CFTs are
also better than FTA in terms of the maintainability of the
model. Typically, changes performed in the design models
need to be considered in the Fault Tree Analysis. However,
it is also usual that these changes occur locally to one or the
other components at a time. CFTs facilitate the maintenance
in that only for those components which have been modified
the associated CFT needs to be reevaluated.

3 Problem statement

The complexity of theFault TreeAnalysis process is typically
as high as the level of details provided by the architecture.
Generally, this is reflected in the input architecture network.
In early states of the development process, only high-level
networks exist. In such a scenario, the failure descriptions are
typically done at a high level of abstraction to get a big picture
of the most critical system interactions, without having to
invest too much effort into the analysis. In contrast, if the
architecture network has already been refined, then typically
more details of the system are known and the Fault Tree
Analysis will be carried out more precisely.

FTA is known as a deductive analysis technique; for this
reason, the input or starting point of the analysis is the hazard
or undesired event represented in the form of top events.
From this point on, the analyst checks the system for possible
faults that could lead, either alone or in combination with
other faults, to the undesired event. In CFTs, it is common
to perform the analysis in a systematic way, by investigating
each of the data flows. This occurs backward, starting with
the data flow from the actuators and going back to the sensors.
Each entity along the interaction chain is checked. See Fig. 5.

Depending on the modularization applied in the con-
struction of the architecture network, three typical situations
occur:

• Some entities are not included in the analysis because they
are not safety relevant.

• Some entities only play a role for one specific hazard and
are therefore not relevant in the context of other hazards.
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Fig. 4 CFT example of the
airbag system

• Some entities (functions/components) are part of the inter-
action chain in the context of several hazards; i.e., that an
entity is analyzed from two or more different perspectives.

In CFTs, all hazards are modeled in the same diagram.
This typically leads to complex fault propagation networks
in which all entities related to all hazards are shown. This
situation is shown in Fig. 6, in which a real-life example is
presented.

Due to a Non-Disclosure Agreement, further details can-
not be displayed. However, it can be seen from the figure
that CFTs do not scale well when considering many hazards
at the same time, as the model has become very complex,
even though only five hazards were examined. Furthermore,
it is not always possible to identify which parts of the system
are relevant to one hazard or another as shown in the model
section. Without the yellow and blue borders, it cannot be
identified that the component highlighted by the red bound-
ary is only relevant for the context of the second hazard.

Furthermore, it cannot be seen that for the component above,
the incoming interfaces enclosed in the green boundary are
not relevant for the context of the second hazard.

Note that this situation becomes even worse if the
entities are refined into other entities (e.g., subfunc-
tions/subcomponents), because parts of the system are not
visible directly, but are rather hidden behind some of these
entity specifications.

Another important aspect that we have seen in our many
years of experience is that not all details are known in the
early stages of architecture design. This often leads to the
definition of failure modes that makes no distinction for spe-
cific situations, so that these can easily be misinterpreted
and their criticality might be disregarded. This is illustrated
in Fig. 7b. Figure 7a shows the logical network that rep-
resents the part of a vehicle where the sensor functionality
provides the distance to the vehicle in front to the ACC con-
troller as well as to the automatic parking controller. In the
Fault Tree Analysis (Fig. 7b), a collision with a vehicle in
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Fig. 5 Data flow backward analysis. The figure is presented with all details in Fig. 12

Fig. 6 Overview of CFT for a system with multiple hazards

front is investigated. The undesired event can always occur
if the control systems do not behave correctly or if the sen-
sors do not provide the correct information. The problem in
this scenario is that the failure modes are too general and
do not distinguish the criticality of the underlying situations.
Typically, the ACC can only be activated when the vehicle’s
speed is greater than 30 km/h, and parking assistance can
only be activated when the vehicle is stationary. The activa-
tion conditions are clearly very different. Moreover, in the
event of an accident, injuries caused by the ACC are more

likely to bemore critical than those caused by parking control
functionality. This would generally lead to a different ASIL
(Automotive Safety Integrity Level) classification of these
functions. Another aspect to consider about this example is
the abstraction level used.Most failuremodes fromFig. 7 can
be considered as not sufficiently specified. For instance, it is
assumed that the same sensor is used for both functionalities
(ACC and parking), which is very unlikely as the operating
conditions are very different. Due to such situations, a finer
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Fig. 7 Early Fault Tree Analysis
issue

distinction of hazards and failure modes is useful, as we will
see along this article.

One last aspect to be considered is the model presentation
and communication. When more details are integrated in a
CFT, the model grows in size and complexity as shown in
Fig. 6. Such large models are impractical because they can
hardly be displayed on a standard monitor. If enlarged, the
modeler can get the details, but loses the overview, sincemost
of the information will be hidden and can only be displayed
by scrolling, which ultimately decreases the navigability and
understandability of themodel. Thismakes themodeling and
reviewing processes harder and more error-prone.

4 Solution concept

Our concept is hazard-centric; i.e., the hazards identified
from the Hazard and Risk Assessment (HARA) are the
drivers for the definition of the realization views of CFTs.
During the hazard analysis, hazards are identified for system-
level functions, which are composed of simpler, possibly
atomic functions. These functions are generally realized by
components that, together, represent the structure of the sys-
tem. As explained in Chapter 2, ideally a CFT should be
defined for each of these components. While the Fault Tree
Analysis could be performed in a generic way, to be able to
reuse the Component Fault Tree in other contexts, it is quite
often the case that achieving a properly reusable description
is difficult and at reuse time, the models appear incomplete
and are hard to understand. In addition, as shown in Chap-
ter 3, context informationmight get lost and the analysis then
becomes incomplete. In our experience, analysts deal with

this situation by describing the hazards and failure modes in
a more concrete way (e.g., omission due to H1), see Fig. 8.

Figure 8 presents such a model where the failure modes
were modeled more precisely in comparison with the model
presented in Fig. 7. In this way, the modeler can be more
specific,which facilitates the reviewprocess.However, doing
so inevitably leads to CFT modules with a large number of
failure mode interfaces and connections, making the overall
modelmore complex, as pointed out in Chapter 3 (see Fig. 6).

In order to keep themodeling and review processes simple
for safety engineers, we propose in this work the definition
of multiple realization views for CFTs based on the iden-
tified hazards. While the CFT of a component contains the
definition of the failure behavior of that component for the
different hazards, realization views (by means of diagrams)
make visible only that part of that behavior specification that
is relevant for one hazard at a time, as shown in Fig. 9.

Our solution is composed of three aspects:

1. A modeling aspect
2. A methodological aspect
3. A tooling aspect.

4.1 Themodeling aspect

The meta-model for our modeling approach is depicted in
Fig. 10. This figure presents the concept-relevant part of the
CFT Domain Specific Language as an extension of UML
constructs.

Figure 11a shows the representation of the “CFT Real-
ization View” entity, while Fig. 11b shows the model
composition for the vehicle system CFT, as presented in
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Fig. 8 Refined Fault Tree
Analysis

Fig. 9 Two realization views of the same CFT

Fig. 9. Realization views are highlighted through the red
boundary.

CFTs supports the composition of other sub-CFTs similar
to “Components” in UML [16]. This is necessary because
CFTs are defined for components of logical networks, as
shown in Chapter 2. At the modeling level, composition is
supported with the help of “CFT Instances” and “CFT Real-
ization Views.”

As with Component-Based Design, CFTs encapsulate
their realization in an internal view (white-box view) and
expose their interfaces through an external view (black-box
view). In our modeling approach, these views are supported
such that a CFT has at least one such internal view, (i.e., a
default CFTRealizationView) and exposes the external view

through “CFT Instances” when instantiated in a realization
view of another CFT. This is already partially presented in
Fig. 9. Figure 12 now depicts the realization views of the
“Sensors” entity to clarify the concept.

As can be seen in Figs. 9, 11, and 12, the CFT of the
“Sensors” has been instantiated twice, once in each of the
realization views of the CFT of the “Vehicle.” It should be
noted that each of these instances shows a different interface
specification although both have the same type, namely the
SensorsCFT. In thisway, a “CFT Instance” behaves similarly
as a UML Property [16], with the difference that it shall only
expose the black-box view corresponding to the assigned
preferred realization view; see the “preferred RV” attribute
in Fig. 10.
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Fig. 10 CFT realization views meta-model extension (UML constructs in blue)

Fig. 11 Realization view
modeling construct example

Fig. 12 Realization views of the sensors entity

We have added the “CFT Realization Views” as a model-
ing object to facilitate the understanding of the concept and
because in practice, these entities should exist as part of the
data model. These views are supported in our approach with
diagrams (see UML diagram element in Fig. 10), although
they could be supported by other presentationmeans. The use
of model elements is required because they need to be refer-
enceable model artifacts, as already shown by the “preferred
RV” attribute. Moreover, these artifacts will be associated

with other important artifacts of the safety life cycle (e.g.,
the safety case) due to traceability requirements.

4.2 Themethodological aspect

The proposed modeling approach provides more model-
ing and expressiveness power than pure CFTs. However, a
modeler might be confused as to how to use the approach
effectively. For this reason, we propose as part of the solution
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the definition of the realization views from the point of view
of the safety engineer, taking as a basis the hazards/undesired
events being analyzed.

As pointed out in Chapter 3, fault analysis with CFTs
is typically performed for the entire system, starting from
the actuators and then following the data flow backward.
Therefore, the modeling process should start by defining a
realization view (i.e., diagram) of the CFT associated with
the topmost component type, which shall be related to one
undesired event at a time. More undesired events might be
integrated if there is high reuse potential for existing model-
ing artifacts and if the complexity of the diagram remains low,
i.e., following the traditional modeling approach for CFTs.
However, we recommend creating one realization view per
undesired event to facilitate the review process, since this
will be performed systematically, one hazard at a time.

While moving backward in the data flow, the user will
encounter architecture entities to be analyzed. For these, a
dedicated CFT realization view in the context of the current
top event should also be defined unless it is possible to reuse
an existing one or parts of it (e.g., existing failure modes,
basic events, and failure logic).

By following this procedure for the complete functional
chain up to the sensors or inputs of the system, the mod-
eler will complete the CFT realization view of the topmost
component, in which all CFT instances have a dedicated
realization view exclusively for the current context under
analysis.

It should be noted that this approach primarily targets a
top-downdevelopment process, because in order to depict the
failure behavior of the subsystems and components, good
knowledge about their implementation is required. In this
work, we do not investigate how distributed development
could be supported, i.e., how existing models from suppliers
could be integrated at the Original EquipmentManufacturers
(OEM) level.

In summary, this methodology reflects the focus we have
placed on the safety engineer’s tasks, since the goal is to
emphasize the modeling in one single undesired event at a
time. This approach is intended to keep the model simple and
understandable, thereby facilitating the review process.

4.3 The tooling aspect

Thanks to the integration of realization views into the mod-
eling approach, the Fault Tree Analysis can be divided into
manageable pieces to handle the complexity of the system.
However, this has a negative impact on the maintenance
effort, given the fact that more views have to be considered.
Because of this and in order to facilitate the modeling pro-
cess, we have conceived several automation features, which

we have implemented as part of the safeTbox modeling tool
[17].1 The following aspects have been considered:

• Definition and assignment of realization views, for classi-
fiers and instances.

• Cloning (deep and shallow) of existing realization views.
• Definition of the preferred realization view and navigation
to multiple realization views.

Special attention has been given to the consistency (with
respect to the functional/logical interfaces) between compo-
nent and CFT realization views. As noted in Chapter 2, CFTs
are defined for each of the components of the architecture.
In addition, as shown in Figs. 4 and 12, the components and
their interfaces are shown as part of the realization views of
the CFTs. This is done as proposed in [4]. In safety engi-
neering, it is very important to demonstrate that the analysis
is consistent and complete. This is typically achieved when
all entities in the architecture are considered during the fault
analysis or when a convincing argument is provided why this
is not the case. Looking back at our solution, one can see that
the modeling approach is quite simple, since it is built on the
basis of entities (functions/components) and their interfaces.
For the first type of constructs, one would typically expect
to see in a CFT realization view a CFT instance for each
component instance as defined in the component realization
view. However, we deliberately decided not to implement
any mechanism enforcing composition consistency (e.g., for
component instances). The reason for this decision was that
during the analysis, entire entities are quite frequently left
out, since they might not play any role in the system-level
function under analysis. For the interfaces, we did, however,
implement a synchronization mechanism that, based on the
association between the component and CFT, guarantees that
the interfaces remain consistent. This mechanism supports
the user by showing the impact of changes, e.g., when show-
ing/hiding interfaces. This functionality is required because
the user might not be aware of which CFTs will be affected
by performing changes on the architecture. Moreover, this is
intended to help guarantee the completeness argument, since
all inputs and outputs of a component have been considered.
Figure 13 shows a dialog supporting the impact of changes
when showing or hiding interfaces.

Besides modeling support for realization views, safeTbox
also offers the possibility for CFTs to perform qualitative
(e.g., Minimal Cut Sets) and quantitative analysis (Unavail-
ability, Cut Sets Importance, Common Cause Failures). It
also supports the definition of type systems for ports and
failure modes, as proposed in [20]. CFTs in safeTbox make
part of the model-based safety engineering approach inte-

1 safeTbox is an Enterprise Architect [18] extension supporting an inte-
grated modeling framework for safety engineering.
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Fig. 13 safeTbox—port
consistency supporting dialog

grating modeling support for a hazard and risk assessment
and support for the construction of modular safety concepts
and safety cases.

5 Case study

The evaluation of the concept was carried out in the context
of the automotive domain as part of the development of sev-
eral vehicle subsystems (e.g., external lights system, brake
system, battery management system, power train, etc.). For
the sake of intellectual property protection, themodels shown
in this document have been simplified, abstracted, or obfus-
cated.

5.1 Architecture design

In order to show the application of the approach, the “direc-
tion lights” functionality is selected. Direction lights serve
to announce to other road users the intention of changing the
direction of travel. In total (and to ensure visibility from all
relevant perspectives), three flashing lights are installed on
each side of the vehicle: one in the front, one in the back,
and one on the side. The driver can announce the direction
of travel by making use of the direction signal lever on the
left side of the steering wheel (raised position→ turn right,
lowered position→ turn left, middle position→off). As long
as the switch remains in the selected position, the lights of
the selected side will flash periodically. At the same time,
the driver is informed of the direction lights’ activation state
through acoustic and visual feedback (control lamps). Fig-
ure 14 shows a high-level architecture of the direction lights
functionality.

To keep the model simple, only the front (left and right)
direction lights have been modeled. Moreover, stereotypes
have been omitted. Starting from the left:

• The steering wheel communicates the current position
(i.e., Left, Off, Right) of the direction lights lever to
the Light Control Module (LCM); see function “Provide
Direction Lights Lever Position.”

• The LCM receives this information and intermittently
activates the direction lights accordingly; see function “Ac-
tivate Direction Lights.”

• In order to provide appropriate acoustic and visual feed-
back to the driver, the LCM integrates the functions for
detecting the current activation state of the direction lamps;
see functions “Detect Direction Lamps State” and “Pro-
vide Direction Lights State Feedback.” This last function
also receives the information of the Direction Lights Lever
Position, which is used to check the plausibility of the
direction lights’ activation state.

• Finally, the indicator lamps and the sound generator pro-
vide the visual and acoustic feedback, respectively.

The behavior of the function “Provide Direction Lights
State Feedback” is specified as follows:

Plausibility check passed when:

• Lever position is left AND left direction light is active
• Lever position is right AND right direction light is active
• Lever position is off AND all lights are inactive
• →System reaction: Activate/deactivate accordingly.

Plausibility check fails when:

• Lever position is left AND right direction light is active
OR both lights are active

• Lever position is right AND left direction light is active
OR both lights are active

• Lever position is off AND any direction light is active
• →System reaction: provide visual (by activating both
indicator lamps) and acoustic feedback with a frequency
twice as fast as usual.
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Fig. 14 Function network for the Direction Lights System

Plausibility check fails when:

• Lever position is left or right AND both lamps are inactive
• →System reaction: provide visual (only the respective
indicator lamp) and acoustic feedback with a frequency
twice as fast as usual.

5.2 Safety analysis

As mentioned earlier, the starting point for performing fault
analysis with fault trees is to identify the undesired events.
In order to do that, a Hazard and Risk Analysis (HARA) is
typically performed. However, this will not be shown here,
as it is not relevant for the current approach. The resulting
hazards identified from the HARA are:

1. Inverted activation of the direction indicators without
feedback

2. Missing activation of the direction indicators without
feedback

3. Undesired activation of the direction indicators without
feedback

For the sake of simplicity, in this document we will only
show the applicationof themethodology in thefirst twocases.
Figure 15 shows the realization view in which the inverted

scenario has beenmodeled for the CFT of theDirection Light
System.

As explained in Chapter 3, we analyze the data flow in the
systembackward. In this case, as can be seen in themodel, the
direction lights, the indicators lamps, and the sound generator
have not been included for the sake of simplicity. While turn
lights and indicatorsmight be turned on as the result of a fault,
e.g., due to a short circuit to the battery, it is highly unlikely
that they will work intermittently, reflecting an actual activa-
tion from LCM. The sound generator has also been excluded
since it is activated consistently with the indicator lamps. For
this reason, the analysis starts at the LCM boundaries.

Without having the intention to deepen the fault tree mod-
eling aspects, this model reflects the situation in which the
driver has selected the direction with the lever (e.g., left), but
due to errors in the system, the opposite direction (i.e., right)
is activated, while visual feedback continues to be received
that is consistent with the lever position (i.e., left). This situ-
ation is safety-critical, as the driver has no chance to identify
the inverted activation, and other drivers will most likely
interpret his intentions wrongly, which may lead to an acci-
dent.

Figure 16 shows the realization view in which the omis-
sion scenario has been modeled for the CFT of the Direction
Lights System. In this scenario, the driver would have
selected one side with the lever (e.g., left), but the system
would have failed to activate the corresponding direction
lamp. At the same time, it would have wrongly activated
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Fig. 15 “Direction Lights system—Inverted” realization view

Fig. 16 “Direction Lights System—Omission” realization view
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the indicator lamp (i.e., left side). This situation is again
safety-critical for similar reasons as explained in the inverted
scenario. In particular, in this model the turn signals should
be included, since the failure of the lamp can be considered
as a root cause and a system behavior has been defined in
relation to it.

When comparing the two models, it is easy to find that:

• Both views have many functions in common. This is natu-
ral since the analysis is driven by the architecture network
and we follow the CFT principles. Nevertheless, not all
functions are relevant in both analysis scenarios.

• Only few failure modes have been reused (e.g., “Direction
lampwrongly detected as active”). This happened because
the analysis was performed at a low level of detail, as it
was desired to distinguish more specifically the fault com-
binations leading to the defined top events. This becomes
clearer when we compare the two realization views of the
function “Provide Direction Lights State Feedback”; see
Fig. 17.

• Most modeled entities (including logical gates, failure
modes, CFT instances, and connectors) are different.
Although this is hard to see from the diagrams, it is pos-
sible to identify this aspect if the concept was properly
understood. Recalling Chapter 4—The Modeling Aspect,
Component Instances have the “preferred RV” attribute,
which defines for a CFT instance the realization view
associated with it and reflects the interface specification
as defined in that view. From this, we can conclude that
the realization views of the Direction Lights System must
have a completely different set of CFT instances, since
each of them shows a different interface specification.

During the creation of the second and further realization
views, one would expect the modeler to manually add all
modeling entities. In order to save some time in such situa-
tions, we have implemented the cloning of realization views
as pointed out in Chapter 4—The Tooling Aspect. For the
presented modeling scenario, the deep cloning mechanism
is of particular interest. This mechanism creates a new real-
ization view on the basis of a selected one. It creates new
modeling entities, whose layout is exactly as in the source
realization view.During this process, thanks to the “preferred
RV” attribute, the newly created CFT instances point to the
same realization views as before. As can be expected, the
algorithm does not work recursively along the composition.
The reason for this is to avoid making the cloning process
too complex for the modeler.

From the method point of view, the modeler has three
options for creating the second or further realization views:

• Create an empty realization view. That is, the modeler
has to start from scratch, adding new modeling objects

or showing (i.e., reusing) existing ones. In this case, the
layout of the model also needs to be done manually.

• Create a shallow clone. In this alternative, the diagram
is cloned; i.e., the new diagram shows exactly the same
modeling objects as before.

• Create a deep clone. As shown above, new modeling
objects are created, but references to existing realization
views are kept for CFT instances.

In any of these cases, the modeler is still confronted with
the question of whether to keep the CFT instances as they are
or associate them with a new realization view. The former
is a better option if the failure modes have been modeled
in a relatively abstract way and can be reused in different
contexts. The second option should be preferred if the desired
level of detail of the analysis is much lower, as was the case
in the provided example. If the second option is preferred,
then it makes sense that the realization view to be associated
should already be modeled.

Figure 18 shows themerged realization view for theDirec-
tion Lights System, as it would be obtained by following the
typical CFT analysis. As can be seen, even with two top
events it is already difficult to identify which functions or
failure modes are relevant for which top event. In order to
get that information, it is necessary to navigate the realiza-
tion view of the modeled CFT instances. This, however, has
the negative effect that the context is lost, and the modeler
is required to keep the information in mind while switching
continuously between the realization views in order to get
the right picture in their mind. The model becomes harder to
understand the more top events are considered, similarly as
shown in Fig. 6.

Figure 19 presents the merged realization view of the
“Provide Direction Lights State Feedback” function. In com-
parison with the separated realization views, one can see
that the model has become less understandable, even though
great effort was invested in avoiding connector crossings.
Although the logic itself is not complex, the model appears
to be so due to the large number of connectors. In this case,
the engineer not only needs to take care of modeling the fail-
ure behavior properly, which clearly becomes more difficult
and error-prone, but also has to ensure the proper layout of
the modeling elements in order to be able to communicate
the model to the reviewer later on.

6 Related work

From the methodology point of view, several efforts have
been made with respect to integrating safety and the archi-
tecture design, for example:
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Fig. 17 Realization views “Provide Lights State Feedback—Inverted” (top) and “Provide Lights State Feedback—Omission” (bottom)

• SafeML [21] defines a profile for modeling safety infor-
mation in conjunction with SysML. The main goal was to

enhance the communication between stakeholders, since
this is considered an important source of safety-related
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Fig. 18 “Direction Lights System—Merged” realization view

issues. The work presents the integration of concepts and
techniques as well as tool support.

• SPESXT [22]. In the SPESXT research project, the def-
inition of a safety perspective was investigated. This
perspective is built on top of and across the SPESmodeling
framework, in which different viewpoints (requirements,
functional, logical, and technical) have been defined for the
documentation of the system architecture. Safety artifacts
are well interconnected in their perspective and mapped
to the architecture constructs to achieve traceability. One
of the main aspects investigated in this project was mod-
ularization. Concerning safety, it aimed at enabling the
construction of heterogeneous fault analysis models inte-
grating fault trees, Markov chains, and FMEAs.

• TheEclipse Safety Framework [23] presents ameta-model
and tool implementation to allow enrichment of the sys-
tem design (functional and physical architectures) with
safety information using annotations. One of the main
goals of this open source project is to drive the discussion
of such integration with the ultimate goal of standardizing
the meta-model.

While these efforts are more focused on the conceptual
perspective of the integration, most of them do not have such
a strong focus on the modeling aspect, but merely on bring-
ing the concepts together. At the same time, support for the
methodology and tool aspects is relatively weak.

In the area of tools, several vendors such as Ansys-Medini
analyze [24], Enco-Sox [25], or Vector-Preevision [26] offer
model-based solutions that support most of the safety life
cycle. These tools cover many different aspects, including
modeling, traceability, analysis, reporting, process manage-
ment, etc. However, to date, none of these tools or any other
commercial tool offers proper support for Component Fault
Trees.

7 Conclusion and future work

Our solution extends the CFT concepts further by integrating
mechanisms for defining and mapping multiple realization
views of architecture entities with realization views of CFTs.
Moreover, a method for concrete use during system safety
analysis in a scenario with multiple hazards is provided, as
well as a tool implementation. Our solution presents the fol-
lowing advantages:

• First, the solution increases the modeling power of pure
CFTs by integrating new concepts for the use of exist-
ing model constructs (e.g., realization views in the form
of diagrams), which allow structuring models in a more
manageable way. Moreover, it allows keeping artifacts
consistent with each other. This facilitates the integration
of changes performed in the architecture into the CFT real-
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Fig. 19 “Provide Lights State Feedback—Merged” realization view

ization views, which ultimately leads to modeling effort
being saved.

• Second, the provided method proposes to the safety engi-
neer to divide the Fault Tree Analysis into understandable
blocks of information by distinguishing the views on the
basis of the undesired events to be analyzed. Themodeling
and the review processwere the focus of the concept devel-
opment, since the model will be kept simple by focusing
on only one specific concern at a time.

• Third, a tool solution operationalizes the concept and pro-
vides usability and automation functionalities to enable
appropriate usage of the proposed approach.

The proposed solution is superior to the originalCFTmod-
eling approach, except for one aspect: When modeling all
hazards in a single view, the safety engineer has the advantage
of getting the big picture of the interaction of all components
for all relevant safety-critical scenarios. However, we con-
sider this a minor issue, since such an integrated view can be

generated out of the existing independent realization views.
A functionality that builds such an integrated view automat-
ically is planned to be implemented in the tool solution. One
of the main difficulties in this regard is getting good layout
results.

Other aspects are being considered as part of our future
work, e.g., support for product line engineering and manage-
ment of product families, as well as visualization features to
facilitate the review process. With respect to this last aspect,
an initial prototype targeting the switching context issue pre-
sented at the end of Chapter 5—Safety analysis, introduces
the idea of using an information zoommechanism that allows
depicting information hidden behind the black-box views
[19].
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