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Abstract
The increasing complexity of reactive systems can be mitigated with the use of components and composition languages in
model-driven engineering. Designing composition languages is a challenge itself as both practical applicability (support for
different composition approaches in various application domains), and precise formal semantics (support for verification
and code generation) have to be taken into account. In our Gamma Statechart Composition Framework, we designed and
implemented a composition language for the synchronous, cascade synchronous and asynchronous composition of statechart-
based reactive components. We formalized the semantics of this composition language that provides the basis for generating
composition-related Java source code as well as mapping the composite system to a back-end model checker for formal
verification and model-based test case generation. In this paper, we present the composition language with its formal semantics,
putting special emphasis on design decisions related to the language and their effects on verifiability and applicability.
Furthermore, we demonstrate the design and verification functionality of the composition framework by presenting case
studies from the cyber-physical system domain.
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List of symbols
Tuples, sets and sequences
(. . .) Tuple
{. . .} Set
| . . . | Size of set
〈. . .〉 Sequence
A∗ The set of finite (possible repeating) sequences of

the elements of the set A
ε The empty sequence
|s| The length of sequence s
s[i] The i th element of sequence s
σ(a) A permutation of set a
Sσ (a) All permutations of set a

Indices and sizes
i A generic index variable
j A secondary generic index variable
a′ Another value for variable a
n A generic size variable
k An index used for components
K The number of components
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Temporal valuations
a′ Next value of a
a(i) The value of variable a in the i th step

Component types
−© Definition of synchronous components (“single-

threaded”)
−©k The kth synchronous component
s© Definition of synchronous composites
c© Definition of cascade composites
?©〉 −© Definition of composite ?© as a synchronous com-

ponent
=© Definition of asynchronous components (“multi-

threaded”)
=©k The kth asynchronous component
�−© Definition of the asynchronous wrapper compo-

nent
a© Definition of asynchronous composites
?©〉 =© Definition of ?© as an asynchronous component
ak Part a of the kth component (e.g., Sk of −©k)

Events
e An event
E The set of events
I The set of input events
O The set of output events
D The domain function
D(e) The domain of event e
d An element of a domain
di The i th element of a domain
p A parameter (of an event)
⊥ The empty parameter denoting that an event is

missing
inst(e) The instances of event e
inst⊥(e) The instances of event e including the “null”

instance (e,⊥)

Î All input events of constituent components
Ô All output events of constituent components
D̂ All domains of events in constituent components

Event vectors
vE An event vector for events in E
VE All possible event vectors for events in E
vI An input vector
vO An output vector
VI All possible input vectors
VO All possible output vectors
vÔ The last output of constituent components
VÔ All possible last outputs of constituent compo-

nents
⊥Ô Empty output vector for all constituent compo-

nents

⊥I Empty input vector

Event sequences
q A queue (a sequence of event instances)
ω An output sequence of event instances
Ω The set of possible output sequences of event

instances

Component parts
S The set of states
s A state
s0 The initial state
T A state-transition function
t A single state-transition

Composite parts
C Constituent components of a composite
� Channels in a composite
�(e) The events linked to event e determined by the

channels
X The order of execution of components of cascade

composites

Asynchronous adapter
ec The control event
C The set of clocks in an adapter
ctii A clock producing ec periodically after every t1
trig The trigger predicate
as Part a of the wrapped synchronous component

(e.g., Ss of −©s)

Messages
m A message
eO The source event of a message
Eext
O The output event set of the environment

eI A single target event of a message
EI Target events of a message
Eext
I The input event set of the environment

src(m) The source (sending) component of m
e© The environment

Occurrences
send(m) The occurrence of sending message m
recv(m, eI )The occurrence of receiving message m on target

event eI
[t] An occurrence of transition t
m I A message triggering the occurrence of a transi-

tion
mO A message generated by an occurrence of a tran-

sition
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MO The messages generated by an occurrence of a
transition

#occ The position of occurrence occ in a total ordering
of occurrences

τ(occ) The timestamp of occurrence occ according to a
global clock

1 Introduction

Reactive systems process events coming from the environ-
ment and react to them in accordance with their internal
states. In the case of complex reactive systems, platform-
or component-based design techniques [1] can be used that
integrate reactive components, possibly in a hierarchical way.
The implementation and verification of the composite sys-
tem necessitate precise design languages both at component
level and integration level.

To model the dynamic behavior of reactive components,
statecharts [2] is an expressive language offering powerful
constructs, such as composite states for hierarchical state
refinement, parallel regions for describing parallel behav-
ior, history states and variables for expressing memory, and
choices, fork and join transitions to model complex transi-
tions and actions. Modeling standards like UML and SysML
have adopted the statechart formalism, but they intentionally
left parts of its dynamic semantics formally un- or under-
specified [3,4], even in the recently published specifications
(fUML [5], PSSM [6] and PSCS [7]). These specifications
provide execution semantics, but several aspects are not fixed
(e.g., there are no assumptions about global synchronization).
As a result, design tools, such as Rhapsody,1 BridgePoint,2

MagicDraw,3 and Yakindu Statechart Tools4 support slightly
different semantic variants of the formalism [8,9].

At the integration level, existing modeling standards sup-
port the (de)composition of components on a rather syntactic
level. The Component Diagram and the Composite Structure
Diagram of UML, and the Internal Block Diagram of SysML
provide support to capture what type of interaction (data or
control) is intended between the components, but they do not
provide precise behavioral semantics to allow direct imple-
mentation and formal verification of the composite system
(i.e., the exact behavior resulting from component interac-
tions, particularly related to the scheduling of components).
Thus, the composition of individual components in a well-
founded way is a significant challenge for system integrators,
who may even have to cope with the problem that components
provided by vendors may originate from different modeling

1 https://www.ibm.com/us-en/marketplace/rational-rhapsody/.
2 https://xtuml.org/.
3 https://www.nomagic.com/products/magicdraw/.
4 https://www.itemis.com/en/yakindu/state-machine/.

tools with slightly different concrete syntax and semantic
variants.

Our Gamma Statechart Composition Framework [10] is
an integrated modeling tool that aims to support the semanti-
cally well-founded composition of heterogeneous statechart
components where individual components may use different
statechart semantics. The Gamma framework intentionally
reuses statechart models of existing tools and their respective
code generators for individual components. At its core, it pro-
vides the Gamma Composition Language that supports the
interconnection of components in a hierarchical way on the
basis of precise semantics, including scheduling strategies
and constraints. Additionally, Gamma provides automated
code generators for composite models and test case gen-
erators for the interaction between components. Gamma
also supports system-level formal verification and validation
(V&V) by mapping statechart and composition models into
formal models of the UPPAAL5 [11] model checker.6

In this paper, we focus on the Gamma Composition Lan-
guage and present its elements with their formal syntax
and design examples. We also present the formal seman-
tics of the language, discussing the related design decisions
that coped with practical applicability and verifiability of
the composed system and allowed the implementation of
the above-mentioned code generation, formal verification,
and test case generation functionalities. The main novelty
of our language is that it (1) expects a very simple reactive
behavior and interfaces from the system components facili-
tating component heterogeneity, (2) supports three variants
of composition semantics, namely asynchronous-reactive,
synchronous-reactive, and cascade, covering a notable por-
tion of execution modes used in reactive systems, and (3)
allows the mixing of these composition semantics in a hier-
archical way. To demonstrate the use of the composition
language and the related verification functionality, we present
case studies from the critical cyber-physical system domain.

The paper is structured as follows. Section 2 presents the
motivations and the basic concepts related to the Gamma
framework. The main contribution of the current work, that
is, the Gamma Composition Language (and its related lan-
guages for interfaces, expressions and test cases) is presented
in Sect. 3, whereas the formal semantics of the composi-
tion language is introduced in Sect. 4. Section 5 summarizes
how this semantics supported the functionalities of the
framework. The applicability of the Gamma framework is
demonstrated through three case studies. Section 6 demon-
strates the applicability of the languages of Gamma for the
description of SysML behavioral models. Section 7 demon-
strates the usability of Gamma in the formal analysis of a
communication protocol considering physical phenomena

5 http://www.uppaal.org/.
6 The tool can be extended to map to other formalisms.
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and failure modes in the communication between protocol
participants. Section 8 presents an abstraction-based verifica-
tion approach in Gamma in the context of a railway-themed
case study. The case studies are followed by the presenta-
tion of related modeling languages, tools and frameworks in
Sect. 9. Finally, Sect. 10 provides concluding remarks and
plans for future work.

2 Preliminaries

This section starts with a motivating example (Sect. 2.1),
which is used throughout the paper for presenting various
language constructs. Next, the composite reactive modeling
semantics supported by our composition language are intro-
duced (Sect. 2.2). The section ends with an overview on the
functionalities of the Gamma framework (Sect. 2.3).

2.1 Running example

We demonstrate the development of component-based reac-
tive systems in the Gamma framework in the context of the
MoDeS3 (Model-based Demonstrator for Smart and Safe
Systems) [12] project.7 The project incorporates a model
railway consisting of track elements, such as sections and
turnouts, and several trains moving on the track. The states
of the turnouts (straight or divergent) and the motion of the
trains (forward/backward and speed) are controlled exter-
nally by users. A major challenge of the project was to design
a distributed controller that implements a safety logic to pre-
vent the collision of trains by ensuring that there is at most
one train on every section at any moment.

The distributed controller was designed as the composi-
tion of components belonging to the sections and turnouts.
Each component receives signals from the environment
related to the corresponding track element (e.g., about the
presence and absence of trains), communicates with neigh-
boring track elements to implement the safety logic and sends
signals to the trains to proceed or stop. The components were
designed using statecharts in a third party tool, Yakindu, and
the whole system was integrated in the Gamma Composition
Language, using different semantics at the different levels
in the component hierarchy. At the lower level, components
executed on the same physical controller were composed syn-
chronously as a single piece of software. At the higher level,
these composite components (that now supervise a collection
of track elements) were composed in an asynchronous way
to conform to the network-based communication between
the physical controllers. There is a fundamental difference
between these compositions, as component of a single soft-

7 Project repository with link to webpage: https://github.com/FTSRG/
BME-MODES3/.

Fig. 1 The layout of the MoDeS3 track. Note that segments are com-
posed into zones, each supervised by a single embedded computer,
which communicate through LAN

ware, or even components running on the same hardware
have much higher guarantees than components relying on
remote calls or messages over some network. This distinc-
tion will be handled by the different composition semantics
introduced in the paper.

Figure 1 depicts the MoDeS3 track, which consists of
6 turnouts and 25 sections. The distributed controller is
deployed on 6 microcontrollers, each responsible for a single
turnout and multiple section components. The turnout and the
set of sections supervised by a particular microcontroller is
called a zone.

2.2 Composite reactivemodeling

The component-based logical design of reactive systems
needs precise composition semantics that can be defined
by means of a model of computation. We introduce the
asynchronous-reactivemodel of computation for asynchronous
systems (Sect. 2.2.1) as well as the synchronous-reactive
and cascade models of computation for synchronous sys-
tems (Sect. 2.2.2) supported by our Gamma framework.

2.2.1 Asynchronous systems

In asynchronous systems [13], components represent con-
current entities that communicate with each other using
message queues. Writing to a message queue succeeds
instantly, whereas reading from an empty queue blocks the
reader (nonblocking-write, blocking-read approach). Mes-
sage delivery is assumed to be reliable; therefore, the sender
does not receive nor expect any confirmation (send and for-
get approach). Messages arrive in the target message queue
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in the same order they were sent.8 A read operation always
retrieves a single message from the queue. As extension, pri-
oritized queues can be introduced to reorder the incoming
messages and prefer the urgent ones in the read operation.
Asynchronous-reactive The asynchronous-reactive model
describes concurrent components that are running continu-
ously and react to events independently (therefore, execution
frequency of system components is nondeterministic, but
may be restricted with timing constraints). In the example,
distributed controllers are most naturally modeled with this
semantics, as different hardware and network topologies will
most probably cause a different execution/delivery time in
every case. In this context, synchronization of the compo-
nents has to be ensured by communication protocols.

2.2.2 Synchronous systems

The synchronous domain has a notion of logical time and fol-
lows the semantics of synchronous programming languages
[14–16]. In such systems, components communicate with
each other using signals, which are transmitted and received
through ports. The execution of components is driven by a
clock that emits ticks. System components are executed in
response to these ticks, and the execution of all components
in a system is called a cycle. When a component is executed, it
samples the signals from its incoming ports and transmits sig-
nals through its outgoing ports. Generally, components can
be considered as functions mapping values from their incom-
ing ports to their outgoing ports depending on their current
state. The output signals of components are sustained until
the next tick. As the input signals are sampled only at the
beginning of execution, changes of signals during the execu-
tions are ignored. Contrary to the asynchronous domain, the
components are also able to react to the absence of signals
and even to a combination of signals.
Synchronous-reactive The synchronous-reactive model
describes components that are executed in a lock step fashion
upon every tick, that is, they all sample their input signals at
the beginning of the cycle and process them concurrently.
Thus, communication between components during a cycle
is not possible, receiver components can process transmitted
signals only in the next cycle (initiated by the subsequent
tick). In the example, logical controllers of track segments
may communicate like this, as the program running them
has sufficient control to implement an explicit scheduling.
Other cases, such as implementations in hardware or as PLC
programs also call for this variant.

8 These guarantees shall be achieved by proper control over the network
and the appropriate protocols, which are considered as middleware that
is not taken into account in the semantics. If this is not the case, other
(unreliable) channel models can be considered by explicitly modeling
the channel as a component for verification purposes.

Fig. 2 The model transformation chains and languages of the Gamma
framework. Rectangles represent models: solid border represents an
atomic model, whereas dashed border represents a composite model.
Dotted rectangles represent a set of models belonging together for ful-
filling a more general purpose. Rectangles with moderately rounded
corners represent languages. Rectangles with extensively rounded
corners represent functionalities closely related to the usability of
the language. Solid lines without a base symbol represent model
transformations. Solid lines with a diamond symbol represent model
composition. Dashed lines represent the ability of execution: the source
model is capable of executing the target model

Cascade The cascade model supports the execution of com-
ponents in a linear way (one after another in a specific order
during a cycle) opposed to the concurrent, lock step execution
of components of synchronous-reactive models. The execu-
tion of a cycle is also initiated by a tick; however, components
sample their input signals right before they are executed and
not at the beginning of the cycle. This enables communica-
tion between components during a cycle in a feed-forward
way. Also, repeated execution of components during a single
cycle is supported. In the example, a single logical controller
may implement filters on its inputs and outputs, which does
induce an execution order. Pipeline-like software or hardware
implementations are best modeled with this variant.

2.3 The Gamma framework

The Gamma Statechart Composition Framework is an inte-
grated toolset that supports model-driven design, validation,
verification and code generation for component-based reac-
tive systems. Figure 2 depicts the model transformation
chains of the Gamma framework, the input and output mod-
els of these model transformations as well as the languages
in which they can be defined, and the relations between these
models.

There are two types of components in Gamma, atomic and
composite components. The Gamma Statechart Language
(GSL) supports the definition of atomic components in the
form of statecharts. Also, this language enables the integra-
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Table 1 Component types
supported by the Gamma
Composition Language

Atomic Composite

Synchronous Statechart Synchronous composite component, cascade composite component

Asynchronous Asynchronous adapter Asynchronous composite component

Fig. 3 Dependencies between the modeling languages of the Gamma
framework

tion of component models (so-called engineering models)
from off-the-shelf modeling tools, e.g., Yakindu or Magic-
Draw, as it is an intermediate formalism to which external
models can be transformed. Composite components can
be created by composing atomic components and other
composite components based on well-defined interfaces
using the Gamma Composition Language (GCL). Table 1
describes the component types supported by the GCL in
terms of synchronousness and compositeness. The Gamma
Test Language (GTL) supports the description of test cases
as expected behaviors of Gamma components in response
to input events, together with assertions regarding the state
of the component. Expressions in these languages use the
Gamma Expression Language (GEL). Figure 3 depicts the
dependencies of these languages: GCL depends on GEL, and
GTL and GSL depend on GCL.

To put these languages in context (and highlight the moti-
vations for their design and formal semantics), below we
summarize the automated functionalities provided by the
Gamma framework.

Validation of models takes place at the level of atomic
components as well as at system level by evaluating well-
formedness constraints.

Once the entire system is modeled as a composition
of statechart-based components, Gamma can generate the
implementation of the composition code that wraps the exist-
ing (autogenerated) source code of atomic components.
Accordingly, external code generators for statechart com-
ponents can be integrated by implementing a plugin for
the composition code generator that wraps the external
code behind the interfaces generated by Gamma. Currently,
Gamma supports the generation of Java code.

Formal verification of systemmodels is provided by model
checking [17], a technique that explores the behavior of
the given model exhaustively against properties specified in
mathematical logic (e.g., to check that unsafe states are not
reachable). To assist software engineers, Gamma hides the

inherent complexity of formal verification by (1) offering
a pattern-based approach to specify the required properties
[18], (2) using automated model transformations to the anal-
ysis models and queries of verification back-end tools like
UPPAAL, and (3) back-annotating [19] the execution traces
retrieved by the model checker (i.e., witnesses or counterex-
amples for the checked properties) to the system model in
the form of abstract test cases. Gamma is also capable of
generating a JUnit test case that replays the execution trace
on the implementation.

We use the concepts ofmodel-based testing [20] and apply
the model checker to generate execution traces to achieve a
designated test coverage based on automatically generated
queries, namely that (1) each state of every statechart com-
ponent is reached, or (2) each transition of every statechart
is executed. These traces can be represented as abstract test
cases in the GTL and also as concrete JUnit tests. With this
test suite, designers can gain a certain level of confidence in
the correctness of the Gamma toolchain (this way also vali-
dating the code generators) before deploying it into a critical
environment.

3 Composition in the Gamma framework

This section introduces the composition structures in the
Gamma framework. The design and formalization of the
composition language can be considered as the most impor-
tant conceptual result of this work, and thus, the most
important novelty of Gamma 2.0 compared to the version
introduced in [10]. After a brief introduction to the common
structure of Gamma files, the following sections present the
Gamma Composition Language (GCL) through the MoDeS3

running example introduced in Sect. 2.1.
The compositional root elements of Gamma files are pack-

ages. A Gamma model may contain one or more packages.
They can contain constant declarations, interface definitions
(Sect. 3.1) and Gamma components (Sects. 3.2–3.5). Ele-
ments declared in a package can be reused in other packages
by importing the containing package, using relative or abso-
lute paths to the other file (with or without file extension).

An example package can be seen below, which imports
another package to reuse the component Z1 in the declara-
tion of an asynchronous adapter component Z1Adapter (see
Sect. 3.5) and defines a constant integer.
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� �

package z1_adapter
/ / Impor t ing other packages
import " model / Components / Z1 "
/ / Cons tant s can be used in the d e f i n i t i o n s
const QUEUE_CAPACITY : integer : = 16
/ / Component d e f i n i t i o n
async Z1Adapter of component z1 : Z1 [

. . .
] { . . . }

� �

Well-formedness constraint there must not be any circular
dependencies between the packages.

3.1 Interfaces and ports

Event Events represent discrete occurrences of some impor-
tance with optional parameters (the “payload”). Every event
has a source and may trigger some behavior. In the frame-
work, events may describe the sending/receiving of signals
in the case of synchronous components or messages in the
case of asynchronous components.
Interface The GCL supports the definition of interfaces,
which serve as contracts between interacting components
of Gamma models describing the types of events a com-
ponent can dispatch (out or inout events) or receive (in
or inout events). Furthermore, an interface may inherit
all declared events from zero or more other interfaces to
enable polymorphism (denoted by A ≺ B if B = A or
if B extends A or if B extends an interface C such that
A ≺ C). The fragment of the GCL metamodel describing
interfaces and events is depicted in Fig. 4a. An example
for inheritance can be seen below, where Derived con-
tains two events: foo (which has an integer parameter)
and bar.
� �

i n t e r f a ce Base {
in event foo ( param : integer )

}

i n t e r f a ce Der ived extends Base {
inout event bar

}
� �

The interfaces used in the safety logic model of MoDeS3

are depicted in Fig. 5a. Interface Protocol contains events
used for the communication between track elements (sec-
tions and turnouts) to implement the safety logic protocol.
SectionControl contains events controlling traffic on a cer-
tain section (enabled or disabled), while TurnoutControl can
be used by the environment to change the state of a certain
turnout. The events of Train denote the arrival end departure
of a train on a certain section. Finally, TrainControl events
are also used by the environment to move the train forward
or backward (the absence of these events mean the train has
to be idle).

Port Ports serve as communication endpoints of component
instances. Each event is dispatched or received through a port.
Each port realizes a single9 interface by defining an interface
realization. Components do not realize interfaces directly.
Interface realization Interfaces can be realized in either pro-
vided or required mode. The difference is explained using
the interface definition Derived from before.

– Provided mode ports dispatch and receive events accord-
ing to the direction they have been declared. For example,
the component owning the port will be able to dispatch
bar (out or inout events) and receive foo and bar (in or
inout events) through this port. Such a port would be
defined as:
� �

port P r o v i d e r Po r t : provides Der ived
� �

– Required mode interfaces are conjugated,10 i.e., in events
will be dispatched (because the receiver provides an in
event), and out events will be received (the dispatcher
provides an out event). A component owning the example
port will be able to dispatch events foo and bar (declared
in or inout events in the interface) and receive event bar
(declared out or inout events) through this port:
� �

port Requ i r e r Po r t : requi res Der ived
� �

If two ports realize interfaces A in required mode and
B in provided mode such that A ≺ B, the two ports are
compatible (i.e., they can be connected) since every event
that A requires is present on B in the opposite direction. This
is the semantic difference between required and provided
realizations—events on a required interface must be present
on the other side of the connection, while provided interfaces
may have unconnected events.

We say that a port is a broadcast port if (1) the interface
realization mode is ‘provided’ and (2) the realized interface
contains onlyout eventsOR (1) the interface realization mode
is ‘required’ and (2) the realized interface contains only in
events. Unlike other ports, a broadcast port can be connected
to multiple ports without the need to handle multiple occur-
rences of the same event, because every in event has a single
source only (see the semantics and well-formedness con-
straints of channels in Sect. 3.3).

Even though Gamma interfaces may contain both in and
out events, the reason we use only out events in the MoDeS3

safety logic is to have broadcast ports. The directed events,
provided-required modes and broadcast ports, offer a flexi-
ble way to model communication interfaces. Our goal with
this design is to explore the possibilities of interface-based
communication in reactive systems while giving freedom to

9 The single interface may inherit from many others, so this is not a
limitation in practice.
10 This is equivalent to interface conjugation in SysML.
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users to employ their own convention (such as input/output
interfaces).

3.2 Components

Components serve as types of component instances. They
can have parameters that can be used in their bodies just
like constant declarations. Components may be atomic or
composite and synchronous or asynchronous (see Sects. 3.4–
3.5). A component can have zero or more ports. In Gamma,
any interaction of a component, whether originating from an
internal subcomponent or the implementation of an atomic
component, must occur through a port.11 This ensures that
external dependencies and interactions are explicitly mod-
eled, leading to fully encapsulated units of behavior that
can be logically analyzed in and of itself,12 facilitating
contract-based and compositional analysis and monitoring.
The fragment of the GCL metamodel describing component
types is depicted in Fig. 4c.
Atomic Component An atomic Gamma component is an
abstract element with the following properties:

– a set of states with a well-defined initial state,
– a set of input and output events collected from ports of

the component,
– a deterministic13 transition function describing the behav-

ior of the component, i.e., the new state and raised output
events in response to input events.

The built-in Gamma Statechart Language (GSL) sup-
ports the definition of atomic components with statecharts.
It offers elements similar to that of UML and SysML, such
as composite states and orthogonal regions for describing
concurrent execution, history and variables for expressing
memory, timeouts for modeling timed behavior, and choices
for complex transitions. Some elements that are not sup-
ported include completion-related constructs and internal

11 Note that this is only a syntactical requirement, as direct interaction
between subcomponents can always be transformed to strict hierarchical
communication by adding extra ports and routing events up and down
in the hierarchy. A component with no ports cannot interact with its
environment, but may have internal (e.g., timed) behavior that can be
analyzed.
12 Like most similar formalisms, Gamma does not consider the oper-
ational environment or the executing (virtual) machine directly. Inter-
actions resulting from such unconsidered circumstances can very well
influence the behavior of a component in many specific ways. While
we do not consider these directly, the effect of the environment and
different fault and interaction models can be captured by adding addi-
tional ports to the components and substituting simple communication
channels with one or more components representing the communication
platform.
13 This definition is extensible to nondeterministic components, but this
would be relevant only in the case of environmental models, which is
not in the primary scope of the current work.

transitions (the latter can be mapped to subregions though).
Additional constructs not present in UML/SysML statecharts
are complex triggers (reacting to a combination of events) and
metadata annotations that can refine the execution semantics
(e.g., defining the means of conflict resolution when multi-
ple transitions are enabled). Most of the differences originate
from the fact that UML/SysML statecharts have an essen-
tially asynchronous semantics, while the GSL was designed
to support synchronous-reactive statecharts (see Sect. 4 for a
formal discussion of semantics).

In the current implementation, the GSL provides a com-
mon basis for all functionalities of the Gamma framework.
However, the definition of atomic Gamma components is not
restricted to the GSL, the framework can be extended with
other languages as long as it defines the behavior in terms of
the properties above.
Component instance Component instances are individual
reactive elements with their own internal state and a (con-
stant) value assigned to each of their parameters. Each
instance has a type (a component definition) that determines
the ports on which the component instance can communicate
as well as the internal states it can assume and the transitions
it can fire. Code generation and analysis always happen on
an instance with all parameters bound to a constant value.
An example component instance S12 can be seen below.
Note that whether the component instance is synchronous
or asynchronous is defined by its type (see Sects. 3.4, 3.5).
� �

component S12 : Sec t i on
� �

Well-formedness constraint each parameter of a compo-
nent type must be bound to a value with an appropriate type
in every instance of the component.
Composite component Composite components are defined in
terms of one or more component instances (either atomic or
composite, therefore supporting hierarchical composition).
The behavior of the composite component is defined by the
interaction of its constituent components. Sects. 3.4 and 3.5
present the supported composite component types in detail,
after Sect. 3.3 introduced common communication elements
(supported in each composite component type) required to
define interactions between constituent components.

3.3 Communication elements

The fragment of the GCL metamodel describing communi-
cation elements is depicted in Fig. 4b.
Instance port reference The instance port reference element
is the qualified name of a port of a component instance; thus,
it refers to a single port and a single component instance.
An example instance port reference can be seen below.
� �

S12 . ProtocolOutCCW
� �
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Fig. 4 Fragments of the GCL metamodel related to composite components

Well-formedness constraint the port must be defined on
the type of the component instance.
Port bindingThe port binding element is responsible for map-
ping the ports of a composite component (“system ports”),
to the ports of constituent component instances.14 There-
fore, it refers to a single system port and a single instance
port reference. All events received on the particular sys-
tem port will be transmitted to the port of the associated
component instance, and all the events dispatched through
the particular instance port will be transmitted to the sys-
tem port. An example port binding can be seen below.
� �

bind S12ProtocolOutCCW −> S12 . ProtocolOutCCW
� �

Well-formedness constraints (1) in the case of syn-
chronous and cascade composite components (see Sect. 3.4),
a non-broadcast system port must be mapped to a single
port of a constituent component instance; (2) in the case
of synchronous and cascade composite components, a non-
broadcast port of a constituent component instance can be
connected to at most one system port; (3) both ports must
realize their interface in the same mode; (4) given that the

14 The approach is again similar to using proxy ports and binding con-
nectors in SysML.

system port realizes interface S and the port of the compo-
nent instance realizes interface C , if the realization mode is
required then C ≺ S (S extends C) and if it is provided then
S ≺ C .
Channel Channels are responsible for the connection of com-
ponent instance ports. Technically, they use instance port
references to refer to the endpoints. There are two types of
channels: simple channels and broadcast channels.

– Simple channels support the connection of two ports. An
example of a simple channel can be seen below (connect-
ing provided port ProtocolOutCW of Section instance
S12 and required port ProtocolInStraight of Turnout
instance T1 in composite component Z1 as defined in
Fig. 5b).
� �

channel [ S12 . ProtocolOutCW ] −o )−
[ T1 . P r o t o c o l I n S t r a i g h t ]

� �

Well-formedness constraints (1) the connected ports must
be compatible (as defined in Sect. 3.1); (2) in the case
of synchronous and cascade composite components (see
Sect. 3.4) a non-broadcast port must not be referred to
in more than one channel or port binding (to avoid race
conditions, since synchronous components cannot han-
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(a)

(c)

(d)

(b) (e)

Fig. 5 Model snippets related to the MoDeS3 safety logic
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dle multiple occurrences of the same event at the same
time).

– Broadcast channels support sending events to multiple
target ports. Such channels refer to (1) a single broad-
cast port and (2) one or more other ports. In this case,
the direction of event transmission is determined: the
broadcast port dispatches events and all the other ports
connected to it receive them. A broadcast channel exam-
ple can be seen below (connecting broadcast port Train
of component instance train to the required ports Train
of component instances lowerLevelModel and higher-
LevelModel).
� �

channel [ t r a i n . T r a i n ] −o )−
[ lowerLeve lModel . T r a in , h igherLeve lMode l . T r a i n ]

� �

Well-formedness constraints (1) the connected ports must
be compatible; (2) non-broadcast ports must not be
referred to in more than one channel or port binding in the
case of synchronous and cascade composite components
(but broadcast ports may).

3.4 Synchronous components

This section introduces the synchronous components of the
GCL, including their informal behavioral semantics. Syn-
chronous components can be either atomic components (e.g.,
statechart definitions, introduced in Sect. 3.2) or composite
components (synchronous and cascade). See the left side of
Fig. 4c for the relevant part of the metamodel.

Synchronous components represent systems that com-
municate in a synchronous manner using signals. Their
execution is scheduled by a scheduler, which can be an asyn-
chronous adapter component (see Sect. 3.5) or a custom
scheduler implementation invoking a component from time
to time. The execution of a synchronous component con-
forms to a turn-based semantics. A turn is called a cycle. In
a cycle, synchronous components process incoming signals
and produce output signals in accordance with their inter-
nal states. Output signals are present for a single execution
cycle only, i.e., the signal disappears after one cycle (but
another output signal may be produced then). The seman-
tics of synchronous components was designed in accordance
with the synchronous-reactive and cascade models of com-
putation presented in Sect. 2.2.2.
Synchronous composite component The execution of a syn-
chronous composite component is based on the execution of
its contained component instances. When a single compo-
nent instance is executed, it (1) processes signals received in
the last execution cycle, (2) assumes a new state according
to the processed signals and (3) produces signals that can be
received in the next cycle by others or itself.

In each cycle, all component instances of the particular
composite component are executed. As contained compo-

nents cannot affect each other during a single execution cycle,
the execution order of contained components does not matter.
The results of an execution cycle are the same regardless of
the execution order of the components, which is a key feature
of synchronous composite components.

In Fig. 5b, synchronous composite component Z1 is
depicted. Note how the previously introduced endpoint and
communication elements can be used to establish a strongly
coupled composite component.
Cascade composite component Cascade composite com-
ponents are structurally similar to synchronous composite
components, but their execution semantics differ. The exe-
cution of a cascade composite component also consists of
cycles. In a single cycle, all constituent components are exe-
cuted in a specific order, which can be based on either an
execution list defining the order of the execution of compo-
nents (has to be defined explicitly), or the declaration order
of the component instances (default). The execution list can
contain a particular component instance one or more times,
i.e., a component instance can be executed multiple times in
a single cycle. If no execution list is defined, each component
instance is executed exactly once in the order of declaration.

When a component is executed, it (1) processes all
incoming signals, (2) assumes a new state according to the
processed signals and (3) produces output signals. However,
the effect of a signal is observable immediately in the same
execution cycle to other component instances executed later
(feed-forward connections), and not only in the next one as
in synchronous composite components. Accordingly, signals
sent through feedback connections, i.e., when a component
instance sends a signal to another one that comes earlier in the
execution order, are observable in the next execution cycle.
Note that cascade and synchronous composite components
are semantically incompatible, that is, there are models in
both variants that cannot be simulated by a model in the other
due to the differences in the signal transfer (with respect to
trace equivalence).

Well-formedness constraints if an execution list is defined,
it must contain each defined component instance at least once.

Figure 5c depicts a variant of synchronous composite
component Z1 by defining an execution list. Note that the def-
inition of cascade and synchronous composite components
differ in the cascade keyword at the beginning of the com-
ponent definition and the optional definition of an execution
list.

3.5 Asynchronous components

This section introduces the asynchronous components of the
GCL. Asynchronous components can be either atomic com-
ponents (asynchronous adapter) or composite components
(asynchronous composite component).
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Asynchronous components represent independently run-
ning component instances. There is no guarantee on the exact
running time or the running frequency of such components,
so different interleavings of component executions can occur
nondeterministically. Therefore, asynchronous components
may receive multiple messages between two executions,
which requires communication with buffered messages. The
semantics of asynchronous components was designed in
accordance with the asynchronous-reactive model of com-
putation presented in Sect. 2.2.1.
Asynchronous adapter An asynchronous adapter wraps a
single synchronous component instance, turning it into an
asynchronous component. The adapter can be regarded as a
composite component with a single synchronous instance,
such that adapters implicitly have all ports of the wrapped
synchronous component—and optionally some additional
ones for the reception of control messages (see below).

Furthermore, an asynchronous adapter has one or more
message queues, which store the incoming messages of the
component and have multiple attributes:

– Capacity specifies the maximum number of messages
that can be stored in the particular queue. If a queue is
full and an additional message is received, the message is
discarded. Note that the absence of this attribute implies
a queue with an unlimited size, which may lead to an
infinite state space. Therefore, the capacity attribute has
a great impact on verification and may also be necessary
for code generation.

– Priority of a queue specifies the order in which the
contents of message queues are retrieved during the exe-
cution of the asynchronous component. A message is
always retrieved from a non-empty queue with the high-
est priority. Priority values can be non-negative integers,
where higher values represent higher priorities.

– Event references specify the types of messages that can be
stored in the particular message queue (demultiplexing
incoming messages into message queues). The language
allows referring to a single event of a single port, all
events of a port, or all events of the component. If a
particular message could be stored in multiple message
queues, the one declared first will be used, supporting
hierarchical filters.

During execution, messages are retrieved from messages
queues one by one. A message is always taken from the
highest priority non-empty queue. If the particular message
was received on a port that is implicitly derived from the
wrapped component, the message is converted to a signal
(as synchronous components communicate with signals) and
transmitted to the wrapped synchronous component (poten-
tially overwriting previously sent signals). If it was received

on a port explicitly defined on the adapter component, the
message is not transmitted.

An asynchronous adapter also has one or more control
specifications, which specify the messages that are able to
trigger the execution of the wrapped component. If a spec-
ified message arrives, the wrapped component is executed.
Note that signals derived from messages are transmitted to the
wrapped component before execution, so a triggered execu-
tion will process the signal even if the control specifications
is specified for the corresponding message.

Finally, asynchronous adapters can contain zero or more
clocks, which emit tick events at defined timed intervals.
Such time intervals can be defined with the rate attribute.
Currently, seconds and milliseconds are supported as units
of time. Tick events also have to be assigned to a queue and
can be handled in control specifications similarly to regular
events received from ports.

To demonstrate the flexibility of this control specification-
based approach, we present two different execution seman-
tics, reusing the Z1 synchronous composite component
model.

– In Fig. 5d, a single control specification is defined that
triggers on the “any event.” In this case, every time an
event is retrieved from a message queue, the wrapped
component gets executed. This behavior is similar to the
semantics of UML statecharts [21].

– In Fig. 5e, a single control specification is defined that
triggers on the ticks of a clock. In this case, the wrapped
component gets executed in defined periods of time and
processes the events that arrive between the ticks.

Well-formedness constraints (1) the rate attribute of clocks
and the priority and capacity attributes of message queues
must have non-negative integer values; (2) events specified
in control specifications must be input events; (3) event refer-
ences in message queues must refer to input events; (4) each
input event of the asynchronous adapter must be referred in
a single message queue.
Asynchronous composite component Asynchronous com-
posite components support the hierarchical definition of
asynchronous components. Similarly to synchronous com-
posite components, an asynchronous composite component
consists of port bindings and channels in addition to asyn-
chronous component instances. Synchronous components
must be wrapped in an asynchronous adapter to include them
in asynchronous composite components.

In Fig. 6, the entire MoDeS3 safety logic is defined as
an asynchronous composite component, which contains the
wrapped synchronous zone models.
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Fig. 6 The high-level MoDeS3 safety logic model

4 Formal semantics of the Gamma
Composition Language

This section presents the formal structures and semantics
of the GCL, which distinguishes it from other informal and
semi-formal modeling languages. Subsections include short
discussions about additional practical and theoretical aspects,
design decisions and consequences on verification and code
generation.

The section starts with the definition of events and related
structures (Sect. 4.1), and then event vectors related to signals
(Sect. 4.2) and the syntactic definition of a synchronous com-
ponent (Sect. 4.3) are introduced. Next, synchronous com-
posite components and cascade composite components are

formalized both syntactically and semantically (Sects. 4.4,
4.5). After defining event sequences (Sect. 4.6) and asyn-
chronous components (Sect. 4.7), asynchronous adapters
and their semantics are presented (Sect. 4.8). The section
concludes with the definition of asynchronous composite
components (Sect. 4.9) and their semantics in terms of their
environment (Sect. 4.10) as well as messages, occurrences
and execution traces (Sect. 4.11). To help the reader find their
way through the following pages, Appendix lists the symbols
used in the definitions along with a short description.

4.1 Events

Definitions of Sect. 4 consider individual events only, since
ports and interfaces are syntactic sugar that facilitate the
structuring of syntactic contracts. The event definition below
models a specific event of a specific port on a specific com-
ponent instance.

Definition 1 An event is an observable phenomenon that can
occur, such as the reception of a message or the change of
situation (state). Given a set of events E , the finite domains
of event parameters are defined by the domain function D :
E → 2{d1,...,dn}. The domain of an event e ∈ E is D(e), a
set of possible parameter values for event e. We say that an
event e ∈ E is parameterized if |D(e)| > 1. An instance
of an event is (e, p), i.e., the event with a specific parameter
value p ∈ D(e). The set of all event instances for a given
event e is denoted by inst(e) = {(e, p) | p ∈ D(e)}. In case
the absence of an event is of interest, inst⊥(e) is defined as
inst(e) ∪ {(e,⊥)}, where (e,⊥) is the “null” instance that
denotes the absence of the event. Finally, the set of event
instances for events in a set E is inst(E) = ⋃

e∈E inst(e)
(and inst⊥(E) similarly).

Discussion An event represents a declaration only. Further-
more, an event instance is not an event occurrence, as there
may be many occurrences of a single event instance.

4.2 Event vectors

In the synchronous domain, components communicate via
signals. The formal structure describing signals is the event
vector. An event vector can be regarded as a set of cells that
can be filled with event instances, at most one instance in
every cell. Event vectors are the inputs and outputs of syn-
chronous components.

Definition 2 Given a set of events E , an event vector vE is
a function that assigns a (possibly “null”) event instance to
every event e ∈ E such that vE (e) ∈ inst⊥(e). The set of all
possible event vectors is denoted by VE .

Discussion Event vectors do need memory to represent them
at runtime. Event vectors can be regarded as “nullable” vari-
ables dedicated to each event holding the occurrence and
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the parameters of that particular event (if any). The number
of events and the size of their parameter domains therefore
directly affect the size of the state vector in formal verifica-
tion or the memory requirements of an implementation.

4.3 Synchronous component

The following definition specifies the formal syntactic con-
tract of synchronous components. A synchronous component
should have a set of states, a well-defined initial state, a set of
input and output events (collected from ports of the compo-
nent) along with their parameter domains (i.e., data type), and
a deterministic transition function that describes the behavior
of the component, which can be specified arbitrarily.

Definition 3 A synchronous component is a tuple −© =
(S, s0, I , O,D, T ):

– S is the set of potential states, with s0 ∈ S being the
initial state.

– I is the set of input events and O is the set of output events
such that I ∩ O = ∅. The set of all events is denoted by
E = I ∪ O .

– D : E → {d1, . . . , dn} is the domain function of the
events.

– T : S × VI → S × VO is the transition function, which
determines the next state and the output event vector of
the component when executing it in a given state with a
given input event vector. Note that this definition requires
the component to have a deterministic behavior.15

If −© is a timed component, we allow S to track the values
of clock variables [22], assuming that whenever a clock vari-
able in any component of the whole system is increased by
(a positive) Δt , all other clock variables in any component
of the whole system are also increased by the same Δt . Also,
elapsing time may not trigger an internal execution of the
component, i.e., the state of the component apart from the
values of the clock variables may only change in accordance
with T . Finally, we require the execution of transitions to be
atomic and instantaneous, i.e., time may not elapse during
the execution of a single transition (regardless of whether
the component is atomic or composite).
Discussion Synchronous components take an event vector
as an input and generate an event vector as an output. Con-
sidering that the synchronous component is a statechart, the
definition is closest to the virtual finite state machine formal-
ism introduced in [23]. We chose this formalism because it
harmonizes with the synchronous-reactive domain—as com-
ponents are executed in a lock-step fashion, there may be a
need to react to multiple events or a combination of events

15 Again, the definitions could be extended to nondeterministic models.

at the same time, which can be handled by complex triggers
(included in the GSL). Furthermore, as events can occur at
the same time, we do not have to analyze unnecessary inter-
leavings introduced by the often arbitrary order of sequential
message passing. Nevertheless, the more widespread event-
driven finite state machine, which is the basis of most
commonly used statechart formalisms, is also suitable to
describe a component. However, those components may be
triggered by event vectors with a single “non-null” event
instance only, and we must ensure that they are executed
every time a signal arrives (see the asynchronous adapter in
Sect. 4.8).

Note that this definition describes an abstract behavioral
contract that can be implemented by multiple formalisms.
This is the way the framework supports the integration of
external tools and formalisms. The rest of the section is about
the semantics of scheduling components, which is the main
focus of our work.

4.4 Synchronous composite component

Recall that a synchronous composite component is defined
by instantiating a set of constituent components, exporting
input and output ports (events in the formal case) by port
bindings and defining channels (connecting events instead
of ports in the formal case).

Definition 4 A synchronous composite component is a tuple
s© = (C, I , O,�):

– C = { −©1, . . . , −©K } is the set of synchronous com-
ponents constituting the composite component, each
component being −©k = (Sk, s0

k , Ik, Ok,Dk, Tk).

– I ⊆ Î is the set of exported input events, where Î =⋃K
k=1 Ik .

– O ⊆ Ô is the set of exported output events, where Ô =
⋃K

k=1 Ok .
– � : Î \ I → Ô is the channel function that assigns

an output as the source of events to every input, with
the restriction that it must not be defined for elements
of I , that is, an input is either linked to an output or is
an exported input. We demand that for each e ∈ Î \ I ,
D(e) = D(�(e)).

Discussion Note that port binding elements are not present
in the definition, instead exported events are defined. This
implies that events bound together in a composite model are
handled as if they were the same, they are not differentiated
in any way, as they represent the same occurrence.
Semantics To understand the semantics of synchronous
composite components, i.e., its behavior as a synchronous
component, recall that output signals produced by a compo-
nent are sampled by other components in the next execution
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cycle only. To describe this behavior, we extend the com-
bined state space of the constituent components with the last
output event vector of all constituent components. An execu-
tion cycle is described by the emergent transition relation of
the composite component.

Definition 5 A synchronous composite component s© is
itself a synchronous component s©〉 −© = (S, s0, I , O,D, T ):

– S = S1 × . . . × SK × VÔ is the set of potential states,
derived as all possible combinations of the potential states
of the constituent components and the last output event
vector of every component.

– s0 = (s0
1 , . . . , s0

K ,⊥Ô) is the initial state, where every
constituent component is in its initial state and the last
output event vector ⊥Ô ∈ VÔ assigns ⊥ to every output

event (∀e ∈ Ô : ⊥Ô(e) = ⊥).
– I is the set of exported input events and O is the set of

exported output events as defined in Definition 4 (remem-
ber that we denote I ∪ O by E).

– D is implicitly defined by Dk , as D̂ = ⋃K
k=1 Dk and

D(e) = D̂(e) for all e ∈ E .
– The transition function is defined as T

(
(s1, . . . , sK , vÔ),

vI
) = (

(s′
1, . . . , s

′
K , v′

Ô
), vO

)
, where:

– For each input event e ∈ Î of any constituent compo-
nent, let v Î (e) = vI (e) if e ∈ I or v Î (e) = vÔ(�(e))
otherwise. Note that v Î implicitly defines every vIk

as well, because v Î = ⋃K
k=1 vIk .

– The next state s′
k of every component corresponds

to the transition function Tk such that Tk(sk, vIk ) =
(s′

k, v
′
Ok

).

– v′
Ô

= ⋃K
k=1 v′

Ok
is the new vector of last output

events.

– The output of the composite component for each
exported output e ∈ O is defined by the output of
the constituent components: vO(e) = v′

Ô
(e).

Discussion When executing a synchronous composite com-
ponent, its constituent components either react to an external
input (in the case of exported inputs) or to the output of a
constituent component (including themselves) from the pre-
vious execution cycle. This prevents any interaction between
the components during a single execution cycle, allowing
to execute the components in an arbitrary order, essentially
performing partial order reduction statically. This key fea-
ture greatly reduces the size of the state space, making the
synchronous-reactive domain suitable for formal verifica-
tion. Additionally, the definition enables to connect a single
output to multiple inputs of components; however, an input
can be connected only to a single output.

4.5 Cascade composite component

The syntactic definition of cascade composite components
is the same as that of synchronous composite components,
apart from the additional definition of the execution order of
constituent components.

Definition 6 A cascade composite component is a tuple c© =
(C, X , I , O,�):

– C = { −©1, . . . , −©K } is the set of synchronous com-
ponents constituting the composite component, each
component being −©k = (Sk, s0

k , Ik, Ok,Dk, Tk).
– X ∈ C∗ is a finite ordered sequence (with potential repe-

titions) of synchronous components called the execution
sequence specifying the components to be executed in an
execution cycle.

– I ⊆ Î is the set of exported input events, where Î =
⋃K

k=1 Ik .
– O ⊆ Ô is the set of exported output events, where Ô =⋃K

k=1 Ok .
– � : Î \ I → Ô is the channel function that assigns

an output as the source of events to every input, with
the restriction that it must not be defined for elements
of I , that is, an input is either linked to an output or is
an exported input. We demand that for each e ∈ Î \ I ,
D(e) = D(�(e)).

Semantics Cascade composite components do not delay the
internal signals between constituent components executed
after each other (feed-forward signals); therefore, the effect
of an event is computed in a single run. Signals sent to compo-
nents that are not executed anymore in the current execution
cycle (feedback signals) are saved for the next cycle, just like
in synchronous composite components.

Definition 7 A cascade composite component c© is itself a
synchronous component c©〉 −© = (S, s0, I , O,D, T ):

– S = S1 × . . . × SK × VÔ is the set of potential states,
derived as all possible combinations of the potential states
of the constituent components and the last output event
vector of every component.

– s0 = (s0
1 , . . . , s0

K ,⊥Ô) is the initial state, where every
constituent component is in its initial state and the last
output event vector ⊥Ô ∈ VÔ assigns ⊥ to every output

event (∀e ∈ Ô : ⊥Ô(e) = ⊥).
– I is the set of exported input events and O is the set of

exported output events as defined in Definition 6 (recall
that I ∪ O is denoted by E).

– D is implicitly defined by Dk , as D̂ = ⋃K
k=1 Dk and

D(e) = D̂(e) for all e ∈ E .
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– The transition function is T
(
(s1, . . . , sK , vÔ), vI

) =(
(s′

1, . . . , s
′
K , v′

Ô
), vO

)
, computed iteratively for every

X [i] (1 ≤ i ≤ n, n = |X |):
– Let (s(0)

1 , . . . , s(0)
K , v

(0)

Ô
) = (s1, . . . , sK , vÔ) (the

source state).
– Assume that X [i] = −©k . To obtain (s(i)

1 , . . . , s(i)
K , v

(i)

Ô
),

we apply Tk(s
(i−1)
k , vIk ) = (s(i)

k , vOk ) to compute s(i)
k

and vOk , where for all e ∈ Ik ,

vIk (e) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

vI (e) if e ∈ I and this is

the first execution of −©k,

⊥ if e ∈ I and it is not

the first execution, and

v
(i−1)

Ô
(�(e)) if e /∈ I .

The state of other components −© j ∈ C ( j �= k)

remains the same (s(i)
j = s(i−1)

j ). The last output

event vector is updated with vOk : for all e ∈ Ô ,

v
(i)

Ô
(e) = vOi (e) if e ∈ Ok , and v

(i)

Ô
(e) = v

(i−1)

Ô
(e)

otherwise.
– Finally, s′

k = s(n)
k for every −©k ∈ C and vO(e) =

v
(n)

Ô
(e) for every e ∈ O .

Discussion The raison d’etre of the cascade composite
semantic variant is twofold. First, even though it requires
the same amount of memory to represent as synchronous
composite components (see the definition of S), the effect
of an input event on output events is computed in a single
step, further compressing the state space (assuming that a
composite component is stimulated in hopes of observing
an output). Second, it is sometimes desired to “decorate” a
component with auxiliary components such as adapters or
monitors (like in the verification models of the MoDeS3 case
study in Sect. 8) without introducing a delay in the observ-
able effect of an event. Furthermore, it is convenient to think
in terms of pipelines, which is best expressed with cascade
composite components.

One drawback of using cascade composite components
is that the outputs of constituent components may overwrite
each other if a particular component is run multiple times (but
this is still deterministic), and all outputs of all components
are emitted in a single event vector. If the temporal unfolding
of the different reactions is relevant, it may be more beneficial
to use a synchronous composite component. Note that this
difference is enhanced in timed systems, as the atomic and
instantaneous execution of a cycle implies that feed-forward
signals are sent and received at the same instance of time,
while feedback signals may be delayed in a timed sense as
well.

4.6 Event sequences

In the asynchronous-reactive domain, event vectors are sub-
stituted by event sequences.

Definition 8 An event sequenceq = 〈(e1, p1), . . . , (en, pn)〉
is a finite, possibly empty (denoted by ε) sequence of event
instances. The set of all possible event sequences for a set of
events E is denoted by inst(E)∗, while |q| denotes the length
of the sequence. The i th event instance in the sequence is
denoted by q[i] = (ei , pi ). Finally, a permutation of a set
of event instances A is a sequence denoted by σ(A) and all
possible permutations of A is denoted by Sσ (A).

4.7 Asynchronous component

Asynchronous components are syntactically very similar to
synchronous components. The only difference is the defi-
nition of transitions: it is now not a function but a relation,
and instead of taking and producing an event vector, it takes a
single event instance and produces an event sequence chosen
from the potential output sequences nondeterministically.

Definition 9 An asynchronous component is a tuple =© =
(S, s0, I , O,D, T ):

– S is the set of potential states, with s0 ∈ S being the
initial state.

– I is the set of input events and O is the set of output events
such that I ∩ O = ∅. The set of all events is denoted by
E = I ∪ O .

– D : E → {d1, . . . , dn} is the domain of the events.
– T ⊆ S× inst(I )× S× inst(O)∗ is the transition relation,

which determines the possible next states and the possible
sequences of output events of the component (inst(O)∗)
when executing it in a given state with a given input event.
Note that this definition does not require deterministic
behavior.

Discussion Contrary to synchronous components, the defini-
tion of asynchronous components is closest to event-driven
finite state machines or the variant of statecharts defined
in UML. Although currently not supported by the Gamma
Statechart Language, asynchronous components could be
implemented directly by statecharts. In Gamma, the current
means of defining an asynchronous statechart component are
to define a synchronous component containing a statechart
and wrap it in an asynchronous adapter.

Note that allowing a nondeterministic transition relation
is necessary because the order of output events may not
always be specified, e.g., in the case of orthogonal regions.
In the case of synchronous components, the order of events
does not matter as they are collected in an event vector.
The event sequence, however, will be different depending
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on the internal order of raising events. This phenomenon
poses challenges to both verification and code generation
and hinders the reproducibility of test cases and counterex-
amples. Nondeterministic behavior, however, is inherent in
the asynchronous-reactive domain anyway.

4.8 Asynchronous adapter

Recall that an asynchronous adapter wraps a single syn-
chronous component and converts it into the asynchronous
domain. To do this, the trigger predicate with a set of trigger
specifications have to be defined (see control specifications
in Sect. 3.5). Additional ports may also be defined. Formally,
the opportunity to define multiple additional ports and events
on them is only a syntactic sugar, as all of them are mapped
to the control event introduced in the definition below.

Definition 10 An asynchronous adapter for a synchronous
component is defined as a tuple �−© = ( −©, ec, trig):

– −© = (Ss, s0
s , Is, Os,Ds, Ts) is the wrapped syn-

chronous component.
– ec is the control event.
– C = {ct11 , . . . , ctnn } is the set of clocks, where ctii produces

ec periodically after every ti .
– trig : Is ∪ {ec} → {�,⊥} is the trigger predicate that

given an input event, returns whether the wrapped syn-
chronous component must be executed or not.

SemanticsThe semantics of asynchronous adapters is defined
in terms of an asynchronous component. Observed from the
environment of the component, an adapter processes input
events one-by-one (just like asynchronous components in
general), but may not always produce an output. The role
of the adapter is to “collect” messages for the wrapped
synchronous component, and when a message triggers exe-
cution, that is, trig(e) is �, feed the collected messages and
emit messages created from the resulting output event vector.

Definition 11 An asynchronous adapter �−© for a synchronous
component is itself an asynchronous component �−©〉 =© =
(S, s0, I , O,D, T ):

– S = Ss × vI is the set of potential states, each state con-
sisting of a state of the wrapped synchronous component
and a buffer input event vector collecting the incoming
event instances.

– s0 = (s0
s ,⊥I ), where ⊥I is the empty input vector.

– I = Is ∪{ec} is the set of input events including the input
events of the wrapped synchronous component and the
control event. From an input vector vI , we can derive vI s
as vI s(e) = vI (e) for every e ∈ Is .

– O = Os is the set of output events defined in the wrapped
synchronous component.

– D = Ds ∪ (ec → {�}) is the domain function of the
wrapped synchronous component extended with a map-
ping that assigns a singleton set to the control event,
indicating that it is not parameterized.

– The transition relation is defined as a (nondeterministic)
transition function T

(
(ss, vI ), (e, p)

) = {(s′
s, v

′
I )} × Ω ,

such that:

– If trig(e) = ⊥, then the buffer input event vector is
updated such that v′

I (e) = (e, p) and v′
I (e

′) = vI (e′)
for every other e′ ∈ I (e �= e′), and s′

s = ss , while
Ω = {ε} (as the set of possible output sequences) is
the empty sequence in this case.

– If trig(e) = �, then the buffer input event vector
is updated such that v′′

I (e) = (e, p) and v′′
I (e

′) =
vI (e′) for every e′ ∈ I (e �= e′), and s′

s should
be such that Ts(ss, v′′

I ) = (s′
s, vO), and v′

I = ⊥I .
Ω = Sσ ({(e, p) | vO(e) = p, p �= ⊥}) (as the set of
possible output sequences) is every possible permu-
tation of the “non-null” elements of the output vector.

Discussion The order of messages between two execution-
triggering messages is not relevant as long as they do not
overwrite each other, so the adapter may store an event vec-
tor as a buffer instead of a message queue. In practice, the
memory allocated for the input vector of the wrapped com-
ponent can be reused.

The definition of asynchronous adapters is very flexible.
Components like an event-driven finite state machine may
be implemented by a synchronous component by declaring
no additional control events, but returning � from the trigger
predicate for any event (as seen in Sect. 3.5). With the help
of the control event, however, it is also possible to promote
the “ticks” of the wrapped synchronous component to its
syntactic contract, allowing the environment to execute the
component, which is the preferred way of handling even a
single synchronous system in Gamma. The definition also
allows mixed solutions, e.g., a component may be triggered
by any external control event or by any event on one of its
ports.

Note that according to the definition, the sequence of out-
put events may be any permutation of the “non-null” events in
the output vector of the wrapped component. Although con-
sistent with the definition of asynchronous components, this
is rather an underspecification than real nondeterminism—
most implementations would raise output events in a fixed
order, e.g., when wrapping a cascade composite component.

Finally, note that clocks are not directly handled in the
semantics, as the synchronous layer has a notion of logical
time only. Nevertheless, clocks are considered as a special
source of events occurring spontaneously after every ti , send-
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ing a tick message to the containing component received
through the control event ec (see Sect. 4.11).

4.9 Asynchronous composite component

The syntactic definition of an asynchronous composite com-
ponent differs from synchronous composite components only
in the definition of channels. Since asynchronous compo-
nents operate with event sequences, it is not a problem
anymore if an input event has multiple sources, so there is no
restriction on channels other than parameter compatibility.

Definition 12 An asynchronous composite component is a
tuple a© = (C, I , O,�):

– C = { =©1, . . . , =©K } is the set of asynchronous com-
ponents constituting the composite component, each
component being =©k = (Sk, s0

k , Ik, Ok,Dk, Tk).
– I ⊆ Î is the set of exported input events, where Î =

⋃K
k=1 Ik .

– O ⊆ Ô is the set of exported output events, where Ô =⋃K
k=1 Ok .

– � ⊆ Ô × Î is the set of channels that connects inputs
and outputs with no restriction apart from parameter com-
patibility. The set of inputs connected to an output e is
denoted by �(e) = {e′ | (e, e′) ∈ �}. We demand that
for each e ∈ Î and e′ ∈ �(e), D(e) = D(e′). Note that
�(e) used as a function maps from outputs to inputs,
contrary to the notation used in synchronous components,
where it mapped from inputs to outputs.

Discussion In asynchronous composite components, events
are transferred in messages and processed one-by-one. We
assume that components have a message queue where sent
but unprocessed messages are stored.

4.10 Environment of the component

The environment of an asynchronous composite component
is modeled as follows.

Definition 13 Given an asynchronous composite compo-
nent a© = (C, I , O,�), its environment is a tuple e© =
(Eext

I , Eext
O ):

– Eext
I = O is the input events of the environment that

consume the output events of the asynchronous compos-
ite component.

– Eext
O = I is the output events of the environment that

serve as the input events of the asynchronous composite
component.

Discussion The behavior of the environment is considered
nondeterministic. In future work, we plan to restrict its behav-
ior with scenario-based contracts.

4.11 Messages and execution traces

The semantics of asynchronous composition can be defined
in terms of messages and occurrences. A message is defined
in terms of its source and target events and its parameter.

Definition 14 Given an asynchronous composite component
a© with its environment e©, an asynchronous message is a

tuple m = (eO , p, EI ):

– eO ∈ Ô ∪ Eext
O ∪C is the source output event of the mes-

sage, possibly coming from the environment or a clock
of an asynchronous adapter in the system.

– p ∈ D(eO) is the content of the message.
– EI ⊆ Î ∪ Eext

I is the set of target input events of the
message, possibly targeting the environment.

– If eO ∈ Eext
O , then EI ⊆ I and if EI ⊆ Eext

I , then
eO ∈ O , i.e., external messages may arrive through
exported input events, while external targets may be mes-
saged from exported output events. If eO ∈ C for some
asynchronous adapter �−©, then EI = {ec}, where ec is
the control event of �−©. Otherwise, �(eO) = EI , that is,
if the message is sent to another component in the same
asynchronous composite component, the corresponding
inputs and outputs are connected with a channel.

Definition 15 Given a message m = (eO , p, EI ), let
send(m) denote the occurrence of creating the message in
response to its source output event and recv(m, eI ,) the occur-
rence of consuming the message on input event eI ∈ EI ,
thus, raising event eI . The source component of a mes-
sage is denoted by src(m) = =©k ∈ C when eO ∈ Ok or
src(m) = e© if eO ∈ Eext

O .
Furthermore, let t = (s, eI , s′, ω) ∈ Tk be a transition of

a constituent component =©k . An occurrence of transition t
is a tuple [t] = (mI , t, MO), where:

– mI = (eO , p, EI ) is the message triggering the transi-
tion, where eI ∈ EI .

– t is the triggered transition.
– MO is the sequence of raised messages such that |MO | =

|ω| and for every 1 ≤ i ≤ |MO |, MO [i] = (e′
O , p′, E ′

I )

such that ω[i] = (e′
O , p′) and E ′

I obeys Definition 14.

Discussion A message is a runtime object, i.e., it has “object
identity.” For example, in the ModesTrack model (presented
in Sect. 3.5 in Fig. 6) event “Z1.T1ProtocolOutDivergent.go”
creates a message m with itself as the source and
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“Z5.S11ProtocolInCW.go” as the target, with no parame-
ter (the domain is a singleton set). Raising it again creates
another different message m′ but with the same content.
Occurrences, such as message sending, receiving and firing
transitions, constitute the observable behavior of an asyn-
chronous system, e.g., sending message m is an observable
happening at a specific point in time. Occurrences enable
us to define an execution trace, describing the behavior of
asynchronous systems.

Definition 16 Given a totally ordered sequence of transition
occurrences and message sending and receiving (that is, an
execution trace), let #[t], #send(m) and #recv(m, eI ) denote
the position of the corresponding occurrence in the ordering.
The execution trace of an asynchronous composite compo-
nent must obey the following rules (defining a partial order):

1. (causality) #send(m) < #recv(m, eI ) for every message
m = (eO , p, EI ) appearing in the execution trace and
for every eI ∈ EI .

2. (causality) #recv(mI , eI ) < #send(mO) for every transi-
tion occurrence [t] = (mI , t, MO) appearing in the trace
where mO ∈ MO .

3. (message order) If #send(m) < #send(m′) such that
src(m) = src(m′), then recv(m, eI ) < #recv(m′, e′

I ) for
every eI and e′

I belonging to the same component =©k
(eI ∈ Ik and e′

I ∈ Ik) and assigned to message queues
with the same priority.

4. (message order) For every transition occurrence [t] =
(mI , t, MO) and for each 1 ≤ i, j ≤ |MO | if i < j , then
#send(MO [i]) < #send(MO [ j]).

Furthermore, let τ([t]), τ(send(m)) and τ(recv(m, eI ))
denote the timestamp of the corresponding occurrence
according to a common global clock. We require that:

5. (direction of time) If #occi < #occ j , then τ(occi ) ≤
τ(occ j ) and if τ(occi ) < τ(occ j ), then #occi < #occ j .

6. (periodic ticks) For each clock ctii , there is an infi-
nite number of messages m = (ctii ,⊥, {ec}) such that
τ(send(m)) = n · ti for all n > 0.

Discussion The first two rules enforce causality: an occur-
rence cannot happen before another occurrence that caused it
to happen. The third rule is a constraint on the implementation
of asynchronous systems of the GCL: the communication is
demanded to be reliable not only in terms of losing messages
(implicitly forbidden by Rule 1), but also in terms of the order
of messages. The fourth rule, on the other hand, describes
the natural mapping between output event sequences and
the generated message sequences. These rules are satisfied
when assuming reliable and order preserving message pass-
ing in the modeled communication; nevertheless, unreliable

communication can be explicitly modeled using additional
components (unreliable channel) or as part of the behavior
of the communication-related components.

Regarding time, the fifth rule specifies that timestamps
are assigned in a monotonic way (but not strictly, i.e., we can
force an order on two occurrences with the same timestamp).
Finally, the sixth rule defines that clocks emit ticks every ti
time units starting from a designated 0 point of time. Note
that (1) whenever the timestamp of a transition occurrence
[ti ] differs from the previous transition occurrence [t j ] of the
same component, any internal clock variables are assumed
to be increased with the same Δt = τ([ti ]) − τ([t j ]) as
described in Sect. 4.3 and (2) tick emit messages in a fixed
time, but consuming the message can occur anytime later in
accordance with the lack of guarantees for execution time
and frequency of asynchronous components.

5 Functionalities of the Gamma framework

This section summarizes how the various features and func-
tionalities of the Gamma framework were implemented
based on the languages, especially the Gamma Composition
Language and its semantics.

5.1 Integrating component models

The integration of external component models (i.e., statechart
models from external modeling tools) is realized by mapping
these models to GSL models. A separate mapping needs to
be defined for each supported statechart variant, taking into
account the peculiarities of their syntax and semantics (e.g.,
the rules for mapping Yakindu statecharts can be found in
[24]). Note that the GSL is prepared for supporting differ-
ent statechart semantics by offering annotations. GSL, as
a common representation of component statecharts, allows
the use of the functionalities of the Gamma framework by
integrating components designed in various external tools
(currently, Yakindu and MagicDraw are supported, integrat-
ing other UML/SysML tools would be only a technological
challenge).

While the GSL would be suitable for most statechart-like
formalisms, it has certain limitations as well. For example,
internal signals commonly used in UML/SysML models are
not supported, i.e., there is no direct way to synchronize par-
allel regions of a composite state apart from join transitions.
Also, the support for timed behavior is limited to determinis-
tic timeouts that are not sufficient to model nondeterministic
completion times for example. Some of these limitations are
highlighted in the experimental case study in Sect. 6.

Nevertheless, the tool architecture allows the extension
of the framework with arbitrary new formalisms exposing
the behavior described in Sect. 4.3. We are also constantly
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working on extending the GSL (e.g., with a richer action lan-
guage), but the details of atomic component implementations
are out of the scope of this paper.

5.2 Model validation

Validation takes place at the level of atomic component mod-
els and during the composition of components. It is realized
by specifying ill-formedness constraints in the form of model
patterns that are evaluated at design time. Validation regard-
ing composition realizes the constraints presented in Sect. 3,
that is, the checking of model imports, port bindings, values
bound to parameters of components, channel constructions,
execution of components in cascade models, and attribute
values as well as event references in control specifications
and message queues in asynchronous adapter models.

5.3 Code generation

The Gamma framework supports automatic source code
generation from Gamma models. Currently, Java code is gen-
erated.

In the case of atomic components, Gamma reuses the
code generators provided by the integrated external modeling
tools, e.g., Yakindu.

Interface definitions are generated from Gamma interfaces
and are realized by the corresponding port objects of the
component implementations. As a result, users can interact
with the component objects through the well-defined, famil-
iar interfaces.

Composite component implementations are generated
from Gamma composite components defined in GCL. They
wrap the atomic component implementations and subordi-
nated composite components and construct the required con-
nections (channels) between them. Thus, wrapped compo-
nents are able to communicate with each other by dispatching
and receiving event objects. Note that the generated com-
posite component implementations are independent from the
atomic component implementations and communicate with
them only via a well-defined interface. Thus, atomic com-
ponent implementation other than the currently supported
Yakindu can be included without the rework of the Gamma
code generator, and even different component implementa-
tions can be executed side by side in the same composite
system.

It is essential that the behaviors of composite components
conform to the rigorous semantics of the GCL introduced in
Sect. 4. This is realized using different programming con-
structs in each component type. Synchronous composite and
cascade components wrap atomic components and an exter-
nal tick (an explicit method call) is implemented to trigger
their execution, which is also transferred to their contained
components, eventually reaching the atomic components.

Asynchronous adapters, however, rely on concurrent com-
ponents that run continuously without external ticks. This
way, asynchronous adapters provide the ticks necessary for
the execution of their wrapped synchronous components.
Asynchronous composite systems have two different imple-
mentations. One of them uses threads hosted in a single
process to implement the composed asynchronous adapters
(each running in its own thread). The other one is based
on inter-process communication. Communication between
asynchronous Gamma processes to be deployed to separate
nodes in a local network is realized using the DDS standard.16

5.4 Formal verification

Formal verification in the Gamma framework is performed by
the external model checker UPPAAL (also, the architecture
supports the integration of additional model checkers). The
integration is achieved by automatically mapping the Gamma
composite system model to a network of timed automata,
the input formalism of UPPAAL. The queries representing
the properties to be checked on the model are either given
directly as UPPAAL temporal logic formula or constructed
using fillable patterns (for the most frequent safety and live-
ness properties).

For each atomic statechart component, a set of automa-
ton templates is generated (one template for each region)
that synchronize with each other using channels [24]. These
templates are instantiated in accordance with the component
instance definitions. Similarly to source code generation, it is
important to ensure that the generated formal model behaves
according to the semantics of the composite system. This
is supported by creating auxiliary model elements responsi-
ble for conducting interactions among these independently
transformed atomic components, as follows.

For each synchronous composite and cascade component,
a scheduler automaton is generated that controls the execu-
tion of instantiated atomic components. Each input event of a
synchronous composite component is handled through a vec-
tor consisting of two boolean variables, toRaise and isRaised.
An input event can be raised by setting the toRaise variable to
true (by the environment automaton modeling external events
or by other component automata). At the start of each cycle,
its value is copied into the isRaised variable, which is read
by the automaton during execution. Contrarily, each input
event of a cascade component is modeled as a single vari-
able that can be written and read arbitrarily, making in-cycle
communication possible.

For each asynchronous adapter, an executor automaton
together with message and message queue data structures

16 The DDS-based asynchronous Gamma code generator was realized
by freshman university students, which demonstrates the easy extensi-
bility of Gamma code generators.
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is generated. Message insertion/removal to/from queues are
implemented by functions, which are called by the execu-
tor automaton. The removed messages are transferred to the
wrapped synchronous component. Also, if a message trig-
gers the execution of the wrapped component, its scheduler
automaton is initiated. To model clocks, an automaton is cre-
ated that generates clock messages in defined intervals.

In the case of asynchronous composite components, an
asynchronous scheduler automaton is introduced that initi-
ates the execution of the executor automata of the composed
adapter components.

5.5 Test case generation

Gamma supports model-based testing by using the integrated
model checker to generate tests. The idea is to construct
queries for the model checker and interpret the resulting
traces (witnesses or counterexamples generated by the model
checker on the basis of the queries) as test cases [25,26]. If
the queries are constructed to check the reachability of states
(fireability of transitions), then the resulting test suite is able
to provide state coverage (transition coverage, respectively).
The resulting traces are mapped to the GTL, and test cases
(currently JUnit) are generated.

Note that the execution of the generated JUnit test cases
on the (generated) code of a composite system validates
the following functionalities of the Gamma framework: (1)
mapping component models from external tools to Gamma,
(2) transformation of Gamma models to a back-end model
checker, (3) code generation from composite components,
(4) implementations of integrated atomic components, (5)
construction of executable test cases. This kind of validation
of the Gamma workflow is essential, as the framework builds
on model transformations that are hard to verify. Neverthe-
less, each witness or counterexample generated by formal
verification can be validated, demonstrating that the frame-
work is well-functioning or a real fault is detected. Note that
if certain behavior is absent, e.g., a state is not reachable, this
technique cannot be utilized.

6 Case study—Simple SpaceMission

This section introduces an example model from the aerospace
domain which we use as a case study to demonstrate the appli-
cability of Gamma to describe SysML behavioral models.
The example model was proposed by NASA in the context
of the OpenMBEE17 framework. The goal of OpenMBEE is
to create a common model repository to facilitate tool inte-
gration, so the ability to handle models in the scope of this
project can raise the relevance of any model analysis tool.

17 https://www.openmbee.org/.

Fig. 7 The statechart model describing the behavior of the ground sta-
tion component

In the case study, we investigate how SysML models with
composite structure state machines and activity diagrams
can be mapped to the composition language of the Gamma
framework. We use the languages presented in this paper to
manually model a simple space mission that describes com-
munication between a satellite and a ground station.18

6.1 Modeling of the system

The SysML model describes how a satellite communicates
with a ground station as well as the state of the battery of
the satellite. The state-based behavior of the system can be
seen in Figs. 7 and 8, while the more complex activities are
depicted in Figs. 9 and 10. The equivalent, purely state-based
Gamma models19 that we created manually based on the
aforementioned models are visualized in Figs. 11 and 12.20

The main challenge of mapping this model came from the
mixing of state and activity-based behavior. We found that
actions with time constraints can be modeled as states with
timeouts (although GSL currently does not support nondeter-
ministic timeouts, so we chose a fixed value), so each thread
in the activities could be modeled with orthogonal regions.
The processed model already followed the convention of
handling external signals at the state-based level while paral-
lelly executed activities communicate with internal signals.
This internal communication could be mapped to guarded
transitions affecting the parent state of the communicating
orthogonal regions. Observe the handling of low battery in
Figs. 9 and 10 with internal signal Battery Low in Fig. 11.

Since the original model was simulated with Cameo Sim-
ulation Toolkit21 with discrete time steps, we modeled the
composition with a synchronous semantics. The model of
the composite component can be seen in Fig. 13.

18 The initial SysML models can be found at: https://github.com/Open-
MBEE/OMGSpecifications.
19 The Gamma models can be found at: https://github.com/FTSRG/
gamma/tree/master/examples/hu.bme.mit.jpl.spacemission.casestudy.
20 The visualization of the Gamma models was generated using Plant-
UML.
21 https://www.nomagic.com/product-addons/magicdraw-addons/
cameo-simulation-toolkit.
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Fig. 8 The statechart model describing the behavior of the spacecraft
component

Fig. 9 The activity diagram describing the data transmission process
of the spacecraft component

Fig. 10 The activity diagram describing the battery recharge process
of the spacecraft component

6.2 Results and conclusion

To check the conformance of the Gamma model with the
original SysML model, we have generated a set of state-
covering tests using the test generation capabilities of the
framework based on the integrated UPPAAL model checker.
All the traces were consistent with the behavior described by
the SysML model.

This case study showed that SysML models built with cer-
tain conventions can be mapped to Gamma models, where
they can benefit from the precise composition semantics as
well as the code/test generation and verification capabili-
ties. Our approach was manual, because the mapping is not
trivial, and some constructs do not fit with our semantics.
A notable example is using actions with time constraints or
event receptions in activities describing effects of transitions
or entry/exit actions: our semantics explicitly forbids waiting
during the execution of transitions. We believe this modeling
practice should be followed in other tools as well, but the
definition of the corresponding conventions is out of scope
of this paper.

Nevertheless, this case study provided valuable insights
into the mapping of SysML models to Gamma, which was
automated for a subset of modeling elements and successfully
used in the case study described in the next section.

7 Case study—Orion

This section demonstrates a formal analysis approach for
communication protocols using the Gamma framework
based on our previous work [27]. This approach supports
(1) the construction of protocol participant models as well
as channel models with different failure modes, (2) the com-
position of protocol participant and channel models to form
composite system models and (3) model checking on the sys-
tem models with automatic back-annotation of the results.
The process is presented in the context of Orion, a master–
slave communication protocol under design targeted to be
used in the railway industry. 22

In this case study, we demonstrate the practical usabil-
ity of the Gamma framework in the context of an industrial
problem. The case study highlights the differences between
composition modes to support different potential execution
platforms and provides measurement results regarding the
verification of the robustness properties of the modeled pro-
tocol.

22 All Gamma models presented in this case study can be found under
the following link: https://github.com/FTSRG/gamma/tree/master/
examples/hu.bme.mit.gamma.industrial.protocol.casestudy.
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Fig. 11 The constructed Gamma statechart model with inlined activity diagrams describing the behavior of the spacecraft component

Fig. 12 The constructed Gamma statechart model with inlined activity
diagrams describing the behavior of the ground station component

7.1 Modeling of the communication protocol

This section introduces the modeling process of the proposed
analysis approach in the context of Orion.

Fig. 13 The GCL model describing the mission with a ground station
and a satellite

7.1.1 Protocol participants

Orion is a master–slave communication protocol where the
establishment of a connection between two participants is
always initiated by a master and the connection request is
either accepted or rejected by a slave. Both the master and the
slave participants were designed on the basis of statecharts
in MagicDraw and have the same events (commands and
messages).

The initial state of the master statechart (depicted in
Fig. 14) is Closed. When initiating a connection with the
slave, it goes to state Connecting and waits for a response.
Upon a positive response, it goes to state Connected whereas
upon a negative one or after a certain timeout (TConn sec), it
goes to state Closed. Communication can take place in state
Connected.
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Fig. 14 The statechart model describing the behavior of the master
component

Fig. 15 The statechart model describing the behavior of the slave com-
ponent

The slave statechart (depicted in Fig. 15) is similar to the
master.

The models can be automatically transformed to the GSL
using the model transformers of Gamma, in which they can be
validated based on statechart-related well-formedness rules
[24]. According to the validators of Gamma, the presented
statechart models are well-formed.

7.1.2 Channel models

During the modeling of communication between protocol
participants, several failure modes of event transmission can
be considered [28]. In this case study, we defined five chan-
nel models in Yakindu: one ideal channel, three models
describing loss of events failure modes (bursty message los-
ing channel, arbitrary message losing channel and timed
message losing channel) and one model related to delay of
events failure mode (delay channel). They are introduced in
[27] in detail, here we present only the simplified version of
the bursty message losing channel model.

Figure 16 depicts the bursty message losing channel
model, which models a channel that can lose a given amount
(LOST_MESSAGE_MAX) of subsequent incoming events.
It has two states, Operating (initial state) and MessageLos-
ing. If the model receives a certain event in state Operating, it
either forwards the event to its output, or (if there has been no
failure before) goes to state MessageLosing without forward-
ing the event. In state MessageLosing, the specified amount
of events are absorbed before going back to state Operating.

Fig. 16 Excerpt from the statechart model of the bursty message losing
channel

Fig. 17 The GCL model of protocol participants and channel models

Note the nondeterministic nature of this model: the loss of
subsequent events can start on any incoming event. Also, this
model includes behavior only for a single event (OrionCon-
nReq), nevertheless, additional events in the complete model
are handled analogously.

7.1.3 Systemmodels

We analyzed the behavior of the Orion protocol consider-
ing different channel failure modes and different execution
modes of the participants. Therefore, for each channel model
we defined synchronous, cascade and asynchronous com-
posite Gamma models, which differ only in the execution
mode, the components and their connections are the same.
We focused on the time-driven behavior and the events of the
Orion protocol in the master and slave components.

Figure 17 describes the GCL model the variations of
which were used with different channel models and execution
modes. It consists of a master component, a slave compo-
nent, and two channel components that connect the output
and input ports of the protocol participants. The concrete
models differ only in the first keyword of the model that can
be either sync, cascade or async. All in all, fifteen composite
models were defined, five (as there are five channel models)
for each composition mode. In the asynchronous composite
models, message queues with capacity 2 were used.

7.2 Analysis of the communication protocol

We analyzed liveness properties of the system models intro-
duced in Sect. 7.1.3, that is, the reachability of system states
with different channel models using the integrated UPPAAL
model checker. The analyzed properties (formalized in CTL
[29]) are the following.
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Table 2 Average time of
verifying P2 in different system
models

Synchronous (s) Cascade (s) Asynchronous (s)

Ideal channel 0.01 0.01 0.4

Bursty message losing channel 0.4 0.3 1.0

Arbitrary message losing channel 2.0 1.7 140.4

Timed message losing channel 0.02 0.02 0.1

Delay channel 4.3 4.1 7.3

Table 3 Average
resident/virtual memory peaks
during the verification of P2 in
different system models

Synchronous (Mb) Cascade (Mb) Asynchronous (Mb)

Ideal channel 10/48 9/47 12/53

Bursty message losing channel 13/55 12/53 23/72

Arbitrary message losing channel 16/60 14/56 143/314

Timed message losing channel 11/50 11/50 12/53

Delay channel 76/172 61/143 100/220

P1 The system can reach a state in which both the mas-
ter and the slave are in state Connected: EF master.
Connected && slave.Connected.

P2 The system must eventually reach a state in which both
the master and the slave are in state Connected: AF
master.Connected && slave.Connected.

P1 describes the reachability of the desired operational
state from the initial state in the system and means that the
master and slave models do not contain fundamental design
faults that hinder the correct operation of the protocol. P2,
as a strong robustness property means that the protocol is
always able to recover despite the specified failure mode of
the channel.

According to the verification executed in Gamma, P1 holds
in the case of every system model introduced in Sect. 7.1.3.
However, the analysis results regarding P2 revealed impor-
tant constraints on the execution frequency of components in
each composition mode: since the protocols have (real-time)
timeouts, the fulfillment of the property depends on the exe-
cution frequency of the system components in the case of
each channel model and each composition mode. Using the
model checking and automatic back-annotation functionali-
ties of the framework, we analyzed the necessary scheduling
order and frequency of components with several parameters
of the channel models. The property was fulfillable in every
system model with adequate execution characteristics. The
detailed constraints on the execution characteristics to fulfill
the property can be found in [27].

To extend [27] and provide additional insight into the ver-
ification capability of Gamma, we measured the time (see
Table 2) and the memory consumption (see Table 3) of ver-
ifying P2 with respect to the defined system models. In the
cases of the bursty and arbitrary message losing channel
models the value of the LOST_MESSAGE_MAX parame-

ter was 5. In the case of the timed message losing channel,
the values of the S and E parameters were 4 and 9, and for
delay channel the value of the T parameter was 1. The execu-
tion frequencies were set in accordance with the constraints
mentioned above. We ran and averaged 10 measurements for
each system model.

7.3 Results

The measurement results show that both verification time
and memory consumption in the case of cascade models is
slightly less than in the case of synchronous models. This
is the result of the model transformation implementation as
in synchronous models each event is mapped to two vari-
ables, whereas in cascade models a single variable is defined.
Also, in the case of synchronous models event transmission
between the master and slave components requires multiple
cycles contrary to cascade components, which can also result
in higher memory consumption and verification time.

As expected, asynchronous models are significantly harder
to verify than synchronous and cascade models due to the
additional message queue structures and scheduler compo-
nents. The difference is markable in the case of the arbitrary
message losing channel where there is a 70-fold difference
in verification time compared to the synchronous model.

7.4 Conclusion

This case study demonstrated that the composition seman-
tics proposed by Gamma can indeed be used in practice: even
though the semantics introduced in Sect. 4 assumes instan-
taneous, reliable and order-preserving message passing, the
language is applicable to practical problems by introducing
(fault) models describing physical phenomena, e.g., loss or
delay of events.

123



1508 B. Graics et al.

The three composition semantics cover diverse execution
and communication modes of the composed components,
which could be used to model different execution platforms
in the case study. As Gamma supports the automatic import of
models defined in integrated modeling front-ends, we did not
have to manually transform the already existing component
models, which greatly reduced the effort required for the
approach. Also, the measurement results show that the formal
verification capabilities of the framework are applicable in
practice.

Furthermore, the case study revealed the need for potential
platform models in the case of timed component mod-
els where the execution frequencies of the component(s)
under verification can be specified. Consequently, we have
extended the verification capability of the framework with
this feature.

8 Case study—MoDeS3

This section presents a case study in the context of the
MoDeS3 project (introduced in Sects. 2.1, 3), where we used
the Gamma framework in the full design and verification pro-
cess of the safety logic preventing collisions on the tracks.
We relied on the flexible languages of the framework in both
the design and verification tasks.

Here, we present the models and (manual) methods we
used to incrementally transform a high-level specification
into the final implementation of the safety logic controlling
train movement on sections (turnouts have been added in
a later phase which we do not discuss here). The primary
requirement of this logic is the following: “Two trains must
not be positioned on the same section at the same time.”
This demonstration focuses on how composition supported
by Gamma can help in the transformation of an initial specifi-
cation, the execution of verification tasks, as well as the effect
of different interaction semantics that could not be modeled
directly in SysML-based tools alone.23

8.1 Designing the controller with a simplified
MoDeS3 track setup

The core functionality of the safety logic is to prevent that a
train approaches another train in such a way that both of
them occupy the same section. To design and check this
functionality, we used a circular track setup with 8 sections
(altogether S01 to S08). Also, we divided the track into two
zones (supervised by two different physical controllers), each
zone consisting of 4 sections. We used two trains that are ini-

23 All models presented here can be found at: https://github.com/
FTSRG/gamma/tree/master/examples/hu.bme.mit.gamma.modes3.
casestudy.

tially situated on opposite sections of the circular track (S01
and S05). This arrangement covers all the interesting scenar-
ios regarding train movement and communication between
the zone controllers.

The safety logic implements the following safety concept:
sections before and after an occupied section are considered
as an “aura” of the train; when collision of auras is detected
then the related section has to be disabled (stopping the train
on that section). We modeled and analyzed two operation
modes differing in the way of communication between the
track and the train.

– Restrictive operation mode: initially, all sections are dis-
abled; a train is not allowed to move on a particular
section until the section gets enabled and the controller
sends an enable event to the train. This is analogous to
supplying power to the tracks in a section on demand.

– Permissive operation mode: initially, all sections are
enabled; a train is allowed to move on a section until
the section gets disabled and the controller sends a dis-
able event to the train. This is analogous to cutting the
power supply in case of danger.

The restrictive operation mode can be adequately modeled
with synchronous composition (discussed in Sects. 8.2–8.4)
using the features of synchronous communication: in such
a model, the controller can always observe the location of
the trains before their movement and enable the connecting
sections if it is safe to do so. Synchronous composition is
convenient to ensure a lock-step execution of the controller
and the trains, which is necessary for this strategy. An incon-
venient scenario for this mode is the unnecessary waiting of
trains if the controller is too slow.

We chose to model the permissive operation mode with
asynchronous composition (see Sect. 8.5) to demonstrate
the different characteristics of asynchronous communication
compared to synchronous communication. Without further
restrictions, this composition mode will let components run
independently with any frequency. Even though this strat-
egy will not stop trains unnecessarily, a slow controller may
fail to react in time when there is a danger of collision. This
will be revealed by verification, too, showing again that in
the case of asynchronous systems, practical problems will
require further constraints on timing.

All safety logic components, both for restrictive and per-
missive operation modes, have the same number and type of
ports (i.e., the same interface from the point of view of the
environment): Train ports, on which the occupy and unoc-
cupy events for particular sections are received (modeling
sensors), and SectionControl ports, on which enable and dis-
able events are transmitted (modeling e.g., power to the train).
Recall that these interfaces are presented in Fig. 5a.
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To design the controller for this layout, we start from a
high-level specification describing the overall behavior of
the safety logic (Sect. 8.2). In this model, all information is
assumed to be available locally and we can focus on the main
logic. Accordingly, we verify that the concept of “auras” is
sufficient to prevent collisions at this level. As we intend to
use two physical controllers, we split the model into zones
and introduce a communication protocol to obtain non-local
information about the track (Sect. 8.3). The correctness of the
protocol is verified by proving the conformance of the inputs
and outputs with the original specification by checking trace
equivalence, which is achieved by modeling a special com-
posite component only for verification purposes. Finally, we
split zones into components responsible for a single section
to facilitate the component-based modeling of any kind of
zones (Sect. 8.4). The correctness of this step is verified as
the previous one, and the two results together yield a proof
that the model hierarchically assembled from section con-
troller components into zones and then the whole logic also
prevents collisions, as proven on the high-level specification
model.

8.2 High-level safety logic specification

The high-level safety logic specification is modeled as a sin-
gle atomic synchronous component, just like another model
simulating two trains. The high-level system model com-
poses these components into a cascade composite component
for verification purposes. As the train model receives com-
mands from the environment about how to simulate trains
(move them forward or backward), then notifies the safety
logic model about the occupation and unoccupation of sec-
tions, it is reasonable to execute the train model and the safety
logic model in this order (described by the execution list of
the enclosing cascade composite component). Replies of the
safety logic are processed in the next cycle, which is again
reasonable to assume, as the response might take time to
compute.

The high-level specification is defined in terms of a single
state and two boolean variables for each section, one of which
denotes whether a particular section is occupied by a train
(sensors), whereas the other one denotes whether it is enabled
(actuation). The transitions describe what action should be
taken when trains move around the track, i.e., what signals
shall be sent to actuators in response to sensor input.

The train model simulates two trains on the track repre-
senting their motion on the subsequent sections. This model
is symmetrical in many ways, as the two trains behave the
same way, and a train behaves analogously on the first, sec-
ond, etc., sections when moving forward or backward.

Each train has a TrainControl port as well as (according to
the restrictive operation mode of the safety logic) an enabled
variable that keeps track of whether the train is allowed to

move or not. We assume that trains have nonzero length, but
are shorter than sections, so they move onto the next section
gradually, thus, in an intermediate step it is situated on both
sections (but never more than two). The position of each train
is encoded in the following way: if variable position is set to
a number with a single digit, it means the train is situated on
a single section. If the position is set to a number with two
digits, e.g., 12, it means the trains is situated on two sections,
S01 and S02, at the same time.
Verification The high-level system model is mapped to
UPPAAL, and a formal query representing the safety require-
ment is verified. In the case of this model, there is no single
erroneous state to avoid. Instead, the following statement is
formalized: “It is impossible to reach a state in which more
than one train occupy the same section.” In the subset of
CTL [29] supported by UPPAAL:

A [ ] ! ( ( p o s i t i o n 1O f t r a i n == 81 | | p o s i t i o n 1O f t r a i n == 1
| | p o s i t i o n 1O f t r a i n == 12 ) && ( p o s i t i o n 2O f t r a i n
== 81 | | p o s i t i o n 2O f t r a i n == 1 | |
p o s i t i o n 2O f t r a i n == 12 ) && . . . )

Recall the encoding of the states of the trains in the train
model (Sect. 8.2) and note that each section is checked one
by one for both trains. This safety property holds on the high-
level system model, that is, two trains can never occupy the
same section.

8.3 Medium-level safety logic model

The high-level safety logic model cannot be deployed
directly to the simplified MoDeS3 system as it consists of
communicating microcontrollers (one for each zone). There-
fore, we split the model into two medium-level zone models
composing the medium-level safety logic model as a syn-
chronous composite component. At this level, synchronous
composition is a suitable choice as there should be no
ordering between the zones, and more importantly, signals
between the zones may be delayed (logically, we do not use
timing in these models).

The medium-level zone model is a Gamma statechart sim-
ilar to the high-level specification, but modeling only four
sections and introducing two Protocol ports to support com-
munication on both ends of the zone (CCW and CW, which
stand for clockwise and counter-clockwise, respectively).
Contrary to the high-level safety logic model, communica-
tion is necessary in this model to learn whether neighboring
sections on the edges of zones are occupied.
Verification At this level, the verification task is to prove
conformance between the high-level and the medium-level
safety logic models by checking trace equivalence. To this
end, we design a new oracle component responsible for com-
paring the outputs (enable or disable) of the two variants and
moving to an Error state if inputs differ. Therefore, the goal
is to prove that this state is unreachable.

123



1510 B. Graics et al.

Fig. 18 A schematic figure about the system model to check the confor-
mance of the inputs and outputs of components. Rectangles represent
component instances, squares represent ports of components, which
realize interfaces either in provided mode (lollipop) or required mode
(socket). Channels are represented as the connection between these.
Note that ports realizing the Train and SectionControl interfaces are
depicted jointly

To check conformance, we define a cascade composite
model that composes the train model, the high- and medium-
level safety logic models (as reference and implementation,
respectively) and the oracle model into a single system
(depicted schematically in Fig. 18). Signals from the train
model are sent to both variants of the safety logic model,
while their outputs are replicated to pass to the oracle in
addition to the train. Note that cascade composition is again
a natural choice here, as there is a clear pipeline-like order-
ing between the components, and the oracle should process
outputs in the same turn.

Once we have the full system model, it is transformed to
UPPAAL, and the following query is verified:
A [ ] ! ( P_ma inReg ionOfS ta techa r tO fOrac l e . E r r o r )

The query is the formalization of the following statement:
“State Error of component oracle is never assumed.” The
query holds, this way it is impossible for the two safety logic
models in the system model to produce inconsistent section
control events: the refinement is correct.

8.4 Low-level zonemodel

The previous models are useful for the high-level descrip-
tion and verification of the safety logic for the specified
track setup. However, to support arbitrary zone setups, it is
worth defining a section model that controls a single section
and compose its instances using synchronous composition to
define controllers of the zones.

Accordingly, the medium-level zone model (Sect. 8.3) is
extended by instantiating the particular section model four
times and composing its instances in a synchronous com-
posite component, the low-level zone model. Note that the
cascade composition would not be favorable here as it is not

possible to define a justified execution order of the compo-
nents, and they communicate with signals that should not
be prioritized. The protocol for communication between the
section models is similar to communications between zones.
VerificationSimilarly to the method used in Sect. 8.3, the con-
formance between the medium- and low-level zone model
can be verified by constructing a system model with an ora-
cle model and performing model checking on that. As before,
the two models turned out to be conformant.

Figure 19 depicts the analyzed conformance conditions
between the high- and medium-level safety logic model as
well as between the medium- and low-level zone models.
Note that existence of the conformance relations between
these models also implies that conformance holds between
the medium- and the low-level safety logic model composing
two low-level zone components synchronously. Considering
these results, in addition to the results presented in Sects. 8.2
and 8.3, the design process for the restrictive operation mode
of the safety controller with respect to the safety requirement
was proved to be correct.

8.5 Asynchronousmedium-level safety logic model

In this section, we investigate the effect of using the per-
missive operation mode of the safety controller. We use
the medium-level zone model wrapped in an asynchronous
adapter and instantiated two times for the two zones in the
asynchronous composite asynchronous medium-level safety
logic model. A variant of the train model is also defined to
support asynchronous operation (with an adapter), and the
two asynchronous components compose the asynchronous
system model on which formal verification is carried out with
respect to the safety requirement. The train model variant
here is different from the one used in the restrictive opera-
tion mode in that it does not expect an explicit enabling signal
from the safety logic to move, but an explicit disable signal
can stop it.
VerificationAfter transforming the resulting model to UPPAAL
and evaluating the query presented in Sect. 8.2, we receive
a counterexample, in which the model checker gives an exe-
cution trace leading to a state where two trains occupy the
same section (that is, there is a collision). The problem is
the following: the asynchronous train model is scheduled
multiple times and moves the simulated trains toward each
other, whereas the safety logic is not scheduled at all. This
is a valid trace that conforms to the asynchronous semantics
of Gamma, according to which there is no guarantee on the
execution frequency of asynchronous components. As for
real life, situations where the safety logic controllers are not
executed fast enough compared to the moving of the trains,
although unlikely, can indeed happen. The problem could be
mitigated by defining constraints on the execution frequency
of the components.
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Fig. 19 A schematic figure about the results of the verification of trace equivalence conditions

8.6 Conclusion

This case study demonstrated how the capabilities of the
framework could be used to support the incremental design
and verification of a distributed safety logic. Our approach
was manual and based on proving conformance between
system models with trace equivalence. The process was facil-
itated by several features of GCL.

– In GCL, two system models are interchangeable if their
“interfaces” match (same number and type of ports); their
internal definitions from a composition point of view are
irrelevant.

– GCL supports hierarchical composition: the derivation
of new system models by introducing additional (com-
posite) components inside the model is a fundamental
feature.

As GCL supports both synchronous and asynchronous
composition semantics, the analysis of different system
operation modes (execution and interaction modes of the
contained components) was feasible. The need for specifying
execution frequencies regarding components during verifica-
tion also emerged in this case study (see Sect. 7 and [27,30]
for additional examples for the necessity of specifying con-
straints on execution frequency).

The case study showed that formal verification is appli-
cable even in the case of larger, non-trivial systems if we
can apply convenient abstraction and conformance-proving
techniques. However, as this case study demonstrated, the
manual execution of such a process can be cumbersome. Con-
sequently, we aim to introduce support for such automated
techniques in the Gamma framework.

9 Related work

As related work, we cover in detail languages and tools that
provide (1) a composition language for component-based
design with (2) precise formal semantics and (3) formal ver-
ification support for behavioral properties. There are similar
approaches to ours, such as [31,32], where a general CPS
modeling language was developed to semantically integrate
the models coming from various CPS design tools. The intro-
duced modeling language was formalized; however, the tool
lacks formal verification support. The RoboChart modeling
tool is introduced in [33] that uses statechart models tai-
lored to the robotic application domain. In RoboChart, a
formal semantics helps engineers verify the designed sys-
tems. RoboChart was omitted from the comparison as it
primarily targets a special domain. Stateflow is a commer-
cial state-based modeling tool: authors in [34] developed a
tool based on UPPAAL to formally verify behavioral mod-
els. The commercially available Simulink tool can generate
source code from the verified Stateflow models. We omit-
ted this solution from the comparison due to the fact that the
modeling tool is commercial. Nevertheless, Stateflow models
could also be represented in the Gamma Statechart Language.

Clafer [35] is a tool for modeling structure, behavior and
variability of systems. Clafer has a formal core modeling
language to represent the system design and specification
patterns. However, it does not provide formal verification
support. Another approach [36,37] uses SysML to model the
security aspects of systems and ProVerif is used to verify
security properties: this approach is omitted from the com-
parison due to the lack of generality.

Other languages and approaches, such as [38–42] capture
the architecture, mainly focusing on the interfaces, connec-
tors and their relations in systems without defining the behav-
ior of the components. In [43], model-driven techniques and
tools are integrated successfully with standard-based, QoS-
enabled component middleware to support the development
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of safety-critical distributed systems. However, the approach
lacks formal semantics.

The feature comparison of Gamma and the following tools
can be found in Table 4: a SystemC modeling environment
(SystemC ME) connected to the STATE tool, Æmilia ADL/T-
woTowers, CHESS, Ptolemy II, BIP, UML-RT, AutoFOCUS
3, xtUML, COMDES-II and ProCom.
SystemC ME In [44], a modeling environment is introduced
that supports the graphical definition of SystemC [45] mod-
els. SystemC is a C++ library offering classes and macros,
which provide an event-driven simulation interface suitable
for simulating concurrent processes. The basic building block
of a SystemC model is the module, which represents com-
putational parts of the design. Modules are composed of
processes, ports, events, channels and variables. Processes,
whose behavior can be defined using a state machine formal-
ism, are the main computation elements of the module; they
are concurrent and are used to describe functionality. Ports
allow communication from the inside of a module to the out-
side on the basis of events declared by interfaces. Ports can be
connected by channels. The environment supports the auto-
matic SystemC code generation from the created models. The
supported part of the SystemC language is given a formal
semantics by connecting the modeling environment to the
STATE tool [46]. STATE maps the informal SystemC code
to a formal timed automaton formalism, UPPPAL, thus pro-
vides formal verification capabilities. Contrary to Gamma,
this modeling environment currently does not support the
hierarchical and mix-and-match composition of modules.
Æmilia ADL/TwoTowers Æmilia [47] is an architecture
description language (ADL) based on EMPAgr process alge-
bra, a compositional specification language of algebraic
nature integrating process algebra theory and stochastic pro-
cesses. This language supports the modeling of component-
based software systems at the software architecture level.
Designers have to start the modeling process by defining the
behavior of the component types in the system and their inter-
actions with the other components. Stochastic aspects, e.g.,
component interaction time, of the software architecture tar-
geted for functional or extra-functional analysis (security and
performance) have to be defined at this level. Next, instances
of component types have to be defined along with their inter-
actions in order to enable their communication. Based on the
received composite models, integrated, functional and per-
formance semantic models can be generated automatically,
which can undergo formal analysis executed by the TwoTow-
ers tool. The main difference between the Æmilia ADL and
the languages of Gamma is that Gamma puts the focus on
discrete state-based composition instead of stochastic pro-
cess algebra and currently does not support the definition of
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stochastic behavior.24 Therefore, if stochastic processes are
necessary to model the system, Æmilia has a clear advan-
tage over Gamma. However, while process algebras generally
focus on behavioral compositionality, Gamma prefers struc-
tural composition, which can be convenient and expressive,
especially if the development process requires discrete states,
mix-and-match composition and related code generation.
CHESS CHESS [48] is an open source methodology and
toolset that aims to address safety, reliability, performance
and other non-functional properties, while guaranteeing cor-
rectness of component development and composition. The
CHESS methodology relies on the CHESS Component
Model, which is built around the concept of components,
containers and connectors. A component represents a purely
functional unit, whereas the non-functional aspects are in
charge of the infrastructure of the component and delegated
to the container and connectors. The container is a wrap-
per that envelopes the component and is responsible for
the realization of the non-functional properties. The connec-
tor is responsible for the interaction between components.
Non-functional attributes are specified by annotating the
interfaces of the component with non-functional proper-
ties, e.g., regarding real-time concerns, the activation pattern
(such as sporadic or cyclic) can be specified for each pro-
vided operation of the component. CHESS models can be
defined in the CHESS Modeling Language, which serves as
an extension of the UML, SysML and MARTE modeling
languages. Contrary to Gamma, CHESS does not focus on
the mix-and-match composition of components.
BIP BIP [49] (Behavior, Interaction, Priority) is a modeling
framework supporting the formal definition of heterogeneous
systems. The BIP language supports the layered definition of
hierarchical composite systems, defining three layers. The
lowest layer specifies the behavior of system components,
atomic or compound, using a variant of the Petri net formal-
ism. The intermediate layer consists of a set of connectors
linking ports together, thus defining the interactions between
transitions of components. Contrary to Gamma, these inter-
actions are based on synchronization. The top layer includes a
set of dynamic priority rules between interactions and can be
used for the specification of scheduling policies. BIP defines
a clear operational semantics, which describes the behavior
of both atomic and compound components. The behavior of
atomic components is based on a rigorous transition system
model; thus, formal verification of invariant properties and
deadlock-freedom is also supported.
Ptolemy II Ptolemy II [50] is a modeling framework sup-
porting the definition of hierarchical composite systems with
diverse component types and interaction semantics. Model-
ing components, called actors in Ptolemy II, can be regarded

24 However, an extension to Gamma introducing stochastic behavior is
realizable and in fact under development.

as independent software modules. They are able to interact
with each other by sending messages through interconnected
ports. Models are created by composing actors, which is sup-
ported at multiple hierarchy levels. The interactions of actors
can be executed with different semantic variations, defined by
models of computation (MoC). Ptolemy II offers numerous
MoCs that rigorously define the interaction between actors,
e.g., process network, synchronous reactive and synchronous
dataflow. The implementation of a MoC is called director.
Each level of hierarchy in a model must have a single direc-
tor that specifies the MoC. Directors of various hierarchy
levels may have different types. Still, the composition of such
heterogeneous components adheres to a rigorous semantics,
which is a very powerful facility of Ptolemy II. Neverthe-
less, Ptolemy II offers only experimental formal verification
capabilities [51].
UML-RT UML-RT [52] is a UML profile (evolved from
the ROOM language [53]) used by IBM Rational Software
Architect RealTime Edition (RSA RTE) and alternatively by
Papyrus RT [54]. It facilitates the modular development of
software systems. The language supports synchronous and
asynchronous communication, hierarchy and also provides
various action languages, such as Java or C++. The basic
building block of a UML-RT model is a capsule, whose
behavior can be defined using statecharts. Additionally,
UML-RT models describe connections to other capsules with
the help of structure diagrams. A capsule can contain parts,
which are instances of other capsules, thus, hierarchical mod-
eling is supported. Capsules and parts communicate through
ports. Source code generation from UML-RT models is also
supported [54]. UML-RT models can be transformed to a
rigorous state machine formalism, called CFFSM [55,56],
which can be formally analyzed by their model checker
based on CTL expressions. Nevertheless, this tool does not
fully support mix-and-match composition of components.
Test generation is also supported in [57]. UML-RT models
could be integrated with other models in the Gamma frame-
work as UML-RT components and their composition can be
expressed using the statechart language of Gamma.
AutoFOCUS 3 In [58], a model-based tool and research
platform for safety-critical embedded systems is introduced.
AutoFOCUS 3 supports the design, development and vali-
dation of safety-critical embedded systems in many devel-
opment phases, including architecture design, implementa-
tion, hardware/software integration and safety argumentation
based on formal models. The formal semantics of the
approach is based on the FOCUS method defined in [59].
AutoFOCUS 3 (similarly to Gamma) employs a multi-
level transformation chain to produce formal models from
high level design models. Furthermore, it has a modeling
language based on the statechart formalism and the tool pro-
vides editor support too. As opposed to AutoFOCUS 3, our
Gamma-based approach promotes to use a common formal
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representation (GSL) and integrate the models of the differ-
ent design tools: models developed in the AutoFOCUS 3 tool
could also serve as input for Gamma. Consequently, Gamma
could serve as an integration tool for AutoFOCUS models.
AutoFOCUS 3 provides formal verification mainly for syn-
chronously (according to weak or strong causality) composed
software models [60] as it is integrated with well-known
symbolic model checkers, such as NuSMV/nuXmv, which
provide efficient verification capabilities for synchronous
systems. On the contrary, Gamma uses UPPAAL for model
checking, which is specialized to verify timed and distributed
systems.
xtUML xtUML (eXecutable and Translatable UML) [61]
is a UML-based modeling language with a special focus
on executable semantics. State machines with an expressive
action language are used to define the behavior of the com-
ponents. BridgePoint xtUML is an xtUML design tool that
supports code generation through model compilers and also
provides simulation capabilities. xtUML is widely used in
the industry; however, there is no formal verification support
for xtUML models as far as we know.
COMDES-II COMDES-II (COMponent-based design of
software for Distributed Embedded Systems - version II) [62]
is a design tool for layered component models where syn-
chronous and asynchronous behavior are explicitly separated
into different layers. State machines and function block mod-
els (FBD) are used to define behavior while an actor-based
architecture modeling language is used to represent the static
aspects. The COMDES-II approach facilitates the develop-
ment of real-time embedded systems by providing rigorous
design and analysis methods. Verification of COMDES-II
models [63] is based on the UPPAAL model checker.
ProComProCom [64] is a component model for real-time and
embedded systems. ProCom employs a layered component
model as it consists of two distinct, but related layers. At the
upper layer (called ProSys), the system is modeled as a num-
ber of active and concurrent subsystems, which communicate
by message passing. The lower layer (ProSave) addresses the
internal design of a subsystem that can be implemented by
code. ProCom has a formal semantics [65,66] that focuses
on the reactive and real-time aspects of the systems and sup-
ports the co-existence of black-box and fully implemented
components.

10 Conclusion

The Gamma framework is a modeling tool supporting the
hierarchical design, implementation and verification of state-
based reactive systems. Gamma has an extensive language
family, integrates statechart components from the Yakindu
Statechart Tools and MagicDraw, provides a Java code gen-
erator for implementation of composition-related code and

applies the UPPAAL model checker for formal verification
and test generation. The extensible architecture of the frame-
work allows additional tools and features to be plugged in.

The main contribution of this work is the design and for-
malization of the Gamma Composition Language that sup-
ports the definition of interfaces, ports and bindings, enabling
individual components to serve as endpoints. Communi-
cation is provided by channels connecting port instances.
Relying on these elements, we have defined various kinds of
composition modes for hierarchical composite model build-
ing. The three distinguished composition modes are the
asynchronous-reactive, the synchronous-reactive and cas-
cade.

Asynchronous components represent independently run-
ning components communicating with immutable messages
stored in message queues. This semantics is suitable for
designing separate units executed in their own processes.
Synchronous-reactive components are useful for providing
a single executing unit consisting of multiple, functionally
independent components. This composition mode is benefi-
cial for the design of low-level, tightly-coupled controllers.
Cascade composition is practical for designing units with a
pipeline-like behavior: the input given into the model is pro-
cessed by multiple consecutive filters, where a single filter
can be executed one or multiple times. We believe that these
composition methods cover a large portion of the problems
emerging in the design of reactive systems.

The precise semantics of the aforementioned composi-
tion modes allowed us to implement the code generation
and verification functionalities of the Gamma framework.
All elements of the GCL are supported during code genera-
tion and most during verification. Regarding test generation,
test suites for state coverage and transition coverage can be
generated.

As for future work, we plan to integrate ongoing side-
projects to extend the Gamma framework with additional
functionalities, e.g., the simulation of composite compo-
nents. Also, we would like to introduce source code gen-
eration directly from Gamma statecharts as well as include
additional programming languages, such as C/C++. More-
over, we are working on extending the framework with
additional model checkers, such as Theta [67]. Regarding
lessons learned in the case studies, we intend to provide
support for handling symmetry in models (e.g., new ele-
ment types, such as array and structure elements), complex
ports that simplify the connection of components with many
matching ports, as well as larger control over timing in the
asynchronous composition semantics (similarly to [30]). Fur-
thermore, in the next version of the framework we plan to
develop methods for the verification of dynamic architec-
tures, e.g., cyber-physical systems, by supporting dynamic,
contract-based definition of components and connections.
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The verification of such models could be based on both
development-time and runtime verification methods.

By offering multiple modeling aspects, composition seman-
tics, code generation and verification features in a single,
extensible framework, we hope that Gamma can assist sys-
tem and software engineers in leveraging the potential of
model-driven development. As Gamma is now open-source,
we also hope that the results of our research influence and aid
fellow researchers and developers in developing their mod-
eling tools.
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