
Vol.:(0123456789)1 3

Software and Systems Modeling (2020) 19:1461–1463 
https://doi.org/10.1007/s10270-020-00812-7

GUEST EDITORIAL

Editorial to theme section on interplay of model‑driven 
and component‑based software engineering

Federico Ciccozzi1 · Antonio Cicchetti1 · Andreas Wortmann2

Received: 8 June 2020 / Accepted: 10 June 2020 / Published online: 24 July 2020 
© Springer-Verlag GmbH Germany, part of Springer Nature 2020

This theme section aims to disseminate the latest trends 
in the use and combination of Model-Driven Engineer-
ing (MDE) and Component-Based Software Engineering 
(CBSE). On the one hand, MDE aims to increase produc-
tivity in the development of complex systems while reducing 
the time to market. On the other hand, CBSE aims to deliver 
and then support the exploitation of reusable “off-the-shelf” 
software components that can be incorporated into larger 
applications. An effective interplay of MDE and CBSE can 
yield benefits to both communities: the CBSE community 
would benefit from implementation and automation capabili-
ties of MDE, the MDE community would benefit from the 
foundational nature of CBSE.

In total, we accepted three submissions for publication in 
the theme section after a thorough peer-reviewing process.

1 � Model‑driven engineering

MDE is an established methodology to increase the pro-
ductivity of complex systems while reducing the time to 
market. It enables and suggests a shift from code-centric 
approaches to a more human-centric development, where 
models represent artefacts closer to human terminology and 
understanding. These models can be programmatically read 
and exploited for simplifying the design, implementation, 
execution, and evolution of software systems.

Models are defined with concepts that are less bound to 
the underlying implementation technology but closer to the 

problem domain, i.e. the concepts the modellers are familiar 
with. This makes the models easier to specify, understand, 
and maintain, which facilitates the understanding of complex 
problems and their potential solutions through abstraction.

By leveraging abstract models as primary development 
artefacts, MDE enables to systematically concentrate on 
different levels of abstractions, each providing a view for 
specific stakeholders, for instance (i) improving usabil-
ity, (ii) enabling customizability in different and specific 
domains, (iii) promoting reusability of the different algo-
rithms, methods, and techniques, (iv) managing variability 
and complexity both at design time and run-time, and (v) 
handling qualities like evolvability, changeability and con-
figurability, modifiability, scalability, power consumption, 
and dependability. Models and model transformations are 
the core development artefacts in MDE.

In particular, MDE promotes shifting from source code 
specified in general-purpose programming languages to 
models expressed in explicit domain-specific modelling 
languages (DSMLs). DSMLs use metamodels or grammars 
to define the modelling concepts of a domain, as well as the 
relations between them, and different means to reify their 
semantics. A metamodel is an abstraction that highlights 
the characteristics of well-formed models, which are said to 
conform to their metamodel like a program conforms to the 
grammar of its programming language.

Through making modelling languages explicit, models 
can be subjected to automated analyses and syntheses, such 
as well-formedness checking or model transformation. Model 
transformations produce a non-empty set of target artefacts (i.e. 
models, text, binary files,…) from a non-empty set of source 
models. For example, by focusing on the software architecture 
domain, practitioners might take advantage of model trans-
formations to automatically obtain program code, alternative 
model descriptions, deployment configurations, or inputs for 
analysis tools from their software architecture models.

An essential distinction of model transformations is that 
a model can be transformed either horizontally or vertically. 

 *	 Federico Ciccozzi 
	 federico.ciccozzi@mdh.se

	 Antonio Cicchetti 
	 antonio.cicchetti@mdh.se

1	 School of Innovation, Design and Engineering, Mälardalen 
University, Västerås, Sweden

2	 Software Engineering, Department of Computer Science, 
RWTH Aachen University, Aachen, Germany

http://crossmark.crossref.org/dialog/?doi=10.1007/s10270-020-00812-7&domain=pdf


1462	 F. Ciccozzi et al.

1 3

Horizontal transformation means that the source model is 
transformed into a model or another type of artefact at the 
same level of abstraction. Vertical transformation means that 
the source model is transformed into a model or another type 
of artefact at another level of abstraction. As the develop-
ment of model transformations usually is a one-time effort, 
practitioners can easily (re)use model transformations 
defined by MDE tool providers and domain experts.

2 � Component‑based software engineering

CBSE initially emerged as a software discipline to deliver reus-
able “off-the-shelf” software components to be incorporated 
into larger applications. The main focus has been on effective 
and general-purpose reuse of components within a large variety 
of different applications. Nowadays, especially with the increas-
ing development of Cyber-Physical Systems, the distributed 
manufacturing systems of Industry 4.0, and the ubiquitous pres-
ence of Internet of Things systems, CBSE continues to attract 
interest and evolve as a software approach and methodology for 
the efficient assembly of flexible software systems.

From the original design needs, mostly focused on pro-
moting effective and efficient reuse of available third-party 
pieces of software, the attention of software engineers moved 
towards the definition of approaches and development of 
methods to add, remove, replace, modify, and assemble com-
ponents dynamically, and during operation. For instance, in 
the domain of Cyber-Physical Systems, the strong connection 
between the computational and physical entities has been 
recognized, leading to the development of hybrid component 
frameworks. Such frameworks aim to be capable of taking 
into account and reason on both the event-based and discrete 
properties of computational entities and the time-based and 
continuous properties of physical entities.

From facing challenges introduced by the limitations of 
the previously leveraged object-oriented technologies, such 
as loose coupling, independent software reuse, seamless inte-
gration of heterogeneous software, etc. CBSE evolved, and 
indeed is still evolving, to address issues related to support 
the dynamicity, high interaction, and safety and dependability 
concerns of modern software systems. Very often, this led to 
rethinking widely adopted CBSE development processes to 
relax the traditional division among development phases by 
moving some activities from design time to deployment time 
and run-time. In these new and more dynamic development 
settings, the use of models at run-time (e.g. in the form of 
Digital Twins) has been found a key factor. In this direction, 
recent research focused on the definition of novel software 
development processes and methods to build highly dynamic 
and evolvable component-based systems.

The kind of systems targeted with CBSE ranges from 
component-based systems structured through component 

& connector styles to service-oriented and thing-based sys-
tems composed through either orchestration or choreogra-
phy. For all of these, MDE technologies, including models 
at run-time, are deeply exploited to support analysis and 
automated synthesis methods for the production of the cor-
rect (concerning functional and extra-functional properties) 
integration of components, services, and coordination logic. 
These streams of research show that the interplay of MDE 
and CBSE is becoming ever more essential to address the 
complexity and high dynamicity of modern software sys-
tems, and their dependability as well.

3 � Interplay of MDE and CBSE

MDE and CBSE can be considered as two orthogonal ways 
of reducing development complexity: The former shifts the 
focus of application development from source code to mod-
els closer to domain-specific concepts. The latter breaks 
down the set of desired features and their intricacy into bet-
ter manageable components, from which the application can 
be built-up and incrementally enhanced.

When exploiting these development approaches, numer-
ous different modelling notations and consequently several 
software models may be involved during the software life 
cycle, from requirements to specification, from analysis to 
code. On the one hand, effectively dealing with all the hetero-
geneous modelling notations that describe software systems 
needs to bring component-based principles at the level of the 
software model landscape. This is achieved by supporting, 
e.g. the specification of model interdependencies, and their 
retrieval, as well as enabling interoperability between the 
different notations used for specifying the software. On the 
other hand, MDE techniques can bring to the CBSE process 
the possibility to effectively reuse and integrate third-party 
model entities as well as to boost automation in the develop-
ment process through powerful model transformations.

An effective interplay of CBSE and MDE approaches 
would bring benefits to both research communities. On 
the one hand, the research results of CBSE would benefit 
from the implementation and automation capabilities of 
MDE. This will permit to apply the best practices of CBSE 
to large scale systems. On the other hand, MDE would 
benefit from the foundational nature of CBSE approaches. 
Summarizing, an effective interplay of CBSE and MDE 
approaches could help in handling the intricacy of modern 
software systems, thus reducing costs and risks by: (i) ena-
bling efficient modelling and analysis of functional as well 
as extra-functional properties such as, for instance, safety, 
reliability, availability and dependability, (ii) improving 
reusability through the definition and implementation of 
components loosely coupled into assemblies, (iii) provid-
ing automation where applicable (and favourable) in the 



1463Editorial to theme section on interplay of model-driven and component-based software…

1 3

development process. In the last fifteen years, such coop-
eration has been covered by a large number of works and 
recognized as extremely promising; tools and frameworks 
have been developed for supporting this kind of integrated 
development process. Nevertheless, when exploiting the 
interplay of MDE and CBSE, clashes arise due to mis-
alignments in the related terminology but also—and more 
importantly—due to differences in some of their basic 
assumptions and focal points.

4 � In this issue

The papers in this issue address various challenges related 
to the combination or interplay of CBSE and MDE, ranging 
from verification and validation of component models to 
composing component behaviours, to better understanding 
legacy components.

In the paper “Hazard-driven realization views for Compo-
nent Fault Trees” by D. S. Velasco Moncada, the author pre-
sents a modelling method and a tool solution for a hazard-cen-
tric approach for fault analysis with Component Fault Trees. 
This method aims to foster separation of concerns in fault 
modelling by leveraging hazard-specific views for Component 
Fault Trees. Both method and tool are applied to safety analy-
sis in the automotive domain (direction lights functionality).

In the paper “Mixed-semantics composition of Statecharts 
for the component-based design of reactive systems” by B. Gra-
ics, V. Molnár, A. Vörös, I. Majzik, and D. Varró, the authors 
introduce the Gamma Statechart Composition Framework to 
facilitate the composition of semantically heterogeneous, Stat-
echart-based software components. At the framework’s core 
there is a modelling language describing the composition of 
such components from which a code generator produces com-
position-related Java code. The application of both is presented 
on an example of MDE in the railway domain.

In the paper “Interface protocol inference to aid under-
standing legacy software components” by K. Aslam, L. 
Cleophas. R. Schiffelers, and M. van den Brand, the authors 
present a method to infer the interface protocols of legacy 
software components from their behaviour models through 
active automata learning. In a two-step fashion, first the 
control-flow behaviour of a component is learned and then 
its interface protocol is identified through abstracting away 
actions related to other interfaces. The method is evaluated 
on an industrial codebase at ASML to automatically derive 
interface protocols of over 150 components.

Acknowledgements  We would like to thank all authors who submitted 
papers as well as the reviewers for their efforts and high-quality reviews. 
Finally, we would like to thank Martin Schindler for his excellent support 
throughout the process of putting together this theme section.

Publisher’s Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

Federico Ciccozzi    is an Associate 
Professor at Mälardalen University 
(Sweden). His research specializes in 
definition of DSMLs, model transfor-
mations, system properties preserva-
tion, multi-paradigm modeling, 
model versioning, combination of 
MDE and CBSE for complex sys-
tems, blended modeling, language 
and compiler engineering. Federico 
has organized over 40 conferences, 
tracks, sessions, workshops and jour-
nal special issues. He has been pro-
gram committee member of over 40 
scientific events in the last year. He is 
part of the editorial board of IET 

Software, and guest editor of SoSyM and JISA. He has (co-)authored 
over 85 peer-reviewed publications. More information on him can be 
found at http://www.es.mdh.se/staff​/266-Feder​ico_Cicco​zzi.

Antonio Cicchetti, Ph.D.  is an 
Associate Professor at the IDT 
department, Mälardalen Univer-
sity, Sweden. He got his Ph.D. in 
Computer Science in 2008 at the 
University of L’Aquila with the 
thesis entitled “Difference Rep-
resentation and Conflict Man-
agement in Model-Driven Engi-
neering”. His research interests 
include the interplay of model-
driven and component-based 
engineering techniques and their 
application in the development 
of industrial systems. Moreover, 
he investigates the general prob-

lems related to the design of modelling languages, multiview systems, 
and model transformations, in the context of both academic research 
and industrial application. Further, he is interested in the concerns 
related to the management of evolution of both language and models. 
He can be reached at antonio.cicchetti@mdh.se. For more information 
see also http://www.es.mdh.se/staff​/198-Anton​io_Cicch​etti.

Andreas Wortmann   is a research 
associate at the Chair of Soft-
ware Engineering of RWTH 
Aachen University (Germany). 
He received his PhD in 2016 
from RWTH Aachen for his 
work on extensible languages for 
software architecture modeling. 
He also worked in Gothenburg 
(Sweden) and Rennes (France) 
on topics ranging from automo-
tive software engineering to soft-
ware language engineering to 
modeling in Industry 4.0. Addi-
tional biographical information 
about Andreas and details about 

his research interests can be found at https​://www.se-rwth.de/staff​/
wortm​ann/. 

http://www.es.mdh.se/staff/266-Federico_Ciccozzi
http://www.es.mdh.se/staff/198-Antonio_Cicchetti
https://www.se-rwth.de/staff/wortmann/
https://www.se-rwth.de/staff/wortmann/

	Editorial to theme section on interplay of model-driven and component-based software engineering
	1 Model-driven engineering
	2 Component-based software engineering
	3 Interplay of MDE and CBSE
	4 In this issue
	Acknowledgements 




