
HAL Id: hal-02515776
https://hal.science/hal-02515776

Submitted on 23 Mar 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Scalable Model Views over Heterogeneous Modeling
Technologies and Resources

Hugo Bruneliere, Florent Marchand de Kerchove, Gwendal Daniel, Sina
Madani, Dimitris Kolovos, Jordi Cabot

To cite this version:
Hugo Bruneliere, Florent Marchand de Kerchove, Gwendal Daniel, Sina Madani, Dimitris Kolovos, et
al.. Scalable Model Views over Heterogeneous Modeling Technologies and Resources. Software and
Systems Modeling, 2020, 19 (4), pp.827-851. �10.1007/s10270-020-00794-6�. �hal-02515776�

https://hal.science/hal-02515776
https://hal.archives-ouvertes.fr

Software and Systems Modeling (SoSyM) manuscript No.
(will be inserted by the editor)

Scalable Model Views over Heterogeneous Modeling
Technologies and Resources

Hugo Bruneliere · Florent
Marchand de Kerchove · Gwendal
Daniel · Sina Madani · Dimitris
Kolovos · Jordi Cabot

Received: date / Accepted: date

Abstract When engineering complex systems, models are typically used to
represent various systems aspects. These models are often heterogeneous in
terms of modeling languages, provenance, number or scale. As a result, the in-
formation actually relevant to engineers is usually split into different kinds of
interrelated models. To be useful in practice, these models need to be properly
integrated to provide global views over the system. This has to be made possi-
ble even when those models are serialized or stored in different formats adapted
to their respective nature and scalability needs. Model view approaches have
been proposed to tackle this issue. They provide unification mechanisms to
combine and query various different models in a transparent way. These views
usually target specific engineering tasks such as system design, monitoring,
evolution, etc. In an industrial context, there can be many large-scale use
cases where model views can be beneficial, in order to trace runtime and
design-time data for example. However, existing model view solutions are gen-
erally designed to work on top of one single modeling technology (even though

This work has received funding from the ECSEL Joint Undertaking under grant agreement
No. 737494 (MegaM@Rt2 project). This Joint Undertaking receives support from the Eu-
ropean Union’s Horizon 2020 research and innovation program and from Sweden, France,
Spain, Italy, Finland & Czech Republic.

Hugo Bruneliere, Florent Marchand de Kerchove
IMT Atlantique, LS2N (CNRS) & ARMINES
Nantes, France
E-mail: hugo.bruneliere@imt-atlantique.fr, florent.marchand-de-kerchove@imt-atlantique.fr

Gwendal Daniel, Jordi Cabot
ICREA & Universitat Oberta de Catalunya (UOC)
Barcelona, Spain
E-mail: gdaniel@uoc.edu, jordi.cabot@icrea.cat

Sina Madani, Dimitris Kolovos
University of York
York, United Kingdom
E-mail: sm1748@york.ac.uk, dimitris.kolovos@york.ac.uk

2 Hugo Bruneliere et al.

model import/export capabilities are sometimes provided). Moreover, they
mostly rely on in-memory constructs and low-level modeling APIs that have
not been designed to scale in the context of large models stored in different
kinds of data sources. This paper presents a general solution to efficiently
support scalable model views over heterogeneous modeling resources possibly
handled via different modeling technologies. To this intent, it describes our
integration approach between a model view framework and various model-
ing technologies providing access to multiple types of modeling resources (e.g.
in XML/XMI, CSV, databases). It also presents how queries on such model
views can be executed efficiently by benefiting from the optimization of the
different model technologies and underlying persistence backends. Our solu-
tion has been evaluated on a practical large-scale use case provided by the
industry-driven European MegaM@Rt2 project, that aims at implementing a
runtime ↔ design time feedback loop. The corresponding EMF-based tool-
ing support, modeling artifacts and reproducible benchmarks are all available
online.

Keywords Modeling · Views · Heterogeneity · Scalability · Persistence ·
Database · Design Time · Runtime

1 Introduction

Different types of models are required when engineering complex systems.
This is notably the case for systems of systems or Cyber-Physical Systems
(CPSs) [20], where models have to represent both software and hardware as-
pects. Depending on the concerned application domains, the nature and num-
ber of the involved models can vary significantly: they can be captured using
various modeling languages, come from different sources or have a considerably
large size. Moreover, such models usually contain complementary information
that is not distributed uniformly across them. Thus, engineers need to com-
bine different models in order to have a better vision and understanding of
the whole system. The combined models are intended to support particular
engineering activities such as system design, development, monitoring or adap-
tation/evolution.

Several model view approaches have already been proposed in order to
provide such support [7]. Relying on model-based principles and techniques,
they allow specifying, creating and handling views on models that possibly
conform to different metamodels. Once built, the model views can be used to
uniformly manipulate and query the aggregated data coming from the various
contributing models. However, most of the model view approaches have only
been deployed on models of small to medium size (e.g. manually created design
models) and not on large to huge models (e.g. automatically generated runtime
models). Indeed, scalability is known to be one of the main issues hampering
the full adoption of MDE in industry [26]. In parallel, the support for strongly
interconnected models whose content is coming from different sources appears
to be the focus of only a few of the proposed approaches. Those two aspects

Scalable Model Views over Heterogeneous Modeling Technologies and Resources 3

are particularly relevant in real industrial contexts, such as in MegaM@Rt2
for example.

The collaborative MegaM@Rt2 project1 is a recent and large European
initiative supported by both industry and academic partners. As part of its
continuous system engineering approach [1], the project notably aims at pro-
viding a runtime ↔ design time feedback loop that could be deployed and
used in different industrial domains. Such a feedback loop can bring inter-
esting benefits when used in the context of the above-mentioned engineering
activities, for instance. To realize this feedback loop in practice, model views
can be used to transparently combine all the required (design and runtime)
models.

In this paper, we present the current state of our work on supporting the
creation of scalable model views over heterogeneous modeling technologies pro-
viding access to multiple types of modeling resources (i.e. models whose data is
coming from different sources). This paper is an extended version of a previous
publication at the 21st ACM/IEEE International Conference on Model Driven
Engineering Languages and Systems (MODELS 2018) [11]. The present paper
focuses not only on scalability (as in the past work published at MODELS
2018), but it also introduces the important and complementary dimension of
heterogeneity. This allowed us to combine various modeling technologies (as
well as related modeling resources) inside a same model view at reasonable /
acceptable performance levels.

As a consequence, this paper naturally covers the main contributions from
the first MODELS 2018 paper:

1. A conceptual integration approach for the joint use of a model view frame-
work with various model persistence capabilities, thus providing access to
different kinds of modeling resources.

2. A scalable instantiation of this conceptual approach combining the EMF
Views [12] model view solution with NeoEMF [17] and CDO [21] modeling
resources handled via the EMF [44] modeling technology.

3. An evaluation of our conceptual approach and its practical instantiation
on a large-scale and realistic use case from the MegaM@Rt2 project.

In addition, for this extended version, we significantly reworked and augmented
the previous content in order to present the following new contributions:

1. A generalization of the initial conceptual integration approach that now
supports various modeling technologies, each of them providing access to
different modeling resources and their coexistence in a same model view.

2. A generic and more efficient model view query execution dispatching strat-
egy that delegates partial query computations to the underlying backends
of the respective modeling resources whenever appropriate.

3. An instantiation of this upgraded approach and definition of optimization
strategies that refine EMF Views and NeoEMF in order to integrate the use
of Epsilon [41] as another modeling technology complementary to EMF,
thus providing access to alternative types of modeling resources.

1 http://megamart2-ecsel.eu/

http://megamart2-ecsel.eu/

4 Hugo Bruneliere et al.

4. An evaluation of this upgraded instantiation on a modified version of our
MegaM@Rt2 use case that now uses additional and different types of mod-
eling resources.

We kept up to date the description of these different items (i.e. both the 3
initial contributions from our MODELS 2018 paper and the 4 new contribu-
tions in this SoSyM paper) in order to reflect our latest advancements and
achievements. Finally, we extended the paper with more related work, lessons
learned from our research effort and some further conclusions from performed
experiments.

The rest of this paper is organized as follows. Section 2 introduces the re-
quired background in terms of model view and model persistence solutions, in
order to be able to comprehend the contributions presented afterwards. Sec-
tion 3 motivates our work by describing its main objectives and illustrating
them with a practical use case from the industrial MegaM@Rt2 project. As
a solution, Section 4 presents our conceptual approach to integrate a model
view framework with multiple modeling technologies and model persistence so-
lutions. Then, Section 5 details how we implemented this conceptual approach
in practice by using modeling solutions based on the Eclipse Modeling Frame-
work (EMF) and Eclipse Epsilon. Section 6 provides a detailed evaluation of
our approach and implementation via a set of benchmarks performed in the
context of our MegaM@Rt2 use case. Section 7 reviews related work. Finally,
Section 8 summarizes main general lessons we have learned from the realized
work and Section 9 concludes by proposing directions for future work.

2 Background

In this section, we introduce the main concepts related to model view and
model persistence solutions. Indeed, these are the kinds of solutions which are
central to the contributions proposed in this paper. The terminology described
in what follows is then used and referred to in the remainder of the paper.

2.1 Model Views

As explained in detail in an existing survey of model view approaches [7], the
terms view and viewpoint have been used in several different ways depending
on the contexts and concerned model view solutions. However, the overall
terminology appears to start converging since the specification of the ISO
standard 42010 [27].

A view is usually considered as a special kind of model. It contains infor-
mation that is related to and coming from other models, which can also be
themselves views (i.e. views can be defined over views). The relation between
the view and these other models can be specified by various means such as
(model) transformations, rules, queries, etc. A view is always a view on some-
thing: in an engineering context, the set of physical and/or logical entities that

Scalable Model Views over Heterogeneous Modeling Technologies and Resources 5

a view represents is called a system. Such a system can be observed from dif-
ferent viewpoints, each of them providing different perspectives over it. Thus,
as any model, a view conforms to a metamodel which describes a particular
viewpoint. This viewpoint can be defined a-priori, or can be sometimes deduced
from the specification of the view itself.

Viewpoint
(Virtual Metamodel)

View
(Virtual Model)

Contributing
Model

conforms to

Contributing
Metamodel

Weaving
Model

System
conforms to

contributes to contributes to

represents

0..*

0..*

1..*

0..*

1..*

1

1 0..* 10..*

0..1 0..1

1 1

usesuses

Fig. 1 A terminology for model views.

As shown in Figure 1, we consider the following general definitions:

– A system is a unit consisting of multiple largely interdependent entities
which are designed and implemented by engineers. A system can encompass
software, hardware, business components, as well as any other artifacts
created during its development process.

– A viewpoint is the description of a combination, partitioning and/or re-
striction of concerns from which systems can be observed. It consists of con-
cepts coming from one or more base metamodels, possibly complemented
with some new interconnections between them and newly added features.
In our present context, it is realized as a virtual metamodel that describes
the types of elements that can appear in corresponding views.

– A view is a representation of a specific system from the perspective of a
given viewpoint. It is an instance of a particular viewpoint and consists
of a set of elements coming from one or more base models. It is possibly
complemented with some new interconnections between them as well as
additional data, manually entered and/or computed automatically (e.g.
thanks to model transformations). In our present context, it is realized as
a virtual model that describes the actual content of the view.

– A base or contributing metamodel is a metamodel that contributes to
a given viewpoint. Depending on the approach, a viewpoint specification
can possibly have one or several different base metamodels.

– A base or contributing model is a model that contributes to a given
view. Depending on the approach and on the corresponding defined view-

6 Hugo Bruneliere et al.

point, a view can possibly gather elements coming from one or more base
models.

– A virtual metamodel is a metamodel whose (virtual) meta-elements are
just proxies to actual meta-elements contained in other metamodels. Thus,
it does not duplicate any content from the base/contributing meta-models
and just describes the additional metadata (e.g. via a related weaving
model).

– A virtual model is a model whose (virtual) elements are just proxies to
actual elements contained in other models. Thus, it does not duplicate any
content from the base/contributing models and just describes the addi-
tional data (e.g. via a related weaving model). Moreover, it conforms to a
virtual metamodel.

– A weaving model is a model that describes links between elements coming
from other different models. It conforms to a weaving metamodel that
specifies the types of links that can be represented at weaving model-level.

2.2 Model Persistence

Model persistence is one of the cornerstones in MDE processes: input models
are loaded in memory from an existing source, navigated/updated (e.g. using
model queries and transformations) and stored into particular formats. Such
formats are meant to be supported by client applications, or shared between
modelers. In the following subsections, we introduce the two main approaches
proposed to store and to access models.

2.2.1 File-based Serialization

Since the publication of the XMI standard [39], file-based XML serializa-
tion has been the most popular format for storing and sharing models and
metamodels. Indeed, modeling frameworks were originally designed to handle
human-produced models whose size does not cause significant performance
concerns. However, MDE practices in the industry [49] as well as the develop-
ment of generative frameworks such as MoDisco [8] have created the need for
handling large and complex (potentially generated) models.

This has emphasized the limitations of XMI, as XML-based serialization
presents two drawbacks: (i) it sacrifices compactness in favor of human-reada-
bility and (ii) XML files need to be completely parsed and loaded in memory
to obtain navigable models. The former reduces the efficiency of I/O accesses
while the latter increases the memory required to load and query models, and
also limits the use of proxies and partial loading [18]. Moreover, XMI per-
sistence layers lack advanced features related to transactions or collaboration:
large monolithic model files are challenging to integrate into existing versioning
systems [4].

JSON [22], a lightweight text-based data-interchange format, has been pro-
posed as an open and standard alternative to XMI / XML. For example,

Scalable Model Views over Heterogeneous Modeling Technologies and Resources 7

this format is notably being used in the context of several modern NoSQL
databases and related model persistence solutions (cf. Subsection 2.2.2).

2.2.2 Database Serialization

To tackle the issues of file-based serialization, several persistence solutions
based on databases have been proposed [21,40]. They typically provide an
intermediate mechanism to serialize in-memory models into an in-database
representation by describing a model mapping, allowing to save and to access
model elements.

Historically, RDBMS have been the preferred solution to store large mod-
els [21,45]. Some approaches derive a relational schema from an existing meta-
model, e.g. creating tables to store the instances of each class of a metamodel
and columns for every class attribute. This schema is then used to store model
elements, to access attributes or to navigate associations using low-level query
languages such as SQL. Existing frameworks implement the de-facto standard
EMF API, and can be transparently integrated (once configured) into existing
modeling applications to enhance their scalability.

While these solutions have proven their efficiency with respect to XMI-
based implementations, the highly interconnected nature of models often re-
quires multiple table join operations to compute complex model queries. This
usually limits performance in terms of both execution time and memory con-
sumption [5]. Moreover, the strict schema system used in RDBMS makes them
hard to align with metamodel updates defining new types, associations, etc.

As a result, a new generation of model persistence solutions [17,40] have
been proposed to benefit from the advancements of the NoSQL movement
(that relies on the JSON format to store data). They come with task-specific
databases overcoming RDBMS limitations in specific data processing contexts
(e.g. when querying highly interconnected data). The proposed approaches are
based on the schema-less nature of NoSQL data-stores to efficiently handle
metamodel modifications. They also rely on the database query performance
to compute complex model navigation more efficiently. As previous solutions,
NoSQL-based persistence frameworks rely on an internal mapping to repre-
sent models using the database primitives (e.g. vertices and edges for graph
databases), and provide a lazy-loading mechanism reducing memory consump-
tion (e.g. by loading only accessed objects).

3 Motivation

In this section, we present the main objectives of our work aiming at pro-
viding a scalable model view support over possibly heterogeneous modeling
technologies and resources (cf. Subsection 3.1). We also describe our motivat-
ing industrial use case coming from the European collaborative MegaM@Rt2
project (cf. Subsection 3.2).

8 Hugo Bruneliere et al.

3.1 Main Objectives

The need for combining different kinds of models (and corresponding re-
sources) in a scalable way has been observed in several industrial contexts [49,
26]. Moreover, it is also recognized as a long-term challenge from a research
perspective [31]. However, already existing model view solutions do not handle
large and very large heterogeneous models in a very satisfying way, if at all
(cf. Section 7). This is even more noticeable in the case of model views over
(large) contributing models coming from various and varied data sources, and
possibly handled via different modeling technologies. Thus, scalability and het-
erogeneity are two important and complementary challenges to be addressed
in such a model view context.

Moreover, from a practical perspective, one of the the main benefits of
using model views in an engineering context is to collect in a transparent way
information that is spread across different models. Without such model views,
engineers have to navigate and query the different models one by one, and then
have to aggregate the obtained results. Notably, this includes recreating in the
model views (manually or programmatically) the mappings between related
elements originating from different contributing models. Instead, using model
views, navigation and queries traversing several contributing models can be
expressed and performed transparently as if dealing with a single model.

In this paper, we propose an integration approach for building scalable
model views over heterogeneous modeling resources, possibly relying on dif-
ferent modeling technologies. Depending on their experience or contexts, engi-
neers can use different modeling technologies and resources. Moreover, we do
not want to impose any particular technology or modify any existing resource
for our solution to be used. Thus, we aim at generically supporting models ex-
pressed using (i) various languages (i.e. metamodels) and (ii) various modeling
technologies allowing to persist and query them. To this intent, we can notably
benefit from different model persistence solutions that are particularly adapted
to address scalability-related issues. Because we cannot reasonably cover all
existing modeling technologies and resources, we demonstrate the applicability
and relevance of our approach on some commonly used ones.

The four main general objectives we want to achieve with our integration
approach are:

1. Refine the model view framework in order to support the integration of
multiple (types of) modeling resources via different modeling technologies.

2. Persist the corresponding model view-specific information in a scalable way.
3. Load views and access corresponding model view elements with an accept-

ably low overhead.
4. Query model views efficiently, by leveraging both modeling technology and

model persistence optimization.

In Section 4, we describe a generic conceptual approach to achieve these four
objectives. In Section 5, we then explain how this approach has been imple-
mented to integrate two existing modeling technologies: EMF and Epsilon. In

Scalable Model Views over Heterogeneous Modeling Technologies and Resources 9

Section 6, we evaluate this approach and implementation in practice on the
MegaM@Rt2 use case introduced in the next subsection.

At the time of writing, we can reasonably claim that we have successfully
tackled items (1), (2) and (3). We have also been able to obtain significant
results in terms of performance concerning item (4).

3.2 MegaM@Rt2 Use Case

MegaM@Rt22 is a large, industry-driven, European collaborative project with
a consortium of 26 partners from 6 different national clusters. It aims at de-
veloping a scalable continuous system engineering and validation approach
that can be practically deployed in various industrial domains [1]. The project
tackles 9 case studies from a variety of potential application areas: aeronau-
tics, railway, warehouse, telecommunication, etc. Among the proposed model-
based MegaM@Rt2 methods and tools, a main contribution is notably a run-
time ↔ design time feedback loop (re)usable in these different contexts [9].

From our study of the industrial MegaM@Rt2 requirements and case stud-
ies, we materialized such a feedback loop as a view gathering 4 different models
covering both runtime and design time aspects of a given system. To realize
this in practice, there is the need for a solution supporting the creation and
handling of scalable and heterogeneous model views.

Requirements
“model”

Component
model

OMG UML
metamodel

conforms to

Source Code
model

MoDisco Java
metamodel

conforms to

Runtime Log
model

Custom Trace
metamodel

conforms to

System
Engineer

representsRuntime - Design Time
view (model)

refers to

defines & uses

Fig. 2 Running use case from the industrial MegaM@Rt2 project.

As shown in Figure 2, the considered view combines a Runtime Log model
(that conforms to a simple trace metamodel), a Source Code model (that
conforms to the Java metamodel from MoDisco [8]), a Component model (that

2 http://megamart2-ecsel.eu/

http://megamart2-ecsel.eu/

10 Hugo Bruneliere et al.

conforms to OMG UML [38]) and a Requirements model (specified in a CSV
file, that can be opened in a spreadsheet such as Excel).

Note that the Requirements model that initially conformed to OMG Re-
qIF [37], in the running example from our MODELS 2018 paper [11], has
now been replaced by a CSV file that contains the same set of requirements3.
This helps to illustrate the capability of our approach to integrate elements
stored in non-modeling technologies (but widely used in practice) as part of
our model views. However, for the sake of simplicity, we will still name this
CSV file ”Requirements model” in the remainder of the paper.

On the one hand, the Runtime Log model and (to a lesser extent) the
Java Source Code model can be considered as runtime models. Depending on
the size of the system under study, they can be extremely large (e.g. up to
millions of model elements). This is especially the case for the Runtime Log
model which represents actual system execution traces possibly covering a
significant period of time. Thus, a typical solution to store and access them
in a scalable way is to rely on database model persistence capabilities. The
used technical solution then depends on the nature of the models, the types
of expected accesses or manipulations (e.g. types of queries) or the way they
have been (semi-)automatically obtained.

On the other hand, the Component model and Requirements model can be
considered as design models. They are generally of a reasonable size compared
to the runtime models, and are usually specified manually. Hence, they can
be handled by modeling technologies relying on in-memory constructs and/or
various kinds of file formats. For example, requirements can be specified by
the system users or decision-makers using a familiar management tool or a
spreadsheet that can produce a CSV export (e.g. Excel). A Component model
is usually specified by architects or engineers via a dedicated CASE tool (e.g.
producing a XMI/XML file).

A concrete example of the view from Figure 2 is given in Figure 3. By
using this view, an engineer can navigate transparently within and between
the four contributing models as if they were all part of the same single model.
Thus, from a particular runtime information collected at system execution
(in this case, a trace.Log element), one can move back to the originating Java
code instructions (in this case, a java.ClassDeclaration element). One can then
follow the links to the related components the code actually implements (in
this case, a uml.Component element), finally up to the actual requirements
these components fulfil (in this case, csv.Row elements).

Such a view combining different models can also be queried as any regular
model, in order to compute/extract relevant data from it. For example, one
can obtain all the requirements that are related to a given execution trace
(runtime to design time traceability). Or, the other way around, one can get
all the execution traces that correspond to a particular requirement (design

3 The Excel/CSV file stores the same requirement information than the ReqIF model
from our initial MODELS 2018 paper but in a different format. For each row/requirement
in the CSV file, the various columns contain the values of a requirement’s properties (an
identifier and a textual description for each requirement in our current example).

Scalable Model Views over Heterogeneous Modeling Technologies and Resources 11

Fig. 3 Concrete example of a view in MegaM@Rt2 (based on the use case from Figure 2).

time to runtime traceability). In any case, our approach is flexible and can be
adapted to the particular characteristics of a given application scenario (e.g.
in terms of models and queries), according to the needs of industrial partners.

4 A Conceptual Approach for Integration

Subsection 4.1 describes our general integration approach to support scalable
model views over heterogeneous modeling technologies and resources. In this
context, Subsections 4.2 to 4.5 propose conceptual solutions to each one of our
four identified objectives (cf. Subsection 3.1).

4.1 Overview of the Approach

Figure 4 graphically represents our integration approach. Subsection 4.1.1 pro-
vides more insights on this approach by explaining its main underlying con-
cepts. Then, Subsection 4.1.2 describes its associated process and related steps.

4.1.1 Concepts

Any given Modeling Technology is usually composed of two main parts: a
Core component providing the inner behavior (i.e. the base model manipu-

12 Hugo Bruneliere et al.

M
od

el
in

g
Te

ch
no

lo
gy

 m
t1

 (C
or

e)

D
at

ab
as

e
P

er
si

st
en

ce
Fi

le
 P

er
si

st
en

ce

M
od

el
 V

ie
w

 F
ra

m
ew

or
k

M
od

el
-b

as
ed

 T
oo

ls
 /

S
ol

ut
io

ns

M
od

el
in

g
Te

ch
no

lo
gy

 m
t1

 (I
nt

er
fa

ce
)

bypass

P
er

si
st

en
ce

M
od

el
in

g
Te

ch
no

lo
gy

 m
t2

 (I
nt

er
fa

ce
)

M
od

el
in

g
Te

ch
no

lo
gy

 m
t2

 (C
or

e)

la
zy

 lo
ad

in
g

Q
ue

ry
 E

xe
cu

tio
n

D
is

pa
tc

h

R
el

at
io

na
l

D
B

 C
on

ne
ct

or
G

ra
ph

D
B

 C
on

ne
ct

or
O

th
er

D
B

 C
on

ne
ct

or
X

M
I/X

M
L

Fi
le

 C
on

ne
ct

or
O

th
er

Fi

le
 C

on
ne

ct
or

C
S

V

Fi
le

 C
on

ne
ct

or
O

th
er

C
on

ne
ct

or

...

G
ra
ph

D

B
 C

on
ne

ct
or

R
eq

ui
re

m
en

ts

m
od

el
C

om
po

ne
nt

m

od
el

S
ou

rc
e

C
od

e
m

od
el

R
un

tim
e

Lo
g

m
od

el

la
zy

 lo
ad

in
g

E
ng

in
ee

r
A

rc
hi

te
ct

de
fin

es
Vi

ew
po

in
t/V

ie
w

sp

ec
ifi

ca
tio

n
qu

er
y

de
fin

es
1

2

3

4
4 5

5

6
7

bypass

Fig. 4 A conceptual approach for integrating model view and model persistence capabilities
via different modeling technologies.

lation facilities) and an Interface providing the API externally available for
(re)use by different Model-based Tools / Solutions.

Scalable Model Views over Heterogeneous Modeling Technologies and Resources 13

A Modeling Technology also generally comes with embedded support
for one or several types of modeling resources. To this end, corresponding
Persistence layers can be either explicitly defined and/or deeply integrated
within the modeling technology.

It is common to have base File Persistence capabilities relying on the
local file system, providing some file import/export capabilities using differ-
ent serialization formats. This default mechanism can be used to store small
to medium-sized models, such as the Requirements and Component design
models from our use case (cf. Subsection 3.2).

In addition, Database Persistence capabilities can be proposed to con-
nect a modeling technology to databases of various kinds (relational, graph-
based, object-oriented etc.). These solutions are typically used to store large
models, such as the Java Source Code and Runtime Log models from our use
case, while still having an acceptable memory footprint.

Interestingly, the use of different Modeling Technologies can be com-
bined within the same Model-based Tool / Solution in order to benefit
from the various persistence capabilities and related optimization they may
provide (e.g. more advanced lazy loading or querying features). This is the
global integration principle we applied in the work presented in this paper.

In the general case, the Model View Framework must be integrated with
the supporting Modeling Technologies (for instance by defining an appro-
priate connector) and comply with their respective Interfaces. This allows
client applications of the same Modeling Technologies to query the corre-
sponding views transparently as regular models. Moreover, for model views
to scale with large models, the Model View Framework has to leverage
the characteristics of the supported Persistence capabilities. This requires
setting up a Query Execution Dispatch mechanism to benefit from the
optimization provided by the different Modeling Technologies.

4.1.2 Process

The approach we propose also comes with a supporting process. In what fol-
lows we describe the different steps, still considering our use case from Sub-
section 3.2 (note that the step numbers correspond to those in Figure 4):

1. Defining the viewpoint/view specification. System architects specify
how the view should be assembled from the various contributing models,
e.g. by using dedicated languages such as VPDL [12] or MEL [10]. To this
intent, they generally write a viewpoint specification describing how the
different contributing metamodels are related to each other and which con-
cepts these metamodels are supposed to provide to express corresponding
views. In our use case, the OMG UML, MoDisco Java and Custom Trace
metamodels are concerned4. Then, from this viewpoint specification, they

4 Note that the CSV file has no explicit semantics but a column layout that provides an
implicit (pseudo-)semantic model. In such a case, in addition to our knowledge of this format,
we can rely on the model representation provided by the Modeling Technology handling this
particular resource.

14 Hugo Bruneliere et al.

write a view specification describing a particular combination of models
(that conform to the contributing metamodels) to build an actual view.

2. Initializing the model view. The viewpoint/view specification is pro-
vided as input to the Model View Framework in order to initialize the
actual view. In our use case, a Requirements model (from an Excel work-
sheet serialized as a CSV file), a UML Component model (serialized in
XMI), a Java Source Code model (stored in a relational database) and
a Runtime Log model (stored in a graph database) are concerned. This
results in a runtime to design time view, materialized as a single virtual
model, that is now accessible as a regular model by Model-based Tools
/ Solutions. More details on how such a model view (and corresponding
viewpoint) is produced by the Model View Framework are provided in the
following subsections.

3. Defining a query on the model view. Once the view has been initial-
ized, engineers can try to collect relevant information from it via different
queries. For example, in our use case, they may want to trace a log entry
(originally from the Runtime Log model) back to the corresponding system
requirement (in the Excel worksheet serialized as a CSV file), passing by
corresponding source code elements (in the Java model) and design compo-
nents (in the UML model). Such a query can be expressed with any model
manipulation or query language that is supported by the Model-based Tools
/ Solutions using the view.

4. Running the query on the model view. When engineers actually ex-
ecute the query on the view, the concerned Model-based Tools / Solutions
automatically transfer this query to the Model View Framework via the
standard interfaces of the Modeling Technology these tools / solutions rely
on. From the engineer’s perspective, this is realized transparently as they
interface only with their Model-based Tools / Solutions. It is then at this
step that the Model View Framework actually starts loading the previously
initialized view.

5. Lazy loading view/model elements on-demand. In a scalable ap-
proach, the model view should not be completely loaded at once. Thus,
the proposed approach heavily relies on lazy loading techniques. This way,
model view content from the contributing models are not loaded in memory
until the concerned Modeling Technology actually requests them explicitly.
These loading requests come from Model-based Tools / Solutions in charge
of executing the query. For example, in our use case, Log entries from the
Runtime Log model will only be loaded into the view when accessed in the
query.

6. Dispatching query execution. Complementary to the lazy loading of
view/model elements, a query execution dispatching mechanism is also
used in order to optimize the query execution. This mechanism analyzes
the query and identifies which contributing models are relevant to different
query subsets. Thus, the Model View Framework automatically delegates
its execution to the appropriate Modeling Technology in order to run a

Scalable Model Views over Heterogeneous Modeling Technologies and Resources 15

given query subset. Section 5 provides technical insights on how this has
been realized in practice.

7. Bypassing the modeling technology (when more efficient). In par-
allel to lazy loading and query execution dispatch, a bypassing mechanism
is also used in order to improve the overall scalability of the solution. The
Model View Framework can be informed that specific operations of a query
(e.g. allInstances() in OCL) have already been optimized in the context of
particular persistence solutions (e.g. using graph databases). In such cases,
the Model View Framework is able to automatically interact with the per-
sistence solution without having to access the Modeling Technology.

In what follows, we put the focus on how the proposed conceptual ap-
proach and associated process intended to tackle our four main objectives.
Subsection 4.2 concerns both steps (1) and (2) of our process, while Subsec-
tions 4.3 and 4.4 relate to step (2) in particular. Subsection 4.5 addresses the
more elaborate process from steps (3) to (7).

4.2 Building Model Views on Heterogeneous Modeling Sources

This activity is a prerequisite to the three subsequent ones. It basically covers
the steps (1) and (2) of our overall process (cf. Subsection 4.1.2).

As introduced earlier, models can be possibly handled by different modeling
technologies in the context of a global solution. Most (if not all) of these mod-
eling technologies provide a default file persistence support, usually relying on
XML-based format(s). However, they quite often support only a fixed number
of types of data sources (or they require to implement specific extensions in
order to support others). This can be a serious limitation when needing to
load/store large-scale models from/into different kinds of databases (e.g. rela-
tional, graph-based etc.) or to rely on user-friendly non-model-based formats
(e.g. spreadsheet). In some cases, such data sources already have a purpose of
their own, e.g. they are used by external applications to accomplish certain
engineering activities. In other cases, they can be created solely for the pur-
pose of being used by a given model-based solution. Anyway, a model view
framework should be able to rely on these (different kinds of) data sources by
combining the support already provided by different modeling technologies.

In practice, model view approaches generally reuse the model persistence
support provided by the main modeling technology they rely on. They are
normally built upon one single modeling technology and do not provide out-
of-the-box support for other ones. Moreover, they often lack native support
for scalable model persistence solutions, i.e. optimized solutions for different
kinds of modeling sources (e.g. databases). As a consequence, the model view
framework needs to be properly integrated with such modeling technologies
and the related persistence support. This way, depending on the nature of the
contributing models, different persistence data backends (possibly associated
with different modeling technologies) can be selected and combined within the
context of the same view. This is notably the case in our use case, for example.

16 Hugo Bruneliere et al.

Such an integration can be performed in different ways. In some cases, it
can be realized indirectly. The concerned modeling technology (there can be
several connected to the model view framework) may be first refined to use
the requested persistence solution. Then, the model view framework can rely
on the general interface of this modeling technology to transparently access
the underlying data resources. In some situations, a direct connection between
the model view framework and the persistence solution may be desirable (via
their respective APIs). For instance, this can allow for specific optimizations
which could not be realized if (parts of) queries are systematically performed
through the associated modeling technology. Subsection 5.1 provides practical
examples of these in our technical context.

4.3 Persisting the Model View Information in a Scalable Way

This activity mostly relates to step (2) of our overall process (cf. Subsec-
tion 4.1.2).

Depending on the model view specification and the language used to define
it, additional data can also be required to fully compute the model view. For
instance, this is the case when a given model view provides new relationships
between elements coming from different contributing models (as in our use
case), or when it adds new properties to elements from one of the contributing
models.

When initializing such a model view, this view-specific information has
to be obtained in some way. One possibility is to compute it dynamically at
runtime when loading the view. For example, this can be based on the data
already available from the contributing models and complemented with the
results of some predefined queries executed on top of these models. Another
option is to collect it from an existing data source (in any format) or from an
additional model created to this particular intent (i.e. not one of the contribut-
ing models). Such a model can collect manual inputs from the view users, e.g.
retrieved via dedicated user interfaces. It can also be the result of executing
an external application or model transformation, for example. In any case,
the view mechanism has to be able to gather the appropriate information and
reuse it in order to build the model view.

Related scalability problems can appear when the data specific to the model
view are too large to be handled correctly by the persistence support provided
by the used modeling technology. Indeed, depending on the nature of the model
view, this additional data can be even larger than some of the contributing
models themselves (e.g. as in our use case). In these cases, it is required to also
persist the model storing these view-specific data by using a scalable persis-
tence solution (e.g. a database). By relying on mechanisms embedded in such
a solution (e.g. lazy loading), adopting this strategy can significantly reduce
the memory footprint of given model views. Thus, this enables the manipula-
tion of model views that could not even be loaded otherwise. Subsection 5.2
describes how we have realized this in practice in our technical context.

Scalable Model Views over Heterogeneous Modeling Technologies and Resources 17

4.4 Optimizing the Model View Loading and Model Element Access

Similarly to the activity in Subsection 4.3), this activity mostly relates to step
(2) of our overall process (cf. Subsection 4.1.2).

In the context of very large views, some operations can rapidly become
expensive in terms of execution time and memory consumption. In extreme
situations, this can even go to a point where the view is not really usable
anymore. For example, this is the case when the response time is too long
(e.g. when the user navigates the view) or when the view simply ends by
failing to load due to resource depletion while in use (e.g. by an actual user or
by an application/tool querying it). The situation is notably critical during the
process of initializing and/or loading the model view. Indeed, this particular
phase usually requires a significant number of model element accesses, possibly
to different model persistence solutions via several modeling technologies.

Substantial performance gains can be obtained by applying various lazy
loading techniques at different levels in the resulting solution. In the general
case, any hit to an actual model element has to be delayed as much as possible
and must only occur when strictly needed. In terms of performance, the most
efficient pieces of code are the ones that are never executed. Such optimiza-
tion also concerns accesses to the various contributing models themselves (cf.
Subsection 4.2) as well as to the view-specific elements (cf. Subsection 4.3). In
all cases, this should not impact the overall usability and correctness of the
handled model views.

Moreover, depending on the modeling technologies(s) used and related per-
sistence solution(s), the model view framework can be refined differently. For
given model element accesses, the model view framework can directly benefit
from specific capabilities provided by certain kinds of data sources (e.g. graph
databases). For instance, the view framework can leverage on a database-
specific API to turn full traversals of models into more selective (and so more
efficient) requests. This can lead to significant performance gains, as traver-
sals are time and memory-intensive in the case of large models. Subsection 5.3
gives technical insights on optimization of this kind in our technical context.

4.5 Optimizing the Model View Querying

This complex and final activity covers steps (3) to (7) in our overall process
(cf. Subsection 4.1.2).

Once a model view has been correctly created and loaded (cf. the three
previous subsections), it can be navigated and queried as any regular model
according to the needs of the engineering activity it supports. As presented
earlier, the model view framework usually relies on interfaces provided by one
or several modeling technologies and shared in common between different tools
from the same ecosystem. This way, it also supports the execution of queries
defined in languages supported by these modeling technologies.

18 Hugo Bruneliere et al.

However, when implementing such a generic support in practice, perfor-
mance issues can easily arise. For instance, some models can be serialized in
XML-based files while others can be stored in databases via different modeling
technologies and underlying persistence solutions (cf. Subsection 4.2). In this
situation, the default querying support offered by a given modeling technol-
ogy might not take advantage of backend-specific optimizations. Thus, more
elaborate schemes should be considered in order to exploit their full potential.

query::Log.allInstances()

->any(l | l.message.startsWith('CaptchaValidateFilter'))

 .javaClass._'package'.component.requirements->size()

Modeling Technology mt1 (Core)

Database Persistence File Persistence

Model View Framework

Modeling Technology mt1 (Interface)

Source Code
model

Runtime Log
model

Component
model

Requirements
model

Runtime - Design Time
view (model)

Querying Tool (OCL)

Query Execution Dispatch

Modeling Technology mt2 (Interface)

Modeling Technology mt2 (Core)

Persistence

Fig. 5 Optimizing model view querying by delegating to modeling technologies and under-
lying persistence backends.

The optimization of model querying techniques has already been studied
quite well (cf. Section 7). However, it has not been really explored so far in
the context of model views combining models handled with different mod-
eling technologies and possibly using different persistence backends. In our
context, some base operations can be costly to execute on the model view
when reusing only the default behavior of the underlying modeling technolo-
gies. For better efficiency, such operations could be delegated appropriately to
the various modeling technologies and related persistence solutions. For ex-
ample, this is illustrated in Figure 5 where an OCL query navigates the view
from our use case and returns the number of design requirements that are im-
pacted by a specified runtime log. This query can be optimized by delegating
the allInstances call directly to the database persistence solution handling
the model that contains the related Log elements. This way, the default (less
efficient) implementation of allInstances is bypassed.

Scalable Model Views over Heterogeneous Modeling Technologies and Resources 19

In addition, large performance gains are also possible by splitting a query
(on a given view) into sub-queries better suited to the corresponding model-
ing technologies and their underlying persistence solutions. This requires the
model view framework to provide a query execution dispatch mechanism: once
a query is split, sub-query execution is then delegated appropriately and corre-
sponding results are collected by leveraging the specific features of the different
persistence backends. Complementary techniques, such as the parallel execu-
tion of different sub-queries or the replacement of sub-optimal operations, can
be considered in some cases. Subsection 5.4 describes concrete steps we have
made towards this in our technical context.

5 A Concrete Instantiation of our Conceptual Approach

In order to be able to perform actual experiments with our proposed concep-
tual approach, we first had to realize this approach in practice. The current
concrete instantiation of our approach is depicted in Figure 6.

We propose an implementation of our conceptual approach that relies on
the widely-used Eclipse Modeling Framework (EMF) [44] as our main under-
lying modeling technology. We also decided to use EMF because it already
comes with a rich ecosystem of related model-based tools, e.g. for querying
models or for persisting them using different kinds of data sources.

As introduced earlier, we have considered the integration of an alterna-
tive modeling technology to be combined with the use of standard EMF. We
quite naturally opted for Epsilon [41], as it is also Eclipse-based (which fa-
cilitates the integration from a technical perspective) and well-known in the
community. Interestingly in our context, Epsilon comes with its own family
of modeling management languages, such as EOL for querying models. It also
comes with model connectivity capabilities for complementary kinds of data
sources. This way, we have shown that our conceptual approach can support
the integration of different modeling technologies (i.e. EMF and Epsilon in the
current instantiation). We are now able to build views (and query them) over
more heterogeneous types of data sources.

Based on our own knowledge and expertise, we made the choice of using
EMF Views [12] as our model view framework. This decision is also reinforced
by the fact that EMF Views is Eclipse-based and relies on EMF. This way, we
were able to extend it to be compatible with Epsilon. For similar reasons, we
used NeoEMF [17] and CDO [21] as model persistence solutions supporting
graph and relational database backends (respectively).

As we want to show the capability to build scalable views on heterogeneous
modeling technologies, we now propose a different set-up than in our initial
MODELS 2018 paper [11]. Thus, we voluntarily distributed the four contribut-
ing models of our view between the two different modeling technologies and
different kinds of persistence solutions. Instead of using NeoEMF with EMF
such as we already did in the past, this time we opted for using it via Epsilon.
This way, we had the opportunity to develop an EMC connector for NeoEMF

20 Hugo Bruneliere et al.

M
od

el
in

g
Te

ch
no

lo
gy

 m
t1

 (C
or

e)

D
at

ab
as

e
P

er
si

st
en

ce

 F

ile
 P

er
si

st
en

ce

M
od

el
 V

ie
w

 F
ra

m
ew

or
k

M
od

el
-b

as
ed

 T
oo

ls
 /

S
ol

ut
io

ns
 (O

C
L,

 E
O

L,
 e

tc
.)

M
od

el
in

g
Te

ch
no

lo
gy

 m
t1

 (I
nt

er
fa

ce
)

bypass

P
er

si
st

en
ce

M
od

el
in

g
Te

ch
no

lo
gy

 m
t2

 (I
nt

er
fa

ce
)

M
od

el
in

g
Te

ch
no

lo
gy

 m
t2

 (C
or

e)

la
zy

 lo
ad

in
g

Q
ue

ry
 E

xe
cu

tio
n

D
is

pa
tc

h

R
el

at
io

na
l

D
B

 C
on

ne
ct

or
G

ra
ph

D
B

 C
on

ne
ct

or
O

th
er

D
B

 C
on

ne
ct

or
X

M
I/X

M
L

Fi
le

 C
on

ne
ct

or
O

th
er

Fi

le
 C

on
ne

ct
or

C
S

V

Fi
le

 C
on

ne
ct

or
O

th
er

C
on

ne
ct

or

...

G
ra

ph

D
B

 C
on

ne
ct

or

R
eq

ui
re

m
en

ts

m
od

el
C

om
po

ne
nt

m

od
el

S
ou

rc
e

C
od

e
m

od
el

R
un

tim
e

Lo
g

m
od

el

M
od

el
 V

ie
w

C

on
ne

ct
or

la
zy

 lo
ad

in
g

Fig. 6 A concrete instantiation of our conceptual approach (cf. Figure 4), based on Eclipse
technical solutions.

(as not existing before) and corresponding optimizations. For distribution pur-

Scalable Model Views over Heterogeneous Modeling Technologies and Resources 21

pose, we then opted for using CDO via EMF (instead of relying on the already
available EMC connector for CDO).

In the next four subsections, we detail how all these technical solutions have
been combined in practice in order to address our four different big objectives
(cf. Subsection 3.1) with our conceptual integration approach (cf. Section 4).
The complete source code of this current instantiation of our approach is freely
available5 and covers all the presented implementation details.

5.1 Building Model Views with EMF Views on Heterogeneous Modeling
Sources via EMF and Epsilon

In this subsection, we describe how we integrated the EMF Views model view
framework with the CDO and NeoEMF model persistence solutions via two
different modeling technologies: EMF and Epsilon (respectively).

5.1.1 EMF Views for Model Views

EMF Views6 [12] is a model view solution that proposes to reuse the well-
known concept of views in databases and to transpose it to the modeling
world. To this intent, it embeds a lightweight model virtualization framework
that can be used on top of any EMF-based model. This enables the creation
of (currently read-only) views that aggregate elements coming from different
models. EMF Views itself is fully compliant with the EMF API and the views
it produces act as standard models: they can be navigated, queried and taken
as inputs of model transformations (for example). The associated approach
has the following characteristics:

– Lightweight: Thanks to the model virtualization mechanism, elements in
a view are only proxies to actual elements from the contributing models
(which are never copied). This allows for a lower overhead in terms of
memory when creating and navigating model views.

– Filtering: When expressed in the viewpoint specification, existing elements,
attributes or references from the contributing models can be hidden in
corresponding model views.

– Virtualization: While avoiding content duplication, views can possibly con-
tain newly created elements, attributes or references that exist only at the
view level and are not part of the contributing models.

– Non-intrusiveness: All additional view-specific information (pointers to con-
tributing models, filters, virtual elements) are described in a separate weav-
ing model 7. This does not imply any change on the contributing models.

5 https://github.com/atlanmod/scalable-views-heterogeneous-models
6 https://www.atlanmod.org/emfviews
7 In past work [12], we provide insights on this weaving model and notably on how it can

be created (by using the ViewPoint Description Language) and then internally used within
the model view solution (via the Epsilon Comparison Language engine).

https://github.com/atlanmod/scalable-views-heterogeneous-models
https://www.atlanmod.org/emfviews

22 Hugo Bruneliere et al.

EMF Views is available as a set of open-source Eclipse plugins. Its native
integration with EMF-based tools and its characteristics provide an interest-
ing starting point for our implementation. Note that alternative model view
mechanisms are also discussed in the related work (cf. Section 7).

5.1.2 CDO and NeoEMF for Model Persistence

The Connected Data Objects model repository (CDO) [21] is a model persis-
tence framework designed to handle large EMF models by relying on a client-
server repository structure. CDO is based on a lazy-loading mechanism and
supports transactions, access control policies as well as concurrent model edit-
ing. The default implementation of CDO uses a relational database connector
to serialize models into SQL-compatible databases. However, the modular ar-
chitecture of the framework can be extended to support different data storage
solutions (even if, in practice, mostly relational connectors are frequently used
and maintained).

NeoEMF8 is a complementary model persistence framework that relies on
the scalable nature of NoSQL databases to store and manipulate large mod-
els. NeoEMF supports three different model-to-database mappings, namely
graph, key-value and column stores. Each one of them is meant to be particu-
larly adapted to a specific modeling scenario, such as atomic element accesses
(key-value) or complex navigation paths (graph). As other persistence solu-
tions, NeoEMF provides a lazy-loading mechanism which delivers significant
performance gains in different contexts.

Since CDO and NeoEMF are two state-of-the-art frameworks in the area
of scalable model persistence, we chose to rely on them in the current imple-
mentation of our approach (cf. Section 7 for possible alternative solutions).

5.1.3 Epsilon as a Complementary Modeling Technology for Model
Persistence and Querying

Epsilon9 [41] is a family of extensible model management tools and languages
for performing various modeling tasks, including notably model querying. All
these languages are implemented independently from any modeling technology,
so that they can be used with any type of model in theory (which is of particu-
lar interest in the context of the present work). This is achieved thanks to the
Epsilon Model Connectivity (EMC) layer providing an abstraction for model
access and CRUD (Create/Read/Update/Delete) operations through a num-
ber of common interfaces. The EMC interfaces are abstract/generic enough to
support a broad range of technologies. Implementations of EMC are referred
to as model drivers. Epsilon already has drivers for commonly used modeling
formats such as EMF, XML, spreadsheet or CSV, as well as for other (propri-
etary) technologies such as Simulink. Interestingly, there are also drivers for

8 https://neoemf.atlanmod.org
9 https://www.eclipse.org/epsilon/doc/

https://neoemf.atlanmod.org
https://www.eclipse.org/epsilon/doc/

Scalable Model Views over Heterogeneous Modeling Technologies and Resources 23

database technologies. In addition, we also developed a specific EMC driver
for NeoEMF in the context of the present work.

The Epsilon languages are built on top of a common interpreted OCL-
inspired language called the Epsilon Object Language (EOL). Like OCL, EOL
is suitable for declarative model querying via an OCL-compatible syntax and
standard library of first-order operations (such as select). Moreover, EOL
comes with imperative programming constructs such as loops and mutable
variables. Finally, EOL also supports the parallel execution of some opera-
tions as well as laziness through data streams [35].

5.1.4 Integration

Since EMF Views, NeoEMF, CDO and Epsilon are all Eclipse-based (and are
packaged as sets of Eclipse plugins), they can be easily integrated together
into a single Eclipse workbench. Moreover, EMF Views, NeoEMF and CDO
are part of the EMF ecosystem, making their integration even more straight-
forward since they implement the same EMF model handling interface. It is
also interesting to note that Epsilon provides an EMC driver for EMF, thus
allowing it to interoperate with EMF-based solutions (such as EMF Views).

In all cases, it is mostly a matter of telling EMF Views how to properly
retrieve and load the right model resources. However, CDO and NeoEMF
model resources require platform-specific initialization code (such as specific
URI schemes, resource factory implementations and data store configurations)
that had to be integrated into EMF Views and Epsilon (e.g. via an EMC driver
for NeoEMF, cf. Subsection 5.1.3).

Once correctly loaded, all the model resources are navigated through the
standard modeling interface of EMF and/or Epsilon (depending on the case).
When required, the model view framework transparently delegates (in a scal-
able manner) the operations to the appropriate modeling technologies and
underlying persistence solutions.

5.2 Persisting the Model View Information with NeoEMF or Creating it
Dynamically

As explained before, EMF Views uses a weaving model that represents the
view-specific information. This model can potentially contain entries for many
elements coming from the different contributing models. In practice, it can
get as large or even larger (depending on the view) than the contributing
models themselves. In order to deploy our approach on large-scale views (such
as in our MegaM@Rt2 use case), we need to be able to persist or create such
weaving model in a scalable way. However, it is important to note that the
focus of our experiments in this paper is on model view loading and querying
only (cf. Section 6). To this end, we consider that the weaving model is already
existing and correct. Thus, how the weaving model has been produced in the
first place, how inconsistencies in the inter-model links are handled and how the

24 Hugo Bruneliere et al.

view can be kept synchronized based on these links are challenges voluntarily
not tackled here (even though relevant as well from a more specific model view
perspective).

In our MODELS 2018 paper [11], we already showed that it is possible to
handle the model view information in a scalable way by relying on NeoEMF
(instead of using the default XMI serialization provided by EMF). Since the
corresponding weaving model is also defined as a standard EMF model, its
migration to NeoEMF was done quite transparently by changing the model
serialization behavior (and initializing the corresponding database backend).
Persisting the weaving model in NeoEMF allowed us to handle views that
cannot fit in memory otherwise.

In this extended paper, we worked on adding an extra heterogeneity dimen-
sion to our approach (while still maintaining an interesting level of scalability)
with the integration of Epsilon as an alternative modeling technology comple-
mentary to EMF. To this intent, we opted this time for dynamically creating
the required model view information at runtime when the view is actually
loaded. Thus, in the experiments presented later in Section 6, the weaving
model is initialized programmatically via the implementation of an optimized
algorithm relying on hash tables.

5.3 Optimizing Model View Loading and Model Element Access in EMF
Views

When dealing with large database resources (such as in our use case), many
operations of the EMF interface that had little to no overhead with small
in-memory resources now potentially bear high costs in execution time and
memory consumption. Thus, we had to pay extra attention to minimize the
impact of such operations. For instance, checking whether a reference has any
contents can be done by calling the EList.isEmpty operation. A native imple-
mentation of this operation compares the size of the collection against zero,
where getting the size is an O(n) operation. On small in-memory resources,
n is small and a call to the isEmpty operation triggers no issue. On large
database resources, n is large and the overhead of hitting the database can
become a bottleneck. A better implementation of isEmpty rather checks if
at least one element exists, and thus exits early when this is not the case.
Similarly, getting the nth element of a multi-valued reference by using the
EList.get operation can be costly if the implementation first builds a list con-
taining all the elements of the reference, regardless of the index requested. If,
instead, the implementation navigates to the index and looks no further, then
we make fewer hits to the database and minimize the cost of the operation.
We significantly improved the current EMF Views implementation to support
large model resources by following these ideas.

A second point of optimization was to tweak the way the data is stored
into the graph database handled by NeoEMF. The runtime log model of our
use case is a large model but a flat one. It contains a top-level element holding

Scalable Model Views over Heterogeneous Modeling Technologies and Resources 25

a large collection of execution logs (some of which have also children). Our
experiments have shown that this flat structure was reducing the performance
of NeoEMF. To solve this issue, we developed a new mapping from model to
graph for NeoEMF, using in-database linked lists. This mapping, dedicated to
such large collections, allowed us to speed up the creation of the runtime log
model and the access to its elements by a factor of 30.

5.4 Optimizing the Model View Querying in OCL and EOL

Since views are regular EMF models, querying tools like OCL/EOL or trans-
formation tools like ATL can be applied transparently on views (regardless
of the persistence solutions used by the contributing models). However, rely-
ing only on the EMF interface can limit performance. Base operations, like
allInstances in OCL, can be quite costly to execute natively using the EMF
API [48]. Persistence backends may provide more efficient ways to execute
them. For example, NeoEMF resources expose a getAllInstances method
that is about 40 times faster than using the EMF interface directly.

We extended the standard OCL interpreter in order to specialize some
operations according to the data store they target. We detail here our imple-
mentation of the allInstances operation, but other native operation imple-
mentations can be easily defined to further enhance performance.

The OCL interface allows customizing the behavior of the allInstances

operation through an Extents Map (Model Manager in newer implementa-
tions). Thus, we defined a custom extents map that allows to specialize the
allInstances call according to the concrete data stores used in a given view.
When instances of a class are looked up, the extents map redirects the call to
the view that fetches instances—using native database calls—from each con-
tributing model and then combines these instances as the result. We show later
in our evaluation that such dispatching mechanism can dramatically improve
query computation performance (cf. Section 6).

As a concrete example, when executed the OCL query Log.allInstances()

goes through the extents map to find all instances of the Log class. With the
default extents map, OCL iterates over the entire model view (having several
contributing models), tests each encountered element and keeps only the ac-
tual instances of the Log class. This default iteration process is completely
generic but slow. With our dispatching mechanism, the custom extents map
looks up which contributing models contain instances of the Log class. In our
MegaM@Rt2 use case, the Runtime Log model is handled via Epsilon and
persisted as a NeoEMF resource. Thus, the extents map delegates the in-
stances lookup directly to the NeoEMF backend (using the getAllInstances

method). This backend then uses built-in indexes and caches to return the
result about 40 times faster.

Within Epsilon, the IModel interface provides several methods that can be
overridden to optimize how EOL and other Epsilon languages interact with
the resource. We optimized the allInstances (also simply called all in EOL)

26 Hugo Bruneliere et al.

operation by overriding the IModel.getAllOfKind method in the same way
as described before. In addition, by returning a bespoke collection object in
getAllOfKind which implements IAbstractOperationContributor, we can inter-
cept other kinds of operations that will act on the results of the all operation.
Thus, operations such as select or collect can then be overridden with our
own implementation optimized for NeoEMF.

Moreover, capturing these operations allows us converting entire EOL ex-
pressions on NeoEMF resources (e.g. the Runtime Log model in our MegaM@Rt2
use case) into native graph traversals expressed in the Gremlin query lan-
guage [2]. These traversals are then computed over the Gremlin virtual ma-
chine, directly benefiting from advanced optimizations such as database-level
lazy-loading and caching. The concrete translation from EOL operations to
Gremlin traversals is adapted from our previous work providing a set of map-
pings from OCL operations to Gremlin traversal parts (also called steps) [18].
Note that EOL-specific operation mappings are left for future work. Generally,
such query rewriting approach has been inspired by a similar scheme to trans-
late OCL expressions into SQL queries [33]. This allows us executing queries
entirely in the database rather than in memory, thus improving performance
regarding execution time and memory consumption.

6 Evaluation

In order to evaluate our integration approach and its current implementation,
we applied them on our motivating use case from the MegaM@Rt2 project (cf.
Subsection 3.2).

In this evaluation, we focus on measuring the time overhead of our current
implementation because it directly impacts the interactive user experience (as
opposed to batch processing), for instance when navigating and/or querying
the view. The overall objective of the performed experiments is to show in
practice that one can fully benefit from our approach (i.e. the support for het-
erogeneous modeling technologies and resources) while paying a reasonably low
cost in terms of scalability (considering either small/medium or much larger
models). As dealing with on-disk resources is inevitably (one to two orders of
magnitude) slower than dealing with fully in-memory resources, matching the
speed of such in-memory resources is not a realistic goal. Thus, we rather insist
on the asymptotic behavior of our approach and on the significant performance
gains we already obtained by our different optimization actions.

For reproducibility, the complete source code of the performed benchmarks
(including the contributing models and viewpoint/view specifications) and
more detailed results are available online10. This repository also contains links
to the versions of the various tools we used for these benchmarks.

All the benchmarks have been realized on a HEDT system with the fol-
lowing specifications: AMD Ryzen Threadripper 1950X 16-core CPU @ 3.5

10 https://github.com/atlanmod/scalable-views-heterogeneous-models

https://github.com/atlanmod/scalable-views-heterogeneous-models

Scalable Model Views over Heterogeneous Modeling Technologies and Resources 27

GHz (“Creator Mode”), 32(4x8) GB DDR4-2933 MHz RAM, Samsung 960
EVO 250 GB M.2 NVMe SSD, Fedora 30 OS (Linux kernel 5.1.12, miti-
gations=off), OpenJDK 11.0.3 Server VM with the following parameters “-
Xmx28g -XX:MaxGCPauseMillis=550”. The latter parameter was used to im-
prove throughput with the default G1 garbage collector.

In terms of experimental process, we ran each benchmark 15 times and
discarded the 5 first runs (used as a warmup for the JVM). Thus, in the
following tables, we report on the arithmetic mean for the 10 latter runs only.
Still, we might have had some pre-fetch optimizations taking place in such
setup. To overcome a possible “static” setup bias, we could consider running
more dynamic and randomized scenarios in additional future experiments.
Nevertheless, we do not report on any significant deviation with the current
setup as we have observed that it was consistently under 5%.

6.1 Overview

In order to perform our experiments, we built two versions of the same view
implementing our MegaM@Rt2 use case:

1. As a point of comparison, we created a first version of the view that is fully
file-based: all four contributing models are serialized using standard EMF-
XMI. Thus, once loaded, the view resides fully in memory (simulating a
“default” behavior).

2. The second version aimed at demonstrating our capability to build views
over heterogeneous modeling technologies and resources. It uses a mix of
file-based and database resources as contributing models. More precisely,
the Runtime Log model is persisted into a Neo4j graph database handled
by NeoEMF, using our optimized NeoEMF connector for Epsilon (cf. Sub-
section 5.3). The Java Source Code model is persisted into a relational
database handled by CDO. The UML Component model is serialized as
an XMI file handled by the standard EMF implementation. The Require-
ments model is serialized as a plain CSV file handled by the Epsilon CSV
connector.

In both cases, the performed experiments also aimed at evaluating the scala-
bility of the overall approach and current instantiation. To this intent, for each
version of the view, we considered different sizes for the Runtime Log model
(going from 101 to 106 elements). This way, we have been able to measure
the performance of the view creation, loading and querying up to large-scale
models (as required in our MegaM@Rt2 context).

6.2 Benchmark 1: Loading the Model View

In the first benchmark, we evaluated both the loading of a view and the itera-
tion over all its contents. We performed this experiment on the two versions of

28 Hugo Bruneliere et al.

Table 1 Average time (in milliseconds) to load the two versions of the view, corresponding
calculated overhead factor between these two versions.

Size XMI (in ms) Hetero. (in ms) Overhead factor
101 161 6942 43.12
102 160 4975 31.09
103 191 5030 26.34
104 523 6290 12.03
105 3832 17885 4.67
106 36154 140492 3.89

the view (full XMI vs. databases + file-based). This benchmark measures the
overhead of 1) matching model elements to create the view-specific informa-
tion and 2) accessing the content of the different models contributing to the
view.

Indeed, in our use case from MegaM@Rt2, we first have to compute the
view-specific information needed to combine the four models contributing to
the view:

– We connect a given execution log (from the Runtime Log model) to the
Java class declaration (from the Source Code model) that emitted it.

– We relate the Java package this class declaration is part of (from the Source
Code model) to the UML component (from the Component model) that
represents it at design level.

– We link this UML component (from the Component model) to the corre-
sponding CSV row, i.e. the requirement (from the Requirements model)
the UML component aims to support.

As a consequence, creating the view-specific information (materialized as a
weaving model) implies checking for matches between two elements coming
from two contributing models. For large models, such as the Runtime Log
model from our MegaM@Rt2 use case, these matches can rapidly become very
numerous.

Table 1 compares the time it takes to load the two versions of the view,
while Table 2 compares the time required to iterate over the full content of the
two versions of the view. In both tables, the third column provides the overhead
factor calculated by dividing the value in the case of the heterogeneous view
by the value in the case of the XMI only view.

A first immediate observation of Table 1 shows that, for smaller model
sizes (i.e. from 101 to 104), loading the heterogeneous view takes between
4975 and 6942 milliseconds. The loading time in the case of the full XMI view
is significantly faster (quasi-equal to or less than 500 milliseconds). This can be
explained by the additional operations needed to setup and open the related
database resources, as well as by the inherent higher latency of doing disk I/O.
However with larger models, the ratio between the two versions diminishes
progressively and significantly. This can be explained by the fact that the
time spent to compute the view-specific information becomes more dominant.
In the general case, it is possible to mitigate the actual consequences of such

Scalable Model Views over Heterogeneous Modeling Technologies and Resources 29

Table 2 Average time (in milliseconds) to iterate over the full content of the two versions
of the view, corresponding calculated overhead factor between these two versions.

Size XMI (in ms) Hetero. (in ms) Overhead factor
101 595 632 1.06
102 592 641 1.08
103 599 656 1.10
104 650 832 1.28
105 1125 2439 2.17
106 5989 18537 3.10

results. We can argue that, in many real-life scenarios, users can navigate and
run multiple queries over a same model view without having to fully (re)load
it each time. Moreover, it is also possible to speed up the loading process by
computing the view-specific information in advance, at the cost of storing this
information. For instance, this is what we already did in the context of our
initial MODELS 2018 experiments [11].

When iterating over the full content of the view (cf. Table 2), we can
observe that the overhead remains relatively limited. We can note a tendency
to slightly increase as the Runtime Log model gets larger. For example, for the
largest model size, the heterogeneous view is around 3 times slower to navigate
than the full XMI one. We can notably observe that this ratio is still below the
expected speed difference between RAM and disk. This increase in time can
be partly explained by the data model of the underlying database, for which
exhaustive iteration is a very costly operation due to numerous loads/unloads
between database and memory. Again, such results can be mitigated by the
fact that full iteration scenarios may not be very common in practice. However,
it is worth mentioning that the choice of the data representation (when using
such database resources) can have a strong impact on performance.

6.3 Benchmark 2: Querying the Model View

In the second benchmark, we measured the time it took to successfully run
three different queries on top of our model view. From an user perspective,
these queries correspond to three possible types of usage of such a view in
the context of our use case from MegaM@Rt2. From an evaluation perspec-
tive, they correspond to various types of access and navigation concerning the
different models contributing to the view.

A first base query allows performing an example of computation focusing
only on runtime data: It simply counts all the instances of Log elements in the
view, and thus only accesses the Runtime Log model via the view. A second
and third more elaborated queries allow considering the full runtime↔ design
time feedback loop (in both directions): They traverse the complete view, i.e.
they access elements from all four contributing models, and navigate both
inside and between these models, by using the view-specific information (cf.
Subsection 6.2).

30 Hugo Bruneliere et al.

Table 3 Average time (in milliseconds) to run OCL query (1).

Size XMI XMI (Opt.) Hetero. Hetero. (Opt.)
101 618 10 658 40
102 614 10 661 41
103 623 10 694 44
104 675 12 859 57
105 1235 63 2729 227
106 6643 753 19875 2188

Table 4 Average time (in milliseconds) to run OCL query (2).

Size XMI XMI (Opt.) Hetero. Hetero. (Opt.)
101 609 11 649 41
102 610 11 652 41
103 616 11 667 41
104 668 10 853 42
105 1167 35 2587 42
106 6277 272 19789 61

Table 5 Average time (in milliseconds) to run OCL query (3).

Size XMI XMI (Opt.) Hetero. Hetero. (Opt.)
101 632 10 667 41
102 626 10 673 41
103 619 11 693 43
104 672 14 875 86
105 1212 66 2635 268
106 6744 709 20653 2651

The considered OCL queries are the following (semantically equivalent
queries expressed in EOL have also been considered in this benchmark):

1. Log.allInstances()->size()

2. csv::Row.allInstances()

->any(r| r.desc.startsWith(’Controller’)))

.components->collect(c| c.javaPackages)

->collect(p| p.ownedElements)

->selectByType(ClassDeclaration)

->collect(c| c.traces)

->size()

3. Log.allInstances()

->any(l| l.message.startsWith(’CaptchaValidateFilter’))

.javaClass. ’package’.component.requirements

->size()

Table 3 compares the time it takes to execute query (1) on the two ver-
sions of our model view. Tables 4 and 5 do the same for queries (2) and (3),
respectively. In these three tables, the two additional (Opt.) columns refer
to optimized model views that use the custom extents map we described in
Subsection 5.4.

Scalable Model Views over Heterogeneous Modeling Technologies and Resources 31

Table 6 Average time (in milliseconds) to run EOL query (1).

Size XMI Hetero. Hetero. (Opt.)
101 1 3 3
102 1 3 2
103 1 13 3
104 6 131 17
105 70 1330 176
106 700 12986 1851

Table 7 Average time (in milliseconds) to run EOL query (2).

Size XMI Hetero. Hetero. (Opt.)
101 3 2 2
102 2 2 2
103 1 2 3
104 2 2 2
105 2 2 3
106 15 14 14

Table 8 Average time (in milliseconds) to run EOL query (3).

Size XMI Hetero. Hetero. (Opt.)
101 1 2 4
102 1 3 3
103 2 14 4
104 6 139 18
105 70 1371 177
106 702 13244 1822

A general observation is that querying the non-optimized heterogeneous
view is, overall, just slightly slower than querying the full XMI view (apart
from the case of the largest model in which the difference is more important).
This shows that the general overhead of using our approach is relatively low. In
addition, the optimized versions are providing a 10- to 300-time improvement
which is significant. Notably, they bring down the time to run all queries under
1 second (except from the case of the largest model) . This can be considered
as a satisfactory response time from a usability perspective (either by a human
or a depending tool). As a particular example, the effect of the specialization
of the allInstances operation on the Runtime Log model stored in database
is the most evident on the last line of Table 4. Finally, we can note that the
optimization we have implemented also benefits the full XMI view, although
less importantly.

As mentioned earlier, we also wrote three semantically equivalent EOL
queries. Again, we compared their execution on the two versions of our model
view. The corresponding results are shown in tables 6, 7 and 8 (respectively).
It is important to note that, since the EOL connector’s optimization does not
apply to XMI resources (i.e. this optimization targets only NeoEMF resources
in our present case), the XMI (Opt.) column does not appear in these three
latest tables.

32 Hugo Bruneliere et al.

Concerning the execution of the first EOL query, we can remark that the
results obtained with the EOL optimization are somehow equivalent to the
results obtained with the optimized OCL version. This shows that, thanks to
our extended approach, we are now able to switch from one query language to
the other without significantly impacting performance (at least in the case of
these types of queries).

Concerning the execution of the second EOL query, we can observe that
the proposed optimization does not have any noticeable effect (as results were
already in the 10 milliseconds range without it). This shows that the use
of our approach, with the integration of Epsilon as an alternative modeling
technology, is quite transparent in this case. Indeed, it does not come with a
distinct overhead in terms of performance. However, more experiments (with
more varied queries, cf. next paragraph for instance) would be required in
order to be able to fully generalize this.

Concerning the execution of the third EOL query, we can note that the
improvement brought by the optimization is on the same order of magnitude
(10×) as it was for the same query in OCL. This shows that our optimizations
are consistent across query execution engines.

Finally, Figure 7 aggregates the results obtained with both OCL and EOL
in order to represent them in a graphical way. We can observe that EOL queries
are generally more efficient than OCL ones in terms of execution time. Inter-
estingly, the optimizations proposed in this paper allow to obtain significant
performance gains in both cases.

Overall, the performed evaluation shows that we successfully integrated
the use of Epsilon as a complementary modeling technology (and provider of
alternative modeling resources) in our approach. We obtain relevant results
in terms of scalability of the global integration solution, from model view
loading to model view querying. Nevertheless, there is still room for further
improvements on different related aspects (cf. Section 9).

7 Related Work

In this section, we compare our approach with existing work from the state-
of-the-art in the related areas of model views and model queries.

7.1 Model Views

Several existing solutions have been proposed in order to support the defini-
tion, creation and handling of views over models. In another research effort [7],
we have studied these solutions, described them and tried to classify them ac-
cording to their main characteristics. Voluntarily, we do not go into such detail
again in the present paper: we point the reader to this large study for more
detailed information. In what follows, and directly based on the results of
this study, we rather provide a summary of the situation concerning the two

Scalable Model Views over Heterogeneous Modeling Technologies and Resources 33

 1

 10

 100

 1000

 10000

101 102 103 104 105 106 101 102 103 104 105 106

Query 1

tim
e

(m
s)

OCL
OCL (Opt.)

EOL
EOL (Opt.)

 1

 10

 100

 1000

 10000

101 102 103 104 105 106 101 102 103 104 105 106

Query 2

 1

 10

 100

 1000

 10000

101 102 103 104 105 106 101 102 103 104 105 106

Query 3

model size
HeterogeneousXMI

Fig. 7 Aggregated results from Tables 3 to 8. Both axes are in logarithmic scale.

main properties we consider in this paper: scalability (cf. Subsection 7.1.1)
and heterogeneity (cf. Subsection 7.1.2). We have notably observed that, up
to our current knowledge, there does not seem to be any solution specifically
addressing scalability issues in a strongly heterogeneous context (such as the
one we consider in this paper).

34 Hugo Bruneliere et al.

7.1.1 Scalability

In the general case, the observations resulting from our study indicate that
there is little evidence regarding the scalability of the available solutions in the
context of model views combining very large models. This current limitation
can be considered as an important issue in this area, as scalability is key to
the deployment and actual use of model view solutions in realistic industrial
contexts. As we have already seen in past work [11], building scalable model
views is a challenging problem. With the extended work presented in this
paper, and notably with the performed experiments, we intend to take a step
in this direction.

Moreover, scalability is also a fundamental aspect as far as related view-
specific challenges are concerned. For instance, as we have seen in our detailed
study, this is the case for the view update problem (as already a long-term
concern in the database community [3]) or for the issue of the incremental
maintenance of model views [36]. These particular model view challenges, even
though important to be addressed, are not the core topic of the work presented
in this paper. However, this shows that there is still room for interesting and
relevant future work by extending further our current approach in order to
support such capabilities (cf. Section 9).

7.1.2 Heterogeneity

In terms of heterogeneity, relatively few existing model view approaches pro-
vide support for integrating interconnected models whose content is coming
from very different data sources. There are indeed approaches allowing to sup-
port views combining several models possibly having different metamodels (cf.
the features Type Structure - Metamodel Arity and Model Arity from our fea-
ture model for model view approaches [7]). We already identified them in our
past study and they are briefly introduced again in the following paragraphs.
Nevertheless, as it can be seen hereafter, they are generally rather limited in
terms of the underlying modeling technologies and resources that can be used
to create and handle corresponding model views.

For example, ModelJoin [13] proposes a DSL for querying altogether dif-
ferent models and building a view as a result. However, at the time of writing,
it does not fully support a variety of modeling technologies and related model
persistence backends other than EMF-based ones. The same is also true for
the Sirius framework [43], as well as for the Kitalpha framework [34] that relies
on Sirius, whose final objective is to facilitate the creation of modeling work-
benches proposing different kinds of views. They are both directly built upon
Eclipse/EMF and do not natively aim at integrating other modeling tech-
nologies and related resources (even if customer-specific extensions could be
developed in a case-by-case manner). In the same vein, the VIATRA Viewers
solution11 that emerged from the EMF IncQuery initiative [46] focuses more

11 https://www.eclipse.org/viatra/documentation/addons.html

https://www.eclipse.org/viatra/documentation/addons.html

Scalable Model Views over Heterogeneous Modeling Technologies and Resources 35

on scalable querying rather than on supporting such heterogeneity (cf. also
Subsection 7.2).

Alternatively, OpenFlexo [24] has been designed as a way to support several
data sources (whether they are model-based ones or not). However, it privi-
leges graphical (manual) modeling to build views and does not come with an
extended (and optimized) querying support at view-level. This latest point is
of a particular importance in our current industrial MegaM@Rt2 context (for
instance). Another relevant approach is the Epsilon family of languages [41].
Among the available languages, Epsilon provides EML [30] that allows merg-
ing models, and Epsilon Decoration [32] that allows decorating existing models
with additional features. These languages can be considered as providing kind
of a (partial) support for model views. Nevertheless, we have shown in this
paper that Epsilon is rather a good complementary solution to our approach.
Notably, we have shown in practice (with our experiments on the MegaM@Rt2
use case) that Epsilon can be effectively integrated as an alternative modeling
technology and resource provider for the EMF Views model view solution [12].

7.2 Model Querying

In addition to solutions specifically dedicated to model views, there has also
been several initiatives more related to model querying challenges in general.
For example the VIATRA project [47], relying on IncQuery [46] for efficient
incremental querying features, is a reactive model transformation platform.
The platform also embeds some capabilities for manipulating multiple models
altogether and defining sorts of views over them [19]. In terms of querying
support, VIATRA and our approach work best in different scenarios. VIATRA
is very efficient when the contributing models fit in memory and queries are
executed multiple times over the same ”view”. Our integration solution is
rather designed to be able to access models from different kinds of modeling
resources (notably from databases), and to benefit from their internal structure
in order to efficiently perform single query computations. However, incremental
querying capabilities could be integrated to our solution by experimenting on
the use of IncQuery over our views (in addition to OCL and EOL, as already
described in this paper).

Quite recently, a few approaches have been proposed in order to improve
the computation of model-level queries over several scalable persistence solu-
tions. For example, the Mogwäı tool [18] is a translation approach that maps
OCL constructs to Gremlin [2] which is a graph database language. In this ap-
proach, automatically generated queries are sent directly to the database for
computation, thus bypassing some limitations of current modeling frameworks.
A similar approach is used in the Hawk query framework [4] that dynami-
cally translates Epsilon queries into calls to graph database native operations.
However, such solutions focus on specific data sources and are not designed
to handle heterogeneous backends, as in the kind of model views we intend to
handle in the present paper. Nevertheless, they could be integrated to our so-

36 Hugo Bruneliere et al.

lution in order to speed up (parts of) queries related to the particular backend
they target and optimize.

Finally, there is also some related work in the data warehouse community.
In this research area, querying views on heterogeneous storage solutions has
already been studied, for example in the context of relational databases [25].
This type of approaches regained interest quite recently thanks to the emer-
gence of polystore data warehouses [14]. Simply said, the goal of a polystore
database management system is to allow building databases on top of multiple
and heterogeneous storage engines. This is kind of a similar objective to what
we intend to achieve with the present paper in the model view area. Still in
the same vein, CloudMdsQL [29] is an SQL-like language for querying mul-
tiple data stores by using a single query. To do so, it extends the standard
SQL syntax with additional constructs allowing to directly embed various na-
tive datastore queries. A similar approach can also be found in generic query
frameworks such as the Apache Drill open source framework12.

In the general case, such querying solutions could also be reused and/or in-
tegrated to our approach in order to improve the overall computation of (parts
of) queries on views combining models stored in even more heterogeneous data
backends. Such a more advanced integration would raise two interesting chal-
lenges in this particular area: 1) the (automated) translation of the model view
queries to the (generic) database query languages and 2) the (correct) inte-
gration of the database implicit schemes of the various models contributing to
the view (as required to produce queries possibly taking full advantage of the
target backend capabilities).

8 Lessons Learned

While working on integrating our model view solution with heterogeneous
modeling technologies and their respective model backends, we have been able
to acquire some experience that could be beneficial (to us of course, but also
to the reader we believe) in different kinds of software modeling and/or engi-
neering processes. We briefly share this experience hereafter:

– Using a standard (modeling) API really makes tool integration
easier, but it has to be done with caution. From our experience
in this paper, we can attest the benefits of relying on a standard API
(such as the EMF one) when it comes to integrating together different
tools. This largely facilitated the initial combination of the EMF Views,
NeoEMF and CDO tools in order to obtain a solution working on basic
cases. However, relying on such generic API can also hinder performance
when tackling larger-scale scenarios. Firstly, the generic API may hide some
of the features and capabilities of the underlying tools, and so prevent from
using them. For instance, the NeoEMF API exposes additional efficient
methods for navigating model resources. Unfortunately, these methods are

12 https://drill.apache.org/

https://drill.apache.org/

Scalable Model Views over Heterogeneous Modeling Technologies and Resources 37

not available to EMF Views when only relying on the standard EMF API.
Secondly, using such a generic API can also hide the actual impact of some
actions. Various backends may have weak spots in their implementation
of the generic API, and some usage patterns may be preferred to others
for performance or even correctness reasons. For example, when creating a
model and adding elements to it using EMF, the order of some operations
may matter to the persistence backends while it may have no impact on
standard in-memory resources. In this case, a naive use of the generic
API may lead to surprising performance issues. In order to minimize the
overhead of views on large models, we have to consider elaborate strategies
as a more efficient solution. We can notably identify when it is relevant
to delegate a given operation or not, and to which persistence backend
in particular. Thanks to our approach, we have been able to embed such
practical knowledge into our integrated solution. This way, users do not
have to pay the full cost of using the generic API while still benefiting
from its genericity and interoperability capabilities.

– Using a more abstract (modeling) API does not prohibit opti-
mization, but it still requires some effort. In addition to the use of the
EMF standard modeling API, we have made a complementary use of the
EMC API from Epsilon. It is worth mentioning the relative ease with which
this EMC API allows for specific optimization to be made and integrated
into our overall solution. We believe this comes from the fact that this EMC
API is more general/abstract than the EMF one. Indeed, contrary to EMF
that is strongly object-oriented, EMC has been natively designed to sup-
port different kinds of modeling resources and structures. We consider this
as a practical example (among others) where good practices in API de-
sign does not prohibit or complicate the implementation of performance
optimization. Let us take a concrete example of one current shortcoming
in EMC, and introduce the effort that would be required to optimize it.
The allInstances() (which returns all model elements) and getAllOfKind
(which returns all model elements of a specified kind) operations both re-
turn a Collection, and not a Stream or Iterable, with no alternative like
streamAllOfKind() or streamInstances(). Although it is generally possi-
ble to create a lazy collection, the use of a Collection usually implies a
finite and complete in-memory data structure which is non-lazy (and so
costly). Moreover, the full result of such operations is rarely needed: they
are mostly used as a starting point for queries and transformations where
only a subset is required. Thus as a solution, providing a lazy implementa-
tion of these EMC operations (possibly with different return types) would
be preferable, especially for large models or memory-constrained systems.
If we generalize, a well-designed modeling interface should be expressive
enough to support all necessary features/operations without relying too
heavily on implementation details which could limit potential optimiza-
tion.

– Packaging the tooling/benchmarks facilitates portability and re-
producibility, but it comes with non-negligible cost. In this paper,

38 Hugo Bruneliere et al.

we have presented an overall approach and its concrete Eclipse-based in-
stantiation that integrates together different model-based frameworks and
tools. We have also described the benchmarks we have performed on our
MegaM@Rt2 use case in order to evaluate our solution in practice. In order
to benefit from interesting computing resources available at the Univer-
sity of York, we decided to run the performed benchmarks only in their
premises. However, most of the technical developments were done remotely
(i.e. in France and Spain). Thus, in our work we had to consider multiple
development environments and one single benchmark environment. As a
solution, we first had to realize a complete reusable packaging of both the
tooling for the solution and the full benchmarks on which this solution had
to be run (including all the needed modeling resources). This task required
a significant development effort, which is not something you can immedi-
ately valorize from a research perspective. Nevertheless, we have been able
to gain important benefits afterwards. Firstly, this has allowed us running
intermediate benchmarks in parallel of bug fixing and of new developments
on the current version of the solution. This way, our development process
and our progresses towards the latest version of the solution presented in
this paper have been made more agile. Secondly, this has also allowed a
better testing of the scalability aspects of our solution by having access
to more powerful resources. Thanks to this, we have been able to go a
step further than with our initial experiments from the MODELS 2018
paper [11] (that this paper extends). Thirdly, this has allowed us evaluat-
ing the portability of our overall solution to another environment than the
one of our local machines (on which the technical developments have been
made). We believe that this generally contributes to facilitate the repro-
ducibility of our results, now and in the future (within the context of other
technical environments on which our solution could be deployed).

9 Conclusion and Future Work

In this paper, we presented our approach to support the efficient creation and
handling of scalable model views over heterogeneous modeling technologies and
resources. We detailed our conceptual approach (i.e. the concepts, process and
main associated activities) to integrate a model view framework with different
modeling technologies, and with their underlying model persistence capabil-
ities. Notably, we emphasized on four important objectives to be addressed.
We then described our concrete Eclipse-based instantiation of this conceptual
approach, now able to use both the EMF and Epsilon modeling technologies
at the same time (and the various model backends they come with). In order
to demonstrate the applicability of our global solution, we evaluated it on a
realistic model view use case coming from MegaM@Rt2 project. The presented
work has shown that we are already able to build and query model views in a
sufficiently scalable way from a usability perspective. More interestingly, they
have also shown that such model views can be based on contributing models

Scalable Model Views over Heterogeneous Modeling Technologies and Resources 39

which are handled by heterogeneous modeling technologies and their modeling
resource providers (while still preserving satisfactory overall performance).

Nevertheless, there is still room for interesting improvements in different
aspects of our global solution.

Firstly, to go further in terms of querying capabilities over model views,
we could study how incremental querying techniques [6] could be integrated
into our approach. Based on such techniques, we could expect to have inter-
esting performance gains in some specific situations (e.g. in the case of the
multiple execution of queries over a same model view). Moreover, this could
be performed in a complementary way to the reuse of some other already pro-
posed optimization, at OCL-level for instance [50]. This could allow pushing
the scalability of our approach even further.

Secondly, in addition to pure model querying, we could extend our ex-
periments by also testing model transformation tools over our model views,
such as ATL [28] or VIATRA [47]. In such cases, a given model view could
be taken as input to a model transformation in a transparent way, instead of
taking as inputs the various models contributing to this view. For optimization
purposes, we could use the view information (e.g. which contributing model
is stored where and how) in order to delegate parts of the transformation
computation directly to the underlying modeling technologies and their back-
ends. One possibility to realize this could be to integrate the use of scalable
query/transformation approaches, such as Mogwäı [16] for instance.

Thirdly, from a model view perspective, we could refine our approach in
order to support more advanced features such as view update (i.e. synchro-
nization from the view to the contributing models) or view maintenance (i.e.
synchronization from the contributing models to the view). These are complex
problems that have already been studied in the past in other domains (e.g.
in databases [15]). The fact that we intend to rely on heterogeneous model-
ing technologies and resources (and not only on homogeneous ones) could also
add an extra degree of complexity. In the modeling community, there are some
recent research efforts [42,36] we could already try to capitalize on. Moreover,
studying the capability to create and save complete snapshots of model views
at given points in time could also be helpful to this respect.

Finally, from a more practical perspective, we are going to continue the
developments around our model view solution in general. Notably, we plan
to apply it in the context of other real-life use cases in order to evaluate
further its adaptation and deployment capabilities. For example, as part of
the MegaM@Rt2 project, we have recently used EMF Views in conjunction
with the JTL traceability solution to provide a runtime-to-design feedback
loop in the context of a safety critical system from CLEARSY [23]. In terms
of additional future use cases, we already have plans to build views tracing the
architectural models of an industrial system with runtime models representing
the configuration and running of corresponding physical machines.

40 Hugo Bruneliere et al.

References

1. Afzal, W., Bruneliere, H., Di Ruscio, D., Sadovykh, A., Mazzini, S., Cariou, E., Truscan,
D., Cabot, J., Gomez, A., Gorronogoitia, J., Pomante, L., Smrz, P.: The MegaM@Rt2
ECSEL Project: MegaModelling at Runtime - Scalable Model-Based Framework for
Continuous Development and Runtime Validation of Complex Systems. Microprocessors
and Microsystems 61, 86 – 95 (2018)

2. Apache TinkerPop: The Gremlin Language (2020). URL https://tinkerpop.apache.

org/gremlin.html
3. Bancilhon, F., Spyratos, N.: Update Semantics of Relational Views. ACM Transactions

on Database Systems (TODS) 6(4), 557–575 (1981)
4. Barmpis, K., Kolovos, D.: Hawk: Towards a scalable model indexing architecture. In:

Proceedings of the Workshop on Scalability in Model Driven Engineering, p. 6. ACM
(2013)

5. Barmpis, K., Kolovos, D.S.: Comparative Analysis of Data Persistence Technologies for
Large-scale Models. In: Proceedings of the 1st XM Workshop, pp. 33–38. ACM (2012)

6. Bergmann, G., Horváth, Á., Ráth, I., Varró, D., Balogh, A., Balogh, Z., Ökrös, A.:
Incremental Evaluation of Model Queries over EMF models. In: International Confer-
ence on Model Driven Engineering Languages and Systems (MODELS 2010), pp. 76–90.
Springer (2010)

7. Bruneliere, H., Burger, E., Cabot, J., Wimmer, M.: A Feature-based Survey of Model
View Approaches. Software & Systems Modeling 18(3), 1931–1952 (2019)

8. Bruneliere, H., Cabot, J., Dupé, G., Madiot, F.: MoDisco: A Model Driven Reverse
Engineering Framework. Information and Software Technology 56(8), 1012–1032 (2014)

9. Bruneliere, H., Eramo, R., Gomez, A., Besnard, V., Bruel, J.M., Gogolla, M., Kästner,
A., Rutle, A.: Model-Driven Engineering for Design-Runtime Interaction in Complex
Systems: Scientific Challenges and Roadmap. In: MDE@DeRun 2018 workshop, co-
located with the Software Technologies: Applications and Foundations (STAF 2018)
federation of conferences, Software Technologies: Applications and Foundations (STAF
2018) Workshops, vol. LNCS 11176. Toulouse, France (2018)

10. Bruneliere, H., Garcia, J., Desfray, P., Khelladi, D.E., Hebig, R., Bendraou, R., Cabot,
J.: On Lightweight Metamodel Extension to Support Modeling Tools Agility. In: Eu-
ropean Conference on Modelling Foundations and Applications (ECMFA 2015), pp.
62–74. Springer (2015)

11. Bruneliere, H., Marchand de Kerchove, F., Daniel, G., Cabot, J.: Towards Scal-
able Model Views on Heterogeneous Model Resources. In: Proceedings of the 21th
ACM/IEEE International Conference on Model Driven Engineering Languages and Sys-
tems, pp. 334–344. ACM, New York, NY, USA (2018)

12. Bruneliere, H., Perez, J.G., Wimmer, M., Cabot, J.: EMF Views: A View Mechanism for
Integrating Heterogeneous Models. In: International Conference on Conceptual Model-
ing (ER 2015), pp. 317–325. Springer (2015)

13. Burger, E., Henss, J., Küster, M., Kruse, S., Happe, L.: View-based Model-driven Soft-
ware Development with ModelJoin. Software & Systems Modeling 15(2), 473–496 (2016)

14. Chevalier, M., El Malki, M., Kopliku, A., Teste, O., Tournier, R.: How can we imple-
ment a multidimensional data warehouse using nosql? In: International Conference on
Enterprise Information Systems, pp. 108–130. Springer (2015)

15. Cho, J., Garcia-Molina, H.: Synchronizing a Database to Improve Freshness. In: ACM
SIGMOD Record, pp. 117–128. ACM (2000)

16. Daniel, G., Jouault, F., Sunyé, G., Cabot, J.: Gremlin-ATL: a scalable model transfor-
mation framework. In: Proceedings of the 32nd ASE Conference, pp. 462–472. IEEE
(2017)

17. Daniel, G., Sunyé, G., Benelallam, A., Tisi, M., Vernageau, Y., Gómez, A., Cabot,
J.: NeoEMF: A Multi-database Model Persistence Framework for Very Large Models.
Science of Computer Programming 149, 9–14 (2017)

18. Daniel, G., Sunyé, G., Cabot, J.: Mogwäı: a framework to handle complex queries on
large models. In: Proceedings of the 10th RCIS Conference, pp. 225–237. IEEE (2016)

19. Debreceni, C., Horváth, Á., Hegedüs, Á., Ujhelyi, Z., Ráth, I., Varró, D.: Query-driven
Incremental Synchronization of View Models. In: Proceedings of the 2nd Workshop on
View-Based, Aspect-Oriented and Orthographic Software Modelling, p. 31. ACM (2014)

https://tinkerpop.apache.org/gremlin.html
https://tinkerpop.apache.org/gremlin.html

Scalable Model Views over Heterogeneous Modeling Technologies and Resources 41

20. Derler, P., Lee, E.A., Vincentelli, A.S.: Modeling Cyber–Physical Systems. Proceedings
of the IEEE 100(1), 13–28 (2012)

21. Eclipse Foundation: Connected Data Objects (CDO) (2020). URL https://www.

eclipse.org/cdo/

22. ECMA International: JSON (JavaScript Object Notation) (2020). URL https://www.

json.org

23. Eramo, R., de Kerchove, F.M., Colange, M., Tucci, M., Ouy, J., Bruneliere, H., Di Rus-
cio, D.: Model-driven Design-Runtime Interaction in Safety Critical System Develop-
ment: an Experience Report. Journal of Object Technology 18(2), 1–22 (2019)

24. Golra, F.R., Beugnard, A., Dagnat, F., Guérin, S., Guychard, C.: Addressing Modu-
larity for Heterogeneous Multi-model Systems using Model Federation. In: Companion
Proceedings of the 15th International Conference on Modularity, pp. 206–211. ACM
(2016)

25. Gupta, H.: Selection of views to materialize in a data warehouse. In: International
Conference on Database Theory, pp. 98–112. Springer (1997)

26. Hutchinson, J., Whittle, J., Rouncefield, M.: Model-Driven Engineering Practices in
Industry: Social, Organizational and Managerial Factors that Lead to Success or Failure.
Science of Computer Programming 89, 144–161 (2014)

27. ISO/IEC/IEEE: Standard 42010:2011, Systems and Software Engineering - Architecture
Description (2020). URL https://www.iso.org/standard/50508.html

28. Jouault, F., Allilaire, F., Bézivin, J., Kurtev, I.: ATL: A Model Transformation Tool.
Science of computer programming 72(1-2), 31–39 (2008)

29. Kolev, B., Valduriez, P., Bondiombouy, C., Jimenez-Peris, R., Pau, R., Pereira, J.:
Cloudmdsql: querying heterogeneous cloud data stores with a common language. Dis-
tributed and parallel databases 34(4), 463–503 (2016)

30. Kolovos, D.S., Paige, R.F., Polack, F.A.: Merging models with the epsilon merging
language (eml). In: International Conference on Model Driven Engineering Languages
and Systems, pp. 215–229. Springer (2006)

31. Kolovos, D.S., Rose, L.M., Matragkas, N., Paige, R.F., Guerra, E., Cuadrado, J.S.,
De Lara, J., Ráth, I., Varró, D., Tisi, M., et al.: A Research Roadmap Towards Achieving
Scalability in Model Driven Engineering. In: Proceedings of the Workshop on Scalability
in Model Driven Engineering (BigMDE’13), co-located with STAF conferences, p. 2.
ACM (2013)

32. Kolovos, D.S., Rose, L.M., Matragkas, N.D., Paige, R.F., Polack, F.A., Fernandes, K.J.:
Constructing and navigating non-invasive model decorations. In: International Con-
ference on Theory and Practice of Model Transformations (ICMT 2010), pp. 138–152.
Springer (2010)

33. Kolovos, D.S., Wei, R., Barmpis, K.: An Approach for Efficient Querying of Large
Relational Datasets with OCL based Languages. In: Proceedings of the Workshop
on Extreme Modeling co-located with ACM/IEEE 16th International Conference on
Model Driven Engineering Languages & Systems (MoDELS 2013), Miami, Florida, USA,
September 29, 2013., pp. 46–54 (2013). URL http://ceur-ws.org/Vol-1089/6.pdf

34. Langlois, B., Exertier, D., Zendagui, B.: Development of Modelling Frameworks and
Viewpoints with Kitalpha. In: Proceedings of the 14th Workshop on Domain-Specific
Modeling (DSM), co-located with SPLASH 2014, pp. 19–22. ACM (2014)

35. Madani, S., Kolovos, D., Paige, R.F.: Towards Optimisation of Model Queries: A Parallel
Execution Approach. Journal of Object Technology - The 15th European Conference
on Modelling Foundations and Applications (ECMFA’19) 18(2), 3:1–21 (2019)

36. Marussy, K., Semeráth, O., Varró, D.: Incremental View Model Synchronization Using
Partial Models. In: Proceedings of the 21th ACM/IEEE International Conference on
Model Driven Engineering Languages and Systems (MODELS 2018), pp. 323–333. ACM
(2018)

37. Object Management Group (OMG): Requirements Interchange Format (ReqIF) (2020).
URL https://www.omg.org/spec/ReqIF

38. Object Management Group (OMG): Unified Modeling Language (UML) (2020). URL
http://www.uml.org

39. OMG: MOF 2 XMI Mapping Specification version 2.5.1 (2020). URL http://www.omg.

org/spec/XMI/2.5.1/

https://www.eclipse.org/cdo/
https://www.eclipse.org/cdo/
https://www.json.org
https://www.json.org
https://www.iso.org/standard/50508.html
http://ceur-ws.org/Vol-1089/6.pdf
https://www.omg.org/spec/ReqIF
http://www.uml.org
http://www.omg.org/spec/XMI/2.5.1/
http://www.omg.org/spec/XMI/2.5.1/

42 Hugo Bruneliere et al.

40. Pagán, J.E., Cuadrado, J.S., Molina, J.G.: A Repository for Scalable Model Manage-
ment. Software & Systems Modeling 14(1), 219–239 (2015)

41. Paige, R.F., Kolovos, D.S., Rose, L.M., Drivalos, N., Polack, F.A.C.: The Design of a
Conceptual Framework and Technical Infrastructure for Model Management Language
Engineering. In: Proceedings of the 2009 14th IEEE International Conference on En-
gineering of Complex Computer Systems (ICECCS’09), pp. 162–171. IEEE Computer
Society (2009)

42. Semeráth, O., Debreceni, C., Horváth, Á., Varró, D.: Incremental Backward Change
Propagation of View Models by Logic Solvers. In: Proceedings of the ACM/IEEE
19th International Conference on Model Driven Engineering Languages and Systems
(MODELS 2016), pp. 306–316. ACM (2016)

43. Eclipse Sirius project (2020). URL https://eclipse.org/sirius/

44. Steinberg, D., Budinsky, F., Merks, E., Paternostro, M.: EMF: Eclipse Modeling Frame-
work. Pearson Education (2008)

45. The Eclipse Foundation: Teneo (2020). URL https://wiki.eclipse.org/Teneo

46. Ujhelyi, Z., Bergmann, G., Hegedüs, Á., Horváth, Á., Izsó, B., Ráth, I., Szatmári, Z.,
Varró, D.: EMF-IncQuery: An Integrated Development Environment for Live Model
Queries. Science of Computer Programming 98, 80–99 (2015)

47. Varró, D., Bergmann, G., Hegedüs, Á., Horváth, Á., Ráth, I., Ujhelyi, Z.: Road to a
Reactive and Incremental Model Transformation Platform: Three Generations of the
VIATRA Framework. Software & Systems Modeling 15(3), 609–629 (2016)

48. Wei, R., Kolovos, D.S.: An Efficient Computation Strategy for allInstances(). Proceed-
ings of the 3rd BigMDE Workshop pp. 32–41 (2015)

49. Whittle, J., Hutchinson, J., Rouncefield, M.: The State of Practice in Model-Driven
Engineering. IEEE Software 31(3), 79–85 (2014)

50. Willink, E.D.: Deterministic Lazy Mutable OCL Collections. In: Federation of Inter-
national Conferences on Software Technologies: Applications and Foundations (STAF
2017), pp. 340–355. Springer (2017)

https://eclipse.org/sirius/
https://wiki.eclipse.org/Teneo

	Introduction
	Background
	Motivation
	A Conceptual Approach for Integration
	A Concrete Instantiation of our Conceptual Approach
	Evaluation
	Related Work
	Lessons Learned
	Conclusion and Future Work

