
Software and Systems Modeling (2021) 20:2003–2022
https://doi.org/10.1007/s10270-020-00851-0

SPEC IAL SECT ION PAPER

Model-driven engineering city spaces via bidirectional model
transformations

Ennio Visconti1 · Christos Tsigkanos1 · Zhenjiang Hu2 · Carlo Ghezzi3

Received: 1 March 2020 / Revised: 23 November 2020 / Accepted: 7 December 2020 / Published online: 16 February 2021
© The Author(s) 2021

Abstract
Engineering cyber-physical systems inhabiting contemporary urban spatial environments demands software engineering
facilities to support design and operation. Tools and approaches in civil engineering and architectural informatics produce
artifacts that are geometrical or geographical representations describing physical spaces. The models we consider conform
to the CityGML standard; although relying on international standards and accessible in machine-readable formats, such
physical space descriptions often lack semantic information that can be used to support analyses. In our context, analysis
as commonly understood in software engineering refers to reasoning on properties of an abstracted model—in this case a
city design. We support model-based development, firstly by providing a way to derive analyzable models from CityGML
descriptions, and secondly, we ensure that changes performed are propagated correctly. Essentially, a digital twin of a city
is kept synchronized, in both directions, with the information from the actual city. Specifically, our formal programming
technique and accompanying technical framework assure that relevant information added, or changes applied to the domain
(resp. analyzable)model are reflected back in the analyzable (resp. domain)model automatically and coherently. The technique
developed is rooted in the theory of bidirectional transformations, which guarantees that synchronization between models is
consistent and well behaved. Produced models can bootstrap graph-theoretic, spatial or dynamic analyses. We demonstrate
that bidirectional transformations can be achieved in practice on real city models.

Keywords Bidirectional model transformations · Model-driven engineering · CityGML · Digital twins

1 Introduction

Living spaces in the modern age are often complex spa-
tial environments, characterized by an interplay of physical
and computational functionalities. Such spaces host not only
humans but also a wide range of computational devices—
fromnetworking components to roaming robots. As such, the
overall spaces constitute complex and heterogeneous cyber-
physical systems. Such is the case not only within buildings
but in large urban areas aswell, with the proliferation of smart
functionalities being deployed and having effects across
cities. As societies evolve and complexity grows, engineer-

Communicated by Tao Yue, Man Zhang, and Silvia Abrahao.

B Christos Tsigkanos
christos.tsigkanos@tuwien.ac.at

1 Technische Universität Wien, Vienna, Austria

2 Peking University, Beijing, China

3 Politecnico di Milano, Milano, Italy

ing complex systems supporting such spatial environments
presents new challenges, where typical scenarios are dom-
inated by information from multiple domains and the need
for assurances regarding the overall systems’ behavior. In the
realm of smart cities, a digital twin is a virtual model of a
city—amodel representation of the physicalworld. This con-
ception has emerged as highly useful to reason, visualize and
generally facilitate engineering of city-wide cyber-physical
systems involving layered data sources of buildings, urban
infrastructure, utilities, movement of people and vehicles.

Systems operating within smart environments are space-
dependent, cyber-physical systems, whose development
demands software engineering support facilities that span
their lifecycle, from design to operation. Engineering can
be enabled with model representations of their spatial envi-
ronment [61]; such representations can be sourced from
domain models originating in other disciplines such as civil
engineering and architectural informatics. Naturally, those
disciplines are dominated by their own practices, tools and
domain knowledge.Design tools and approacheswithin them

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10270-020-00851-0&domain=pdf
http://orcid.org/0000-0002-9493-3404

2004 E. Visconti et al.

produce artifacts which are geometrical or geographical rep-
resentations describing physical spaces, such as buildings
or cities. Although relying on international standards and
accessible in machine-readable formats, such physical space
descriptions [21,34] often lack semantic information that can
be used to support their analysis as normally intended in com-
puter science, something which hinders their consideration
for software-intensive, composite cyber-physical systems.

The models we consider conform to the CityGML [18]
standard which also encompasses buildings (Building Infor-
mation Models—BIM [44]), widely used in practice for
domain descriptions, for which numerous real-world models
are becoming available [24]. The overall system inhabiting
a physical space, specified by such a CityGML description,
may need to satisfy certain quality attributes demanding par-
ticular kinds of reasoning—think of an architect or urban
planner reasoning on the accessibility of green spaces in
a city. The design may also change due to the composite
system’s development cycle—for example, a transportation
expert may seek to analyze an emergency evacuation sce-
nario in the same city, by placing agents in the analyzable
model and evaluating their behavior. Note that multiple such
views may be derived from the same design depending on
different analyses sought.We stress the fact that domainmod-
els of interest are rarely simple; they may range from small
buildings to large and complex metropolitan cities.

We aim to support engineering throughout design and
operation: firstly, by providing a way to derive analyzable
models fromspatial descriptivemodels (i.e.,CityGML/BIM)—
model-based techniques can then be readily employed on
the derived models; secondly, by ensuring that changes per-
formed on analyzable models are propagated back to source
domain models in a correct manner. The analyzable model is
thus a digital twin of the city: The twin should always be in
sync with the events and new information coming from the
actual city. Given the informational asymmetry between the
two different types of models, properly synchronizing them
is not trivial.

Like in all asymmetric information scenarios, in fact,
the synchronization process involves decisions informed by
external (and reliable) sources of information, which, if not
carefully selected, might hinder the correctness of the whole
process. In our specific context, for example, analyzable
model changes might impact other elements when mirrored
in the more concrete world of CityGML objects. When per-
forming some operations to synchronize two models, the
transformation is deemed correct if they are consistent (i.e.,
some equivalence relation is defined between the information
contained in them) [28].

Regarding this synchronization, the typical case is natu-
rally the forward direction, i.e., deriving models from the
rich CityGML descriptions and supporting their analysis.
However, more advanced use cases require supporting the

backwards direction—from the abstract model back to the
original CityGML description. Such cases may be found
within adaptive system workflows, where some automatic
procedure would changing the abstract model and subse-
quently reflecting changes on the domain model.

A characteristic case is system runtime, where an analyz-
able model may need to be kept alive, while the system is
operational and populated with contextual or environmen-
tal information through monitoring. For example, a digital
twin of a city can be maintained at runtime for emergency
response. Subsequently, analysis performed on the model
kept at runtime can provide insights or serve as input to
planning processes, which may perform corrective actions
in order to satisfy system requirements. Insights that analy-
sis produces or changes that planning actions demand can be
synchronized with the richer domain model. Consider plan-
ning routes of ambulances within emergency response; those
may need to be, e.g., visualized upon the domain model.
However, planning solutions may include inducing road clo-
sures, thus changing the model structure.

The idea is to use exactly the same spatial domain mod-
els used by practitioners to represent urban areas, buildings
and city spaces and project from them some abstract and
more computationally convenient representation, which can
be transformed back to the original one when needed. The
analyzable models we target are formally modeled topo-
logical structures—cyber-physical spaces [62]—enjoying
well-defined semantics, where formal reasoning can be per-
formed.

Our proposed formal programming technique assures
that relevant information added, or changes applied to the
domain (resp. analyzable) model are reflected back in the
analyzable (resp. source domain) model automatically and
coherently. The technique developed is rooted in the theory
of bidirectional transformations, which guarantees that syn-
chronization betweenmodels is consistent and well behaved.
Thus, our key contribution is a technical framework based on
bidirectional model transformations to support engineering
of space-dependent systems. The novel bidirectional reflec-
tion facilities we provide for domain and analyzable models
can be readily used to (i) derive models from spatial models
occurring in practice, since CityGML models of cities are
widely available, and (ii) instrument model-based develop-
ment. Our framework’s concrete realization is available as
open source software.1

To provide concrete evidence of the proposed model-
based approach, we demonstrate that transformations can
be achieved in practice on real city models. The present
paper extends [67] in the following ways: (i) The princi-
pal technical enhancement is the concrete realization of the
bidirectional transformation, (ii) the role of domain specifics

1 Topocity is available at https://topo.city.

123

https://topo.city

Model-driven engineering city spaces via bidirectional model transformations 2005

and the Application Policy are further elaborated, and (iii)
evaluation is expanded to illustrate edge cases of interest
to practical applications, over an additional real-world city
model.

The rest of the paper is structured as follows. Section 2
provides necessary background and outlines design goals and
challenges. Section 3 describes the design of a bidirectional
transformation between city models and analyzable models.
Section 4 presents tool support, while Sect. 5 provides an
assessment of the proposed approach over three case studies
of real cities. Lastly, Sect. 6 gives an insight of related work
in the field, and Sect. 7 concludes the paper.

2 City spacemodels and their representation

Engineering cyber-physical systems inhabiting spatial envi-
ronments can be enabled with the latter’s model representa-
tions. Spatial environment descriptions are typically found in
other engineering disciplines such as civil engineering, archi-
tectural informatics or architecture. We consider such spatial
environment descriptions as source, domain models. Specif-
ically, we adopt the ones used by practitioners to represent
city-wide spaces (i.e., CityGML), since they also encom-
pass buildings. In this section, we first briefly describe our
source models, before succinctly defining the models we tar-
get, serving as the digital twin of the city. Those models are
analyzable, enjoy well-defined semantics and can be used for
model-based engineering purposes.

2.1 CityGML descriptions as source models

CityGML as virtual 3D city models has been widely adopted
in a growing number of scenarios including urban planning,
emergency management, traffic noise simulation, navigation
systems, urban solar potential estimation or visual commu-
nication [14,51]. CityGML is playing a major role, given
its ability to combine both thematical and spatial represen-
tations, in progressive levels of details [18,34]. Figure 1
illustrates elements that can be represented in CityGML.
The _CityObject class plays a central role in the spec-
ification, as it defines the basic thematic properties that are
extended with package-specific information. Each CityGML
model has a CityModel at its root that typically contains
a multitude of instances of _CityObject, through the
cityObjectMember relationship. All CityGML objects
extend the _Feature class of the GML language. Sub-
classes represent objects in some specific domains, like
buildings, rivers, streets, traffic lights, etc. For a complete
description of CityGML capabilities, the interested reader
can refer to the specification [18].

An interesting aspect of CityGML is the flexibility it
introduces, by providing a way of defining Application

Domain Extensions (ADEs), in which application require-
ments related to the city models can be described, while the
enrichedmodel still complies to the specification [13]. ADEs
are formally defined extensions, specified in XML Schema
Definition or Unified Modeling Language, capable both of
adding new properties to existing CityGML classes and of
adding entirely new classes and data types. For example, an
ADE can be a set of extra attributes and elements nested
into a standard CityGML model, to extend the capability of
CityGML buildings in order to fully support Building Infor-
mationModeling descriptors; this extension would affect the
AbstractBuilding class of Fig. 1 by extending it with
new attributes related to BIM features. This also includes
adding extra elements within the ADE, which reference stan-
dardCityGMLobjects and describe new relationships among
them. These extensions can be arbitrary, ranging from geo-
metrical aspects like shadow orientation, to process specific,
like safety escape paths. More than 40 ADEs have been
developed so far, with purposes including noise propaga-
tion, energy distribution, spatial topology and time variation,
among others. Despite being valuable information sources,
CityGML models’ volume and domain orientation make it
challenging to consider them for complex analysis and oper-
ation, requiring extensive application-specific preprocessing
and postprocessing. CityGML models often include highly
detailed informationwhichmaybe irrelevant for certain types
of analyses—for example, physical material properties of
buildings are irrelevant for transportation analysis of a city.
In such a case, application-specific pruning of information
would need to be performed, in order to “project” the model
into a transportation-analyzable view, pruning away unnec-
essary information.

Our technical framework has been designed under the idea
of automaticallymigrating changes to the standard CityGML
thematic features, shown in Fig. 1, and a given ADE. To the
best of our knowledge, despite the many CityGML ADEs
available, neither tools nor data are readily accessible for any
of them as of today, and therefore, a preprocessing step is still
needed in order to prepare the source information describing
application-specific relationships, by referencing objects of
the original citymodel. In the next section, to simplify the dis-
cussion, we will assume functions key() and children()
are properly defined with the purposes of providing a unique
identifier of the CityGML feature and retrieving a list of sub-
features, respectively.Note that these functions do not exist in
this form in the standard, but GML unique identification fea-
tures and CityGML’s hierarchical structure can easily serve
for this goal.

2.2 Cyber-physical spaces as target models

The analyzable models that we target are topological struc-
tures termed cyber-physical spaces (CPSp’s [62])whereupon

123

2006 E. Visconti et al.

Fig. 1 Partial view of CityGML
2.0 top level class hierarchy,
adapted from [18]. Elements in
italic and with a leading “_”
represent abstract
classes—without an explicit
XML representation. Prefixes
delimited by “::” when present,
mark elements that belong to
specific packages. Packages
names comply to the CityGML
naming convention
recommended by the
specification. Figure elements
comply with the definition of
thematic features as per ISO
19109

formal reasoning can be performed. Such structures are the
digital twin representation of a city. We opt for this generic
graph-based target model because of (i) its flexibility and
applicability to various types of analyses and (ii) its formal
semantics, allowing for a precise definition of the correctness
of a transformation. CPSp’s are graph-based representations
of relations inherent in a space, which may span physical
or computational barriers. This allows increased expressive
power to represent complex systems and their interaction
with active agents which may include devices, humans, soft-
ware components or infrastructure.

Their formal semantics have been given in terms of
bigraphs [42], a process meta-calculus consisting of two
superimposed graphs. Such dynamic semantics are quite
similar to graph transformation systems. For the formal
semantics—which are not covered in this paper—the inter-
ested reader can refer to the vast body of the literature on
the topic [42]. Scoped to our framework, bigraphs can be
described in terms of the following components:

– A set of labelled nodes v ∈ V which represent the
elementary objects of the environment. In the follow-

ing, we will consider them as labelled with a pair
(identifier,type) , and we assume that a key(v)
function returning the label is properly defined. In addi-
tion, we suppose that findNode(k,S) is a function that
returns a node v from the set S labelled with k.

– A place graph is a forest, i.e., a set of rooted trees defined
over nodes; this graph captures the notion of containment
(nesting) of nodes. Given the structure of CityGMLmod-
els, we can slightly simplify the discussion, considering
that the containment relation develops from a single root
representing theCityModel and, thus, the forest degen-
erates to a tree. In this perspective, we refer to child(n)
for a node that has n as a parent in the containment rela-
tionship.

– A link graph is a hypergraph defined over the same set
of nodes. Hyperedges link any number of nodes; this
graph represents generic links (i.e., many-to-many rela-
tionships) among nodes. Subsequently, we suppose that a
proper function, similar in principle tofindNode(k,S),
is available to find the links connecting a given node.
Place and link graphs are orthogonal, and edges between
nodes can cross locality boundaries.

123

Model-driven engineering city spaces via bidirectional model transformations 2007

Bigraphs allow to achieve both the level of expressive-
ness needed by key topological characteristics and a high
level of flexibility: The place graph defines a hierarchi-
cal structure, allowing to capture locality in space of the
city objects in terms of topological nesting, while the link
graph can represent arbitrary connections among nodes (i.e.,
some other topological relation), enabling the representa-
tion of application-specific relations. Note that our choice
of target model is not binding—bigraphs as used within our
approach amount to general graphswith specific properties—
transformation to other structures can be defined as well.
However, expressing topological characteristics in terms
of nesting of nodes and arbitrary relations as connections
between nodes and names fits particularly well. For exam-
ple, a bigraph node representing a city block may contain a
number of building nodes—this is represented through nest-
ing. A reachability relation expressing that “one can walk
from a block to another via a connecting road” can be cap-
tured in the model with a link connection between two block
nodes.

We refer to our target models as analyzable, since they
enjoy well-defined semantics and can be used for automatic
verification of desired properties of the overall design of
the system in a formal and systematic way, as is typical in
software engineering. The bigraphical representation we uti-
lize can be integrated [31] with mainstream technologies for
model-driven engineering (MDE) [15,57], typically based on
the EMOF standard [27]. In the following, we identify three
major classes of analyses that may be bootstrapped by our
target models.

Graph-theoretic analyses. By working on a topological
representation of labelled vertices and edges, typical graph-
theoretic analyses can be enabled on the city design, some-
thing which is not possible on the source CityGML model,
which includes topology-irrelevant information. Analyses
benefiting from this abstraction step to a graph may include
route and network flow problems (e.g., for transportation
analysis), graph coloring or partitioning (e.g., for spatial cov-
erage or environmental analyses).

Advanced spatial analyses. Besides fundamental graph-
based properties of the city design, more advanced require-
ments can be specified with spatial logics and evaluated on
the analyzable models produced by our approach, referring
to its topology and structure. Those can include quantitative
aspects [12], which are automatically reflected on the analyz-
able model (such as distances in the city captured on edges,
e.g., on the link graph). Furthermore, orthogonal information
sources (such as sensing data) may be integrated [65]. The
expressiveness that spatial logics enjoy can enable specifi-
cation of properties that capture complex requirements to be
evaluated on the design, while evaluation is performed with

spatial model checking procedures. A characteristic case of a
reachability analysiswithin a citywill be illustrated inSect. 5.

Dynamic analyses. Dynamics may be integrated in the ana-
lyzable model in order to capture ways the topology may
change over time. Firstly, this may reflect design edits (e.g.,
possible operations that a designer performs on the city
space), in the context of supporting design-time exploration
of different design alternatives. Secondly (and more typi-
cally), change may refer to modeled actions by agents placed
on the design aiming to analyze some complex behavior
of the system [61]. In such cases, the analyzable models
we target allow translation to other modeling formalisms,
depending on the kind of analysis sought [62]. Typical exam-
ples of this are state-transition models supporting various
forms of model checking [10,17].

2.3 Synchronization: design goals and challenges

In our view, model-based engineering of cyber-physical
space-dependent systems should adhere to the following
design principles, which underlie our design of a bidirec-
tional transformation between the two models:

1. Interoperability with well-established domain-specific
standards and data models, namely CityGML and BIM
as used in practice;

2. Provision of an actionable representation of the model in
a non-domain-specific language that can enable complex
analysis.

3. Automatic composition of changed and unchanged parts
of the model in a suitable way (i.e., well-behaved trans-
formations), highly pertinent to both support of design
activities and runtime model operations;

4. Decoupling of independent levels of reasoning (such as
topological from geometrical) whenever possible, since
those can be considered as being on different levels of
abstraction.

We note that the biggest challenge in synchronizing a highly
detailed CityGML model (originating from domain-specific
tools and practices) and an analyzable model (crafted for
representing high-level application-specific features in terms
of topological relations) relies in keeping the consistency
between the two asymmetric sources of information in both
the “forward” direction (i.e., the abstraction process) and
the “backward”—or “putback”—one (i.e., the reification
process). It is particularly the putback direction that needs
special attention, since it requires new information to be gen-
erated, in order to fill missing details and produce ameaning-
ful and consistent result in terms of practitioners’ knowledge.
In the following, we illustrate how the above challenges may
be tackled by designing and implementing a consistent and

123

2008 E. Visconti et al.

well-behaved bidirectional transformation between source
and analyzable models which, by design, properly propa-
gates changes when either one of the models is modified.

3 Bidirectional transformations of city space
models

To address the problem of migrating information from one
representation to another, there needs to be a clear defini-
tion of which parts of an object of the source representation
have a correspondence to an object of the target represen-
tation. In other words, we have to define a correspondence
between the two objects. This is typically referred to in lit-
erature as the “consistency relation”, among two (or more)
sources of information [25]. In the following, we first suc-
cinctly describe the laws underlying our transformation and
the formalization of the consistency relation. We sketch the
algorithms implemented for consistency enforcement in our
framework and lastly discuss some issues and limitations of
the putback strategy in our approach.

3.1 Consistency specification

Bidirectional transformations (BX) is a developmentmethod-
ology formaintaining a consistency relation betweenmodels,
which can be expressed in terms of lenses [25]. More pre-
cisely, let S be our source city model and V our view
(i.e., a target model), we call lens a pair of transformations
(get, put). The forward transformation get(S) is used to
produce a target view V from a source S, while the putback
(or backward) transformation put(S, V) is used to reflect
updates of the view V to the source S. In our case, we say
the lens is asymmetric because the source model has more
information than the view one. A pair of get and put should
be well-behaved, in the sense that it satisfies the following
round-tripping laws:

put(S, get(S)) = S GetPut

get(put(S, V)) = V PutGet

TheGetPut property requires that no changes in the view
reflect as no changes in the source. The PutGet property
requires that all changes in the view should be assimilated
by the source so that the changed view can be re-computed by
applying the forward transformation to the updated source.

Concerning themodelswe investigate, let S be aCityGML
model and V a bigraph, the consistency relation between
them can be formally specified in the following way. For
∀s, s′, s′′ elements and r relationship of S, and ∀v, v′, v′′
nodes of the bigraph V , s and v are synchronized (s � v) if
they have the same keys (key(s) = key(v)) and the following
conditions hold:

A.1 instanceOf (s, _CityObject) ∧ instanceOf (v,Node);
A.2 (isContained(v, v′) ↔ childOf (s, s′)) ∧ s′ � v′;
A.3 (isLinked(v, v′′) ↔ holds(r, s, s′′)) ∧ s′′ � v′′.

Within the above conditions, the predicate instanceOf
guarantees an object is of the specified type, allowing A.1
to define a basic level of correspondence between an ele-
ment of the source and one of the view A.2, on the other
hand, by means of childOf , which expresses the parent–
child relationship of CityGML elements, and of isContained,
which represents the containment relation of bigraphs and
defines a mapping between two relations defined on differ-
ent element types. Lastly, with A.3, we aim to represent an
application-specific mapping: isLinked represents the link-
ing in bigraphs, while the predicate holds captures both the
presence of a relationship in the CityGML ADE and the fact
that its application-related meaning, somehow, holds.

We may say that a source model is place-consistent with
respect to a view model if both A.1 and A.2 are satisfied.
Likewise, we may say that it is link-consistent (w.r.t. a view
model) if A.1 and A.3 are satisfied. When a source model is
place consistent and link consistent at the same time, then it is
consistent (i.e., the models are synchronized). Place consis-
tency has been fully formalized, and therefore, it can always
be checked without ambiguity. This means that in no case,
we can have, for example, a road inside a building or similar
irregular cases which are not allowed by the CityGML spec-
ification. On the other hand, link consistency cannot be in
principle solved unambiguously, since it is application spe-
cific. This not-completely formalized approach is not new in
BX literature, since, in some cases, local correctness checks
(also called black-box operations) are needed in order to
achieve consistency [58].

3.2 Consistency enforcement

The three conditions presented express, in progressive lev-
els of consistency, that S and V are synchronized. We now
present two algorithms carrying out the checks and activat-
ing the repairing procedures for guaranteeing consistency.
Note that we are only describing the repairing procedures
in the putback direction (i.e., the Put transformation): The
description of the forward direction (i.e., the Get transfor-
mation) can be derived from it by substituting the repairing
actions with some proper projection actions. It will be, in
fact, automatically generated (in Sect. 4).

Algorithm 1 encompasses the first stage of the synchro-
nization logic, where starting from the root of the city model
and the outermost node of the viewmodel, it traverses the two
structures and repairs the differences by adding or removing
the needed nodes at the correct position of the city model.
Thus, at the end of its execution, the source model will be

123

Model-driven engineering city spaces via bidirectional model transformations 2009

place consistent with respect to the view model (i.e., condi-
tions A.1 and A.2 hold).

Algorithm 1 Place Consistency Enforcement
procedure placeC(s::_CityObject,v::Node)
(cs,cv):=alignLists(s.children,v.children)
for all (s′,v′) ∈ (cs,cv) do

if v′ is null and s′ is not null then
/* No matching view node: the source
object must be removed */
REMOVE(s,s′)
continue – Can jump directly to next
iteration

end if
if s′ is null and v′ is not null then

/* Unmatched view node: a new source
object must be added */
s′:=ADD(s,v′)

end if
/* Continue over children */
placeC(s′,v′)

end for
end procedure

Conversely, Algorithm 2 describes the second stage of the
synchronization. It starts as well from the root of the two
models. However, it makes the assumption that the model is
already place consistent and therefore has the only goal of
repairing relationships between objects. To do so, it loops on
pairs of relationships and bigraph links. If one of the two does
not exist, the repairing procedure is activated. Otherwise, a
further check is performed to verify that the relationship and
the link reference the same elements. If this check fails, the
repairing procedure is triggered. The same logic ismapped to
the children nodes and continues down to the last nodes. At
the end, the source model is link consistent (i.e., A.3 holds).

Lastly, in both Algorithms 1 and 2, procedures in upper-
case represent Application Policy actions, which play an
essential role in the transformation and are hence discussed
in the next section. Illustrated functions show the function-
ality of the transformations in a high-level manner, and it is
worth noticing that they can be executed, in the worst case,
in O(n2m2). We defer implementation details to Sect. 4 and
a more detailed complexity analysis of the algorithms pre-
sented to “Appendix B.”

3.3 Dealing with domain specifics

Algorithms 1 and 2 are designed to satisfy the consistency
conditions.However, itmust be noted that albeitA.3 specifies
the consistency between CityGML relationships and graph
links formally, it provides no precise information about how
to implement the holds predicate. The reason for this choice
is to keep a general approach to the transformation; in fact,
the information needed to satisfy itmight not even exist, since

Algorithm 2 Link Consistency Enforcement
procedure linkC(s::_CityObject,v::Node)
(rs,ls):=alignLists(fetchRels(s),fetchLinks(v))
for all (r,l) ∈ (rs,ls) do

if r is null or l is null then
/* Unmatching link/relationship:
source must be updated */
UPDATE(s,rs,ls)
break

else
(ss,vs):=alignLists(r.objects,l.nodes)
for all (s′,v′) ∈ (ss,vs) do

if s′ is null or v′ is null then
/* r and l are not referencing
the same objects/nodes */
UPDATE(s,rs,ls)
break – they are now, move on

end if
end for

end if
end for
/* Continue over children */
(cs,cv):=alignLists(s.children,v.children)
for all (s′,v′) ∈ (cs,cv) do

linkC(s′,v′)
end for

end procedure

this part of the transformation is heavily application depen-
dent. In principle, the reification strategy for new or removed
objects may greatly vary depending on the purpose of the
specific object and application scope and requirements. For
example, removing a link that connects two buildings might
mean, in one case, that the road between them is physically
blocked, while in another, that moving between them is pro-
hibited.

Application Policy is the component appointed for ulti-
mately verifying that task. Since different applications are
likely to require different policies, the Application Policy
is an external component, interacting with our framework
through clearly scoped interfaces called actions. Actions can
access a limited set of information in order to achieve their
goal, and they are required to produce an output that does not
break previous assumptions.

The following actions have been defined:

– ADD(s::_CityObject,v::Node)::_CityObject,
which is bound to generate missing objects of the source.
To that extent, it has access to all the information avail-
able from the parent of the target object s. It can also
change the representation of the parent. (This is needed
in some applications, e.g., for keeping spatial-semantic
coherence.)

– REMOVE(s::_CityObject,s′::_CityObject),
which symmetrically to ADD has the purpose of remov-
ing extra children from the parent s. It has access to the
same information with the same constraints.

123

2010 E. Visconti et al.

– UPDATE(s::_CityObject,rs::[CityADERelati
onship],ls::[Link]) is the most general action,
responsible for both updating ADE relationships and
potentially changing the representation of the current
object. The problem of correctly reflecting a set of links
may be very hard to solve in general. For this reason, our
framework makes two simplifying hypotheses. Firstly,
we assume that a change in a relationship (or the def-
inition of a new one) can be fully expressed in terms
of separated updates to the objects corresponding to the
different nodes of a link. Secondly, we assume that the
information required to address this task is limited to the
subgraph of nodes and links related to the current one.

To understand the generality and, thus, the complexity
inherent in UPDATE, consider a scenario in which we have
two touching buildings—AandB—in the viewmodel. A rea-
sonable change could be, for example, to remove the touching
relation between them and add a new one between B and C.
Such an edit could be reflected in the original model in many
different ways: A straightforward option could be to change
the position of those objects. Another option could be to
change the position of all the objects in the city to satisfy
the new requirement. Our framework can currently only deal
with cases of the former, since the latter changes the model
so significantly that it results in a completely different one,
potentially triggering an endless loop of breaking–repairing
operations in other areas of the model. For an example high-
lighting this, the interested readermay refer to “AppendixA.”
The extent towhich both these interfaces and their underlying
assumptions are limiting is still a matter of active investiga-
tion.

4 TopocityTopocityTopocity: bidirectional transformations
implementation

Having presented the classes of models of interest (Sect. 2),
and the round-tripping laws guaranteeing well behavedness
over which a consistency relation is defined (Sect. 3), in this
section, we illustrate Topocity,2 the BX framework reflect-
ing the transformations. Specifically, we present different
aspects of our framework, starting from a broad picture of
both internal and external components of Topocity, core
points of the implementation and, finally, making some
usage considerations.We adopt a functional approach to deal
with transformations since they are often indeed defined in
terms of functions. Moreover, this choice leads to a natu-
ral integration with the BiGUL [32,33] library, which is a
putback-based BX language developed as a Haskell domain-

2 Available at https://topo.city or https://www.github.com/ennioVisco/
topocity.

Fig. 2 Architectural components and dataflow of Topocity. Dotted
boxes represent external components

specific language. The primary strength of BiGUL is that, in
contrast with other BX techniques, it is designed to automat-
ically derive the get direction of the transformation, given
the put . This means that developers have to implement just
the backward/putback transformation from the view to the
source, and the forward one is derived for free.

Topocity’s main components are shown in Fig. 2; its
modular design allows for external component development
and integration. Naturally, functionality revolves around two
models, a sourceCityGMLdescription as input and a bigraph
view representing the CPSp as output. Thus, we present
Topocity components over the functional layers traversed
in getting from one model to the other, as shown in Fig. 2.

– HXT. Haskell HXT3 is adopted for handling the XML-
formatted CityGML source files in Haskell. HXT’s
abstract approach allows the choice of different parsers
depending on the context and couples them with the
appropriate printers automatically.

– citygml4hs.4 A library providing an API for CityGML,
implementing functionalities of the reference citygml4j
library to Haskell. It provides a full semantic typed data
structure, along with basic helper functions like the key
method previously described. While this component is
not crucial in terms of the strict requirements of the
transformation, it plays an essential role in terms of non-
functional requirements, since it provides an actionable
representation easily exploitable by third-party software.

– Abstraction & Reification Interface. This component
delivers a common representation of citygml4hs types.
The underlying idea is that instead of building a sepa-

3 HXT—https://intern.fh-wedel.de/~si/HXmlToolbox/.
4 https://www.github.com/ennioVisco/citygml4hs is maintained by the
authors as open source software.

123

https://topo.city
https://www.github.com/ennioVisco/topocity
https://www.github.com/ennioVisco/topocity
https://intern.fh-wedel.de/~si/HXmlToolbox/
https://www.github.com/ennioVisco/citygml4hs

Model-driven engineering city spaces via bidirectional model transformations 2011

rate BX for each object type of the source, it implements
automatic algebraic transformations to generate a more
abstract representation starting from the source, which
can be easily converted back to the original format.

– Place-Graph BX. The first sweep of the synchronization
process implementsAlgorithm1 inBiGUL, i.e., synchro-
nizing nodes and the place graph with the source.

– Link-Graph BX. The second sweep of the synchro-
nization process makes use of BiGUL primitives to
implement Algorithm 2. In contract with the previous
algorithm, it synchronizes only the link graph with the
source. We note that this process may be quite complex
depending on the convolution degree of the link graph.

– Application Policy. The primary container of the frame-
work’s API actions implements the Application Policy
functionality of Sect. 3.

4.1 Key implementation points

In the following, after basic data types definition, we elabo-
rate on the key components of Fig. 2. We adopt a functional
style for conciseness; the interested reader may refer to the
online appendix for further details.

4.1.1 Data types

Recall the CityGML class hierarchy of Fig. 1: The trans-
formation framework should address those data types. In
particular, we adopt a data structure _CityObject (List-
ing 1), with a direct correspondence between CityGML
classes. The structure—part of the citygml4hs component
of Sect. 4—is accompanied with certain helper functions
providing an actionable representation that synchronization
(or other external components) may utilize. For example,
note that the _CityObject structure not only uses a
different type for each kind of city object (thus allowing
implementing type-filtering selection), but also provides an
Identifiable class providing a unique ID for the object
(if possible) by considering the identifier hierarchy defined
in the CityGML specification.

data CityObjectMember = Site Site
| Veg VegetationObject
| Gen GenericCityObject
| Wtr WaterObject
| Tran TransportationObject
| Dem ReliefFeature
...

deriving (Read, Show, Eq, Data, Generic,
Identifiable)

Listing 1 citygml4hs core implementation of _CityObject.

However, to reduce the complexity of the transformation,
the abstraction interface transforms it into the following,
more practical data structure:

type AbsCity = (NTree AbsCityNode,
[AbsRelation])

type AbsCityNode = (UID, (NType, NData))
type AbsRelation = (UID, (NType,

[AbsCityNode]))

Listing 2 ADT of city data.

UID,NType andNData are strings representing the iden-
tifier, the object type and the internal data of each object,
respectively, while NTree is just an n-ary ordered tree data
structure, commonly used in Haskell. As it should be appar-
ent from the types, the idea of this intermediate representation
is to rearrange the predominant features of interest in a
structure of pairs of the kind (head, tail), convenient for
subsequent processing. Finally, the output data structure rep-
resenting a bigraph is shown in Listing 3.

type BiGraph = (PlaceGraph, LinkGraph)
type LinkGraph = [BiGraphEdge]
type PlaceGraph = NTree BiGraphNode

type BiGraphNode = (UID, NType)
type BiGraphEdge = (UID, (NType,

[BiGraphNode]))

Listing 3 Bigraph ADT.

The similarities between this and the previous definition
should be quite evident. This structure is equivalent to the pre-
vious, except for having dropped the NData field. That is in
fact the primary difference between the two structures, since
the bigraph is a projection that only selects a subset of the
information. In principle, however, other differences could
be introduced, for example, city object types and bigraph
node types as different data types.

4.1.2 BiGUL programs

We have seen that the source and the view can be rear-
ranged in a similar way without any irreversible (i.e., lossy)
transformation. Our objective now becomes to migrate the
information from one part to the other while keeping the cor-
respondence as defined in Sect. 3. ConcerningConditionA.1,
we define the equivalence relation of Listing 4. The check1
function checks whether a predicate defined on two trees is
true up to the first level of the subtree, which in our context
entails a check of whether the keys of both the root and the
children of the two trees are the same (by applying (= N =)

on them). In this way, it is certain that when the equivalence
holds, it pertains to the same object.

123

2012 E. Visconti et al.

equiv :: AbsCityTree -> PlaceGraph -> Bool
equiv a b = check1 (=N=) a b

(=N=) :: NTree (UID, a) -> NTree (UID, b) ->
Bool

(=N=) a b = tKey a == tKey b

tKey :: NTree (UID, a) -> UID
tKey (NTree d _) = key d

check1 :: (NTree a -> NTree b -> Bool) ->
NTree a -> NTree b -> Bool

Listing 4 Equivalence relation between s and v.

Place-Graph BX. The equivalence of Listing 4 is directly
exploited by the Place-Graph BX, illustrated in Listing 5,
which encodes Condition A.2; the implementation utilizes
the Template Haskell notation used by the BiGUL language.
We refrain here from presenting the details of the language;
the interested reader may refer to [29] for a precise under-
standing of BiGUL constructs, or to [33] for proof of its
correctness. Intuitively, theCase[•] BiGULoperator resem-
bles the switch/case construct of procedural languages:
It takes a list5 of pairs of the kind (pattern, operation),
where each pair describes a branch. The idea is that if the
function parameters match the pattern (defined by $(•)),
then the operation after the ==> is performed. Note the
normal keyword: It is the equivalent of a procedural case
having a break at the end, while adaptive corresponds
to a case after which, if matched, the program continues
checking against subsequent patterns in the list. Intuitively,
the adaptive branch verifies that both the current element
and the children have the correct ID. If this is not the case,
then there might be new or missing nodes in the view, and
therefore, the syncChildren function will align the two
lists by exploiting Application Policy actions to create/re-
move nodes in the source. Conversely, the normal branch
activates each time both the source tree children and the view
tree children have the same id. When this happens, source
types become the ones of the view, and the syncTree pro-
cedure is mapped to the children. This operation is executed
recursively on all the children.
Link-GraphBX.After having enforcedConditionsA.1,A.2,
the procedure synchronizes the last part of the bigraph
(i.e., the links). The procedure, illustrated in Listing 6,
does this in a way not dissimilar from the previous one.
The careful reader might recognize that syncGraph oper-
ates on different data types than the ones presented in
Listings 2 and 3; AbsTopology and AbsHypergraph
are alternative representations of [AbsRelation] and

5 Lists are enclosed in [] in Haskell.

syncTree :: BiGUL AbsCityTree PlaceGraph
syncTree = Case

[$(adaptive [|\s v -> not (equiv s v)|])
==> \s (NTree _ vcs) -> syncChildren
s vcs

, $(normal [| equiv |] [| noCond |])
==> $(update [p| NTree (i, (t, _)) cs |]

[p| NTree (i, t) cs |]
[d| i = Replace;

t = Replace; cs = align |]
)

]

Listing 5 Place graph BX.

LinkGraph, respectively, indexed on nodes instead of rela-
tions/edges. The reason for this choice is the assumption that
it is more convenient to loop over nodes instead of edges,
since edges might not have a physical representation, but
can indeed affect the way the nodes are represented as city
objects. Note the syntactical similarity with the place graph
BX of Listing 6; the only difference is that the procedure
does not compare nodes but links defined on them and takes
action when a mismatch is found. The policy action, repre-
sented as p, corresponds to the UPDATE action presented in
Sect. 3. Observe that UPDATE is not activated on a single
object but upon a subgraph. This graph is composed of the
current node and the set of links (with corresponding nodes)
defined on it and intends to provide a representation of the
corresponding city objects that satisfies the set of constraints
the links define. The procedure terminates with a CityGML
model that is syntactically consistentwith the current bigraph
and semantically meaningful if a proper Application Policy
is in place. If so, also ConditionA.3 holds and the twomodels
are consistent.

4.2 Topocity usage

To use Topocity6 in practice, one is required to pro-
vide (i) a CityGML source data model and (ii) a suitable
Application Policy. CityGML models may be obtained per-
application; note that for building models, existing software
(e.g., autodesk) already allow the export of drawing objects
as CityGML. Repositories of CityGML city models are also
available.7 Regarding the Application Policy, a plain one is

6 For installation and example usage, the interested reader is referred
to https://www.topo.city.
7 Examples include TU Delft models of Dutch cities https://
3d.bk.tudelft.nl/opendata/3dfier/; the TU Munchen model of New
York https://www.lrg.tum.de/gis/projekte/new-york-city-3d/; North
Rhine-Westphalia models https://www.opengeodata.nrw.de/produkte/
geobasis/3d-gm/. An extensive list is available at [24].

123

https://www.topo.city
https://3d.bk.tudelft.nl/opendata/3dfier/
https://3d.bk.tudelft.nl/opendata/3dfier/
https://www.lrg.tum.de/gis/projekte/new-york-city-3d/
https://www.opengeodata.nrw.de/produkte/geobasis/3d-gm/
https://www.opengeodata.nrw.de/produkte/geobasis/3d-gm/

Model-driven engineering city spaces via bidirectional model transformations 2013

syncGraph :: BiGUL AbsTopology AbsHypergraph
syncGraph = Case

-- If the graphs are different, update
source by using policy p
[$(adaptive [|\(NTree (_, ls) _)
(NTree (_, ls’) _)

-> not (ls ‘equivLink‘ ls’) |])
==> \s (NTree (_, vls) _) -> p s vls

-- else, replace the data and map the
algorithm to children
, $(normal [|\(NTree (_, ls) _) (NTree (_, ls’) _)

-> ls ‘equivLink‘ ls’ |]
[| noCond |])

==> $(update [p| NTree ((i, (t, _)) , ls) c |]
[p| NTree ((i, t) , ls) c |]
[d| i = Replace; t = Replace;
ls = align2; c = (align p) |]

)
]

Listing 6 Link graph BX.

provided by the framework by default, upon which definition
of another may be bootstrapped.

Subsequently, to perform transformations, one follows
these simple steps:

1. Loading of the source model (which is the pair of a
CityGML and CityGML ADE description) by calling,
e.g., load(city.gml,ade.gml).

2. Generation of a CPSp target model (i.e., perform the get
transformation) by calling get(source).

3. Generation of an updated source model (i.e., perform the
putback transformation) by callingput(source,view).

4. Storage of the new source model by calling
store(filename.gml).

5 Evaluation

The general goal of this paper is twofold. On the one hand,
we aim at giving architects, civil engineers and profession-
als of the field the ability to exploit the power of modern
model-driven engineering techniques when designing next-
generation environments. On the other hand, we aim at
giving engineers the ability to develop cyber-physical sys-
tems without the hurdle of dealing with massive amounts of
unnecessary information or domain specifics.

Our approach and technical framework address these
problems by exploiting the BiGUL language in synchroniz-
ing CityGML data sources with application-oriented graph
representations [41]. The synchronization process enforces
the consistency relation defined in Sect. 3, in the way
described in Sect. 4. In the following, we present three

characteristic case studies that illustrate different aspects of
engineering software systems inhabiting city spaces:

– While iterating within a design cycle, architects and
building professionals make changes upon a design.
Being able to validate decisions is crucial in assessing
the quality of their design. Topocity enables deriving an
analyzable model automatically from a domain-specific
one. This model reflects all the changes of the orig-
inal CityGML one, but in a domain where automatic
analysis tools are readily available, as is typical in the
model-driven engineering literature. We illustrate this by
considering a reference problem from the civil engineer-
ing domain: the planning of the layout of a construction
site, precisely the problem of positioning a tower crane.

– Decision making with constrained resources and in lim-
ited time is typical at runtime settings, where information
is monitored from the environment. However, in many
applications such decisions are non-trivial and require
proper evaluation of contextual information. Analyzing a
model of the environment becomes key to provide critical
insights or to support planning processes. Topocity can
reflect updates to an analyzable model of the CityGML
source so that they can be combined with other data
sources. We illustrate this characteristic case by examin-
ing an emergency response scenario in a large city area.

– Whether at runtime or design time, other non-functional
concerns may arise; the most obvious one is the relation
betweenmodel size and transformation performance.We
investigate this issue by showcasing different cases at the
extremes of the spectrum: Given a model of the city of
Vienna, we point out the efficiency of the transformation.
To vary model size in a controllable manner, we control
the density of bigraph links over the same model.

The cases we consider are reference problems for our
evaluation purposes: Each of them is representative of how
bidirectional transformations can play a primary role in the
engineering of systems inhabiting city spaces, enabling sepa-
ration of concerns between different domains. We stress that
in the three evaluation cases considered, models come from
real and public CityGML data sources of, respectively, a dis-
trict of Remscheid (North Rhine-Westphalia, Germany), Flat
Iron Street in New York (NY, USA) and the city of Vienna
(Austria). We conclude with a discussion.

5.1 Facilitating system design: tower crane
positioning

Proper optimization of construction site layout is key to
efficient construction activities. Before construction starts,
site layout planning provides the necessary equipment and
temporary facilities for the construction process, including

123

2014 E. Visconti et al.

CityModel
LoD2_369_5668_1_NW

Building
DENW27AL20000wlt

Building
TowerCrane1

Building
DENW27AL20000wJJ

reachable
BuildingPart

1479134954866_46509971

WallSurface
d56a5f2b-...-143fd9901bfb

BuildingPart
f3cd0cc5-...-86faa1bcdf63

BuildingPart
1479134954866_46509970

to
u
ch

in
g

BuildingPart
cf1845e6-...-7f0c8b7eb240

WallSurface
d5461f2a-...-aaedbbff8a7f

WallSurface
59681a48-...-be92fc6a7eb1

touching

reachable

rea
cha

ble

*
*
*

*

*

Building
DENW27AL20000xHv*

*

WallSurface
b7e104a8-...-b02b1bc07d8c

*

Fig. 3 Fragment of the viewmodel derived from the CityGML descrip-
tion of a district in Remscheid. Nodes are (ID,Type) pairs as they appear
in the real CityGML model. Presence of other—not shown—elements
of the model is indicated by *

allocation and dimensioning of elements like tower cranes,
containers or storage areas. Decisions taken during this plan-
ning phase have direct impact on cost development and
occupational safety on site during construction. Positioning
of tower cranes is an important exemplar [2,30]. Recent lit-
erature has provided techniques to automate the solution of
this task, where two critical issues have been identified: (i)
the lack of a simple but formal language capable of express-
ing rules, standards and best practices to check a building
model [53] and (ii) the absence of tools able to perform this
kind of operations by exploiting BIM/GIS descriptions like
CityGMLmodels, so that meaningful solutions can be found
before implementation takes place [30]. In the following, we
demonstrate how a flexible solution can be designed inwhich
our framework plays a central role.

We consider an hypothetical construction site to be
placed in a district of the city of Remscheid, North Rhine-
Westphalia, Germany. For the real CityGML models, we
rely on North Rhine-Westphalia open data [71]—the link-
ing structure related to tower crane positioning is designed
ad hoc, since this step could be easily generalized and repro-
duced by modern user-guided CAD software [49]. Figure 3
shows the most relevant part of the model generated by our
framework; an extra object and extra links are shown, corre-
sponding to the changes made to the cyber-physical space in
order to elicit the topological requirements for the new tower
crane. Advanced analysis and model processing to generate
such changes can take into account topological information
in the analyzable model, such as proximity of construction
site elements or complex relationships in the space layout,
positioning the crane in a manner that satisfies some occu-

(a) Area without a tower crane (before).

(b) The crane is placed automatically via a put to the source
model (after), reflecting its addition on the view model.

Fig. 4 Placement of a crane entity on the derived, analyzable model
(Fig. 3) entails its automatic reflection on the source citymodel (Fig. 4a),
resulting in Fig. 4b

pational safety or optimal placement requirements. As we
are concerned with model transformations only, we consider
such reasoning facilities as out of scope for this paper.

Once the target model is updated reflecting some rea-
soning (e.g., identifying the optimal position of the crane),
changes have to be reflected back to the original model.
To this end, Topocity takes care of identifying changed
objects and prompts the Application Policy to provide the
3D shape of the tower crane and spatial coordinates. For our
case study, this was a fixed position, but a policy can specify
arbitrary alternatives, from random to user-defined position-
ing, depending on the kind of links defined. Once those are
given, Topocity identifies the place in the original source
hierarchy to arrange the new objects and reifies the model
back again to the CityGML description.

Figure 4 shows a fragment of the original model and the
final result as visualized CityGML descriptions. Note how
certain reachability links between edges of three buildings
are additionally defined, supposing these are buildings of
interest for the construction site (Fig. 3).

5.2 Facilitating system operation: emergency
response

Technology adoption for fast emergency response in urban
environments is gaining increasing attention: Technological
advances may in fact provide new human–computer interac-
tion capabilities, allowing for effective real-time response.

123

Model-driven engineering city spaces via bidirectional model transformations 2015

Consider the classical setting [37] where a disaster scenario
is replicated in the Flatiron Building area of New York [43],
with several relief entities (e.g., rescue teams, ambulances
or Unmanned aerial vehicles—UAVs) dispatched through-
out the area to locate and rescue victims [20,62].

The agents have initial knowledge of the environment,
given by the original model of the city. However, in such
a scenario, we expect the model to be updated regularly, as
soon as new information is acquired bymonitoring processes.
Agentsmust dynamically adjust search operations and rescue
priorities through some criteria such as the likelihood of find-
ing victims in an area or current disaster propagation. In order
to perform such tasks, which largely amount to planning and
surveillance [22], an actionable representation of the city
can be a hypergraph in which nodes represent city objects,
while links represent safe connections between multiple
nodes. This typically occurs within aMonitor-Analyze-Plan-
Execute loop, as this is an instance of a self-adaptive system.
Agents monitor the area and update the model with the
information they collect about safety of streets and build-
ings, while others escort civilians from the disaster area to
hospitals. Path planning takes place based on analyzed mon-
itored information upon the model, with the purpose of, e.g.,
maximizing the number of victims rescued. We are solely
concerned with synchronization of the models—as such,
analysis, planning and monitoring are therefore out of the
scope of this paper. We note that analysis can be performed
with spatial model checking—specification of the desired
propertywould occurwithin a logic as spatial properties [62].

In our approach, we define and extract a CityGML ADE
from the city model and populate it with real-time infor-
mation, with the goal of making the safe distance relation
between city objects explicit. Topocity provides the hyper-
graph exploited by the agents, which is updated at runtime
as the monitoring process generates new information. Fig-
ure 5 shows the aerial view of the Flat Iron Street area of
New York as described by the CityGML model (5a) and the
corresponding analyzable view (5b). A viable safe path for
the city area is shown, both in the original model and in the
analyzable one.

5.3 Edge cases analysis

Different applications—even if related to the same geo-
graphic space—might likely need to deal with very different
models. This diversity can appear as well among CityGML
models, where Application Domain Extensions might sig-
nificantly affect both the size and the purpose of the model.
Imagine, for example, a scenario where engineers have to
take decisions based on the distance of two objects in a city
(shown in Fig. 6).

More precisely, let k be a positive number representing the
maximum distance they are willing to consider. Two objects

(a) The area nearby Flat Iron Street considered
for our analysis.

(b) Fragment of the corresponding view generated.

Fig. 5 Runtime safe path analysismodels. The source (a) is transformed
into the analyzable model (b). The highlighted area in (a) represents the
safe path illustrated in (b). Nodes are ID-Type pairs as they appear in the
available CityGMLmodel of New York; the presence of other elements
in parts of the model (not shown) is indicated by *

Fig. 6 An hypothetical reachability relation between Rathaus and
Burgtheater in Vienna (Austria)

123

2016 E. Visconti et al.

are k-reachable when the minimum distance between them
is smaller than k. We can say that an object is 0-reachable
from another if the two are touching. At the same time, we
can say that every two objects in the city are ∞-reachable.
Depending on the value of k, the size of the analyzable mod-
els can grow significantly: Higher values mean we are more
tolerant in the definition of reachability, and therefore, more
relationshipswill be encoded in theCityGMLADE, resulting
in more convoluted link graphs. We investigate the effect of
this variation, over the central area of the city of Vienna, for
several values of k. The analyzable model generated contains
1120 nodes and up to 448 thousand links.

Table 1 reports a summary of the performance of the for-
ward transformation executed on the model of the central
area of the city of Vienna. The experiments were performed
on a machine equipped with an Intel(R) Xeon(R) CPU E7-
8880 v3@ 2.30GHz CPU and 961 GB of RAM (to represent
unlimited memory) on Amazon AWS.

The performance of the transformation on this non-trivial
model provides a twofold insight forworkingwith large-scale
systems. The first is that the XML parsing stage primarily
affects the space impact of the program. This means that
working with a chunked model or pre-parsed data (e.g., by
obtaining data from a database) will dramatically reduce,
if not remove, the overhead of this stage. The second is that
times quickly degradewith the increase in the number of rela-
tionships to analyze. While this conforms with the behavior
of algorithms of Sect. 3 and their theoretical time complexity
(see “AppendixB”), it is nevertheless clear thatmore efficient
data structures and algorithms, paired with parallel compu-
tation, might significantly mitigate this effect. Lastly, it must
be noted that we have been considering sizes far bigger that
the typical sizes supported by commercial tools: It is very
likely that instead of having a dense network of relationships
connecting all objects of the city, more clever source repre-
sentation will be in place in practical scenarios. Naturally,
processing entire cities in a single model is not the norm in
CityGML workflows, which typically consider fractions at
a time. Our experiment’s purpose, however, was to system-
atically investigate consideration of large models, through
varying values of k.

5.4 Discussion

The three exemplar cases presented are different, as (i)
they target different models and different levels of detail
within CityGML and (ii) they showcase uses of the frame-
work for both systems’ design and operation and (iii)
they are evaluated on models of different density, spanning
from a tree structure to a dense graph over a non-trivial
set of nodes. Hence, we believe they show the potential
of our approach. By using our framework, bidirectional
model transformations upon real spatial descriptions can

be performed, keeping analyzable models and CityGML
descriptions synchronized. However, from our experience
within model transformations of CityGML descriptions and
considering the perspective of practitioners aiming to use
our model-based engineering approach, interfaces and tool-
ing integration might significantly support the design cycle.

A significant flexibility constraint has been briefly pre-
sented in Sect. 3.3. As anticipated there, links can be a very
powerful medium for expressing arbitrarily complex con-
figurations: In some convoluted scenarios, a putback to the
original model may not be feasible or even worse; it may
result in changes affecting a vast number of features, essen-
tially resulting in a different model. We believe our solution
addresses a relatively general set of meaningful applications,
but further research on application scenarios may result in
more precise understanding of practical limitations. More-
over, a considerable problem in making our framework an
effective tool for practical use is the absence of any pub-
lic ADE data or generation tool. Nonetheless, we believe
this limitation may soon be overcome, thanks to the growing
interest in the CityGML standard by domain experts [13].

An important aspect in BX design is the level of automa-
tion desired—ideally, one would expect to be able to choose
an Application Policy that meets certain needs, plug it in
the Topocity framework and use the combinations of these
programs with no extra effort, regardless of the application
context. However, our experience shows that some very com-
plex CityGML features containing highly varying objects,
still need some minimal custom bridging code to build the
transformation. Tackling this problem in a generic manner
requires extending the approach, something we identify as
future work.

It is worth mentioning that [53] already solves the tower
crane problem of Sect. 5-A by developing a plugin for
Autodesk Revit—an established tool in building and urban
design. However, as pointed out by the authors, only a small
set of pre-defined simple rules are allowed, implemented ad
hoc for this purpose. In addition, [30] shows that GIS-BIM
models (like CityGML) have enough information for treating
the problem in terms of geometrical and topological analy-
sis. Our approach, on the contrary, is general enough to allow
for complex rules and user-defined customization if a proper
Application Policy is set in place.

The first two cases considered for our evaluation pur-
poses are model problems obtained from domain-specific
literature, highlighting the use of bidirectional transforma-
tions within our framework for model-based engineering of
space-dependent systems.We believe that the strength of our
approach is twofold: Firstly, adaptability is exhibited, since
integrating disparate application-related sources of informa-
tion still result in the same analyzable model; secondly,
providing an automatic way to obtain an abstract model

123

Model-driven engineering city spaces via bidirectional model transformations 2017

Table 1 Comparison of results
on the model for the central city
of Vienna. The source is
represented as an uncompressed
XML file, while the view is an
uncompressed binary dump of
the target data structure. Source
models are obtained from [56]

100% Source Parsing Transformation View

Size (MB) Time (s) RAM (MB) Time (s) RAM (MB) Size (MB)

(no reach) 42 24 810 1 130 2.7

0 − reach 43 25 810 259 320 3.3

10 − reach 44 25 810 643 320 4

20 − reach 45 26 810 1166 350 4.8

where verification can be performed can lead to the develop-
ment of more sophisticated analysis-based workflows.

Finally, within the general context of engineering sys-
tems inhabiting city spaces, we illustrated two characteristic
use cases where the approach we advocate can be ben-
eficial. Those highlight a model-driven adaptive systems
engineering view. At design time, development is grounded
on modeling activities, including processing and analysis
of whether the system inhabiting the city space satisfies
its design goals. However, after it has been designed and
deployed, goal satisfaction may depend on environmental
information that arise only in operation. Such information
may need to be integrated to the citymodel to enable process-
ing and analysis, but in this case, this has to be performed at
runtime,where themodel is populated as information arrives.
Thus, both for design time and runtime cases, analysis and
processing cannot be performed upon the CityGML domain
models, but on the analyzable models that our framework
derives. Keeping domain models in sync with derived ana-
lyzable models is crucial.

6 Related work

We have presented a novel technical framework to engi-
neering bidirectional model transformations of city models,
offering assurances on correct and well-behaved transfor-
mations. Consequently, we classify related work into three
categories. First, we discuss the state of the art in model-
based analysis of physical spaces, positioning our work.
Then, we review transformation techniques and theoretical
foundations on consistency. Lastly, we discuss related engi-
neering approaches from the domain of analyzable models
(i.e., cyber-physical systems that build upon spatial represen-
tations).

Interest on model-based analysis of cities has been con-
sistently growing in recent years. The adoption of CityGML
for building modeling purposes has been studied exten-
sively lately [45,59,72], and the integration of classical BIM
features has been a leading design goal [54] in defining
CityGML 3.0, to be soon released [36]. In addition, city-
based analysis is being developed in all kinds of application
scenarios; most notably, recent efforts have been on traffic

noise analysis [35], photovoltaic potentiality analysis [7],
urban emission measurements analysis [5] and ubiquitous
robot networks management [60]. Official city datasets are
increasing, with recent public effort from Turkey [9], Singa-
pore [55] and Germany [71] among all.

Bidirectional transformations (BX) have been an active
area of research for many years now, with a growing research
community and a dedicated conference (“BX,” since 2011).
Transformations address the problem of defining consis-
tency between models, historically originating from the
view-update problem in database research [11,48]. An intro-
duction to the topic of BX can be found in [4], whereas a
very recent comprehensive overview of the field and tech-
niques for assessing their performance is available in [8].
Several different approaches have been studied for deal-
ing with bidirectional transformations. BiGUL is a formally
verified putback-based bidirectional programming language
[32,33] based on lenses; Symmetric Edit Lenses [68] could
be used alternatively, although no practical tool is available
to date. The most popular alternative approach to lenses is
the relational one, on which QVT and its relation language
(QVT-R) are predominant [26,39,40]. Another major alter-
native approach is the TripleGraphGrammar (TGG) [28,52],
usable by the BXtend [16] tool. The flexibility (and hence the
limitations) of our reflection facilities is greatly related to the
theoretical issues with the propagation of effects. Arguably
the first work to clarify these issues is [58]; since then
works address effectful bidirectional transformations [46]
and monadic lenses [3,46] and have been dealing with side
effects in general. Development of practical tools exploiting
these theoretical results is object of active research by the
community.

Different forms of graphs as formalmodels of static repre-
sentations of buildings or cities have been proposed in diverse
fields such as architectural informatics [38] or computer
graphics [70], with different objectives. Several approaches
target case-based reasoning [1] in the architectural domain.
However, actionable and analyzablemodels are necessary for
advanced design and operation of overall space-dependent
systems [61]. In [38], a topology of spatial configurations is
extracted from building information models as well as hand-
written architectural sketches [6] and represented as graphs.
Within the Internet of things, analyzablemodels are extracted

123

2018 E. Visconti et al.

from trajectories and reasoned upon with a spatial logic [65].
Focusing on security reasoning while aiming at early design
phases, Porter et al. [47] propose a method and heuristics to
discover security threats on building specifications via sim-
ulation. Analyses such as similarity checking are performed
based on graph matching techniques [19]. Forms of graphs
representing topology of space are highly useful. To this end,
our target analyzable models are graph-based and readily
analyzable with a variety of approaches [64]. The notion of a
cyber-physical space refers to a compositemodel able to cap-
ture complex relations of human, cyber and physical entities,
which may span physical or computational barriers. Such a
model may be obtained from a physical model and enriched
with formally specified dynamics capturing possible ways it
can change [63]; spatiotemporal model checking of evolving
cyber-physical spaces can then be considered [62]. We note
that different model projections corresponding to require-
mentsmaybederived (and synchronized) on the specification
level automatically, achieving cone-of-influence reduction
on analysis [66].

7 Conclusions and future work

Motivated by model-based design and operation of space-
dependent systems, we presented a technical framework
enabling synchronizations between city spatial domain mod-
els and graph-based analyzable models. Synchronizations
produced are automatically derived, correct andwell behaved.
The models we considered are based on CityGML, widely
used by practitioners to represent city or building spaces. The
novel bidirectional reflection facilities we provided can be
readily used to (i) derive models from real CityGMLmodels
occurring in practice and (ii) instrument modeling and anal-
ysis facilities for cyber-physical systems. Their realization
in the form of an accompanying artifact is available as open
source software.

Considering the perspective of practitioners aiming to
utilize model-driven synchronization facilities, we identify
several research directions that could be pursued in the future.
Interfaces and toolchain integration would go a long way in
supporting the design cycle. This goes hand in hand with
tackling practical issues of CityGML, such as public ADE
data or generation facilities, to ensure effective tooling for
practical usage. The general class of synchronization prob-
lems we addressed must be clarified: Our framework’s main
hypothesis is the unchangeability of the consistency rela-
tion between the source and the view; an alteration to the
latter may require massive rewrites of the core of our frame-
work. Regarding theoretical aspects, we aim to investigate
pluggable custom application policies and support arbitrary
CityGML features. Lastly, an interesting research direction
is the generalization of synchronization to a many-to-one

C

A B

(a) A simple city with three
buildings.

A B

C

(b) The corresponding view
generated.

A B

C

T

(c) The updated view.

Fig. 7 A typical problematic case. There are three buildings in our city
(a), and we start to analyze them without any extra relationships - no
links in view (b). Then, we decide we want to connect A and B with a
tunnel T (c)

model; being able to support multi-model sources might
enable support of a wider range of applications dealing with
wide area services (such as transportation networks, telecom-
munications, etc.).

Acknowledgements Research partially supported by FWF Austria
projects “High-dimensional statistical learning:Newmethods to advance
economic and sustainability policies” (ZK 35), “EDENSPACE” (M
2778-N), and by the LogiCS DKW1255-N23. We kindly acknowledge
cloud usage from the Amazon AWS Credits for Research program.

Funding Open Access funding provided by TU Wien (TUW).

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

A Application policy example

To get a concrete understanding of the issue, imagine a
setting like the one in Fig. 7: let’s say we want to add a

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Model-driven engineering city spaces via bidirectional model transformations 2019

Fig. 8 Despite all these
solutions being formally correct,
only solution (a) is reasonable,
since it does not require to move
other buildings or to change
their shapes

C

BA

T

(a)

C

B

A

T

(b)

C

A B

T

(c)

tunnel that connects buildings A and B. Figure 7c shows the
bigraph expressing this requirement. To reflect the changes
back to the city model, let’s say we start iterate the putback
procedure starting from thebuildingA; there are clearlymany
alternative solutions; some of them are shown in Fig. 8.

By looking at the picture 8, one can see that there could
be theoretically multiple (actually infinite) solutions to the
problem. Our UPDATE action would only allow solution (a),
because solutions (b) and (c) would require to change the
shape or the position of nodes different from the current one,
which are two illegal operations for our Application Policy.

In the most degenerate case, a solution may even result in
a completely different configuration of the city space, where
for example the position of every object in the city is changed
in order to satisfy a requirement. In such cases, it would
becomemeaningless to synchronize the twomodels because,
as it is even harder to say that we are talking about the same
model as the beginning. It must be noted that transformations
like cases (b) and (c) might indeed be useful in some cases.
However, we did not find, to date, any suitable case scenarios
for them and the limiting factor of this assumption is still a
matter of active investigation.

B Complexity analysis

Let objects(S), relationships(S) denote, respec-
tively, the set of objects and the set of relationships of the
source. Conversely, let nodes(V) and links(V) denote
the sets of nodes and links of the view, respectively. We
denote by | · | the cardinality measure of a set. We also call
a trivial policy any Application Policy of the kind described
in Sect. 3, running in O(1) (imagine for example constant
policies, which reify nodes as objects of a pre-defined fixed
shape at a pre-defined fixed position).

Lemma 1 Place consistency of a trivial-policy put trans-
formation between a CityGML model S and a bigraph V
can be obtained in O(n2), with n = max{|objects(S)|,
|nodes(V)|}.

Proof By definition, the transformation from V to S is place-
consistent if A.1 and A.2 hold, which are the postconditions
of Algorithm 1. First, assume objects and nodes already
have references to their children readily available in their
data structure (for, e.g., like in Listing 2). The starting oper-
ation performed is alignLists(·) which—since it can
be seen as a form of string alignment—can be executed,
in the worst case scenario, in O(n2) [23,50,69]. The algo-
rithm, after aligning the lists, loops over the pairs of source
objects and view nodes. In the worst case, the source and
the view have no elements in common, which means the
loop runs |objects(S)|+|nodes(V)| times, which is less
than O(2n) ≈ O(n). Supposing the source and the view are
completely different, any iteration of the loop might trig-
ger our Application Policy, which returns a result in O(1).
Lastly, this behavior is mapped to every element of the two
trees. However, this does not change the complexity, since
at previous steps we had two trees having all the nodes as
direct children, which represents the worst case. (The most
computational-intensive operation is performed on all the
elements and nodes of the two trees.) In conclusion, the time
to execute the algorithm is O(n2)+O(n)∗O(1) = O(n2).
�
Lemma 2 Link consistency of a trivial-policy put transfor-
mation between a CityGML model S and a bigraph V can
be obtained in O(n2m2), with n = max{|objects(S)|,
|nodes(V)|} and m = max{|relationships(S)|,
|links(V)|}.
Proof Similar to Lemma 1, we are considering a policy of
complexity O(1), and we are enforcing A.3 as a postcondi-
tion of Algorithm 2, which hasA.1 andA.2 as preconditions.
First, fetchRels(·) and fetchLinks(·) do, symmetri-
cally, the same operations on the two structures, i.e., they
create an auxiliary data structure that indexes the rela-
tionships/ links in terms of the objects/nodes they relate
to. In the worst case, where relationships and links refer
all the objects and nodes, respectively, this operation can
take at most O(|objects(S)| |relationships(S)|)
for fetchRels(·) and O(|nodes(V)| |links(V)|) for

123

2020 E. Visconti et al.

fetchLinks(·), therefore≈ O(nm). Now,with arguments
similar to Lemma 1, alignLists(·) can be executed in
O(m2) [23,50,69] and the outer for loop iterates at most
|relationships(S)| + |links(V)| times, i.e., O(m).
Now, the internal alignLists(·) could still take up to
O(n2), in the case a relation/link connects all the object-
s/nodes of the respective structure. This whole procedure is
executed once for each object or node (note that they are
exactly n, since A.1 holds). At the end, we have O(n) ∗
[O(nm) + (O(m) ∗ O(n2) ∗ O(1))] ≈ O(n2m2).
�
Proposition 1 A CityGML model S and a bigraph V can
be made consistent by a trivial policy in at most O(n2m2),
with n = max{|objects(S)|, |nodes(V)|} and m =
max{|relationships(S)|, |links(V)|}.
Proof By definition, S and V are consistent if they are place
consistent and link consistent, which, as proved in Lemmas 1
and 2, can be enforced in O(n2) + O(n2m2) = O(n2m2).
�

References

1. Aamodt, A., Plaza, E.: Case-based reasoning: foundational issues,
methodological variations, and system approaches. AI Commun.
7(1), 39–59 (1994)

2. Abdelmegid,M.A., Shawki,K.M.,Abdel-Khalek,H.:Gaoptimiza-
tionmodel for solving tower crane location problem in construction
sites. Alex. Eng. J. 54(3), 519–526 (2015). https://doi.org/10.1016/
j.aej.2015.05.011

3. Abou-Saleh, F., Cheney, J., Gibbons, J., McKinna, J., Stevens, P.:
Reflections on Monadic Lenses, pp. 1–31. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-30936-1_1

4. Abou-Saleh, F., Cheney, J., Gibbons, J., McKinna, J., Stevens, P.:
Introduction to Bidirectional Transformations, pp. 1–28. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-79108-1_1

5. Ahlers, D., Kraemer, F.A., Braten, A.E., Liu, X., Anthonisen, F.,
Driscoll, P., Krogstie, J.: Analysis and visualization of urban emis-
sion measurements in smart cities. In: EDBT (2018)

6. Ahmed, S., Weber, M., Liwicki, M., Langenhan, C., Dengel, A.,
Petzold, F.: Automatic analysis and sketch-based retrieval of archi-
tectural floor plans. Pattern Recogn. Lett. 35, 91–100 (2014)

7. Alam, N., Coors, V., Zlatanova, S.: Detecting Shadow for Direct
Radiation Using CityGML Models for Photovoltaic Potentiality
Analysis, pp. 191–210. CRC Press, London (2013). https://doi.
org/10.1201/b14914-23

8. Anjorin, A., Buchmann, T., Westfechtel, B., Diskin, Z., Ko, H.S.,
Eramo, R., Hinkel, G., Samimi-Dehkordi, L., Zündorf, A.: Bench-
marking bidirectional transformations: theory, implementation,
application, and assessment. Softw. Syst. Model. 19(3), 647–691
(2020). https://doi.org/10.1007/s10270-019-00752-x

9. Ates, S., Stoter, J., Ledoux, H., Ozbek, E., Yomralioglu, T.: Estab-
lishing a national 3D geo-data model for building data compliant
to citygml: case of Turkey. ISPRS XLI–B2, 79–86 (2016). https://
doi.org/10.5194/isprs-archives-XLI-B2-79-2016

10. Baier, C., Katoen, J.P., et al.: Principles of Model Checking, vol.
26202649. MIT Press, Cambridge (2008)

11. Bancilhon, F., Spyratos, N.: Update semantics of relational views.
ACM Trans. Database Syst. 6(4), 557–575 (1981). https://doi.org/
10.1145/319628.319634

12. Bartocci, E., Bortolussi, L., Loreti, M., Nenzi, L.: Monitor-
ing mobile and spatially distributed cyber-physical systems. In:

J. Talpin, P. Derler, K. Schneider (eds.) Proceedings of the 15th
ACM-IEEE International Conference on Formal Methods and
Models for System Design, MEMOCODE 2017, Vienna, Austria,
September 29–October 02, 2017, pp. 146–155. ACM (2017)

13. Biljecki, F., Kumar, K., Nagel, C.: Citygml application domain
extension (ade): overview of developments. Open Geospatial Data
Softw. Stand. 3(1), 13 (2018). https://doi.org/10.1186/s40965-
018-0055-6

14. Biljecki, F., Stoter, J., Ledoux, H., Zlatanova, S., Çöltekin, A.:
Applications of 3D city models: state of the art review. ISPRS
Int J Geo-Inf 4(4), 2842–2889 (2015). https://doi.org/10.3390/
ijgi4042842

15. Brambilla, M., Cabot, J., Wimmer, M.: Model-Driven Software
Engineering in Practice. M& C Publishers (2012)

16. Buchmann., T.: Bxtend—a framework for (bidirectional) incre-
mental model transformations. In: Proceedings of the 6th Inter-
national Conference on Model-Driven Engineering and Software
Development, vol. 1: MODELSWARD, pp. 336–345. INSTICC,
SciTePress (2018). https://doi.org/10.5220/0006563503360345

17. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT
Press, Cambridge (1999)

18. Consortium, O.G.: City GeographyMarkup Language (CityGML)
Encoding Standard, version: 2.0.0. http://www.opengis.net/spec/
citygml/2.0 (2012)

19. Conte, D., Foggia, P., Sansone, C., Vento,M.: Thirty years of graph
matching in pattern recognition. Int. J. Pattern Recognit. Artif.
Intell. 18(03), 265–298 (2004)

20. DeBusk, W.: Unmanned Aerial Vehicle Systems for Disaster
Relief: Tornado Alley, chap. Unmanned Aerial Vehicle Systems
for Disaster Relief: Tornado Alley. Infotech@Aerospace Confer-
ences. American Institute of Aeronautics and Astronautics (2010).
https://doi.org/10.2514/6.2010-3506.

21. Eastman, C., Eastman, C.M., Teicholz, P., Sacks, R.: BIM Hand-
book: A Guide to Building Information Modeling for Owners,
Managers, Designers, Engineers and Contractors. Wiley, Hoboken
(2011)

22. Eaton, C.M., Chong, E.K.P.,Maciejewski, A.A.:Multiple-scenario
unmanned aerial system control: a systems engineering approach
and review of existing control methods. Aerospace (2016). https://
doi.org/10.3390/aerospace3010001

23. Feng, B., Gao, J.: Distributed parallel Needleman-Wunsch algo-
rithm on heterogeneous cluster system. In: 2015 International
Conference on Network and Information Systems for Computers,
pp. 358–361 (2015). https://doi.org/10.1109/ICNISC.2015.145

24. Filip Biljecki, K.H.H.: CityGML open data initiatives.
http://www.citygmlwiki.org/index.php?title=Open_Data_
Initiatives (2017). Archived at https://web.archive.org/web/
20190815000000*/http://www.citygmlwiki.org/index.php/Open_
Data_Initiatives

25. Gibbons, J., Stevens, P. (eds.): Bidirectional Transforma-
tions. Springer, Berlin (2018). https://doi.org/10.1007/978-3-319-
79108-1

26. Greiner, S., Buchmann, T., Westfechtel, B.: Bidirectional transfor-
mations with QVT-R: a case study in round-trip engineering uml
class models and java source code. In: 2016 4th International Con-
ference on Model-Driven Engineering and Software Development
(MODELSWARD) pp. 15–27 (2016)

27. Group, O.M.: Meta object facility (MOF) core specification, ver-
sion 2.4.1. OMG document number: formal/2013-06-01 (2013)

28. Hermann, F., Ehrig,H.,Orejas, F., Czarnecki,K.,Diskin, Z.,Xiong,
Y.: Correctness of model synchronization based on triple graph
grammars. In: MoDELS (2011)

29. Hu, Z., Ko, H.S.: Principles and Practice of Bidirectional Program-
ming in BiGUL, pp. 100–150. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-79108-1_4

123

https://doi.org/10.1016/j.aej.2015.05.011
https://doi.org/10.1016/j.aej.2015.05.011
https://doi.org/10.1007/978-3-319-30936-1_1
https://doi.org/10.1007/978-3-319-79108-1_1
https://doi.org/10.1201/b14914-23
https://doi.org/10.1201/b14914-23
https://doi.org/10.1007/s10270-019-00752-x
https://doi.org/10.5194/isprs-archives-XLI-B2-79-2016
https://doi.org/10.5194/isprs-archives-XLI-B2-79-2016
https://doi.org/10.1145/319628.319634
https://doi.org/10.1145/319628.319634
https://doi.org/10.1186/s40965-018-0055-6
https://doi.org/10.1186/s40965-018-0055-6
https://doi.org/10.3390/ijgi4042842
https://doi.org/10.3390/ijgi4042842
https://doi.org/10.5220/0006563503360345
http://www.opengis.net/spec/citygml/2.0
http://www.opengis.net/spec/citygml/2.0
https://doi.org/10.2514/6.2010-3506
https://doi.org/10.3390/aerospace3010001
https://doi.org/10.3390/aerospace3010001
https://doi.org/10.1109/ICNISC.2015.145
http://www.citygmlwiki.org/index.php?title=Open_Data_Initiatives
http://www.citygmlwiki.org/index.php?title=Open_Data_Initiatives
https://web.archive.org/web/20190815000000*/
https://web.archive.org/web/20190815000000*/
http://www.citygmlwiki.org/index.php/Open_Data_Initiatives
http://www.citygmlwiki.org/index.php/Open_Data_Initiatives
https://doi.org/10.1007/978-3-319-79108-1
https://doi.org/10.1007/978-3-319-79108-1
https://doi.org/10.1007/978-3-319-79108-1_4
https://doi.org/10.1007/978-3-319-79108-1_4

Model-driven engineering city spaces via bidirectional model transformations 2021

30. Irizary, J., Karan, E.: Optimizing location of tower cranes on con-
struction sites through GIS and BIM integration. Electron. J. Inf.
Technol. Construct. 17, 351–366 (2012)

31. Kehrer, T., Tsigkanos, C., Ghezzi, C.: An EMOF-compliant
abstract syntax for bigraphs. In: Graphs as Models at ETAPS16
(2016) (to appear)

32. Ko, H.S., Hu, Z.: An axiomatic basis for bidirectional program-
ming. Proc. ACM Program. Lang. (2017). https://doi.org/10.1145/
3158129

33. Ko, H.S., Zan, T., Hu, Z.: Bigul: A formally verified core language
for putback-based bidirectional programming. In: Proceedings of
the 2016 ACM SIGPLAN Workshop on Partial Evaluation and
Program Manipulation, PEPM’16, pp. 61–72. Association for
Computing Machinery, New York, NY (2016). https://doi.org/10.
1145/2847538.2847544

34. Kolbe, T., Gröger, G., Plümer, L.: Citygml: interoperable access
to 3D city models. In: Geo-Information for Disaster Management.
Springer (2005)

35. Konde, A., Saran, S.: Web enabled spatio-temporal semantic anal-
ysis of traffic noise using citygml. ISG J. Geomatics (2017)

36. Kutzner, T., Chaturvedi, K., Kolbe, T.H.: Citygml 3.0: new func-
tions open up new applications. PFG J. Photogramm. Remote Sens.
Geoinf. Sci. 88(1), 43–61 (2020). https://doi.org/10.1007/s41064-
020-00095-z

37. Kwan, M.P., Lee, J.: Emergency response after 9/11: the potential
of real-time 3D GIS for quick emergency response in micro-
spatial environments. Comput. Environ. Urban Syst. 29(2), 93–113
(2005). https://doi.org/10.1016/j.compenvurbsys.2003.08.002

38. Langenhan, C., Weber, M., Liwicki, M., Petzold, F., Dengel, A.:
Graph-based retrieval of building information models for support-
ing the early design stages. Adv. Eng. Inform. 27(4), 413–426
(2013)

39. Lano, K., Kolahdouz-Rahimi, S., Yassipour-Tehrani, S.: Declar-
ative specification of bidirectional transformations using design
patterns. IEEE Access 7, 5222–5249 (2019)

40. Macedo, N., Cunha, A.: Implementing QVT-R bidirectional model
transformations using alloy. In: Cortellessa, V., Varró, D. (eds.)
Fundamental Approaches to Software Engineering, pp. 297–311.
Springer, Berlin (2013)

41. Milner, R.: Bigraphical reactive systems. In: Larsen, K.G.,
Nielsen, M. (eds.) CONCUR 2001–Concurrency Theory, pp. 16–
35. Springer, Berlin (2001)

42. Milner, R.: The Space and Motion of Communicating Agents.
Cambridge University Press, Cambridge (2009)

43. München, T.: 3D city model of new york city - tum. https://www.
gis.bgu.tum.de/en/projects/new-york-city-3d/ (2015)

44. van Nederveen, G., Tolman, F.:Modellingmultiple views on build-
ings. Autom. Construct. 1(3), 215–224 (1992). https://doi.org/10.
1016/0926-5805(92)90014-B

45. Ohori, K.A., Diakité, A.A., Krijnen, T., Ledoux, H., Stoter, J.E.:
Processing BIM and GIS models in practice: experiences and rec-
ommendations from a geobim project in The Netherlands. ISPRS
Int. J. Geo-Inf. 7, 311 (2018)

46. Pacheco, H., Hu, Z., Fischer, S.: Monadic combinators for ”put-
back” style bidirectional programming. In: Proceedings of the
ACM SIGPLAN 2014 Workshop on Partial Evaluation and Pro-
gram Manipulation, PEPM’14, pp. 39–50. Association for Com-
puting Machinery, New York, NY (2014). https://doi.org/10.1145/
2543728.2543737

47. Porter, S., Tan, T., Tan, T.,West,G.: Breaking intoBIM: performing
static and dynamic security analysis with the aid of BIM. Autom.
Construct. 40, 84–95 (2014)

48. Pratt, T.W.: Pair grammars, graph languages and string-to-graph
translations. J. Comput. Syst. Sci. 5(6), 560–595 (1971). https://
doi.org/10.1016/S0022-0000(71)80016-8

49. Revit, A.: Revit products 2018 documentation—constraints
definition feature. https://knowledge.autodesk.com/support/
revit-products/learn-explore/caas/CloudHelp/cloudhelp/2018/
ENU/Revit-Model/files/GUID-4AD7D371-F757-4BFF-9F3C-
8321A77D3A02-htm.html (2018)

50. Sankoff, D.: Matching sequences under deletion/insertion con-
straints. Proc. Natl. Acad. Sci. 69(1), 4–6 (1972). https://doi.org/
10.1073/pnas.69.1.4

51. Saran, S., Oberai, K., Wate, P., Konde, A., Dutta, A., Kumar, K.,
Senthil Kumar, A.: Utilities of virtual 3D city models based on
CITYGML: various use cases. Jo. Indian Soc. Remote Sens. 46(6),
957–972 (2018). https://doi.org/10.1007/s12524-018-0755-5

52. Schürr, A.: Specification of graph translators with triple graph
grammars. In: Mayr, E.W., Schmidt, G., Tinhofer, G. (eds.) Graph-
Theoretic Concepts in Computer Science, pp. 151–163. Springer,
Berlin (1995)

53. Schwabe, K., König, M., Teizer, J.: BIM applications of rule-based
checking in construction site layout planning tasks. In: 2016 Pro-
ceedings of the 33rd ISARC, Auburn, AL, USA (2016). https://
doi.org/10.22260/ISARC2016/0026

54. SIG3D: CityGML3.0 requirements—munich 2013. http://en.wiki.
modeling.sig3d.org/index.php/Workshop_Munich_2013 (2013)

55. Soon, K.H., Khoo, V.H.S.: Citygml modelling for Singapore 3D
nationalmapping. ISPRS 1, 37–42 (2017). https://doi.org/10.5194/
isprs-archives-XLII-4-W7-37-2017

56. Stadtverlassung, M.W.M..: Generalized roof model cata-
log (LOD2) Vienna. https://www.data.gv.at/katalog/dataset/
86d88cae-ad97-4476-bae5-73488a12776d (2019)

57. Stahl, T.,Völter,M., Bettin, J., Haase,A.,Helsen, S.:Model-Driven
Software Development—Technology, Engineering, Management.
Pitman, London (2006)

58. Stevens, P.: Bidirectional model transformations in QVT: semantic
issues and open questions. Softw. Syst. Model. 9(1), 7 (2010)

59. Stouffs,R., Tauscher,H.,Biljecki, F.:Achieving complete andnear-
lossless conversion from IFC to CITYGML. ISPRS Int. J. Geo-Inf.
7, 355 (2018)

60. Teramoto, Y., Sato, A., Maruyama, K., Tomita, H.: Map represen-
tation for ubiquitous network robot services. In: Proceedings of the
4th ACM SIGSPATIAL International Workshop on Indoor Spatial
Awareness, ISA’12, pp. 29–32. ACM (2012). https://doi.org/10.
1145/2442616.2442623

61. Tsigkanos, C., Kehrer, T., Ghezzi, C.: Architecting dynamic cyber-
physical spaces. Computing 98(10), 1011–1040 (2016)

62. Tsigkanos, C., Kehrer, T., Ghezzi, C.: Modeling and verification of
evolving cyber-physical spaces. In: Proceedings of the 2017 11th
JointMeeting onFoundations of SoftwareEngineering, ESEC/FSE
2017, 2017, pp. 38–48 (2017)

63. Tsigkanos, C., Kehrer, T., Ghezzi, C., Pasquale, L., Nuseibeh, B.:
Adding static and dynamic semantics to building informationmod-
els. In: Proceedings of the 2nd InternationalWorkshop on Software
Engineering for Smart Cyber-Physical Systems, pp. 1–7. ACM
(2016)

64. Tsigkanos, C., Li, N., Jin, Z., Hu, Z., Ghezzi, C.: On early statistical
requirements validation of cyber-physical space systems. In: Pro-
ceedings of the 4th International Workshop on Software Engineer-
ing for Smart Cyber-Physical Systems, ICSE 2018, Gothenburg,
Sweden, May 27, 2018, pp. 13–18 (2018)

65. Tsigkanos, C., Nenzi, L., Loreti, M., Garriga, M., Dustdar, S.,
Ghezzi, C.: Inferring analyzable models from trajectories of
spatially-distributed internet-of-things. In: 1th IEEE/ACM Inter-
national Symposium on Software Engineering for Adaptive and
Self-Managing Systems, SEAMS@ICSE 2019,Montreal, Canada,
May 25–26, 2019. IEEE Computer Society (2019)

66. Tsigkanos, C., Nianyu, L., Jin, Z., Zhenjiang, H., Ghezzi, C.: Scal-
able multiple-view analysis of reactive systems via bidirectional

123

https://doi.org/10.1145/3158129
https://doi.org/10.1145/3158129
https://doi.org/10.1145/2847538.2847544
https://doi.org/10.1145/2847538.2847544
https://doi.org/10.1007/s41064-020-00095-z
https://doi.org/10.1007/s41064-020-00095-z
https://doi.org/10.1016/j.compenvurbsys.2003.08.002
https://www.gis.bgu.tum.de/en/projects/new-york-city-3d/
https://www.gis.bgu.tum.de/en/projects/new-york-city-3d/
https://doi.org/10.1016/0926-5805(92)90014-B
https://doi.org/10.1016/0926-5805(92)90014-B
https://doi.org/10.1145/2543728.2543737
https://doi.org/10.1145/2543728.2543737
https://doi.org/10.1016/S0022-0000(71)80016-8
https://doi.org/10.1016/S0022-0000(71)80016-8
https://knowledge.autodesk.com/support/revit-products/learn-explore/caas/CloudHelp/cloudhelp/2018/ENU/Revit-Model/files/GUID-4AD7D371-F757-4BFF-9F3C-8321A77D3A02-htm.html
https://knowledge.autodesk.com/support/revit-products/learn-explore/caas/CloudHelp/cloudhelp/2018/ENU/Revit-Model/files/GUID-4AD7D371-F757-4BFF-9F3C-8321A77D3A02-htm.html
https://knowledge.autodesk.com/support/revit-products/learn-explore/caas/CloudHelp/cloudhelp/2018/ENU/Revit-Model/files/GUID-4AD7D371-F757-4BFF-9F3C-8321A77D3A02-htm.html
https://knowledge.autodesk.com/support/revit-products/learn-explore/caas/CloudHelp/cloudhelp/2018/ENU/Revit-Model/files/GUID-4AD7D371-F757-4BFF-9F3C-8321A77D3A02-htm.html
https://doi.org/10.1073/pnas.69.1.4
https://doi.org/10.1073/pnas.69.1.4
https://doi.org/10.1007/s12524-018-0755-5
https://doi.org/10.22260/ISARC2016/0026
https://doi.org/10.22260/ISARC2016/0026
http://en.wiki.modeling.sig3d.org/index.php/Workshop_Munich_2013
http://en.wiki.modeling.sig3d.org/index.php/Workshop_Munich_2013
https://doi.org/10.5194/isprs-archives-XLII-4-W7-37-2017
https://doi.org/10.5194/isprs-archives-XLII-4-W7-37-2017
https://www.data.gv.at/katalog/dataset/86d88cae-ad97-4476-bae5-73488a12776d
https://www.data.gv.at/katalog/dataset/86d88cae-ad97-4476-bae5-73488a12776d
https://doi.org/10.1145/2442616.2442623
https://doi.org/10.1145/2442616.2442623

2022 E. Visconti et al.

model transformations. In: Proceedings of 35th International Con-
ference on Automated Software Engineering. IEEE (2020)

67. Visconti, E., Tsigkanos, C., Hu, Z., Ghezzi, C.: Model-driven
design of city spaces via bidirectional transformations. In: Proceed-
ings of the ACM/IEEE 22nd International Conference on Model
Driven Engineering Languages and Systems, MODELS’19 (2019)

68. Wagner, D.: Symmetric edit lenses: a new foundation for
bidirectional languages. Ph.D. thesis, University of Pennsyl-
vania (2014). https://search.proquest.com/docview/1614532529?
accountid=39579. Copyright—Database copyright ProQuest LLC;
ProQuest Does Not Claim Copyright in the Individual Underlying
Works; Last updated-2019-10-19

69. Wagner, R.A., Fischer, M.J.: The string-to-string correction prob-
lem. J. ACM 21(1), 168–173 (1974). https://doi.org/10.1145/
321796.321811

70. Wessel, R., Blümel, I., Klein, R.: The room connectivity graph:
shape retrieval in the architectural domain. In: The 16-th Inter-
national Conference in Central Europe on Computer Graphics,
Visualization and Computer Vision (2008)

71. Ministerium für Wirtschaft Innovation, D.u.E.d.L.N.W.:
Nordrhein-westfalen open geographic data. https://www.
opengeodata.nrw.de/produkte/geobasis/3d-gm/ (2017)

72. Zhu, J., Wright, G., Wang, J., Wang, X.: A critical review of the
integration of geographic information system and building infor-
mation modelling at the data level. ISPRS Int. J. Geo-Inf. 7, 66
(2018)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Ennio Visconti is a PhD stu-
dent in Logical Methods in Com-
puter Science, at the Trustworthy
Cyber-Physical Systems Group at
TU Wien, Austria. He received a
BSc and a MSc degree in Com-
puter Science & Engineering at
Politecnico di Milano, Italy. He
was a visiting research student at
National Institute of Informatics
(NII), Japan, in 2018–2019. His
research interests include software
engineering, cyber-physical sys-
tems and formal methods oriented
toward software engineering.

Christos Tsigkanos is Lise Meit-
ner Fellow at TU Wien (Austria).
Formerly, he was post-doctoral
researcher at the Distributed Sys-
tems Group at TU Vienna and
at Politecnico di Milano (Italy),
where he received (2017) his PhD
with distinction defending a thesis
entitled “Modelling and Verifica-
tion of Evolving Cyber-Physical
Spaces.” He holds a BSc degree in
computer science from University
of Athens (Greece) and a MSc
in software engineering from Uni-
versity of Amsterdam (the Nether-

lands). His research interests lie in the intersection of distributed sys-

tems and software engineering and include dependable self-adaptive
and cyber-physical systems, requirements engineering and formal ver-
ification.

Zhenjiang Hu is Chair Professor
in the Department of Computer
Science and Technology, EECS,
Peking University. He received his
BS and MS degrees from Shang-
hai Jiao Tong University in 1988
and 1991, respectively, and PhD
degree from University of Tokyo
in 1996. He was a lecturer (1997-
2000) and an associate profes-
sor (2000–2008) in University of
Tokyo, a full professor at NII/-
SOKENDAI (2008–2018) and a
full professor at NII/University of
Tokyo in (2018–2019), before

joining Peking University in 2019. His main research interest is in pro-
gramming languages and software engineering in general, and func-
tional programming, parallel programming and bidirectional transfor-
mation in particular. He is Fellow of JFES (Japan Federation of Engi-
neering Society), ACM Distinguished Scientist, IEEE Fellow, Mem-
ber of European Academy of Sciences and Member of Engineering
Academy of Japan.

Carlo Ghezzi is Professor Emeritus
at the Dipartimento di Elettronica,
Informazione e Bioingegneria of
the Politecnico di Milano, Italy.
He is an ACM Fellow, an IEEE
Fellow, a member of the European
Academy of Sciences and of the
Italian Academy of Sciences. He
received the ACM SIGSOFT Out-
standing Research Award (2015)
and the Distinguished Service
Award (2006). He is past Pres-
ident of Informatics Europe. He
has been the Editor in Chief of the
ACM Trans. on Software Engi-

neering and Methodology, Associate Editor of IEEE Trans. on Soft-
ware Engineering, Communications of the ACM and Science of Com-
puter Programming. His research has been mostly focusing on dif-
ferent aspects of software engineering. He co-authored over 200
papers and 8 books. He coordinated several national and international
research projects and has been a recipient of an ERC Advanced Grant.

123

https://search.proquest.com/docview/1614532529?accountid=39579
https://search.proquest.com/docview/1614532529?accountid=39579
https://doi.org/10.1145/321796.321811
https://doi.org/10.1145/321796.321811
https://www.opengeodata.nrw.de/produkte/geobasis/3d-gm/
https://www.opengeodata.nrw.de/produkte/geobasis/3d-gm/

	Model-driven engineering city spaces via bidirectional model transformations
	Abstract
	1 Introduction
	2 City space models and their representation
	2.1 CityGML descriptions as source models
	2.2 Cyber-physical spaces as target models
	2.3 Synchronization: design goals and challenges

	3 Bidirectional transformations of city space models
	3.1 Consistency specification
	3.2 Consistency enforcement
	3.3 Dealing with domain specifics

	4 Topocity-.4: bidirectional transformations implementation
	4.1 Key implementation points
	4.1.1 Data types
	4.1.2 BiGUL programs

	4.2 Topocity usage

	5 Evaluation
	5.1 Facilitating system design: tower crane positioning
	5.2 Facilitating system operation: emergency response
	5.3 Edge cases analysis
	5.4 Discussion

	6 Related work
	7 Conclusions and future work
	Acknowledgements
	A Application policy example
	B Complexity analysis
	References

