
Software and Systems Modeling (2020) 19:1415–1441
https://doi.org/10.1007/s10270-020-00820-7

SPEC IAL SECT ION PAPER

The RALphminer for automated discovery and verification of
resource-aware process models

Cristina Cabanillas1,2 · Lars Ackermann3 · Stefan Schönig4 · Christian Sturm3 · Jan Mendling2

Received: 14 December 2018 / Revised: 14 July 2020 / Accepted: 22 July 2020 / Published online: 8 August 2020
© The Author(s) 2020

Abstract
Automated process discovery is a technique that extracts models of executed processes from event logs. Logs typically include
information about the activities performed, their timestamps and the resources that were involved in their execution. Recent
approaches to process discovery put a special emphasis on (human) resources, aiming at constructing resource-aware process
models that contain the inferred resource assignment constraints. Such constraints can be complex and process discovery
approaches so far have missed the opportunity to represent expressive resource assignments graphically together with process
models. A subsequent verification of the extracted resource-aware process models is required in order to check the proper
utilisation of resources according to the resource assignments. So far, research on discovering resource-aware process models
has assumed that models can be put into operation without modification and checking. Integrating resource mining and
resource-aware process model verification faces the challenge that different types of resource assignment languages are used
for each task. In this paper, we present an integrated solution that comprises (i) a resource mining technique that builds upon a
highly expressive graphical notation for defining resource assignments; and (ii) automated model-checking support to validate
the discovered resource-aware process models. All the concepts reported in this paper have been implemented and evaluated
in terms of feasibility and performance.

Keywords Model checking · Organisational mining · Process mining · Process verification · RALph · Resource assignment ·
Resource mining

Communicated by Rainer Schmidt and Jens Gulden.

This work was funded by the Austrian Science Fund (FWF)—Grant V
569-N31 (PRAIS); and by MCI/AEI/FEDER, UE—Grant
RTI2018-100763-J-100 (CONFLEX).

B Cristina Cabanillas
cristinacabanillas@us.es

Lars Ackermann
lars.ackermann@uni-bayreuth.de

Stefan Schönig
stefan.schoenig@ur.de

Christian Sturm
christian.sturm@uni-bayreuth.de

Jan Mendling
jan.mendling@wu.ac.at

1 University of Seville, Seville, Spain

2 Vienna University of Economics and Business, Vienna,
Austria

3 University of Bayreuth, Bayreuth, Germany

1 Introduction

Process mining extracts relevant information on executed
business processes from historical data stored in event logs
and analyses it for different purposes [59]. Process discovery
organises the information extracted in the form of a process
model. The richer the data in the event logs, the more facets
of the underlying processes that can be discovered. Such
event data typically refers to the executed activities, their
timestamps and the human resources (for short resources)
that were involved. The functional (activities), behavioural
(control flow) and organisational (resources) perspectives of
business processes can thus be discovered [24]. Most of the
recent process mining techniques focus on the two former
perspectives and generate textual as well as graphical repre-
sentations of the discovered processes [23,45]. The target of
those approaches have been both routine (or procedural) pro-
cesses, which are usuallymodelledwith imperative notations

4 University of Regensburg, Regensburg, Germany

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10270-020-00820-7&domain=pdf


1416 C. Cabanillas et al.

(e.g., Business Process Model and Notation (BPMN) [39]);
and flexible processes, for which declarative notations are
preferred (e.g., Declare [58]). A key challenge of approaches
that yield rules, such as Declare constraints, based on support
thresholds can produce rule sets that are inconsistent. For this
reason, the constructed process models require an additional
check in order to avoid or fix conflicting constraints [21].
To this end, model checking addresses the automatic ver-
ification of properties of a model. Regarding activities and
control flow, a number of approaches to check process sound-
ness [42] have been developed (e.g., [14,33]).

As far as the organisational perspective is concerned,
resource mining aims at discovering resource assignment
constraints (or rules) specifying who is allowed to execute
the process activities depending on the roles, skills and a
number of properties defined in organisational models. Such
constraints range from simple role-based assignments to
complex constraints over several activities, like separation of
duties [46,54]. The resulting resource-aware process models
ideally contain expressive resource assignments including
simple as well as complex constraints. First, the expres-
sive power of the generated model depends on the resource
assignment language used. Most of the existing resource
assignment languages target either imperative or declara-
tive process model notations with differing expressiveness,
and so far only textual representations of the output resource
assignment constraints have been provided. While benefits
of graphical notations have been acknowledged [32,37,44],
an approach capable of generating expressive graphical
resource-aware process models has been missing. Second,
resource-aware model checking aims at analysing properties
of business process models related to resources. For exam-
ple, it checks whether all resource assignment constraints
can be satisfied with the available resources, or identifies
resources that are critical for process completion. An initial
set of analysis operations have been defined [17] but com-
prehensive support for their automated resolution is missing.
Finally, the existing resource mining and resource-aware
model-checking approaches have been separately developed
relying on different types of resource assignment languages.
Hence, support for the automated verification of automati-
cally discovered graphical resource-aware process models is
an important research gap.

In this paper, we present theRALphMiner as an integrated
solution with a two-fold contribution. First, we define a tech-
nique to discover resource-aware process models. It mines
the constraints from event logs and represents the resulting
resource-aware process models using RALph [16]. RALph
is an expressive graphical notation for defining resource
assignments, which is independent of the process modelling
notation. Second, we introduce a novel model-checking
approach that allows for the verification of RALph-aware
process models in conjunction with the recent extension of

the Declare language for defining multi-perspective process
models (MP-Declare [12]). For this purpose, we rely on the
Alloy framework [29].We showhowpreviously defined anal-
ysis operations are supported. To validate our solution, the
RALphMiner has been implemented and the two techniques
have been tested with a real use case from the university
domain.

This paper builds on previous work [20] that introduced
the RALph Miner as a novel way of mining resource-aware
graphical imperative process models together with BPMN.
We have developed automated resource-aware process ver-
ification capabilities. The RALph Miner is meant to be
interactively used by process analysts. To assure an appro-
priate response time, the performance of the verification
technique has been tested in experiments based on example
models. The performance of the resource mining approach
was assessed in [20].

Wehave followed theDesignScienceResearchMethodol-
ogy (DSRM) [40] to develop and evaluate our approach. The
problem identification and motivation phase is covered by
Sect. 2, which exemplifies the research problems addressed.
The objective of the solution phase is tackled by Sect. 3,
which describes the pursued requirements as well as the
existing support for them. The design and development phase
involves Sects. 4–6, which first provide an overview and then
explain the different components of our approach, theRALph
Miner. Finally, the demonstration and evaluation phases are
included in Sect. 7, which shows the evaluations conducted
with details of the implementations, applications and perfor-
mance tests. The paper finishes with the conclusions drawn
from the work and a discussion of limitations and directions
for future work in Sect. 8.

2 Background: resource-aware process
discovery and verification

Process participants are responsible for the correct operation
of the business processes of an organisation. The specifica-
tion of who must do what is known as resource assignment
and is usually done based on organisational information.
Organisational data include organisational units, positions,
roles and characteristics of the people, such as skills. For
instance, the research group (organisational unit) depicted in
Fig. 1 is structured as a hierarchy of positions. The group
is led by a professor (SJ) accountable for the work of two
secretaries (KH, RR) and three researchers (BR, SS, CC). It
would be reasonable to assign resources to process activities
based on their positions, for example.

One of the most frequent activities related to scientific
research is themanagement of trips for attending conferences
or giving invited research talks. In a typical business trip
management process, a researcher first applies for a business

123



The RALph miner for automated discovery and verification of resource-aware process models 1417

Fig. 1 Hierarchy of positions
within a research group

trip, which must be approved by their immediate superior.
Once the trip request is approved, the applicant is in charge
of booking the accommodation required and of buying the
respective transport tickets. Finally, all the documentation
is stored by one of the secretaries in order to preserve it
for potential future needs (e.g., internal audits). This pro-
cess description indicates that the process must be always
executed in a similar way (procedural process). This kind of
process definition is usually specified with imperative pro-
cess modelling notations like BPMN [39] or Event-driven
Process Chains (EPCs) [35]. A more flexible specification of
the same process could be in place in another organisational
unit, in which the process is described as follows: if a work
trip application is approved, the respective trip request has
to have been placed eventually before. The approval has to
be done by a Professor. When the accommodation has been
booked, the documentation is eventually stored in the system.
This description, based on rules, leaves room for variation in
the execution of the process (flexible process). For example,
it is not specified when the transport tickets must be bought
or whether they have to be bought at all. Similarly, it could
be the case that other activities are performed between the
application for the trip and its approval, and between the
booking of the accommodation and the documentation stor-
age, respectively. Flexibility also concerns the organisational
perspective, in this case. Flexible process definitions are bet-
ter specified with declarative process modelling notations
like Declare [58], DCR Graphs [26] or Declarative Process
Intermediate Language (DPIL) [64].

Process executions are stored in event logs (i.e., machine-
recorded files that report on the execution of tasks during the
enactment of the instances of a given process).

In an event log, every process instance corresponds to
a sequence (trace) of recorded entries, namely, events. The
trace length corresponds to the number of events the trace
consists of. Each event is defined by a set of attributes.

These attributes typically involve an explicit reference to the
enacted task and to the operating resource [59]. For instance,
the following excerpt of a business trip event log encoded
using the XES format [60] shows the recorded information
of the completion event of an instance of the activity Apply
for trip performed by the resource SS.

<event>
<string key="org:resource" value="SS"/>
<date key="time:timestamp"

value="2017-08-06T14:58:00.000+01:00"/>
<string key="concept:name" value="Apply for trip"/>
<string key="lifecycle:transition" value="complete"/>
</event>

As different activity instances could be executed by dif-
ferent resources, it is necessary to infer the actual resource
assignment rules from the event log data. The organisa-
tional information is crucial for that purpose. Following up
on the previous example, we observed five instances of the
activity executed by SS, three by CC and three by BR. The
analysis of such data along with the organisational model
depicted in Fig. 1 reveals that the activity Apply for trip is
performed by a resource with the position Researcher. The
output resource assignment rules should be specified together
with the functional and behavioural perspectives of the pro-
cess in the resulting process model, being it imperative or
declarative. Furthermore, the discovery of both simple as
well as complex resource assignment rules should be sup-
ported. Resource mining addresses the automated discovery
of resource-aware process models whose expressive power
greatly depends on the language used to define the resource
assignment constraints.

Verifying the correctness of the output model is crucial
in order to avoid inconsistencies at run time. Imagine that
resource mining over the event log of our running scenario
discovered a binding of duties constraint between activities
Apply for trip and Approve application. This constraint spec-
ifies that the two activities must be performed by the same

123



1418 C. Cabanillas et al.

resource. However, this can never hold true if the former
activity is executed by a researcher and the latter by a profes-
sor because these sets of resources are disjoint (cf. Fig. 1).
Indeed, rule sets that are mined from process executions can
be inconsistent if a support threshold below 100% is cho-
sen [21]. Rule sets can also be modified by process analysts
before they are put into operation. With the help of model
checking [22] we can detect inconsistencies and apply the
required adjustments or recovery actions.

3 Problem scope and state of the art

In this section, we first define functional and non-functional
requirements that we pursue and which have already been
used in similar contexts. Afterwards, we analyse the state of
the art with respect to such requirements.

3.1 Resource mining and resource-awaremodel
checking requirements

We aim at discovering expressive resource-aware process
models, which implies that we have to use an expressive
notation for defining resource assignment constraints. The
expressiveness of a resource assignment language is often
related to theworkflow resource patterns called creation pat-
terns [46], which describe various ways in which resources
can be distributed in process activities. The more patterns a
mining approach can discover, the higher expressive power it
has. Therefore, providing support for discovering the creation
patterns leads to requirements for an expressive resourcemin-
ing (RM) approach, specifically:

(RM1) Automated discovery of Direct Assignments (Dir),
i.e., activities assigned to a specific resource.

(RM2) Automated discovery of Role-Based Assignments
(Rb), i.e., activities assigned to a specific organisa-
tional role.

(RM3) Automated discovery of Capability-Based Assign-
ments (Cb), i.e., activities assigned to a specific
capability.

(RM4) Automated discovery of Organisational Assign-
ments (Org), i.e., activities assigned to a resource
based on their organisational position and their
organisational relationship with other resources.

(RM5) Automated discovery of Separation of Duties (SoD),
i.e., the obligation of allocating two tasks to different
resources in a given process instance.

(RM6) Automated discovery of Case Handling (CH), i.e.,
the allocation of all the activity instances within a
given process instance to the same resource.

(RM7) Automated discovery of Retain Familiar or Binding
of Duties (BoD), i.e., the obligation of allocating an

activity instance to the same resource that performed
a preceding activity instance within a given process
instance.

(RM8) AutomateddiscoveryofHistory-BasedAssignments
(Hb), i.e., activity instances assigned to resources
based on their execution history.

Note that a requirement for the creation pattern Deferred
Assignment was not included because this pattern is related
to run time and cannot be inferred from the log data. Further-
more, the Authorisation and Automatic Execution patterns
were disregarded because they are unrelated to the definition
of resource assignment constraints. Note also that the sepa-
ration of duties and binding of duties patterns are discussed
in research on access-control constraints, too [54].

Graphical notations have the advantage of grouping
together all the information that is used. They also sup-
port a number of perceptual inferences that may be easier
to understand for humans than textual specifications [32].
We pursue the graphical representation of the discovered
resource assignment constraints and the capability of dealing
with procedural as well as flexible processes:

(RM9) Graphical representation of the discovered resource
assignments (Gr): the resource assignments can be
graphically specified together with the process con-
trol flow.

(RM10) Independence of the process modelling notation
(Ind): the resource assignments can be defined over
imperative as well as declarative process models.

The second group of requirements aim to develop amodel-
checking technique that allows for the verificationof different
properties of the output resource-aware process models.
Analysis operations to check resource-aware processes have
been defined in the Role-Based Access Control (RBAC) and
workflow management literature [8,17,54,55,61]. The goal
of the model-checking technique is to provide automated
design-time support for the largest possible set of operations
in order to cover a variety of needs. Providing support for the
eight analysis operations thatwe have found formally defined
in the literature (which are more technically described in
Sect. 4.3) constitute the model-checking (MC) requirements
in this work, in particular:

(MC1) Support for the Potential Participants (PP) operation,
which infers the resources that can participate in a
process activity given the resource assignments in
the process model.

(MC2) Support for the Potential Activities (PA) operation,
which infers the activities that can be allocated to
a specific resource given a resource-aware process
model.

123



The RALph miner for automated discovery and verification of resource-aware process models 1419

(MC3) Support for theNon-potential Activities (NPA) oper-
ation, which infers the activities that can never be
allocated to a specific resource given a resource-
aware process model.

(MC4) Support for the Non-participants (NP) operation,
which infers the resources that can never participate
in the a process activity given the resource assign-
ments in the process model.

(MC5) Support for the Satisfiability (SF) operation, which
checks whether the available resources can complete
a workflow given its resource-aware process model.

(MC6) Support for the Consistency Checking (CC) opera-
tion, which checks whether it is always possible to
complete a workflow given its resource-aware pro-
cess model.

(MC7) Support for the Critical Participants (CP) operation,
which infers the resources that are necessary to be
able to execute a business process.

(MC8) Support for the Critical Activities (CA) operation,
which infers the activities of the process that can
cause a deadlock because only one specific resource
can execute them.

Finally, we aim to address two non-functional (NF)
requirements. The former pursues the development of an
integrated approach. Having individual solutions for spe-
cific requirements can be beneficial in certain situations (e.g.,
when it can be assured that only procedural processes will
have to be discovered or the analysis functionalities are not
needed) but it limits their application under different circum-
stances. The need of integration has already been described
in the literature [15]. The latter non-functional requirement
relates to the end users of the approach, specifically, to the
need of caring about performance aspects to prevent exces-
sive response times. They are defined as follows:

(NF1) Integrated support for the analysis of the discov-
ered resource-aware processmodels, i.e., all analysis
operations should operate on the graphical and
expressive resource-aware process models automat-
ically discovered from event logs of procedural as
well as flexible processes.

(NF2) Support for user interaction, i.e., the system must
ensure that the end users (process analysts) get the
results within a reasonable amount of time (ranging
from maximum 1 to 2 seconds).

3.2 Related work

In the last years, a number of techniques formining the organ-
isational perspective of a process have been developed [11].
Using input data from process event logs, several methods
focus on extracting the organisational model or a social

network [53] behind a business process, which show the
characteristics and relationships among the process partic-
ipants. There is also increasing interest in analysing resource
behaviour and productivity [41] as well as the influence of
resources on process performance [27,38,62].

The approaches that are most closely related to our
resource mining research problem are those addressing the
discovery of creation patterns [46] to enrich process models
with resource assignments [65]. Table 1a collects them along
with the support providedwith respect to the resourcemining
requirements. Among them, the so-called staff assignment
mining approach [43] is able to extract several types of
assignment rules based on decision tree learning. The iden-
tification of separation and binding of duties, among others,
is not addressed. The output is an imperative process model
(a Petri net, an EPC or a Heuristic net) and textual resource
assignments written as Staff Assignment Rules (SAR).

The approaches classified as role mining [7,13,30] share a
focus on organisational roles. Some of them address the pure
identification of roles by analysing only the data in the event
logs [30]. In this case, resource assignment is not an objec-
tive. Others aim at building an RBACmodel [5] that includes
the discovery of information about roles and permissions as
well as role-based assignments associated with the activi-
ties [7]. In this case, the assignments are defined within the
RBACmodel and thus decoupled from the processmodel.An
explicit link to the process model is present in the approach
introduced in [13], which uses theHandover of Roles (HooR)
principle to enrich a given control-flowmodel with roles that
cluster the process activities under the assumption that each
resource has exactly one role. BPMN and its swimlanes [39]
are used to show the outcome. This as well as some of the
aforementioned methods have been integrated into the ProM
tool suite.1

None of the previous approaches covers the whole set of
creation patterns (RM1–RM8). The DPILMiner was devel-
oped to narrow that gap [49]. It implements a three-step
framework that can mine not only most of the creation pat-
terns but also patterns that consider the control flow and the
resources together. The output is a declarative process model
with textual resource assignments defined with DPIL [64].
The History-based Assignment pattern (RM8) is not covered
because DPIL does not support the definition of the respec-
tive resource assignments.

Business process verification has usually been addressed
with model checking techniques [63], which assess the inter-
nal correctness of a process model including the satisfaction
of a given formula by a model (e.g., binding of duties) [34].
Focusing on resource-aware process verification, the exist-
ing support for automatically executing the operations that
constitute our model-checking requirements (MC1–MC8)

1 http://www.promtools.org/.

123

http://www.promtools.org/


1420 C. Cabanillas et al.

Table 1 State of the art on
resource-aware process
discovery and verification: �
supported; (–) partly supported;
– not supported; n/a not
applicable

Approach Resource mining requirements

RM1 RM2 RM3 RM4 RM5 RM6 RM7 RM8 RM9 RM10
Dir Rb Cb Org SoD CH BoD Hb Gr Ind

(a) Support for resource mining

[43] � � � � – – – – – –

[7,30] – � – – – – – – n/a n/a

[13] – � – – – – – – � –

[49] � � � � � � � – – –

RALph Miner � � � � � � � – � �

Approach Resource-aware model checking requirements

MC1 MC2 MC3 MC4 MC5 MC6 MC7 MC8
PP PA NPA NP SF CC CP CA

(b) Support for resource-aware process verification

[8,54,55] � – – – � � – –

[17] � � � � � � � �
RALph Miner � � � � � (−) � �

is limited mostly to the Potential Participants, Satisfiability
and Consistency Checking operations [8,54,55] (MC1, MC5
and MC6), as depicted in Table 1b. Still, as shown in the
table, the eight operations have been implemented in [17].
The implementation uses description logics [6] on a textual
resource assignment language called RAL.While this shows
the feasibility of description logics to automatically execute
some of the operations, description logics apply the so-called
open-world assumption, assuming that the information in the
knowledge base may be incomplete and hence, the absence
of a property assertion does not imply the fact being false but
unknown. As we are not working with incomplete informa-
tion, we have to ensure that the data in the knowledge base
always be complete, which hinders the implementation.

Regarding the non-functional requirements, the disjoint
sets of approaches in the two tables show the lack of an
integrated solution targeting both resource mining and the
subsequent analysis of the output resource-aware process
models (NF1). The DPILMiner has demonstrated a perfor-
mance that meets NF2 [49]. The existing implementation
of the analysis operations has not been tested for perfor-
mance [17].

Therefore, from the study of the state of the art we
draw the following conclusions: (i) the discovery of expres-
sive resource-aware declarative process models is covered
by the DPILMiner. The definition of the resource assign-
ments relies onDPIL, a textual declarative processmodelling
notation that supports several process perspectives, includ-
ing the organisational perspective. Such assignments are
inherently related to DPIL and cannot be used with other
notations—hence, RM9 and RM10 remain uncovered; (ii)
the automated verification of resource-aware process mod-

els has been addressed with description logics for process
models annotated with RAL resource assignments despite
the difficulties caused by the open-world assumption; and
(iii) there is not an integrated approach that enables the auto-
mated verification of the expressive resource-aware process
models discoveredwith resourcemining because process dis-
covery and verification have been separately addressed. Our
goal in this work is to develop a solution that fills the existing
gaps.

4 Overview of the RALphminer

To address the pursued requirements, we conceptualise and
integrate different techniques to provide full support for inte-
grated resource mining and model checking functionality
(NF1) within the so-called RALph Miner. An overview of
the approach is depicted in Fig. 2. The baseline is a graphical
notation for resource assignment called RALph [16], which
is briefly described in Sect. 4.1. On top of it is RALph’s
semantics, which we have defined in Linear Temporal Logic
over finite traces (LTL f ) [36]. LTL f constitutes the under-
lying formalism for the two main functionalities developed,
namely, resource mining and resource-aware process verifi-
cation. Basics of LTL f are described in Sect. 4.2.

As shown in the figure, to develop the required function-
alities, our work builds upon two separate technologies and
research streams: SQL and Alloy. While any of the two tech-
niques could have been used to address the resource mining
and model checking requirements, each of them has specific
strengths that make it more suitable for a specific purpose.
Following this rationale, we rely on SQL and Alloy for dif-

123



The RALph miner for automated discovery and verification of resource-aware process models 1421

Fig. 2 Overview of the integrated approach

ferent purposes in order to best exploit their capabilities, as
will be explained next. Specifically, SQL is used for mining
process models (as explained in detail in Sect. 5) and Alloy
for checking process models (as described in Sect. 6).

The left hand side of the figure tackles resource min-
ing and thus provides support for requirements RM1–RM10.
As aforementioned, we rely on SQL for mining expressive
RALph resource assignments from event logs. Our choice
is propelled by previous findings that show that the seman-
tics of the resource assignment patterns can be expressed
through SQL queries in an efficient way [51]. Furthermore,
process event logs can be easily represented or transformed
to relational database tables [50,51]. In contrast, encoding
complete event logs in Alloy models would not be practical
and browsing the extensive search space of event logs with
Alloy has proven to be inadequately slow [4].

The right hand side of the figure is concerned with the
model-checking approach to address the analysis opera-
tions involved in requirements MC1–MC8. Model check-
ing requires both a possibility to represent process mod-
els with RALph assignments and a possibility to analyse
model characteristics. To the best of our knowledge, an
approach to encode resource-aware process models in rela-
tional databases or SQL queries has not yet been devised.
On the contrary, metamodels for encoding process models
in Alloy have been presented in the literature [3,4]. Here,
Alloy has been used to generate traces from a given declar-
ative process model. Therefore, we use Alloy as a basis
for automatically checking RALph-aware process models.
Once RALph-aware process models have been discovered,
the resultingmodel can be checked and varied for consistency
with the RALph-aware process model checking approach.

The essential concepts to understand the RALph Miner’s
functionalities, including RALph, multi-perspective process
mining, and resource-aware process verification in terms of
the model-checking requirements, are described next.

4.1 Target resource assignment language: RALph

RALph is a graphical notation for the definition of resource
assignment constraints. It is expressive in terms of the cre-
ation patterns described in Sect. 3.1 (cf. [16]), and it has been
designed independently of any processmodelling notation so
it can be combined with both imperative and declarative pro-
cessmodels. So far it has been integratedwithBPMN[16,20].

RALph assumes an organisational model representing
a hierarchy of positions compatible with the metamodel
depicted in Fig. 3, similar to other approaches such as [46].
This kind of organisational model includes concepts like
position, role, capability and organisational unit, besides per-
son.2 TheRALph notation consists of entities and connectors
that enable the graphical modelling of resource assignments
in relation to process models. Some of the creation patterns
are directly supported with explicit constructs (e.g., Direct,
Role-based and Capability-based Distribution) and others
implicitly through constructs that aggregate several types of
constraints (e.g., RALph history connectors enable the spec-
ification of binding and separation of duties within the same
or different process instances).

2 While there is not a consensus on the most common structure of
organisational models [28], the organisation ontology defined by the
W3C shares many concepts with RALph’s metamodel (https://www.
w3.org/TR/vocab-org/).

123

https://www.w3.org/TR/vocab-org/
https://www.w3.org/TR/vocab-org/


1422 C. Cabanillas et al.

Fig. 3 Organisational
metamodel used by RALph
(taken from [46])

(a) Position-based (b) Hierarchy-based (c) Binding of duties

Fig. 4 Examples of RALph assignments with BPMN

Figure 4a illustrates some prominent concepts of RALph.
A Position entity is connected to an activity to indicate that
a person with the position Researcher has to apply for a trip.
In Fig. 4b, a RALph hierarchy connector is used to specify
that the approval of the application must be done by some-
one who can delegate work to researchers (i.e., a researcher’s
superior). Finally, Fig. 4c depicts a binding of duties between
two activities, meaning that activity Book accommodation
has to be executed by the same person who performed activ-
ity Apply for trip in that process instance. Note that if we
had several assignment rules associated with one activity,
the intersection of all of them (AND) would be used to find
suitable resources. For more flexibility, RALph provides an
alternative connector that enables the union of the resource
assignment rules (OR). A more detailed description of the
RALph notation can be found in [16].

4.2 Multi-perspective process mining

To do process mining, a declarative approach is typically
used based on the definition of constraint templates. Con-
straint templates define parametrised classes of properties,
and constraints are their concrete instantiations. Constraint
templates are used for querying the provided event log to find
solutions for the placeholders.A solution (also known as con-
straint candidate), is any combination of concrete values for
the placeholders that yields a concrete rule that is satisfied

in the event log. This approach has its roots in declarative
process modelling notations, most notably in Declare [58].
For instance, a response constraint indicates that if activity
A occurs, activity B must eventually follow. A template for
this constraint parametrises the variable elements of the rule,
in this case A and B. By replacing these placeholders with
specific activities found in traces of an event log, pairs of
activities that fulfil the constraint can be automatically iden-
tified. For example, the response constraint is satisfied in
traces such as t1 = 〈A, A, B,C〉, t2 = 〈B, B,C, D〉, and
t3 = 〈A, B,C, B〉, but not in t4 = 〈A, B, A,C〉. In this
case, the second occurrence of A is not eventually followed
by B. In t2, it is actually vacuously satisfied [31] (i.e., in a
trivial way, because A never occurs).

The semantics of the constraints and the templates can be
formalised using formal logics, such as LTL f [36]. Declare
has traditionally focused on the functional and behavioural
perspectives. Hence, the operators that have been used
include:

– The F, X, G, and U LTL f future operators: Fψ1 means
that ψ1 holds sometime in the future, Xψ1 that ψ1 holds
in the next position, Gψ1 that ψ1 holds forever in the
future, and ψ1Uψ2 that sometime in the future ψ2 will
hold and until that moment ψ1 holds (with ψ1 and ψ2

LTL f formulas).

123



The RALph miner for automated discovery and verification of resource-aware process models 1423

– The O, Y and S LTL f past operators: Oψ1 means that
ψ1 held sometime in the past, Yψ1 that ψ1 held in the
previous position, and ψ1Sψ2 thatψ1 has held sometime
in the past and since that moment ψ2 holds.

The aforementioned response constraint is defined with
LTL f as G(A → FB).

Anactivation activity of a constraint in a trace is an activity
whose execution imposes, because of that constraint, some
obligations on the execution of other activities (target activi-
ties) in the same trace. For example, in the response constraint
A is an activation activity and B is a target activity, since the
execution of A forces B to be executed. An activation of a
constraint leads to a fulfilment or to a violation. Consider
again G(A → FB). In trace t1, the constraint is activated
and fulfilled twice, whereas in trace t3 it is activated and
fulfilled only once. Referring to the formal specification of
constraints in LTL f , activationφa is the sub-formula that lies
on the left-hand side of the implication operator →, whereas
target φt is the formula that lies on its right-hand side.

The importance of multi-perspective dependencies led
to the definition of a multi-perspective version of Declare
(MP-Declare) [12]. This version is of interest to us since
we aim at defining templates for constraints that relate to
the process organisational perspective. Its semantics builds
on the notion of payload of an event, which is the set of
attributes that define it. e(activity) identifies the occurrence
of an event in order to distinguish it from the activity name.
At the time of a certain event e, its attributes x1, . . . , xm
have certain values. peactivi t y = (valx1, . . . , valxn) rep-
resents its payload. To denote the projection of the pay-
load peA = (x1, . . . , xn) over attributes x1, . . . , xm with
m ≤ n, the shorthand notation peA[x1, . . . , xm] is used.
For instance, peApplyForTrip[Resource]=SS is the projection
of the attribute Resource in the event description shown in
Sect. 2. Furthermore, the n-ples of attributes xi are repre-
sented as x.

Therefore, the templates in MP-Declare extend stan-
dard Declare with additional conditions on event attributes.
Specifically, given the events e(A) and e(B) with payloads
peA = (x1, . . . , xn) and peB = (y1, . . . , yn), the activa-
tion condition ϕa , the correlation condition ϕc, and the
target condition ϕt are defined. The activation condition
is part of the activation φa , whilst the correlation and tar-
get conditions are part of the target φt , according to their
respective time of evaluation. The activation condition is a
statement that must be valid when the activation occurs. In
the case of the response template, the activation condition
has the form ϕa(x1, . . . , xn), meaning that the proposition
ϕa over (x1, . . . , xn) must hold true. The correlation con-
dition is a statement that must be valid when the target
occurs, and it relates the values of the attributes in the pay-
loads of the activation and the target event. It has the form

ϕc(x1, . . . , xm, y1, . . . , ym)withm ≤ n, whereϕc is a propo-
sitional formula on the variables of both the payload of
e(A) and the payload of e(B). Target conditions exert lim-
itations on the values of the attributes that are registered at
the moment wherein the target activity occurs. They have the
form ϕt (y1, . . . , ym)withm ≤ n, where ϕt is a propositional
formula involving variables in the payload of e(B).

4.3 Resource-aware process verification

The design-time analysis of the organisational perspective of
business process models aims to ensure a correct utilisation
of resources in the processes. Detected potential problems
can be overcome by re-defining the processes and/or organ-
isational data before the processes are under execution. Our
approach assumes that it is always a single person responsible
for the task execution. This is in line with classical workflow
concepts. Note that collaborative mining [48] and collab-
orative resource assignment [18] have also been discussed
in the literature. In the following, we describe the analysis
operations underlying our model-checking requirements (cf.
Sect. 3.1) in terms of their inputs and outputs as defined in
the literature. Their applicability is also outlined:

1. Potential participants (PP): It takes an activity and a
responsibility and returns the people who are candidates
to hold that specific responsibility for the activity spec-
ified [17]. Thus, at design time, a person is a potential
participant of an activity for a specific responsibility if
there is some process instance in which they can be an
actual holder of that responsibility.
This operation serves for studying whether people are
involved in specific types of activities as well as for
detecting security problems derived from an incorrect
assignment of permissions in terms of activity execution.
It is also useful to detect activities that can be assigned to
the same resources and hence, may be aggregated when
creating an executable process model [24].

2. Potential activities (PA): It lists the activities that may be
allocated to one resource with regard to a specific respon-
sibility during a process instance execution. It takes the
identity of a specific person and the responsibility to be
checked, and it returns the activities that can be poten-
tially allocated to this person for that responsibility [17].
This operation is useful to provide people with a person-
alised list of all the activities they may be involved in or
to identify the requirements for someone who is going
to substitute a certain person. It also detects the degree
of involvement of a person in a process in terms of the
number of activities in which they can take part.

3. Non-potential activities (NPA): It takes a person and a
responsibility and calculates the activities in which they
cannot hold that responsibility, if any [17].

123



1424 C. Cabanillas et al.

This operation is useful when the responsibilities of a per-
son in the organisation might be increased. The resource
assignments of the activities returned by this operation
might be changed to include that resource.

4. Non-participants (NP): It takes an activity and a respon-
sibility and returns the people who can never participate
in the activity holding that responsibility, if any [17].
This operation is a way to quickly detect the relationship
between people and processes, helping to ensure that cer-
tain resources do not have access to processes that are not
aligned with their duties in the company.

5. Satisfiability (SF): It takes a responsibility and returns
whether the process model is satisfiable with regard to
that responsibility (i.e., if it is possible at all to find a
potential participant for an activity during an execution
of the process for that responsibility) [55,61].
This operation is essential to know whether it is possible
to complete an execution of a process. It helps to identify
mistakes in the resource assignments that make it impos-
sible to find suitable resources under any circumstances.

6. Consistency checking (CC): It takes a responsibility and
returns whether the process model is consistent with
regard to that responsibility (i.e., if it is always possible to
find a potential participant for an activity during any exe-
cution of the process for that responsibility) [9,17,54,55].
This operation is fundamental to ensure the correct
operation of the organisational perspective as it detects
situations in which the process could fall into a dead-
lock [56].

7. Critical participants (CP):Oneormore people are critical
participants of a business process if they have to be allo-
cated to one or more activities because there are no more
potential participants for them. The CP operation takes a
responsibility and returns the members of the organisa-
tion who are critical in the execution of a process for that
responsibility [17]. This operation is useful for identifying
those people onwhich a process executionmay eventually
depend. Furthermore, it is a mechanism to identify poten-
tial bottlenecks without the need to gather and analyse
process execution logs.

8. Critical activities (CA):Anactivity is a critical activity for
a given responsibility if it has only one potential holder for
that responsibility. The CA operation takes a person and
a responsibility and returns the critical activities in which
that person is involved with the given responsibility [17].
This operation is useful to identify the activities whose
resource assignments should be modified temporarily or
permanently when a specific person is unavailable for a
specific (or indefinite) period of time to avoid process
deadlocks.

This catalogue of analysis operations that have been used
to frame the model-checking requirements does not intend

to be a complete list but to constitute a representative set
operations that can help to verify properties of a resource-
aware process model related to the involvement of resources
in the process activities. It covers typical notions that have
been discussed, for instance, in the RBAC research commu-
nity [55,61].

5 Automated discovery of RALph-aware
process models

In the following, we describe our resource-mining approach
in several steps. In Sect. 5.1 we define a set of templates that
we need in order to discover RALph assignment rules. In
Sect. 5.2 we describe the metrics we use for discovering the
rules. In Sect. 5.3 we explain and exemplify the discovery
mechanism, based on SQL queries. Finally, in Sect. 5.4 we
delve into the order in which certain queries must be run
and how to refine the output RALph-aware process models
obtained from the mining.

5.1 RALph assignment templates

Resource assignment modelling languages like RALph are
declarative by nature. Therefore, in order to extract RALph-
awareprocessmodels fromevent logs,wecan rely on existing
principles for declarative process mining.

Consider a Direct Assignment constraint that reflects a
constraint on activity a, demanding a, if executed, to be
performed by a specific resource res. The respective tem-
plate comprises placeholders of type Activity A as well as
Resource Res. In Table 2 we provide all RALph constraint
templates that should be discovered by our approach accord-
ing toRALph’s expressive power [16], which involvemost of
our resource mining requirements.3 The table shows the con-
straint templates, the corresponding semantics in LTL f and
the related payload (i.e., the event attribute that is considered
when mining for a certain assignment constraint). In case of
the Direct Assignment template we have to query the event
log for constraints of the shape G(A → (A∧ϕt (x))), where
the target condition ϕt (x) is of the form peA[Resource] =
val. To discover Role-based, Capability-based, Position-
based and Unit-based assignment rules, we query for the
same semantics as for Direct Assignments but we have to
consider different payloads that refer to information stem-
ming from the organisational model (e.g., peA[Position]
to discover position-based assignments as described in the
example scenario in Sect. 2). A Binding of Duties template
G((A → G(B → (B∧ϕc(x, y))) reflects constraints on

3 The Organisational Assignment pattern has been divided into
Position-based Assignment, Unit-based Assignment (referred to an
organisational unit) and Hierarchy-based Assignment.

123



The RALph miner for automated discovery and verification of resource-aware process models 1425

Table 2 Semantics of RALph
assignment rules

Template LTL f Semantics Related Payload Cond.

Direct Assignment G(A → (A∧ϕt (x))) peA[Resource] = res

Role-based Assignm. G(A → (A∧ϕt (x))) peA[Role] = r

Pos.-based Assignm. G(A → (A∧ϕt (x))) peA[Position] = p

Cap.-based Assignm. G(A → (A∧ϕt (x))) peA[Capabili t y] = c

Unit-based Assignm. G(A → (A∧ϕt (x))) peA[Unit] = u

Negated Assignm. G(A → (A∧ϕt (x))) peA[Unit]! = u

Case Handling ∀A(G(A → (A∧ϕt )(x))) peA[Resource] = res

Binding of Duties G((A → G(B → (B∧ϕc(x, y))) peA[Res.] = peB [Res.]
Separation of Duties G((A → G(B → (B∧ϕc(x, y))) peA[Res.]! = peB [Res.]
Hierarchy-based Ass. G((A → G(B → (B∧ϕc(x, y))) peA[Res.] reportsTo peB [Res.](*)
(*) Resp. canDelegateWorkTo

activity a and b, demanding b, if executed, to be performed
by the same resource as activity a. Here, we query the event
log for correlation conditions ϕc(x, y) on the payloads of the
events that correspond to both activities a and b with the
specific condition that peA[Resource] = peB[Resource].

For subsequent automated discovery, the analyst will
select from the set of predefined constraint templates the
ones to be discovered depending, for instance, on the type of
organisational information available (e.g., only roles, roles
and positions, etcetera).

5.2 Metrics for RALphmining

Querying with constraint templates provides for every pos-
sible combination of concrete values for the placeholders in
the templates the number of satisfactions in the event log.
Based on the number of satisfactions, two metrics, Support
andConfidence, are calculated, which express the probability
of an assignment constraint to hold in the process. Support
is the number of fulfilments of a constraint divided by the
number of occurrences of the condition of a constraint. The
Confidencemetric scales the support by the fraction of traces
in the log wherein the activation condition is satisfied. Con-
straints are considered valid if their Support and Confidence
measures are above a user-defined threshold. We adopt the
most recent definition by Di Ciccio et al. [23]. Here, we only
consider the event-based support that is meant to be used
for all constraints in which both activation and target events
occur.

As defined in [23],we denote the set of events in a trace t of
an event log L that fulfil an LTL f formula ψ as |�e

t (ψ). The
set of all the events in log L that fulfil ψ are denoted as |�e

L
(ψ). Given a resource assignment constraint Ξ comprising
activationφa and targetφt , we define the event-based support

Se
L and the event-based confidence CeL as follows:

Se
L =

|L|∑

i=1

∣
∣
∣|�e

ti (Ξ)

∣
∣
∣

∣
∣|�e

L (φa)
∣
∣

(1)

CeL = Se
L × ∣

∣|�e
L (φa)

∣
∣

|L| . (2)

5.3 Discovering RALph assignment rules with SQL

Our proposed RALph mining method builds on the SQL-
based process discovery approach described in [51] because
of its versatility towards customisation. With SQL queries it
is possible to extract relevant process knowledge from event
logs stored in a conventional relational database following
the RelationalXES (RXES) architecture [57]. The database
tables in our case include: (1) one event log table captur-
ing the following event attributes: EventID (unique identifier
for each recorded event), TraceID (unique identifier for the
corresponding trace), ActivityID (name of the correspond-
ing activity the event refers to), Time (date and time the
event has occurred) as well as Resource (identifier of the per-
forming resource); and (2) tables for the relationships in the
organisational metamodel (cf. Fig. 3) storing the organisa-
tional information, which results in six tables: HasCapability
(Person,Capability),Occupies (Person,Position), ReportsTo
(Position, Position) - resp. CanDelegateWorkTo -, Partici-
patesIn (Position, Role) and IsMemberOf (Position, Unit).

Themining technique discovers all constraints of a certain
template under the consideration of two thresholds minSupp
and minConf related to the metrics described in Sect. 5.2 by
applying conventional database queries without any parsing
or data conversion. As an example, we explain the SQLquery
to extract Direct Assignment constraints (RM1).

SELECT ‘Direct Assignment’, A, l1.Resource, [Support],
[Confidence]

FROM Log l1, [ActivityCombinations] c
WHERE l1.Activity = c.A

123



1426 C. Cabanillas et al.

GROUP BY c.A, c.Resource
HAVING [Support] > minSupp AND [Confidence] > minConf

In the FROM clause the data source tables are joined
together (i.e., the table of the analysed event log where every
tuple depicts a single event and, if available, the tables of the
OrganisationalModel). Furthermore, the clause contains a
subqueryActivityCombinations that provides a table with the
activity combinations that should be checked. Every source
table gets an abbreviation assigned to be referable in other
clauses (e.g., “l1” for the event log table or “c” for the com-
bination table). The WHERE clause contains the different
constraint expressions that have to hold for activities and
their events (i.e., the constraint activation condition as well
as its fulfilment requirements). After deriving the fulfilments,
the tuples are grouped by the set of parameters of the con-
straint template in the GROUP BY clause. After grouping, the
number of tuples corresponding to a certain parameter com-
bination can be extracted using the SQL aggregate function
COUNT(*). In addition, a subquery computes the number of
occurrences of the condition of the constraint. This way, the
Support value of each constraint can be derived. The Confi-
dence of each parameter combination can be calculated in a
similar way. The resulting values of both queries can then be
filtered by user-defined thresholds (minSupp and minConf ).
In the last step, the query output is selected in the SELECT
clause (i.e., the parameter combination and its corresponding
Support Se

L and Confidence CeL values). The result set con-
tains tuples for each parameter combination that fulfils the
constraint under consideration of the given thresholds. The
Support value is computed with the subquery below.

COUNT(*) / (SELECT COUNT(*) FROM Log WHERE Activity = A)

Analogous, the query for the Confidence value is defined.
It can be found in [20]. We next show the query to extract
Position-basedAssignment constraints (related toRM4). The
FROM, WHERE and GROUP BY clauses of the query are as
follows:

SELECT ‘Position-based Assignment’, A, l1.Unit,
[Support], [Confidence]

FROM Log l1, Position p, [ActivityCombinations] c
WHERE l1.Activity = c.A AND a.Resource = u.Resource
GROUP BY c.A, p.Position
HAVING [Support] > minSupp AND [Confidence] > minConf

In this case, in addition to the event log and the activity
combinations we also join the table with the resource-
positions assignments according to the organisational model
in the FROM clause. The query sums up all occurrences of
events with respective resources and groups the occurrences
with respect to the corresponding position given in the table
Occupies.

This approach is followed to define SQL queries for all
the types of resource assignments that we aim at discover-
ing, in our case, those in Table 2. We provide SQL queries

for discovering the set of resource assignment constraints
online.4

5.4 Alternative connectors and pruning

If with certain minSupp and minConf thresholds we do not
extract any resource assignment rule for a process activity,
it could be the case that several resource assignment rules
are associated to it with lower frequencies. Consider, for
instance, that for an activity Apply for trip we could not
extract a valid Position-based Assignment rule since for no
rule candidate Se

L > minSupp with (e.g., minSupp = 0.95
holds). In this case, however, it could be possible to extract
a Position-based Assignment rule for Researcher with Se

L =
0.5 and a Capability-based Assignment rule for Can speak
English with Se

L = 0.5, respectively. This union is modelled
with the RALph alternative connector to express that one of
the two conditions suffices to find suitable resources. There-
fore, alternative connectors are examined at the end of the
mining procedure using lower support thresholds and com-
bining the different extracted assignment rules.

The mining method extracts all the assignment rules
related to each activity. However, when several rules are
extracted for one single activity (AND), not all of themmight
be strictly necessary to understand the process. Specifically,
some rulesmay be implied by stronger rules because they are
less restrictive and do not provide added value to the current
resource assignment expression of an activity. Those rules
complicate the understandability of the discovered models
and hence, they are unnecessary. The work in [49] identifies
two pruning approaches to eliminate unnecessary resource
assignment rules: pruning based on organisational rule hier-
archies (e.g., position-based assignment dominates direct
assignment) and pruning based on transitive reduction (e.g.,
for binding of duties rules). The requirement for all prun-
ing operations is that they do not change the meaning of
the generated model. These post-processing methods can be
applied to the approach at hand in a similar way in order to
avoid overloading the output RALph-aware process models
with unnecessary assignments that would, on the other hand,
worsen their readability.

6 Model checking with RALph and alloy

In this section we describe our approach for performing
model checking on the discovered RALph-aware process
models. As several process perspectives must be jointly
considered (namely, the functional, behavioural and organ-
isational perspectives), we need to specify the process
modelling notation used. Since Sect. 5 already introduces an

4 https://github.com/stefanschoenig/mpdeclaremining.

123

https://github.com/stefanschoenig/mpdeclaremining


The RALph miner for automated discovery and verification of resource-aware process models 1427

LTL f -based semantics for RALph assignment rules, it can
be easily combined with MP-Declare (cf. Sect. 4.2). There-
fore, we will perform model checking over RALph-aware
MP-Declare process models.

A process execution technique for MP-Declare based
on trace generation has already been investigated in [4].
Its underlying technological basis is the logic framework
Alloy [29], which was explicitly designed for model check-
ing in general. Hence, enabling RALph for model checking
can be achieved by transforming RALph assignment con-
straints into Alloy. An Alloy- and simulation-based model
checking approach for themulti-perspective, declarative pro-
cess modelling language DPIL [47,64] showed encouraging
results [3].

The remainder of the section is structured as follows. First,
the logic frameworkAlloy is briefly introduced (cf. Sect. 6.1).
Afterwards, the organisational metamodel on which RALph
is based is reformulated with Alloy (cf. Sect. 6.2). This
enables us to transform RALph’s templates for assignment
rules into Alloy (cf. Sect. 6.3), which then forms the basis
for enacting RALph-aware MP-Declare process models (cf.
Sect. 6.4) and conducting model checking (cf. Sect. 6.5).

6.1 Alloy in a nutshell

Alloy is a logic-based declarative modelling language for
describing software structures by means of constraints [29].
It is complemented by an analysis engine that is based on con-
straint solving and that can be used to check whether a model
is sound. In Alloy a model is treated as sound if it has at least
one valid instance. An instance is an exemplary configura-
tion of atoms and relationswhich fulfils all given constraints.
Atoms and relations correspond to basic entities and their
relationships [29, p. 35]. Atoms have three essential proper-
ties, namely, they are (i) indivisible, (ii) immutable and (iii)
uninterpreted. Indivisible means that they cannot be divided
into smaller components, and they are immutable because
their properties cannot be changed. They do not have any
built-in properties, which makes them uninterpreted. Rela-
tions allow for describing composite,mutable and interpreted
entities. They are comparable to a table where each entry
(tuple) is an atom. Hence, a relation is a set of tuples, where
each tuple is a sequence of atoms.

Alloy’s analysis engine is able to provide such instances—
if there is any. In the scope of the paper at hand, the
combination of the Alloy logic and constraint solving fea-
tures is used to describe the operative semantics of RALph
on the one hand side, and to use this semantics for model
checking on the other hand side.

Alloy’s language is based on a three-fold calculus: first-
order, relational calculus and a navigation expression style.
The relational calculus forms the basis and is extended by
the quantifiers of the first-order calculus. Navigation expres-

sions form sets by traversing relations between quantified
variables. In many cases, a constraint can be expressed in
each of the three formalisms. In [29] an example is given
that describes the following constraint: An address book—
described by means of a relation (address) from names
to addresses—must not map each name to more than one
address. This can be represented in each of the three logics
(Listing 1).

// Predicate calculus
all n : Name , d, d’ : Address | n->d in

address and n->d’ in address implies d
= d’

// Navigation expression style
all n : Name | lone n.address

// Relational calculus
no ~address.address - iden

Listing 1 Alloy’s three logics: Address book example

In Listing 1 the predicate calculus style takes a name and
a pair of addresses and states that if two name-address map-
pings that share the same name are a tuple in address they
also have to share the same address—or, simplified: The two
tuples have to be identical. In the navigation expression style
one navigates over relations via quantified variables. In the
given example the same constraint can be formulated by nav-
igating from all names to their corresponding address and
stating that the navigation end (each time one corresponding
address) is quantified by zero or one (lone). Finally, in the
relational calculus style one can formulate that there is no pair
of addresses assigned to names with two different addresses.
The examples in the later course of the current section will
mostly use a mixture of the different logics for reasons of
readability and in order to form the rules in a similar shape
as far as possible.

Let us explain those parts of the Alloy notation that are
necessary for our purposes. The syntax is described with
an Alloy specification that presents a tree data structure (cf.
Listing 2). Each Alloy model consists of three parts [29]: a
header, a specification part and a command part. The header
section contains information about modularisation and com-
prises the module’s name (module treeModule) and imports
of other modules like, for instance, a module that contains
basic mathematical constants and operations (open util/inte-
ger).

// Header part
module treeModule
open util/integer

// Specification part
abstract sig Node {

children : set Node
}

one sig Root extends Node{}

sig Leaf extends Node {
}
{

#children = 0

123



1428 C. Cabanillas et al.

}

fact {
no n : Node | n in n.^ children
Node in Root.* children
all n : Node | lone n.~ children

}

fun countNodesOfSubtree (n : one Node) : Int {
#(n.* children)

}

pred example {}

assert rootCheck {
countNodesOfSubtree [Root] = #Node

}

// Command part
run example for 5 Node
check rootCheck for 5 Node

Listing 2 Exemplary Alloy model for tree structures

The subsequent specification part contains the software
structure definition. More precisely, the following language
elements can be used: signatures, facts, functions, predicates
and assertions.

Signatures (e.g., sig Node in Listing 2) are used to define
static structures and are comparable to classes in object-
oriented programming languages. Hence, they can contain
fields (cf. children). Furthermore, signatures can be abstract
and, consequently, are defined to be extended by other sig-
natures which then inherit all properties and constraints of
the parent signature. In Listing 2 the abstract signature Node
is extended by two other signatures: Root and Leaf. This
means that (ignoring the remainder of the specification) root
and leaf nodes can have children, too. Each signature can
contain signature facts, which are constraints that usually
restrict the containing signature further. In Listing 2 there is
one signature fact (#children = 0) which prevents leaf nodes
from having child nodes. Signatures can have multiplicities
that restrict how often they can be instantiated (one means
exactly once, lonemeans at most once, and somemeans once
or more often).

Signature facts can be always formulated bymeans of reg-
ular facts, too. Fact blocks (in fact{}) are building blocks to
formulate invariants (i.e., they contain conjunctions of con-
straints which must always be fulfilled in order to provide
a valid solution). There is only one fact block in Listing 2,
which contains constraints that require that (i) no node can
be a child of itself, (ii) each node can be reached traversing
the tree starting from the root node, and (iii) all nodes have
at most one parent node.

Functions are (like in general-purpose programming lan-
guages) reusable pieces of code that can be parametrised
and which return some sort of result. In Listing 2 the func-
tion countNodesOfSubtree, for instance, computes the size of
the reflexive closure of the binary relation children starting
from a given source node (i.e., it returns the number of nodes
within a particular subtree). Predicates have the same char-

acteristics as functions but always return a Boolean result.
Predicates in Alloy can additionally be used as arguments
(cf. run command in Listing 2) for the commands discussed
below.

The last building block of the specification section are
the assertions, which encode assumptions that are intended
to be checked. Assertions are used as command arguments,
too. The assertion in Listing 2 contains a test specification
which checks whether the size of the reflexive closure of
the children relation between Root and Node is equal to the
overall number of nodes.

Functions, predicates and assertions are formulated by
means of expressions. According to the explanations of the
three-fold calculus, Alloy ships with the expressiveness of
three logics. This includes that expressions can make use
of predicate calculus operators as well as set operators. For
instance, in order to compute a set of identical entities found
in two different relations, it is possible to use the intersection
set operator &: X & Y. This expression evaluates to a set of
tuples that are found in both X and Y.

The command part of the code is usually either a run
or a check command. In order to show the usage of both,
Listing 2 shows two commands but running Alloy’s anal-
ysis engine would only execute the run command because
it stops searching for commands after the first finding. This
command type causes the engine to search for instances that
fulfil both the predicate that is used as parameter (example)
and the model from the specification part. In contrast, the
check command verifies the assertion it is parametrised with
(rootCheck) and tries to find counterexamples that prove that
the assertion is invalid. Both command types must be further
configured in terms of the size of the solution space, which
means defining a scope limit for all signatures that are not
restricted with any multiplicity constraint yet. In Listing 2
this means that any tree that is created by executing the run
command or that is investigated by executing the check com-
mand has at most five nodes.

For a more detailed and extended description of Alloy we
refer to [29].

There are potential alternatives to Alloy. However, Alloy
was chosen for several reasons. First, because it was devel-
oped exactly for the intended purpose, namely, model check-
ing. Alternatives like B [2], VDM [10] and Z [1] are more
focused on proof than on instance finding for a defined scope.
This is an advantages since some logics (e.g., first-order) are
undecidable in the general case. Additionally, model check-
ing is usually applied iteratively and rather often in the design
phase. Alloy was found exactly for this situation. It is based
upon the so-called small scope hypothesis which states that
problemswith amodel most often occur already in small sce-
narios. This conforms to the usage scenario of frequent and
early testing for models in development state. Furthermore,
in contrast to similar approaches, Alloy is fully executable

123



The RALph miner for automated discovery and verification of resource-aware process models 1429

and supported by an analysis engine. Many of the other lan-
guages (i) restrict the particular language to an executable
subset and/or (ii) are not scope-complete, which means that
exhaustive search within a given scope is not supported.

One could argue that plain satisfiability solving (SAT solv-
ing) techniques could also be used. Though this is true, Alloy
is a language built for making SAT solving issues more read-
able but when it comes to the analysis part it is translated
into a plain SAT solving form (i.e., a Boolean formula). One
can then choose among a set of the fastest and most matured
SAT solver technologies. Thus, Alloy is just an abstraction
layer for the low-level logic formulae allowing formuchmore
compact representations.

Finally, note that Alloy can be used in two modes: (i)
for generating positive examples (i.e., for finding instances
that fulfil the given model), and (ii) for generating counter
examples (i.e., for finding “instances” that violate a given
hypothesis, such as an assumption or check criterion).
Our approach is based on both of the two modes. Other
approaches successfully transformed (declarative) process
models into Alloy including transformations of organisa-
tional models and rules [3,4,52] for different purposes, such
as execution of multi-perspective declarative process models
and the generation of artificial event logs.

6.2 Transformation of RALph’s organisational
metamodel to alloy

Both an Alloy-based metamodel for process execution
traces5 (cf. definition of traces in Sect. 4.2) and a trans-
formation approach for MP-Declare rule templates that are
commonly used in literature have already been described
in [4]. In order to transform RALph’s resource assignment
constraints toAlloy, the organisationalmetamodel (cf. Fig. 3)
has to be translated to Alloy beforehand.

module orgMM_RALph
open commons

abstract sig Role {}

abstract sig Position {
participatesIn : set Role ,
isMemberOf : one OrganisationalUnit ,
canDelegateWorkTo : set Position ,
reportsTo : lone Position

}{
reportsTo != this

}

abstract sig Person extends AssociatedElement {
occupies : set Position ,
hasCapability : set Capability

}

5 Since the proposed model checking approach is based on trace gen-
eration, it is necessary to define a trace metamodel in Alloy, too. This
way, Alloy’s satisfiability solving capabilities can be used to generate
traces that produce the desired results of the analysis operations shown
in Listing 7.

abstract sig Capability {}
abstract sig OrganisationalUnit {}

Listing 3 Organisational metamodel for RALph in Alloy

The transformed organisational metamodel (cf. Listing 3)
is encapsulated in a module (orgMM_RALph) that makes it
reusable. That module, in turn, depends on a module called
commons, which consists of a signature called Associat-
edElement, which is a base signature for all the information
that should be associated with an event of a process execu-
tion trace. Here it provides the means to associate instances
of the signature Person (which means concrete resources)
with those events. This can be done since the signature for
events (HumanTaskEvents [4]) contains a field (assoEl) of
type AssociatedElement.

Through two fields (occupies and hasCapability) the rela-
tions from Person to Position andCapability are respectively
declared. Position is further restricted by means of a sig-
nature fact that prevents a position from reporting to itself.
The remainder of the organisational metamodel from Fig. 3
is transformed analogously. All signatures are abstract. In
Alloy, abstract signatures are means to build a classification
hierarchy. For instance, a signature extendingPerson extends
AssociatedElement, too, and thus, can be associated with
events of the process execution trace. The subsequent para-
graph explains how process execution traces can be defined
in Alloy [4].
module traceMM
open commons

abstract sig PEvent { pos : disj Int }
abstract sig TaskEvent extends PEvent{

assoEl : some AssociatedElement
}{ #(Task & assoEl) = 1 }
sig HumanTaskEvent extends TaskEvent {}{

#( Person & assoEl) = 1
}

abstract sig Task extends AssociatedElement {}

fact{
one te : TaskEvent | te.pos = integer/min
all te : TaskEvent | te.pos = integer/min or

sub[te.pos ,1] in TaskEvent.pos
}

Listing 4 Process execution trace metamodel in Alloy

Listing 4 shows a metamodel for process execution traces
encoded as a reusable module in Alloy (traceMM). PEvent
represents any event that might occur within the execution of
a process. TaskEvent extends this basic concept by declaring
a field for general information that may be associated with
an event (assoEl). However, the attached constraint requires
that the associated information contain an activity (a.k.a.
Task) that adds the semantics of an activity execution to this
type of events. Consequently, HumanTaskEvent extends a
TaskEvent further by requiring the presence of a resource
(a.k.a. Person) that is considered to be the performer of the
associated activity. Since the metamodel for process execu-
tion traces (traceMM) also depends on the commonsmodule,

123



1430 C. Cabanillas et al.

the imported signature AssociatedElement can be used as a
type of the field assoEl. This way, it is possible to declare
instances of organisational metamodel signatures (Listing 3)
as parts of a TaskEvent’s payload, too.

The fact block adds two constraints that form an event
chain (i.e., it determines the positioning of each event within
the process execution trace). Without this block, instances
of traceMM were unordered sets of events rather than an
ordered sequence.

Based on the two metamodels from Listings 3 and 4 the
next section shows how to map RALph’s assignment tem-
plates to Alloy.

6.3 Transformation of RALph’s resource assignment
templates to alloy

Based on the metamodel transformation discussed in the
previous section it is now possible to transform RALph’s
resource assignment templates (cf. Table 2) into Alloy, too.

As described in Sect. 6.1, Alloy provides two alternatives
to declare reusable code fragments: predicates and functions.
Since predicates are parametrisable and (unlike functions)
always have Boolean results, they are suitable for represent-
ing templates. Parametrisation is important since all of the
resource assignment templates can be parametrised, too. The
Boolean result type of Alloy predicates reflects the binary
property of instances of resource assignment templates that
state that they can be either fulfilled or not.

Each template from Table 2 forms one Alloy predicate as
shown in Listing 5. Therein, the predicates have the same
ordering and naming as the templates in Table 2.

Before describing thepredicates it has to bementioned that
there is a slight deviation in the payload definitions between
Table 2 and the Alloy implementation given in Listing 3. In
Table 2 all elements of the organisational metamodel given
in Fig. 3 can be part of the payload of an event. In order
to keep the Alloy code concise and readable, we decided to
only allow for the person/resource element to be part of the
event payload. Since it is possible to reach all other payload
information by means of the transitive closure, it does not
limit the expressiveness of the chosen implementation.

pred directAssignment(t : Task , p : Person) {
all e : HumanTaskEvent | #(t & e.assoEl) > 0

implies #(p & e.assoEl) > 0
}

pred roleBasedAssignment (t : Task , r : Role) {
all e : HumanTaskEvent | #(t & e.assoEl) > 0

implies #((e.assoEl & Person).occupies.
participatesIn & r) > 0

}

pred posBasedAssignment(t : Task , p : Position) {
all e : HumanTaskEvent | #(t & e.assoEl) > 0

implies #((e.assoEl & Person).occupies &
p) > 0

}

pred capBasedAssignment(t : Task , c : Capability)
{

all e : HumanTaskEvent | #(t & e.assoEl) > 0
implies #((e.assoEl & Person).
hasCapability & c) > 0

}

pred unitBasedAssignment(t : Task , u :
OrganisationalUnit) {

all e : HumanTaskEvent | #(t & e.assoEl) > 0
implies #((e.assoEl & Person).occupies.
isMemberOf & u) > 0

}

pred negUnitBasedAssignment(t : Task , u :
OrganisationalUnit) {

all e : HumanTaskEvent | #(t & e.assoEl) > 0
implies #((e.assoEl & Person).occupies.
isMemberOf & u) = 0

}

pred bindingOfDuties(t1 , t2 : Task) {
all e,f : HumanTaskEvent | #(t1 & e.assoEl) >

0 and #(t2 & f.assoEl) > 0 implies #(e.
assoEl & f.assoEl & Person) > 0

}

pred separationOfDuties(t1 , t2 : Task) {
all e,f HumanTaskEvent | #(t1 & e.assoEl) > 0

and #(t2 & f.assoEl) > 0 implies #(e.
assoEl & f.assoEl & Person) = 0

}

pred hierarchyBasedAssignmentDelegate (t : Task ,
p : Position) {

all e : HumanTaskEvent | #(e.assoEl & t) > 0
implies #((e.assoEl & Person).occupies.
canDelegateWorkTo & p) > 0

}

pred hierarchyBasedAssignmentReport(t : Task , p :
Position) {

all e : HumanTaskEvent | #(e.assoEl & t) > 0
implies #((e.assoEl & Person).occupies.
reportsTo & p) > 0

}

pred caseHandling(p : Person) {
all e : HumanTaskEvent | (e.assoEl & Person) =

p
}

Listing 5 RALph’s assignment rules in Alloy

All predicates restrict the events that occur in a trace,
where an event is already described by the trace meta-
model from Listing 4. The current concept of the metamodel
only supports events that describe the execution of activi-
ties by human resources. However, because of the payload
abstraction via the common signature AssociatedElement it
is possible to extend the metamodel with a custom module
for, e.g., non-human resources. The subsequent implica-
tions (implies) always restrict rule applications to events that
describe the execution of the task(s) provided as rule param-
eter (left part of the implication). All rule templates then
use the set operator& (a.k.a. intersection) to check different
properties of the Persons that are assigned to those events.
For instance, the rule template unitBasedAssignment uses the
term#((e.assoEl& Person).occupies.isMemberO f &u)

> 0 to restrict the performer of the task t to a Person that
occupies a position which belongs to the provided Organi-
sationalUnit u.

123



The RALph miner for automated discovery and verification of resource-aware process models 1431

(a) Trace #1 (b) Trace #2

Fig. 5 Two exemplary process execution traces

6.4 Alloy-based representation of process models
and execution traces

Based on the representation of RALph’s resource assign-
ment templates in Alloy (Sect. 6.3) it is possible to represent
RALph-awareMP-Declare models in Alloy, too. This is nec-
essary in order to use Alloy for checking those models with
respect to the analysis operations defined in Sect. 3.1.

// (a) RALph -aware MP -Declare model
one sig A extends Task{}
one sig B extends Task{}

one sig John extends Person {}
one sig Sarah extends Person {}

fact {
separationOfDuties[A,B]

}

// (b) Given process execution trace
fact {

#(atPos[A,add[integer/min ,0]]
#(atPos[B,add[integer/min ,1]]

}

Listing 6 Representing process execution traces in Alloy

Listing 6 shows the Alloy representation of (a) a process
model and (b) a (maybe partial) trace of its execution. The
process model consists of the two activities A and B as well
as the two persons John and Sarah. In the first fact block,
RALph’s resource assignment template separation of duties
(Table 2) is instantiated and configuredwith the two activities
A and B. This means that if the two activities are executed
within the same process instance, the performers have to be
different.

Additionally, the approach can be configured with an
empty, partial or complete process execution trace. This
allows running all analysis operations (cf. Sect. 3.1) to be
evaluated either for an initial or a particular execution state
of the process.

More concretely, this means it enables the user to specify
a sequence of fixed events forming a trace which describes
the progress of a process instance. This process instance can

be completed but does not have to. If it is not completed, the
trace is referred to as partial.

The given trace in Listing 6 comprises two events and is
encoded in an Alloy fact block. The first event is restricted
in a way that it has to cover information that says that some
activity A has been performed first. In contrast, the second
event describes the execution of some activityB. No resource
assignments are specified within the trace. A potential use
case could be to check the effect of the separation of duties for
the two given activities. Alloy is able to create examples that
are valid regarding the given model. An exemplary6 result is
shown in Fig. 5.

Figure 5 shows two process execution traces that are visu-
alised bymeans of the graphical representation capabilities of
Alloy’s analysis engine. Both of the traces show twoHuman-
TaskEvents, respectively, where one describes the execution
of activity A and the second describes an execution of activ-
ity B. The only difference is that in Fig. 5a Sarah executed
activity A while John was responsible for activity B whereas
in Fig. 5b it is the other way round. TheAlloy analysis engine
exhaustively searches for examples that fulfil the givenmodel
and, for the example given in Listing 6, the results given in
Fig. 5 are complete. This shows the effect of the separation
of duties since there is no example where both activities A
and B are executed by the same resource.

Though the approachdiscussed in [4] does not useRALph,
the included principle already describes how MP-Declare
models as well as process execution traces can be encoded
in Alloy. Although the given examples only show resource
assignments, both MP-Declare as well as the trace meta-
model allow for specifying more aspects of an event’s
payload. However, they are not discussed in the paper at
hand for the sake of conciseness. Instead, the authors refer to

6 This example assumes a trace length of two. Since the current paper
focuses on model checking rather than example generation the details
for the latter are skipped.

123



1432 C. Cabanillas et al.

examples in [4] that show the involvement of, for instance,
the data perspective.

6.5 RALph-aware MP-declare process model
checking with alloy

In general, Alloy provides flexibility regarding the model
properties that are desired to be checked. The remainder of
this section discusses how properties of RALph-aware MP-
Declare processmodels can be checked. For the current paper
themodel checking approach comprises the design-time exe-
cution of the analysis operations that constitute our process
verification requirements.

In order to enable Alloy to check RALph-aware MP-
Declare process models the desired analysis operations have
to be encoded in Alloy, too. Hence, the model checking
approach is based upon two main building blocks—(i) a set
of Alloy predicates that represent analysis operations and
(ii) an Alloy command configuration. Alloy predicates are
reusable pieces of code that become active either by using
them in a fact block or in combination with an Alloy com-
mand (cf. Sect. 6.1). The predicates for analysis operations
formulate (in general) a contradiction to what the partic-
ular analysis operation should compute. Using the Alloy
check command these contradictory statements are refuted
by showing counter examples that contain the results of the
particular analysis operations. For instance, for determin-
ing Potential Participants for a given activity, the predicate
states that the activity is never executed by any resource. By
applying Alloy’s check command this statement is refuted
by showing exemplary executions (a.k.a.HumanTaskEvents)
where a valid resource participates. Since Alloy provides a
scope-complete analysis,7 those examples in sum show all
potential participants.

The necessary building blocks (i.e. the predicates and the
configuration of the check command) are explained in detail
in the remainder of this section.

Alloy predicates for the analysis operations. The analy-
sis operations are generally represented as predicates, which
makes them (i) parametrisable and (ii) usable with the Alloy
commands. Listing 7 shows an Alloy representation for sev-
eral analysis operations described in Sect. 4.3.

// Potential participants (Requirement MC1)
pred PP(t : Task) {
all e : HumanTaskEvent | #(e.assoEl & t)>0

implies #( Person & e.assoEl)=0
}

// Potential activities (Requirement MC2)
pred PA(p : Person) {

7 Scope-complete heremeans thatAlloy is able to compute all examples
that refute the discussed statement that are within the defined maximum
trace length.

all e : HumanTaskEvent | #(e.assoEl & Task)>0
implies #(p & e.assoEl)=0

}

// Non -potential activities (Requirement MC3) :
Not encoded as a predicate

// Non -Potential participants (Requirement MC4)
: Not encoded as a predicate

// Critical Participants (Requirement MC7)
pred CP() {
all p : Person | p in HumanTaskEvent.assoEl

}

// Critical activities (Requirement MC8)
pred CAhelper(t : Task , p : Person) {
all e : HumanTaskEvent | #(e.assoEl & t) > 0

implies #(p & e.assoEl) = 1
}

pred CA(p : Person) {
no t : (HumanTaskEvent.assoEl & Task) |

CAhelper[t,p]
}

Listing 7 RALph analysis operations in Alloy

The predicate for retrieving Potential Participants (PP)
formulates a statement that each execution of a given task t
occurs in absence of any resource (a.k.a. Person). Potential
activities (PA) are identified similarly through a statement
that each time a given resource p is involved in any execu-
tion this execution is not associated with any activity. The
operations Non-participants (NP) for an activity t and Non-
potential Activities (NPA) for a resource p do not have to be
encoded in Alloy, since NP is the relative complement of all
resources and all potential participants for t (NP = Person -
PP[t]) and NPA is the relative complement of all activities
and the potential activities for p (NPA = Task - PA[p]).

Consistency Checking (CC)(MC6) cannot be solved with
the proposed Alloy-based approach. The reason is that Alloy
is based on instance search (i.e. it solves satisfiability issues
by computing examples—if existent—that prove satisfiabil-
ity). However, for CC computing examples of satisfiable
cases does not answer the question whether the process
model is always consistent. One way to achieve this is to
search for the opposite, which means searching for incon-
sistent examples. Consequently, the CC analysis operation
would have to search for examples that violate the given
specification. Inconsistent here means that it has to compute
examples where a resource assignment is not possible. How-
ever, due to the constraint that each HumanTaskEvent has
exactly one associated resource it is not possible to generate
those examples. Nevertheless, a relaxed interpretation of this
analysis operation can be the general satisfiability of the pro-
cess model (MC5). This is the most native usage scenario of
Alloy and can be solved by applying Alloy’s run command
instead of the check command. If this application leads to
one or more examples the model is proven to be satisfiable
since it is possible to identify one ormore examples that fulfil
the model.

123



The RALph miner for automated discovery and verification of resource-aware process models 1433

Critical Participants (CP) are computed by a statement
that all resources are always involved in the process. The
result of applying the check command would contain all
resources that do not necessarily have to be involved in the
process and, thus, the result of the analysis operation is the
relative complement of all resources and those that are con-
tained in the results of applying the check command for CP.
Finally, Critical Activities (CA) was split into two predicates
for readability reasons. ThepredicateCAhelper forms a state-
ment that each time a given activity t is executed, a given
resource p must participate in this execution. The second
predicate—CA—forms a statement that for a given person p
there is no task execution for whichCAhelper is true. Apply-
ing the check command refutes the statement contained inCA
providing counter examples containing activities that can be
executed by a resource other than the given resource p. Con-
sequently, the critical activities are all activities not contained
in these counter examples (i.e., the relative complement of
all activities and those contained in the counter example).

Besides these analysis operations, Alloy is able to sup-
port additional operations, too. Three examples are given in
Listing 8.8

// Is p in PP (pPP)
pred pPP(p : Person , t : Task) {
no e : HumanTaskEvent | #(e.assoEl & t)>0 and

#(p & e.assoEl)=1
}

// Is a specific role/position/capability
required for the execution of the process?

pred RPC(rpc : (Position + Role + Capability)) {
rpc in (( HumanTaskEvent.assoEl & Person).

occupies + (HumanTaskEvent.assoEl & Person
).hasCapability + (HumanTaskEvent.assoEl &
Person).occupies.participatesIn)

}

// Which roles are not involved in the process?
pred NP {
all po : Position | not RPC[po]

}

Listing 8 Additional analysis operations in Alloy

The predicate pPP can be used to ascertain whether a
given resource p is one of the potential participants of a given
activity t. Therefore, it formulates a statement that no execu-
tion of t involves p. The second exemplary predicate (RPC)
determines whether a given role, position or capability rpc is
required for the execution of the process. It contains a state-
ment that checks whether rpc is involved in any execution of
any activity. If the analysis result provides counter examples
this means that rpc is not required in order to execute the
process. Finally, the third example (NP) computes all posi-
tions that are not involved in the process.9 For that reason it
reuses the predicate RPC and evaluates this predicate for all
positions in the model. Hence, applying the check command

8 A formal definition of these analysis operations is omitted since they
are designed for illustrating our approach’s extensibility.
9 The statements for roles and capabilities are analogous.

retrieves all positions that can be involved in the process and,
consequently, the final result is the relative complement of
all positions and those contained in the analysis result.

Command configuration. All questions mentioned above
can be answered via Alloy’s language and analysis features.
However, each answer is only valid for a given scope which
describes the size of the solution space. To be more concrete,
a general answer for the questions above is not possible. This
is because first-order logic is in general undecidable. For that
reason, Alloy requires to limit the size of the solution space
by means of a scope restriction. Hence, the remainder of this
section describes what that scope represents for the current
approach and how it is used to configure Alloy’s check com-
mand.

In Alloy, all signatures that do not have an explicit mul-
tiplicity must be restricted regarding the number of times
an instance of each of them may occur in a solution pro-
duced by Alloy’s analysis engine. The example given in
Listing 9 shows three signatures. The abstract signature Per-
son is already known from the organisational metamodel
given in Listing 3. In Alloy, an abstract signature is used
for inheritance of fields and signature facts which means that
they are usually extended by other signatures. However, if no
signature extends this abstract signature, Alloy instantiates
the abstract signature instead. Thus, in a model without any
involved resources (a.k.a. Persons), it is necessary to restrict
the scope for Person explicitly. In Listing 9, Max and Mary
are two signatures that extend the abstract signature Person.
Consequently, a scope restriction for Personwould be super-
fluous. However, in contrast to Mary, Max is a signature
without an explicitly defined multiplicity and hence, it has
to be restricted via the scope, too.Mary is a signature with a
multiplicity of exactly one, so it does not require any scope
restriction. As a result, the same exemplary model without
the signature Max does not require any scope restriction for
the signature Person since it is already restricted by Mary.
In short, scope restrictions are necessary for those signatures
without any explicit multiplicity.

abstract sig Person extends AssociatedElement{. . .
}

sig Max extends Person {}
one sig Mary extends Person{}

Listing 9 RALph analysis operations in Alloy

Considering the metamodel given in Listing 4, a scope
restriction is always necessary for the signature TaskEvent.
This scope restriction represents the maximum process exe-
cution trace length and, consequently, the number of events
that the trace may consist of. Additionally, it is necessary
to restrict the scope of all signatures in the RALph’s meta-
model provided in Listing 3 if no other signature extends
them having an explicit multiplicity. However, if those sig-
natures are extended the corresponding extending signatures

123



1434 C. Cabanillas et al.

should have the multiplicity one, since capabilities, person
names, etcetera, can be assumed to be clearly distinguishable.

In order to give an example (cf. Listing 10 for itsAlloy rep-
resentation), we assume a RALph-aware MP-Declare model
consisting of two activitiesA andB, two resources John (who
occupies position CEO) and Sarah (who occupies position
CIO) and two assignment rules:

• The two activities have to be executed by different
resources (separationOfDuties[A,B]).

• The resource that is responsible for A must occupy the
position CEO (posBasedAssignment[A,CEO]).

A possible analysis operation that might be executed for the
given model could be the retrieval of potential participants
for activity A. This can be achieved by creating an assertion
which states that the predicate PP (cf. Listing 7) holds for
the given argument A. Applying the check command to this
assertion causes Alloy’s analysis engine to create counter
examples that falsify this assertion if possible—for the given
scope.

one sig A extends Task{}
one sig B extends Task{}

one sig John extends Person {}{ occupies = CEO }
one sig Sarah extends Person {}{ occupies = CIO }

one sig CEO extends Position {}
one sig CIO extends Position {}

fact {
separationOfDuties[A,B]
posBasedAssignment[A,CEO]

}

assert opPP {
PP[A]

}
check opPP for 2 TaskEvent , 0 Role , 0

Capability , 1 OrganisationalUnit

Listing 10 Exemplary scope restriction

Alloy’s check command can be configured regarding the
number of times an instance of a particular signature may
occur in potential results of executing the analysis opera-
tions. This is what is already mentioned as scope restriction.
Listing 10 shows an exemplary scope restriction to two for the
metamodel signature TaskEvent (cf. Listing 4). This means
that, independently from any other constraint or restriction,
all analysis operations are performed for process execution
traces consisting of two events at most.

Listing 10 contains extensions for the metamodel signa-
tures Person and Position (cf. Listing 3). For the remaining
signatures of RALph’s metamodel a scope restriction is
necessary. Thus, the call ofAlloy’s check command is accom-
panied by scope restrictions for all those signatures. Since
the exemplary RALph-aware MP-Declare model does not
mention anything about roles or capabilities, we can set the
expected number of instances of those signatures to zero.

In contrast, OrganisationalUnit must be set to at least one
sinceRALph’smetamodel (Listing 3) requires that aPosition
is member of exactly one OrganisationalUnit. Though this
necessary background knowledge seems to be an uncomfort-
able limitation of the proposed approach, we rather suggest
an automation procedure as future work. This is valid since
this internal knowledge about the metamodel is static and
therefore, can be reflected by likewise static rules.

Figure 6 shows a partial result for the analysis operation
for retrieving potential participants for activity A. It is a par-
tial result because it contains only one potential participant
while the full set of potential participants can be retrieved by
iterating over all examples. The visualisation in Fig. 6 shows
a process execution trace consisting of two events. How-
ever, the analysis operation asks for specific event details,
namely, the performers of activity A. This specific detail is
marked with $PP_e; the performer in the marked event is
one potential participant for activity A. Since Alloy searches
exhaustively for examples (counter examples in this case)
with respect to the given scope, the resulting set of potential
participants is complete with respect to the given scope, too.
This dependency to the scope and further implications are
discussed in the subsequent paragraph.

Implications of the necessity of a scope restriction. There
are two major implications that result from the necessity to
artificially configure the size of the solution space in terms
of a scope restriction: (i) scope-boundedness of results and
(ii) necessity of background knowledge.

Scope-boundedness of resultsmeans that the result of each
analysis operation is only valid for the given scope restriction
and, consequently, it is not possible to answer any analysis
question in general. This requires the follow-up conclusion
that the results of the analysis operationsmight differ depend-
ing on the configured scope. If, for instance, the scope for
TaskEvent is too low, running the analysis operation PP for
activity A might produce an empty set—just because the
TaskEvent scope does not allow an event where A is executed
(e.g., because of control-flow restrictions) and not because
there is no resource that could execute this activity. However,
always configuring a “huge” scope significantly lowers the
performance [3,4] and thus, leads to an issue from a prag-
matic point of view. Hence, an efficient scope—denoting a
scope that is both able to produce valuable analysis results
while being still performant—heavily depends on the respec-
tive model and the analysis question.

A second implication—thenecessity of backgroundknowl-
edge—results from the scope-boundedness.More concretely,
the approach currently requires backgroundknowledge about
the given process model in terms of the required size of
analysis results. This is necessary in order to choose an effi-
cient scope restriction. For the current state of the proposed
approach this is a manual task. Thus, the current state of

123



The RALph miner for automated discovery and verification of resource-aware process models 1435

Fig. 6 Example result after invoking the check command from Listing 10

the approach assumes that sufficient background knowledge
about the process model is available. However, since the pro-
posed approach focuses on design-time checking the target
user group are modelling experts that are in charge of devel-
oping the process model. Consequently, the assumption of
background knowledge is consistent with the intended appli-
cation environment.

7 Implementation and evaluation

In this section,weprovide details and examples of theRALph
Miner implementation and evaluate its components. In par-
ticular, we show the feasibility of the resource mining and
resource-aware process verification approaches (cf. Sect. 7.1)
as well as the performance of the latter (cf. Sect. 7.2). The
performance of the SQL-based resource mining approach
with RALph was already assessed in [20]. We also briefly
report how the system requirements defined in Sect. 3.1 are
supported (cf. Sect. 7.3).

7.1 RALphminer

The RALph mining approach has been implemented as a
web-based process mining tool. The implemented architec-
ture and used toolset are illustrated in Fig. 7. We aim at
discovering RALph-aware process models and hence, two
main elements must be discovered, namely, the definition of
the process itself (i.e., the functional and behavioural per-
spectives) and the resource assignment rules for the process
activities (i.e., the organisational perspective). As mentioned
in Sect. 1, there is a number of approaches for discovering
a business process. Implementations for many of them are
available as plug-ins in the ProM framework.10 We use the
BPMNMiner tool with a XES event log to extract a resource-
unaware BPMN model. Afterwards, the resulting BPMN
model is exported as an XML file according to the BPMN-
XML specification [39]. We use the SQL mining approach

10 http://www.promtools.org/doku.php.

described in Sect. 5.3 for extractingRALph assignment rules.
Since this approach builds on the relational RXES event log
representation, we first have to import the XES event log to
relational database tables inRXES format aswell asmake the
organisational information available as tables as explained in
Sect. 5.3. We can then run the set of SQL queries required
to extract RALph resource assignment rules. The resulting
assignment rules are attached in the previous BPMN-XML
file to the respective activity as specific resource tags. Here,
we match activities from the given BPMN model and the
extracted assignment rules based on activity identifiers given
in the event log. The RALph-aware BPMN model is then
visualised in the graphical BPMN diagram editor bpmn.io,11

which has been extended with the RALph symbols. For auto-
matically arranging and layouting the RALph assignment
symbols in the process diagram, we used a Java Script based
implementationof theSugiyamagraph layout algorithm [25].
Additionally, the underlying formal RAL expressions can
be imported and edited in BPMN editors like Signavio.12

A plug-in is available to automatically analyse such RAL
assignments so that the RAL-aware process model can be
automatically executed [19].

As a proof of concept, we applied the described toolset to
an event log of a university business trip management sys-
tem. The log contains 2104 events of eight different activities
related to the application and the approval of university busi-
ness trips as well as the management of accommodations
and transfers (e.g., booking accommodations and transport
tickets). The system has been used for six months by eleven
employees of a research institute. The organisational model
of the institute comprises two organisational units: Admin-
istration, with two employees; and Research Group, divided
into three positions that include one professor, six researchers
and two secretaries as depicted in Fig. 1. On the given event
log, we were able to execute all RALph resource assignment
queries (cf. Table 2) in less than one second. The resulting
BPMN model with the extracted RALph assignment rules

11 BPMN Viewer and Editor, https://bpmn.io.
12 https://www.signavio.com.

123

http://www.promtools.org/doku.php
https://bpmn.io
https://www.signavio.com


1436 C. Cabanillas et al.

Fig. 7 Implementation architecture and mining procedure

Fig. 8 User interface of RALphMiner with extracted assignment rules

is shown in Fig. 8. The screenshot also shows the extended
bpmn.io modelling toolbox on the left-hand side. Note that
the model has not been pruned as described in Sect. 5.4 since
the implementation of that post-processing feature is still
pending work. Therefore, the model contains some assign-
ment rules that are irrelevant (e.g., the direct assignment of
entity SJ to Approve Application or the binding of duties rule
between Book accommodation and Buy transport tickets).

As a second part of our proof of concept the discov-
ered process model (Fig. 8) was translated into Alloy.13

SinceRALph is independent from a particularmodelling lan-
guage for the definition of the control flow, the subsequent
explanations focus on the resource perspective and skip the
behavioural aspect.

13 The full example is available online: https://github.com/
stefanschoenig/mpdeclaremining.

123

https://github.com/stefanschoenig/mpdeclaremining
https://github.com/stefanschoenig/mpdeclaremining


The RALph miner for automated discovery and verification of resource-aware process models 1437

one sig Admin1 extends Person {}{ occupies =
AdminPosition }

one sig Admin2 extends Person {}{ occupies =
AdminPosition }

one sig Secretary1 extends Person {}{ occupies =
Secretary }

one sig Secretary2 extends Person {}{ occupies =
Secretary }

one sig Researcher1 extends Person {}{ occupies
= Researcher }

one sig Researcher2 extends Person {}{ occupies
= Researcher }

one sig Researcher3 extends Person {}{ occupies
= Researcher }

one sig Researcher4 extends Person {}{ occupies
= Researcher }

one sig Researcher5 extends Person {}{ occupies
= Researcher }

one sig Researcher6 extends Person {}{ occupies
= Researcher }

one sig SJ extends Person {}{ occupies =
Professor }

one sig Researcher extends Position {}{
#participatesIn = 0
isMemberOf = ResearchGroup
#canDelegateWorkTo = 0
#reportsTo = 0

}
one sig Secretary extends Position {}{

#participatesIn = 0
isMemberOf = ResearchGroup
#canDelegateWorkTo = 0
#reportsTo = 0

}
one sig Professor extends Position {}{

#participatesIn = 0
isMemberOf = ResearchGroup
canDelegateWorkTo = Researcher
#reportsTo = 0

}

one sig AdminPosition extends Position {}{
#participatesIn = 0
isMemberOf = Administration
#canDelegateWorkTo = 0
#reportsTo = 0

}

one sig Administration extends
OrganisationalUnit {}

one sig ResearchGroup extends
OrganisationalUnit {}

Listing 11 Exemplary organisational model in Alloy

Listing 11 shows the representation of the organisa-
tional model. The first block of signatures represents the
eleven employees that are distributed over three explicitly
mentioned positions. An additional position was introduced
(AdminPosition) since RALph’s metamodel given in Fig. 3
prescribes that resources are assigned to organisational units
via their positions (cf. relation isMemberOf in Position). The
last two signatures describe the two organisational units.

fact {
// RALph resource assignment rules
bindingOfDuties[ApplyForTrip , BookFlight]
bindingOfDuties[ApplyForTrip ,

BookAccommodation]
bindingOfDuties[ApplyForTrip ,

BuyTransportTickets ]
bindingOfDuties[BookAccommodation ,

BookFlight]
bindingOfDuties[BookAccommodation ,

BuyTransportTickets ]
bindingOfDuties[BookFlight ,

BuyTransportTickets ]

posBasedAssignment[ApplyForTrip , Researcher
]

posBasedAssignment[EditResponse , Secretary]
posBasedAssignment[ArchiveTripDocuments ,

Secretary]
directAssignment[ApproveApplication , SJ]
hierarchyBasedAssignmentDelegate[

ApproveApplication , Researcher]
unitBasedAssignment[CheckApplication ,

Administration]

assert testPP {
PP[BookFlight]

}

check testPP for 8 TaskEvent , 0 Role , 0
Capability , 2 OrganisationalUnit , 4
Position

}

Listing 12 Exemplary assignment rules Alloy

Listing 12 shows the Alloy representation of the assign-
ment rules depicted in Fig. 8. The potential participants of
an activity can be retrieved by means of the PP predicate.
In the example it is applied to the activity BookFlight. The
corresponding check command is configured for the maxi-
mum number of events that may occur within one process
instance—which is equal to the number of activities since
each activity has to be executed exactly once. The remaining
scope parameters are depending on the organisational model
which contains no roles and no capabilities but two organi-
sational units and four positions.

Alloy’s analysis engine interprets the check command and
generates examples of potential participants. Collecting all
of them shows that this comprises all resources occupying
the position Researcher. This is because a rule bindingOf-
Duties was applied for the two tasks ApplyForTrip and
BookFlight. However, if we encode a partial trace with a sin-
gle event that associates Researcher2with ApplyForTrip, the
retrieved potential participants for BookFlight are reduced to
Researcher2 which conforms to the sequence of bindingOf-
Duties constraints.

7.2 Performance of RALph-aware MP-declare model
checking

In this section, we describe the evaluation of our resource-
aware model checking approach regarding performance
measurements. In particular,wemeasure the time thatAlloy’s
analysis engine needs to determine one single solution for
a given maximum number of events n. Within a RALph
model checking setting, this represents the time Alloy needs
for calculating one specific execution instance of the given
RALph-aware MP-Declare process model of trace length n.

For measuring the execution time of the approach, we use
a RALph-aware MP-Declare process model that consists of
the following entities: (i) three activities A, B and C; (ii)
three MP-Declare constraints covering the control-flow per-

123



1438 C. Cabanillas et al.

Fig. 9 Performance evaluation of RALph-aware model checking

spective; and (iii) BindingOfDuties(A,B) and Separationof-
Duties(B,C) representing RALph assignment constraints.

The organisational model consists of two different roles,
capabilities and organisational units each. For the given
model wemeasured the runtime performance for amaximum
trace length of n = 20. Already existing performance mea-
surements showed the trace length’s strong influence on the
computation time [3,4]. Since the current paper focuses on
resource assignment, we keep the trace length fixed and pick
the constant arbitrarily. Consequently, the experimental setup
varies the number of positions and resources in the range from
0 to 100. The measurements visualised in Fig. 9 have been
performed on a Dell Latitude E6430 (Core i7-3720QM, 8 x
2.6GHz, 16 GB RAM, SSD drive and Win 8 64 Bit).

Our experimental setup applies the analysis operation for
retrieving potential participants for activity B. This means
that the collected performance data represents the computa-
tion times for one potential participant for the corresponding
variation of the number of resources and positions. Con-
sequently, the computation time for retrieving all potential
participants can be calculated by multiplying a particular
computation time fromFig. 9with the number of resources at
its worst.We say “at most” since the actual computation time
will usually be smaller because only a subset of all resources
will be potential participants of B.

The results (i.e. the time measured for retrieving one
potential participant) show that the calculation of one sin-
gle solution of the given RALph-aware MP-Declare process
model is performed in less than 1 second in most of the
cases. The figure additionally shows that the execution time
is mainly influenced by the number of positions and not by
the number of resources. This is caused by the fact that Alloy
needs to check all variations of possible resource-to-position
mappings, which results in a potentially huge number of
possibilities. The calculation run time scales linearly (i.e.,
calculating two possible solutions will double the given run-
time values).

7.3 Discussion

Table 1 includes the support provided by our integrated solu-
tion, the RALphMiner, for the functional and non-functional
requirements that frame this work. Almost all the creation
patterns can be mined and represented with the output
resource assignment notation, RALph. The only exception
is History-based Assignment (RM8). History-based assign-
ments can be defined with RALph constructs. However, our
mining approach currently does not consider data from past
process instances to infer resource assignment constraints.
RM9 and RM10 are supported thanks to RALph’s design.

The resource-aware process verification component of the
RALph Miner provides automated support for the execution
of seven of the eight analysis operations behind the model-
checking requirements.MC6 (ConsistencyChecking) cannot
be implemented in a comprehensive and smart way. A brute-
force solution could be defined but this requires to implement
the brute force strategy outside of Alloy. The reason for that
is the necessity to encode all potential execution states of
the process by means of a trace in Alloy. However, since the
current metamodel is limited to a representation of the exe-
cution state of exactly one process instance it is necessary
to generate a set instead of one Alloy model, one for each
potential execution state.

As depicted in Fig. 2, the RALph Miner constitutes an
integrated solution for resource mining and resource-aware
process verification, satisfying non-functional requirement
NF1. Note that three different modelling languages are used:
BPMN as a graphical process modelling language, MP-
Declarewith its strong logical foundation, andRALph,which
is the connection point of the proposed tools and thus, serves
as an integration base. RALph is independent from any par-
ticular process modelling language but in order to make it
usablewith existing processmodelling languages and tools, it
is integratedwithBPMNfor the processmining task andwith
MP-Declare for model verification. Both BPMN and MP-
Declare here serve as host languages for enabling the control
flow perspective of processes, too. This shows RALph’s flex-
ibility on the one hand side and adapts existing approaches
on the other hand side, allowing us to concentrate on the
integration based on RALph’s logical foundation instead
of reinventing process mining and verification techniques.
Furthermore, since RALph’s formal semantics is defined
independently from any process modelling language but is
implemented in both BPMN and MP-Declare in an additive
way, it is straightforward to map a RALph assignment rule
discovered by an BPMN-based process mining technique to
MP-Declare.

Lastly, the performance evaluations of the resource min-
ing and the resource-aware process verification components
(cf. [20] and Sect. 7.2, respectively) conclude that NF2 is
also supported.

123



The RALph miner for automated discovery and verification of resource-aware process models 1439

8 Conclusions and future work

In this work we have focused on the organisational perspec-
tive of business processes and we have developed the RALph
Miner, an integrated solution that allows for the automated
discovery of expressive graphical resource-aware process
models and their automated verification. We have used the
RALph notation for defining the resource assignments in the
discovered resource-aware processmodels. RALph’s seman-
tics has been defined using LTL f as a common semantic
foundation to give support to the resourcemining andmodel-
checking approaches.We have shown how the RALphMiner
provides full support for eighteen of the twenty system
requirements identified from studies of the literature involved
with resource management in different domains.

Nevertheless, our work also has some limitations that we
aim to tackle in future efforts. Regarding the resource min-
ing approach, the implementation of the pruning step after
the discovery of the RALph-aware process models is the next
task to be performed. As for resource-aware process model
checking, the transformation of RALph templates to Alloy
code needs to be done manually at the moment. In addition
to the described usability issues, we will also try to further
improve the performance of the introduced model-checking
approach with a smarter configuration of the Alloy’s analysis
engine. As far as the scope is concerned, the two require-
ments not supported or partly supported at the moment will
be further addressed. Finally, since use cases might differ in
terms of the resource specialisation, we plan to investigate
the impact that that may have on the RALphMiner by testing
it on more use cases.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Abrial, J.R.: Specification language. On the Construction of Pro-
grams (1980)

2. Abrial, J.R., Abrial, J.R.: The B-Book: Assigning Programs to
Meanings. Cambridge University Press, Cambridge (2005)

3. Ackermann, L., Schönig, S., Jablonski, S.: Simulation of multi-
perspective declarative process models. In: Business Process Man-
agement Workshops, pp. 61–73. Springer, Berlin (2016)

4. Ackermann, L., Schönig, S., Petter, S., Schützenmeier, N., Jablon-
ski, S.: Execution of multi-perspective declarative process models,
pp. 154–172 (2018). https://doi.org/10.1007/978-3-030-02671-
4_9

5. American National Standards Institute, I.: Role-based access con-
trol. ANSI INCITS 359-2004 (2004). http://csrc.nist.gov/rbac

6. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-
Schneider, P.F.: The Description Logics Handbook: Theory, Imple-
mentations, and Applications. Cambridge University Press, Cam-
bridge (2003)

7. Baumgrass, A.: Deriving current state RBAC models from event
logs. In: Int. Conf. on Availability, Reliability and Security, pp.
667–672 (2011)

8. Bertino, E., Ferrari, E.: Data security. In: COMPSAC, pp. 228–239
(1998)

9. Bertino, E., Ferrari, E., Atluri, V.: The specification and enforce-
ment of authorization constraints in workflow management sys-
tems. ACM Trans. Inf. Syst. Secur. 2, 65–104 (1999)

10. Bjorner, D., Jones, CB, et al.: The Vienna development method:
the meta-language (1978)

11. Bose, J.C.,Maggi, F.M., van derAalst,W.: Enhancing declaremaps
based on event correlations. BPM 8094, 97–112 (2013)

12. Burattin, A., Maggi, F.M., Sperduti, A.: Conformance checking
based on multi-perspective declarative process models. Expert
Syst. Appl. 65, 194–211 (2016)

13. Burattin, A., Sperduti, A., Veluscek,M.: Businessmodels enhance-
ment through discovery of roles. In: IEEE CIDM, pp. 103–110
(2013)

14. Caballero, H.S.G., Westenberg, M.A., Verbeek, H.M.W., van der
Aalst, W.M.P.: Visual analytics for soundness verification of pro-
cess models. Bus. Process Manag. Workshops 308, 744–756
(2017). https://doi.org/10.1007/978-3-319-74030-0_59

15. Cabanillas, C.: Process- and resource-aware information systems.
In: Int. Conf. onEnterpriseDistributedObjectComputing (EDOC),
pp. 1–10 (2016)

16. Cabanillas, C., Knuplesch, D., Resinas, M., Reichert, M.,
Mendling, J., Ruiz-Cortés, A.: RALph: A graphical notation for
resource assignments in business processes. In: CAiSE, vol. 9097,
pp. 53–68. Springer, Berlin (2015)

17. Cabanillas, C., Resinas, M., del Río-Ortega, A., Ruiz-Cortés, A.:
Specification and automated design-time analysis of the business
process human resource perspective. Inf. Syst. 52, 55–82 (2015)

18. Cabanillas, C., Resinas, M., Ruiz-Cortés, A.: A template-based
approach for responsibility management in executable business
processes. Enterp. Inf. Syst. 12(5), 550–586 (2018). https://doi.
org/10.1080/17517575.2017.1390166

19. Cabanillas, C., del Río-Ortega, A., Resinas, M., Cortés, A.R.:
CRISTAL: collection of resource-centrIc supporting tools and lan-
guages. In: BPM (Demos), pp. 51–56. CEUR-WS.org (2012)

20. Cabanillas,C., Schönig, S., Sturm,C.,Mendling, J.:Mining expres-
sive and executable resource-aware imperative process models. In:
Int. Conf. on Enterprise, Business-Process and Information Sys-
tems Modeling (BPMDS), vol. 318, pp. 3–18 (2018)

21. Ciccio, C.D., Maggi, F.M., Montali, M., Mendling, J.: Resolving
inconsistencies and redundancies in declarative process models.
Inf. Syst. 64, 425–446 (2017). https://doi.org/10.1016/j.is.2016.
09.005

22. Clarke Jr., E.M.,Grumberg,O., Peled,D.A.:Model Checking.MIT
Press, Berlin (2000)

23. Di Ciccio, C., Mecella, M.: On the discovery of declarative control
flows for Artful processes. ACM Trans. Manag. Inf. Syst. 5(4),
241–2437 (2015)

24. Dumas,M., Rosa,M.L.,Mendling, J., Reijers, H.A.: Fundamentals
of Business ProcessManagement, 2nd edn. Springer, Berlin (2018)

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/978-3-030-02671-4_9
https://doi.org/10.1007/978-3-030-02671-4_9
http://csrc.nist.gov/rbac
https://doi.org/10.1007/978-3-319-74030-0_59
https://doi.org/10.1080/17517575.2017.1390166
https://doi.org/10.1080/17517575.2017.1390166
https://doi.org/10.1016/j.is.2016.09.005
https://doi.org/10.1016/j.is.2016.09.005


1440 C. Cabanillas et al.

25. Eiglsperger, M., Siebenhaller, M., Kaufmann, M.: An efficient
implementation of Sugiyama’s algorithm for layered graph draw-
ing. In: Graph Drawing, pp. 155–166 (2005)

26. Hildebrandt, T.T., Mukkamala, R.R.: Declarative event-based
workflow as distributed dynamic condition response graphs. Elec-
tron. Proc. Theor. Comput. Sci. 69, 59–73 (2011)

27. Hompes, B.F.A., Maaradji, A., Rosa, M.L., Dumas, M., Buijs,
J.C.A.M., van der Aalst, W.M.P.: Discovering causal factors
explaining business process performance variation. In: CAiSE, pp.
177–192 (2017)

28. Horling, B., Lesser, V.: A survey of multi-agent organizational
paradigms. Knowl. Eng. Rev. 19(4), 281–316 (2004). https://doi.
org/10.1017/S0269888905000317

29. Jackson,D.: SoftwareAbstractions:Logic, Language, and analysis.
MIT Press, London (2012)

30. Jin, T., Wang, J., Wen, L.: Organizational modeling from event
logs. In: Int. Conf. on Grid and Cooperative Computing (GCC),
pp. 670–675 (2007)

31. Kupferman, O., Vardi, M.Y.: Vacuity detection in temporal model
checking. Int. J. Softw.ToolsTechnol. Transf.4(2), 224–233 (2003)

32. Larkin, J.H., Simon, H.A.: Why a diagram is (sometimes) worth
ten thousand words. Cogn. Sci. 11(1), 65–100 (1987). https://doi.
org/10.1016/S0364-0213(87)80026-5

33. Maggi, F.M.,Westergaard,M., Montali, M., van der Aalst,W.M.P.:
Runtime verification of LTL-based declarative process models.
In: Int. Conf. on Runtime Verification (RV)—Revised Selected
Papers, vol. 7186, pp. 131–146 (2011). https://doi.org/10.1007/
978-3-642-29860-8_11

34. Mendling, J.: Empirical studies in process model verification.
Trans. PetriNetsOtherModelsConcurr.2, 208–224 (2009). https://
doi.org/10.1007/978-3-642-00899-3_12

35. Mendling, J., Neumann,G., Nüttgens,M.: Yet another event-driven
process chain—modeling workflow patterns with yEPCs. Enterp.
Model. Inf. Syst. Archit. (EMISA) 1, 3–13 (2005)

36. Montali, M., Pesic, M., van der Aalst, W.M.P., Chesani, F., Mello,
P., Storari, S.: Declarative specification and verification of service
choreographies. TWEB 4(1), 3:1–3:62 (2010)

37. Mora, B., Garcia, F., Ruiz, F., Piattini, M.: Graphical versus textual
software measurement modelling: an empirical study. Softw. Qual.
J. 19, 201–233 (2011). https://doi.org/10.1007/s11219-010-9111-
x

38. Nakatumba, J., van der Aalst, W.: Analyzing resource behavior
using process mining. In: Business Process Management Work-
shops, pp. 69–80 (2010)

39. OMG: BPMN 2.0. Recommendation, OMG (2011)
40. Peffers, K., et al.: A design science researchmethodology for infor-

mation systems research. J. Manag. Inf. Syst. 24(3), 45–77 (2007)
41. Pika, A., Leyer,M.,Wynn,M.T., Fidge, C.J., ter Hofstede, A.H.M.,

van der Aalst, W.M.P.: Mining resource profiles from event logs.
ACM Trans. Manag. Inf. Syst. 8(1), 1:1–1:30 (2017)

42. Reichert, M., Rinderle-Ma, S., Dadam, P.: Flexibility in process-
aware information systems. Trans. Petri Nets Other Mod. Concurr.
2, 115–135 (2009). https://doi.org/10.1007/978-3-642-00899-3_7

43. Rinderle-Ma, S., van der Aalst, W.M.: Life-cycle support for staff
assignment rules in process-aware information systems. Technical
Report TU/e (2007)

44. Roth, W.M., Bowen, G.M.: When are graphs worth ten thou-
sand words? An expert–expert study. Cogn. Instr. 21(4), 429–473
(2003). https://doi.org/10.1207/s1532690xci2104_3

45. Rovani, M., Maggi, F.M., de Leoni, M., van der Aalst, W.M.:
Declarative process mining in healthcare. Expert Syst. Appl.
42(23), 9236–9251 (2015)

46. Russell, N., van der Aalst, W.M.P., ter Hofstede, A.H.M., Edmond,
D.: Workflow resource patterns: identification, representation and
tool support. In: CAiSE, pp. 216–232 (2005)

47. Schönig, S., Ackermann, L., Jablonski, S.: DPIL navigator 2.0:
multi-perspective declarative process execution. In: Online Pro-
ceedings of the BPM Demo Track. CEUR-WS.org (2017)

48. Schönig, S., Cabanillas, C., Ciccio, C.D., Jablonski, S., Mendling,
J.: Mining team compositions for collaborative work in business
processes. J. Softw. Syst. Model. (SoSyM) 1, 19 (2015). https://
doi.org/10.1007/s10270-016-0567-4

49. Schönig, S., Cabanillas, C., Jablonski, S., Mendling, J.: A frame-
work for efficiently mining the organisational perspective of
business processes. Decis. Support Syst. 89, 87–97 (2016)

50. Schönig, S., Ciccio, C.D., Maggi, F.M., Mendling, J.: Discovery of
multi-perspective declarative process models. In: Service-Oriented
Computing—14th International Conference, ICSOC 2016, Banff,
AB,Canada,October 10–13, 2016, Proceedings, pp. 87–103 (2016)

51. Schönig, S., Rogge-Solti, A., Cabanillas, C., Jablonski, S.,
Mendling, J.: Efficient and customisable declarative process min-
ing with SQL. In: CAiSE, pp. 290–305 (2016)

52. Skydanienko, V., Di Francescomarino, C., Ghidini, C., Maggi,
F.M.: A tool for generating event logs from multi-perspective
declare models. In: BPM (Dissertation/Demos/Industry), pp. 111–
115 (2018)

53. Song,M., van derAalst,W.M.: Towards comprehensive support for
organizational mining. Decis. Support Syst. 46(1), 300–317 (2008)

54. Strembeck, M., Mendling, J.: Modeling process-related RBAC
models with extended UML activity models. Inf. Softw. Technol.
53, 456–483 (2011)

55. Tan, K., Crampton, J., Gunter, C.A.: The consistency of task-based
authorization constraints in workflow systems. In: IEEEWorkshop
on Computer Security Foundations, pp. 155–169 (2004)

56. van der Aalst, W., van Hee, K.: Workflow Management: Models,
Methods, and Systems. MIT Press, London (2004)

57. van Dongen, B.F., Shabani, S.: Relational XES: data management
for process mining. CAiSE Forum 2015, 169–176 (2015)

58. van der Aalst, W., Pesic, M., Schonenberg, H.: Declarative work-
flows: balancing between flexibility and support. Comput. Sci.
R&D 23(2), 99–113 (2009)

59. van der Aalst, W.M.P.: Process Mining—Discovery, Conformance
and Enhancement of Business Processes. Springer, Berlin (2011)

60. Verbeek, E., Buijs, J., van Dongen, B., van der Aalst, W.: XES,
xESame, and ProM 6. In: Information Systems Evolution, pp. 60–
75 (2011)

61. Wang, Q., Li, N.: Satisfiability and resiliency in workflow autho-
rization systems

62. Wynn, M.T., Poppe, E., Xu, J., ter Hofstede, A.H.M., Brown, R.,
Pini, A., van der Aalst, W.M.P.: ProcessProfiler3D: a visualisation
framework for log-based process performance comparison. Decis.
Support Syst. 100, 93–108 (2017)

63. Wynn, M.T., Verbeek, H.M.W., van der Aalst, W.M.P., ter Hofst-
ede, A.H.M., Edmond, D.: Business process verification—finally
a reality!. Bus. Proc. Manag. J. 15(1), 74–92 (2009). https://doi.
org/10.1108/14637150910931479

64. Zeising, M., Schönig, S., Jablonski, S.: Towards a common plat-
form for the support of routine and agile business processes. In:
IEEE Int. Conf. on Collaborative Computing: Networking, Appli-
cations and Worksharing, pp. 94–103 (2014)

65. Zhao, W., Zhao, X.: Process mining from the organizational per-
spective. Adv. Intell. Syst. Comput 277, 701–708 (2014)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

https://doi.org/10.1017/S0269888905000317
https://doi.org/10.1017/S0269888905000317
https://doi.org/10.1016/S0364-0213(87)80026-5
https://doi.org/10.1016/S0364-0213(87)80026-5
https://doi.org/10.1007/978-3-642-29860-8_11
https://doi.org/10.1007/978-3-642-29860-8_11
https://doi.org/10.1007/978-3-642-00899-3_12
https://doi.org/10.1007/978-3-642-00899-3_12
https://doi.org/10.1007/s11219-010-9111-x
https://doi.org/10.1007/s11219-010-9111-x
https://doi.org/10.1007/978-3-642-00899-3_7
https://doi.org/10.1207/s1532690xci2104_3
https://doi.org/10.1007/s10270-016-0567-4
https://doi.org/10.1007/s10270-016-0567-4
https://doi.org/10.1108/14637150910931479
https://doi.org/10.1108/14637150910931479


The RALph miner for automated discovery and verification of resource-aware process models 1441

Dr. Cristina Cabanillas is a post-
doctoral researcher with the ISA
Research Group at the Univer-
sity of Seville (Spain). She has
taken part in many R&D projects,
has experience as a reviewer in
top international conferences and
journals, and has chaired a num-
ber of workshops and conference
tracks. She is currently coordi-
nating the CONFLEX project on
the integration of context-aware
resource management into flex-
ible process-oriented organisations.
Her main research interests relate

to business process management with a special focus on their organi-
sational perspective.

Dr. Lars Ackermann is an Assis-
tant Professor of Computer Sci-
ence with the Institute for Com-
puter Science at University of
Bayreuth (Germany). He received
the master’s degree (with hon-
ours) in Computer Science and
the doctoral degree from Univer-
sity of Bayreuth. He has an estab-
lished background in BPM/Pro-
cess Mining and has been work-
ing in this field for several years.
He published extensively in the
research area of business process
management and information sys-

tems, both in international conferences and journals.

Dr. Stefan Schönig is a Professor
for Information Systems with the
Institute of Management Informa-
tion Systems at the University of
Regensburg in Germany. He
received both the master’s degree
(with honours) in Applied Com-
puter Science (Engineering/Com-
puter Science) and the doctoral
degree from University of
Bayreuth. Before, he held a posi-
tion as a tenured assistant pro-
fessor at University of Bayreuth.
He was a post-doctoral researcher
with the Institute for Information

Business at WU Vienna (Vienna University of Economics and Busi-
ness). He has an established background in BPM/Process Mining and
IoT research and has been working in this field for over 9years. He
published extensively in the research area of BPM and information
systems, both in international conferences and journals.

Christian Sturm is a researcher and
lecture assistant with the Institute
for Computer Science at Univer-
sity of Bayreuth (Germany). He
graduated as a B.Sc. and as an
M.Sc. in Applied Computer Sci-
ence at University of Bayreuth in
Germany. His research is focused
on the implementation and execu-
tion of cross-organisational busi-
ness processes on blockchain tech-
nology. He has participated in sev-
eral projects that addressed pro-
cess mining and process execu-
tion. Based on his work, he has

published scientific papers in international conferences and journals,
among them Future Generation Computer Systems. He participated in
several conferences and workshops as organiser or in program com-
mittees.

Prof. Jan Mendling is a Full
Professor with the Institute for
Information Business at
Wirtschaftsuniversität Wien (WU
Vienna), Austria. His research
interests include business process
management and information sys-
tems. He is co-author of the text-
books Fundamentals of Business
Process Management and
Wirtschaftsinformatik. He has
published more than 400 research
papers and articles, among oth-
ers in ACM Transactions on Soft-
ware Engineering and Methodol-

ogy, IEEE Transaction on Software Engineering, Information Sys-
tems, Data and Knowledge Engineering, and Decision Support Sys-
tems. He is member of several international journals, member of the
board of the Austrian Society for Process Management, a co-founder
of the Berlin BPM Community of Practice, organiser of several aca-
demic events on process management, and member of the IEEE Task
Force on Process Mining.

123


	The RALph miner for automated discovery and verification of resource-aware process models
	Abstract
	1 Introduction
	2 Background: resource-aware process discovery and verification
	3 Problem scope and state of the art
	3.1 Resource mining and resource-aware model checking requirements
	3.2 Related work

	4 Overview of the RALph miner
	4.1 Target resource assignment language: RALph
	4.2 Multi-perspective process mining
	4.3 Resource-aware process verification

	5 Automated discovery of RALph-aware process models
	5.1 RALph assignment templates
	5.2 Metrics for RALph mining
	5.3 Discovering RALph assignment rules with SQL
	5.4 Alternative connectors and pruning

	6 Model checking with RALph and alloy
	6.1 Alloy in a nutshell
	6.2 Transformation of RALph's organisational metamodel to alloy
	6.3 Transformation of RALph's resource assignment templates to alloy
	6.4 Alloy-based representation of process models and execution traces
	6.5 RALph-aware MP-declare process model checking with alloy

	7 Implementation and evaluation
	7.1 RALph miner
	7.2 Performance of RALph-aware MP-declare model checking
	7.3 Discussion

	8 Conclusions and future work
	References




