
Software and Systems Modeling (2021) 20:1335–1349
https://doi.org/10.1007/s10270-021-00909-7

EXPERT VOICE

Model-based intelligent user interface adaptation: challenges and
future directions

Silvia Abrahão1 · Emilio Insfran1 · Arthur Sluÿters2 · Jean Vanderdonckt2

Received: 21 May 2021 / Revised: 28 June 2021 / Accepted: 29 June 2021 / Published online: 16 July 2021
© The Author(s) 2021

Abstract
Adapting the user interface of a software system to the requirements of the context of use continues to be a major challenge,
particularly when users become more demanding in terms of adaptation quality. A considerable number of methods have,
over the past three decades, provided some form of modelling with which to support user interface adaptation. There is,
however, a crucial issue as regards in analysing the concepts, the underlying knowledge, and the user experience afforded by
these methods as regards comparing their benefits and shortcomings. These methods are so numerous that positioning a new
method in the state of the art is challenging. This paper, therefore, defines a conceptual reference framework for intelligent
user interface adaptation containing a set of conceptual adaptation properties that are useful for model-based user interface
adaptation. The objective of this set of properties is to understand anymethod, to compare variousmethods and to generate new
ideas for adaptation.We also analyse the opportunities that machine learning techniques could provide for data processing and
analysis in this context, and identify some open challenges in order to guarantee an appropriate user experience for end-users.
The relevant literature and our experience in research and industrial collaboration have been used as the basis on which to
propose future directions in which these challenges can be addressed.

Keywords Context of use · Intelligent user interface · Machine learning · Model-based software engineering · Model-driven
engineering · User interface adaptation · Conceptual reference framework

1 Introduction

User interface (UI) adaptation consists of modifying a soft-
ware system’s UI in order to satisfy requirements, such as the
needs, wishes, and preferences of a particular user or a group
of users. Adaptation falls into two categories depending on
which the system or end-user is responsible for making the
adaptation [15]: adaptability refers to the end-user’s ability
to adapt the UI, whereas adaptivity or self-adaptation refers
to the system’s ability to perform UI adaptation. Personal-
isation is a particular form of adaptivity, usually for the UI
contents, that is based on data originating solely from the
end-user, such as personal traits [15]. When the data origi-

Communicated by Bernhard Rumpe.

B Silvia Abrahão
sabrahao@dsic.upv.es

1 Universitat Politècnica de València, ES, Valencia, Spain

2 Université catholique de Louvain, BE,
Ottignies-Louvain-la-Neuve, Belgium

nate from sources that are external to the end-user, such as
other user groups, recommendation occurs instead. Mixed-
initiative adaptation [17] occurs when both the end-user and
the system collaborate in order to make the adaptation.

UI adaptation should ultimately serve the end-user’s ben-
efit, by optimising factors contributing to the end-user’s
experience. For example, the objective ofUI adaptation could
be to increase efficiency (by reducing task completion time
and error rate or by improving the learning curve), to ensure
effectiveness (by guaranteeing full task completion) or to
improve the subjective user’s satisfaction, but could also be
related to other factors, such as hedonic value or user disrup-
tion [18].

The challenge is to suggest the right adaptation at the right
time in the right place in order tomake it valuable for the end-
user [4]. Otherwise, adaptation will be prone to limitations
that could impede the expected benefits [21], if not thwart
them: risk of misfit (the end-user’s needs are incorrectly cap-
tured or interpreted), user cognitive disruption (the end-user
is disrupted by the adaptation), lack of prediction (the end-
user does not know when and how the adaptation will take

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10270-021-00909-7&domain=pdf
http://orcid.org/0000-0003-3580-2014
http://orcid.org/0000-0003-0855-5564
http://orcid.org/0000-0003-3275-3333


1336 S. Abrahão et al.

place), lack of explanation (the end-user is not informed of
the reasons for adaptation), lack of user involvement (the end-
user does not have the opportunity to participate actively in
the adaptation process), and risks as regards privacy (the sys-
tem maintains personal information that the user wishes to
keep private).

A number of model-based approaches with which to
address these challenges have been proposed to support UI
adaptation by the human–computer interaction (HCI) and
software engineering (SE) communities. However, no study
that summarises the current knowledge, reasoning, and expe-
rience gained by these approaches, along with their benefits
and limitations, currently exists. These aspects are so numer-
ous that positioning any new approach with respect to the
prior work is difficult to achieve. Surveys of UI adapta-
tion [2,13,20] synthesise adaptation concepts, methods, and
tools. Most of them are, however, technology driven, limited
in scope, or largely surpassed by recent technical progress,
which makes them incomplete as regards covering the most
recent adaptation approaches or exploring alternatives in a
structured manner.

In this paper, we, therefore, present a conceptual refer-
ence framework for model-based intelligent UI adaptation
that contains a set of conceptual adaptation properties. These
properties are structured around the Quintilian questions—
what, why, how, to what, who, when, and where—posed
for model-based UI adaptation. The objective of these con-
ceptual properties is to facilitate the understanding and
comparison of adaptation capabilities, in addition to their
integration into the model-based or model-driven engineer-
ing of user interfaces of software systems, such as interactive
applications, websites and desktop applications. These prop-
erties also help to identify open challenges and generate new
ideas. In particular, progress in artificial intelligence (AI) and,
more specifically, machine learning (ML), provides useful
ways in which to support adaptation more effectively. We,
therefore, analyse some opportunities that these fields may
bring to model-based UI adaptation.

In Sect. 2, we present the current state of UI adaptation,
while in Sect. 3, we define the conceptual framework for UI
adaptation in order to locate the conceptual properties that
support adaptation with respect to the Quintilian questions.
These properties target the needs of two major stakeholder
groups: they help system engineers to incorporate suitable UI
adaptation mechanisms into model-based development more
systematically, and they help practitioners to understand and
compare UI adaptation methods. We conclude this paper in
Sect. 4, with a call for action that includes a discussion of
open challenges and future directions.

2 Current state of model-based UI
adaptation

Pioneering work on UI adaptation started with Browne et al.
[8],whousedMoran’sCommandLanguageGrammar (CLG)
to structure UI specifications into distinct aspects, ranging
from tasks and abstract concepts to syntactic and physical
components. These authors concluded that themajor strength
of CLG as regards UI adaptation is the principle of separation
of concerns. Although this principle is enforced in CLG, it is
not obvious how to easily propagate all specification aspects
into the final code. These authors additionally state that CLG
has very limited facilities with which to express UI presen-
tation and behaviour.

Dieterich et al.’s taxonomy [13] has long been consid-
ered a seminal reference when classifying different types of
adaptation configurations and methods. This taxonomy was
obtained after analysing more than 200 papers, after which
the UI adaptation methods found were structured in four
stages: (1) the initiative, which specifies the entity, end-user
or system that expresses the intention to perform adaptation;
(2) the proposal, which suggests those proposals that could
be applied to adaptation, given the current context of use;
(3) the decision, which specifies those adaptation proposals
that best fit the requirements imposed by the context of use,
and (4) the execution, which is responsible for enacting the
adaptation method previously decided on.

However, López-Jaquero et al. [23] identified some short-
comings of this taxonomy: it does not support an explicit
collaboration between entities (i.e. the user and the system,
or even a third party) and it is restricted to the execution
only. These authors specialised Norman’s theory of action in
the Isatine framework, which structures the UI adaptation
into seven stages describing how the adaptation is carried out
and by whom, thus addressing some of the Quintilian ques-
tions. The UI adaptation is understood to be a sequence of
seven stages (Fig. 1, in which the user’s parts are depicted
in blue, while the system parts are depicted in green): (1)
an entity obtained from UI adaptation goals that is formally
expressed in the system or informally maintained in the end-
user’s head is established; (2) this entity takes the initiative
in order to start a UI adaptation; (3) based on this input, some
UI adaptation is subject to a specification so as to enable it
to express how the adaptation will be conducted; (4) the UI
adaptation selected is then applied; (5) a transition from an
initial state before adaptation to a final state after adaptation
is subsequently ensured in order to preserve continuity; (6)
the results of this output are then subjected to interpretation
by an entity based on the feedback provided by the system,
and (7) the interpretation eventually leads to an evaluation
of whether the initial goals established for the adaptation are
(partially or totally)met. Depending on this evaluation, a new
cycle could be initiated until the final goals are achieved.

123



Model-based intelligent user interface adaptation: challenges and future directions 1337

Fig. 1 The seven stages of the Isatine framework

Paramythis et al. [32] proposed a framework that can be
used to guide a layered evaluation of adaptive interactive sys-
tems. This approach decomposes the system into layers (i.e.
collect input data, interpret the collected data, model the cur-
rent state of the ”world”, decide upon adaptation and apply
adaptation) that can be evaluated independently using a set
of formative methods. The authors then addressed the afore-
mentionedQuintilian questions forweb sites and hypermedia
systems, but not for any type of UI.

The taxonomy proposed byMcKinley et al. [25] addresses
how software could be adapted by employing a composition
in which algorithmic or structural parts of the system are
exchanged for others in order to improve the system’s fit to
its current context of use.This adaptation is basedon the sepa-
ration of concerns into the functional behaviour of the system
and cross-cutting concerns, and on computational reflections
expressing different aspects of a system, component-based
design practices that enable the development of the different
parts of a system separately, and a middleware that usually
provides the compositional capabilities. The taxonomy is
structured in three dimensions: “how to adapt”, which cor-
responds roughly to Dieterich’s proposal stage, “where to
adapt”, which is implicitly included in the execution stage,
and “when to adapt”, which was not originally covered, sig-
nifying that McKinley’s taxonomy complements Dieterich’s
taxonomy.

Fig. 2 User interface adaptation life cycle

Several surveys on UI adaptation have been published in
order to synthesise adaptation concepts, methods and tools.
For example, Van Velsen et al. [41] presented a systematic
literature review on the user-centred evaluation of adaptive
and adaptable systems. Akiki et al. [2] presented a qualita-
tive study analysing adaptive UI development systems that
employed a model-driven engineering approach for UI adap-
tation. Motti et al. [28] conducted a survey investigating
whether and how practices concerning model-based context-
aware adaptation are perceived and adopted by practitioners.
While most stakeholders recognise the relevance and bene-
fits of the adaptation methods, they are still not considered
or partially adopted during software development.

Finally, Fig. 2 depicts the PDA-LDA cycle employed to
structure the UI adaptation according to the theory of con-
trol perspective [7]: each entity, the end-user (depicted in
blue) or the system (depicted in green) enters a cycle of three
stages: the perception (P) of the context before adaptation,
the decision (D) to adapt and the action (A) taken in order
to adapt. Unlike other frameworks that emphasise the adap-
tation steps, this cycle acknowledges that both the end-user
and the system act symmetrically with these stages, which
should be covered to some extent.

UI adaptation is, therefore, treated independently of any
implementation method, which is desirable. However, in the
context of model-based/driven engineering as a particular
method for adaptation, there are few or no explicit recom-
mendations onhow to structure software components in order
to support intelligent UI adaptation. The existence of some

123



1338 S. Abrahão et al.

models, such as the user model, is frequently mentioned, but
their structure and usage are not made sufficiently explicit to
help modellers and developers to implement adaptation [1].

On the one hand, UI adaptation methods have been inves-
tigated in human–computer interaction (HCI), but without
making the means required to practically implement them
sufficiently explicit.

On the other, the software engineering (SE) community
has advanced as regards principles and technologies with
which to support the PDA-LDA cycle on the system side
(e.g. the MAPE-K adaptation loop, models at runtime), but
often relegates the perception, decision and action stages on
the end-user side, typically addressed in HCI, to a secondary
role.

3 Conceptual framework and properties for
UI adaptation

In this section, we introduce a conceptual reference frame-
work with intelligent model-based UI adaptation. The pur-
pose of the framework is twofold: (1) to help software
engineers to properly decompose the application into layers
and modules that are suitable for supporting model-based UI
adaptation, and (2) to provide a property-based classification
of existing approaches in order to identify some trends and
research directions.

3.1 The conceptual reference framework

Figure 3 depicts our conceptual framework with which to
support intelligent UI adaptation based on MDE princi-
ples (e.g. abstraction, separation of concerns, automation)
and technologies (e.g. modelling and metamodelling, model
transformation). This framework is decomposed into four
parts:

– The context of use, which represents the actor(s) that
interact with their platform or device in any physical
environment [9]. For example, a business person inter-
acting with a smartphone in a busy airport represents a
context of use that is radically different from a tourist
browsing a laptop in a hotel. In order to support context-
aware UI adaptation, a context probe (e.g. a camera, a
sensor) senses it and abstracts relevant data into useful
model fragments corresponding to the context of use: a
user model captures all data pertaining to the end-user
(e.g. gender, age, interaction history, abilities, prefer-
ences, emotional state, past experience), aplatformmodel
captures data that are useful as regards characterising the
target platform (e.g. screen resolution, sizes, interaction
capabilities,CPUavailability), and an environmentmodel
captures any environmental data that could influence the

UI (e.g. location, stationary vs. mobile conditions, light,
noise level, physical configuration, organisational and
psycho-social constraints). For example, Figs. 4 and 5
reproduce two UIs of a trip planner in two different con-
texts of use.

– The software system, which is usually an interactive
application, consists of the semantic core component that
contains the business logic functions appertaining to the
application domain. These functions are executed from
the intelligent UI of this software, which could exploit up
to four models [9]: a “task and domain” model captures
domain abstractions, usually in the form of an object-
oriented diagram or a UML class diagram or any kind of
domain model, while the “task” model captures how the
end-user sees the interactionwith the semantic core, inde-
pendently of any implementation or technology.1 The
task and domainmodels are transformed into an “abstract
UI” model2 for a given context of use, but still without
making any assumptions about the interaction modality
and target platform. The “abstract UI” becomes a “con-
creteUI”when design options are decided for a particular
modality, e.g. graphical, vocal, tactile, haptic or tangible,
and for a particular platform, e.g. a smartphone, a tablet,
a wall screen. A final UI is obtained from this concrete UI
model by means of either model interpretation or model-
to-code transformation. Any transformation between two
levels can exploit the contents of the context model.
Examples of these are: a forward engineering transfor-
mation (depicted as a downwards arrow in the software
system), a reverse engineering transformation (depicted
as an upwards arrow), or a self-modification (depicted as
a loop), all of which can generate a subsequent model
based on the previous one by exploiting the context
model.

– The Intelligent UI adaptor, which consists of six com-
ponents, two of which are mandatory. At the core is the
adaptationmanager, which is responsible for performing
any complete adaptation process from its initiation to its
completion, such as according to the Isatine framework.
This manager, therefore, stores and maintains adapta-
tion parameters, which regulate the adaptation process
with variable parameters, such as the level of automa-
tion, the frequency, the priority of adaptation rules or
the preferred adaptation strategies. Adaptation param-
eters can be application-independent, such as the level
of automation, or application-dependent, such as those
shown in Figs. 6 and 7. The adaptation manager has
its own UI, denominated as an adaptation manager UI,

1 SeeW3C recommendation for taskmodel at https://www.w3.org/TR/
task-models/.
2 See W3C recommendation for abstract UI model at https://www.w3.
org/TR/abstract-ui/.

123

https://www.w3.org/TR/task-models/
https://www.w3.org/TR/task-models/
https://www.w3.org/TR/abstract-ui/
https://www.w3.org/TR/abstract-ui/


Model-based intelligent user interface adaptation: challenges and future directions 1339

Fig. 3 Conceptual reference framework for intelligent UI adaptation highlighting four main components and their related conceptual adaptation
properties

which is sometimes referred to as ameta-UI (theUI above
the original UI [11]) or extra-UI (the UI external to the UI
of the application [26]). This UI enables the end-user to
access and update the adaptation parameters and to con-
duct the whole adaptation process interactively so as to
specifically perform adaptation operations, review them,
accept them or reject them. In order to clearly differ-
entiate the UI of the adaptation manager from that of
the software system, it should be located in a separate
location. Depending on the parameters, the adaptation
manager executes the adaptation logic contained in the
adaptation engine, which is usually implemented in the
form of adaptation rules. The adaptation manager can
call the adaptation transitioner in order to convey to the
end-user the transition between the status before and after
adaptation. For example, animated transitions [12] apply
morphing techniques to show this step and to preserve
continuity (Fig. 8). If necessary, the transitioner provides
the end-user with information on why, how and when
the adaptation is performed by requesting the adapta-
tion explainer, which is responsible for explaining and
justifying why any adaptation proposal or step will be

executed [16]. Finally, an adaptation machine learning
system can monitor the whole process over time, learn
what the good adaptations are or which are preferred by
the end-user, and recommend them in the future [7]. For
example, TADAP [27] suggests adaptation operations
based on the user’s interaction history that the end-user
can accept, reject, or re-parameterise by employing Hid-
den Markov Chains.

– The external sources contain any form of information
that can be exploited in order to support and improve
the adaptation process: data concerning individual items,
information for semantically related data, knowledge
gained from exploiting the information within a certain
domain, andwisdomwhen knowledge can be reproduced
in different domains. These sources are typically held
by agents that are external to the software system, such
as experts, brokers, recommenders, or any third party
source. For example, when no adaptation proposal can
be obtained, an external source may be required in order
to attain one.

123



1340 S. Abrahão et al.

Fig. 4 UI adapted to a first context of use: a tourist equipped with a
tablet in dark conditions

Fig. 5 UI adapted to a second context of use: a car driver using a car-
embedded browser during daylight to obtain a weather forecast

Fig. 6 Cultural adaptation parameters

3.2 The conceptual properties for UI adaptation

The framework enables the location and definition of con-
ceptual properties for model-based UI adaptation. Some
properties were taken from existing frameworks, and others
are based on our own experience of the topic. These proper-
ties can be structured according to the Quintilian questions
[28,32]:

Fig. 7 Weather forecast adaptation parameters

– Who: which actor triggers, initiates or is in charge of each
adaptation step? The end-user, designer, developer, sys-
tem, UI, an expert, any third party or an external source?

– What: what is adapted in the UI? The presentation, nav-
igation behaviour or contents?

– Why: what are the main adaptation goals, expressed as
external software quality attributes (e.g. usability, per-
formance) or internal software quality attributes (e.g.
predictability, learnability [7])?

– How: what developmentmethods, techniques, and strate-
gies are exploited to drive the adaptation?

– To what: what contextual information is used to justify
and define the adaptation? For example, the application
resources subject to adaptation based mainly on user,
platform or environment?

– When: in what state does adaptation occurs?: design
time, linking time, compilation time, run time, or a com-
bination of them?

– Where: where in the interactive application does the
adaptation take place, based on the software architec-
ture?: the client, a proxy, or a server?

3.2.1 Who

This dimension refers to the actor that is responsible for car-
rying out the adaptation process from beginning to end. This
actor could be the end-user, the software system itself (and
by metonymy, its UI), or a third party, such as an external
broker, the designer, the developer, any external stakeholder,
or the crowd [29]. This dimension is defined by the following
property:

1© Adaptation responsibility, which can be shared
between different actors and may vary depending on the
adaptation steps that are carried out.According to the Isatine
framework [23], the adaptation steps followed by a particu-
lar approach can be grouped according to their impact on the
execution and evaluation degree of the approach. The execu-

123



Model-based intelligent user interface adaptation: challenges and future directions 1341

Fig. 8 Animated transition from the initial state before adaptation to the final state after adaptation [12]

tion degree can be assessed by analysing who performs the
following three steps:

– Initiative, which refers to who detects that there is a need
to adapt the user interface. The adaptation process can
usually be initiated by the user (U), the system (S) or
a third party (T). For instance, the user can trigger an
adaptation by selecting an element in the user interface
or the system can decide that an adaptation is needed by
inferring it from a change in the context of use.

– Decision, which refers to who makes the decision to
adapt the UI (i.e. the user, the system, or third party).
The decision is concerned with the identification of what
adaptation proposals best fit the need for the adaptation
detected.

– Application, which refers towho is responsible for apply-
ing the adaptation, i.e. U, S, or T, or any combination.

The evaluation degree can be assessed by analysing who
performs the following three steps:

– Transition, which refers to how the transition is per-
formed from the original UI to that which is adapted.
This criterion indicates whether the end-user is able to
perceive how the adaptation is conducted, i.e. whether
the user is aware of the intermediate steps taken when
adapting the user interface.

– Interpretation, which refers to the user’s ability to under-
stand both the adaptation results and the adaptation
execution itself.

– User feedback, which refers to the ability of the approach
to provide feedback about the quality of the adaptation.

3.2.2 What

This dimension refers to what is adapted, which is further
characterised through the use of five conceptual properties:

2© Adaptation target, which refers to which UI part is
subject to adaptation: its presentation (layout), its dynamic
behaviour, its navigation, its contents (e.g. text, images,
videos), or any combination. For example, after identifying
the end-user, Diffie [37], highlights parts of a website that
have changed since the last visit.

3© Adaptation granularity, which refers to the smallest
UI unit that is subject to adaptation. The adaptation unit could
cover the UI presentation, the dialogue, the navigational flow
or the contents. The following units may be subject to adap-
tation:

– Within widgets: the adaptation is applicable within an
interaction object. For example, a list box is replaced
with a drop-down list (Fig. 8).

– Across widgets, within a group: the adaptation is appli-
cable to widgets within the same group.

– Across groups within a container: the adaptation is appli-
cable to groups of widgets within the same container.

– Across containers, within a software system: the adapta-
tion is applicable to all groups within a software system,
e.g. a single application.

– Across software systems: the adaptation is applicable to
software systems. For example, a particular adaptation is
always applied to all applications used by a person.

A model-based approach may support the adaptation of one
ormoreUI units. For example, Sottet et al. [36] support adap-
tations across different interaction objects (widgets), across
groups within a container, and across containers, within a
software system.

4© UI Type, which refers to the UI type that is subject to
adaptation depending on its interaction modality:

– Graphical: concerns only the graphical part.
– Vocal: concerns only the vocal part.
– Tactile: concerns only the tactile part.
– Gestural: concerns only the gestural part.
– Haptic: concerns only the haptic modality.

For example, a rich internet UI is rendered as a vectorial
graphical interface [24]. Nomadic gestures [40] adapt com-
mand gestures for a particular user that are transferable from
one software system to another.

5© UI Modality, which expresses how many modalities
are incorporated into the UI adaptation, as follows:

– Monomodal: the approach supports only the adaptation
of a single UI type.

123



1342 S. Abrahão et al.

User System

User Adapta�on
engine System

User Adapta�on 
Manager

Adapta�on 
engine System

(a)

(b)

(c)

Fig. 9 Feedback loops in adaptation: a one with the system without
adaptation, b two with an adaptation engine, c three with an adaptation
manager

– Bimodal: the approach supports only the adaptation of
two UI types together.

– Multimodal: the approach supports the adaptation of sev-
eral UI types combined.

6©Context Coverage, which expresses which part of the
context model is exploited for UI adaptation: the user model
(e.g. user profile, preferences, goals, tasks, emotional state,
physical state), the platform model (e.g. screen resolution,
browser, battery) and/or the environment model (e.g. loca-
tion, noise, light). For example, a business traveller who rents
a car via a smartphone in a noisy airport is considered as one
context of use, and a tourist who book a car on a laptop while
sitting on a sofa at home is considered as another context
of use. Figure 4 covers the three models: the user who is
a tourist, the platform detected as a tablet and the environ-
ment detecting dark conditions. Any variation in the model
involved in the context model can initiate a contextual vari-
ation that will or will not be reflected via a UI adaptation.
A small contextual variation could be considered not suf-
ficiently significant enough to trigger a UI adaptation, and
it is not always desirable or advisable to perform such an
adaptation for every slight contextual perturbation.

3.2.3 Why

This dimension is concerned with justifying the reasons why
a UI adaptation is carried out. This depends on the user’s
goals and is defined by two properties:

7© Adaptation rationale, which refers to the reason why
the adaptation is required and,more specificallywhat the new
requirements that need to be satisfied through the adaptation
are. For example, an end-user expressing a preference for
data selection rather than data input will see some sort of UI
adaptation based on this preference.

8©AdaptationQAs, which refer to the quality attribute(s)
that should be impacted by the UI adaptation process. For
example, the ISO/IEC 25010 standard for software prod-
uct quality [19] can be used as a reference to specify the
quality attributes to be guaranteed or improved by any UI
adaptation, such as usability, UI aesthetics, flexibility and
portability. Since theUI adaptation is, in principle, performed
for the ultimate benefit of the end-user, and not necessarily
the software system, quality attributes such as accessibility
and continuity are often oriented towards the end-user. UI
plasticity [10] also represents a frequent quality attribute, as
it expresses the ability of a UI to adapt itself depending on
contextual variations while preserving usability.

3.2.4 Where

This dimension is concerned with where the adaptation takes
place and is defined by four properties:

9© Adaptation location, which refers to the physical
location of the intelligent UI adaptor (Fig. 3) in the overall
architecture of the software system as follows:

– Client-side: when located inside in the software.
– Server-side: when located outside the software system,
which is typically the case in cloud computing.

– Proxy-side: when encapsulated in a proxy component to
ensure some independence. For example, Fig. 5 depicts a
UI in which weather forecasts were retrieved from a web
service in XML and fed back into a proxy to decide how
to present these data based on the adaptation parame-
ters specified in Fig. 7. Locating this adaptation strategy
inside the software would create a certain dependence
between the UI and the web service.

The adaptation location directly influences how feedback
loops are introduced into the components (Fig. 9). A soft-
ware system devoid of adaptation (Fig. 9a) benefits from
retroactive feedback only between the software system and
the end-user. A software system with an adaptation engine
(Fig. 9b) has two feedback loops: between the user and the
adaptation engine and between the user and the system.

Finally, three feedback loops are possible for an intelli-
gent UI (Fig. 9c), which require the system to be decoupled
from its intelligent UI. Current research efforts in the SE
community [42] [3] are focused on providing strategies and
facilities with which to support UI adaptation based on one
control loopwith an adaptation engine, and there is a shortage
of approaches that support more intelligent strategies based
on two control loops with an adaptation manager.

10© Adaptation scope level, which refers to the level at
which the adaptation process occurs, which is based on the
three levels proposed by Nierstrasz and Meijler [30]:

123



Model-based intelligent user interface adaptation: challenges and future directions 1343

Fig. 10 An adaptation manager with which to distribute tasks to plat-
forms [36]

– Framework level, when the process occurs at the level
of a generic software architecture together with a set of
generic software components that may be used to create
specific software architectures. For example,Nivethika et
al. [31] developed a UI adaptive framework by exploiting
an inference engine with the purpose of adapting a UI
based on user actions in one application to be propagated
to other applications.

– Class level, when the process occurs at the level of the
components belonging to specific software systems or
provided by frameworks for this purpose. For example,
Yigitbas et al. [42] presented a model-driven approach
for self-adaptive UIs that is applied at the model level of
a particular UI. It supports the specification of an adap-
tation model that contains abstract UI adaptation rules
in alignment with the IFML abstract UI modelling lan-
guage.

– Instance level, when the process occurs at the level of a
running software system. For example, Akiki et al. [3]
presented a model-driven UI adaptation approach that is
applied only at the instance level of a particular UI.

11© UI Adaptation level, which refers to the abstraction
level defined in the Cameleon Reference Framework (CRF)
[9] atwhich the adaptation occurs as represented in the intelli-
gentUI (Fig. 3): “task and concepts”, “abstractUI”, “concrete
UI”, or “final UI”, or several levels simultaneously. CRF is a
unified UI reference frameworkwith which to developmulti-
target UIs that is particularly suitable for an MDE approach
[14]:

– Task/domain model: when a task model and/or a domain
model are exploited in order to perform UI adaptation.
For example, TADAP [27] maintains a task model of

Fig. 11 Adaptation parameters for the task model

the end-user’s activity and suggests a final UI adapta-
tion depending on its parameters (Fig. 11). UbiDraw [39]
consists of a vectorial drawing application that adapts its
UI by displaying, undisplaying, resizing, and relocating
tool bars and icons according to the current user’s task,
task frequency, criticality, importance, or the user’s pref-
erence for a particular task. The domain model denotes
the application’s universe of discourse and can typically
be represented using a UML class diagram. Figure 10
depicts a UI of the adaptation manager enabling the end-
user to distribute tasks (represented in a task model) to
various platforms (represented in platformmodels), such
as an HTML UI to one browser and another XUL UI to
another browser with another rendering.

– Abstract user interface model: this specifies the user’s
interactions with the UI without making any reference
to any specific technology (i.e. modality). This model is
typically represented with a User Interface Description
Language (UIDL).

– Concrete user interface model: this specifies the user’s
interactions with the UI with explicit reference to a spe-
cific technology, e.g. a graphical UI for a website or a
vocal UI on a smartphone. For example, ReversiXML
[6] reverse engineers the HTML code of a web page into
a concrete UI model that is then derived for another plat-
form.

– Final user interface model: this represents the actual UI
produced by any rendering engine, i.e. by interpretation
or by model-to-code generation.

123



1344 S. Abrahão et al.

12© Adaptation Domain, which refers to the domain
of human activity in which the adaptation takes place. A
model-based UI adaptation approach can be general pur-
pose (independent of the application domain) or devised for a
specific domain (e.g. smart home, Internet-of-things, ambi-
ent assisted living, smart cities, ERP system). We believe
that the application domain may influence the adaptation
rationale or the adaptation QAs that should be ensured by a
particular approach. For example, the objective of Akiki et
al.’s approach [3] is to improve the UI usability of enterprise
applications, such as ERP systems, by providing end-users
with a minimal feature-set and an optimal layout.

3.2.5 When

This dimension is concerned with when the adaptation takes
place. This decision is not trivial, since the frequency of
adaptation affects the system usability. It is defined by two
properties:

13© Adaptation type. The UI adaptation type is said to be
static when its process takes place during design (e.g. proto-
typing, sketching), development (e.g. compile), link or load
time, dynamic, when its process takes place during runtime,
or hybrid when both are combined. For example, in the Yig-
itbas et al. approach [42] a rule-based execution environment
supports the UI adaptation at runtime.

14©Adaptation time, which refers to the exact moment of
time at which the UI adaptation occurs, which could be at
one specific moment (single-step) or distributed throughout
severalmoments of time (multi-step). In order to further char-
acterise this conceptual property, we rely on the adaptation
dimensions proposed by McKinley et al. [25], which result
from a survey of adaptive systems. It is said to be hardwired
(when the UI adaptation is embedded in the code of the soft-
ware application, typically the UI code), customisable (when
the UI adaptation enables some degree of pre-computed
freedom), configurable (when the UI adaptation technique
could be configured before executing it), tunable (when the
UI adaptation technique could fine-tune the UI at run-time
without modifying its code), or mutable (when the UI adap-
tation technique subsumes the run-time code modification of
the software system, namely the UI code). McKinley et al.
[25] mention that hardwired, customisable, and configurable
cases are static, while tunable and mutable cases are, by defi-
nition, dynamic. For example, MiniAba [34] uses generative
programming to automatically regenerate a new C++ project
from dynamic specifications, which are thus dynamic and
mutable.

3.2.6 How

This dimension is concerned with how the UI adaptation is
performed. One critical issue is to what extent the software

Fig. 12 Adaptation automation levels (AAL)

systemcan access the various aforementionedmodels to opti-
mise the UI adaptation and to exploit them. It is characterised
by five properties:

15©Adaptationmethod, which refers to the software engi-
neering method used to adapt the UI. An adaptation method
can be model-based/driven or it can be combined with other
methods, such as aspect-oriented modelling, component-
based design, computation reflection (i.e. a programme’s
ability to reason about, and possibly alter, its own behaviour),
dynamic interconnection, higher-order functional composi-
tion, higher-order modelling, macro-command expansion,
mashup, modelling or programming by example, syntacti-
cal expansion of parameterised component. This paves the
way towards investigating the effectiveness of combining
these techniques with the purpose of improving the existing
model-based UI adaptation approaches. For example, Blouin
et al. [5] presented an approach that combines aspect-oriented
modelling with property-based reasoning to control complex
and dynamic user interface adaptations. The encapsulation of
variable parts of interactive systems into aspects permits the
dynamic adaptation of user interfaces, and the tagging of UI
components and context models with QoS properties allows
the reasoner to select the aspects best suited to the current
context.

16© Adaptation automation degree, which refers to the
level to which the UI adaptation is automated. There is a
wide range of possible adaptation levels between adaptability
(when UI adaptation is performed entirely manually by the
end-user) and adaptivity (when UI adaptation is performed
entirely by the system), which we defined as follows based
on [33] (see Fig. 12):

– Level 1. Adaptability (fully manual): the UI adaptation is
performed entirely by the end-user.

– Level 2. Proposability: the intelligent UI manager pro-
poses certain decisions that should be made in order to
execute actions towards UI adaptation to be performed
by the system and the end-user decides.

– Level 3. Narrowing: the intelligent UI manager sorts
the proposed decisions according to certain criteria to

123



Model-based intelligent user interface adaptation: challenges and future directions 1345

facilitate the end-users’ decision. For example, Fig. 11
proposes a suite of six new layouts in decreasing order of
performance based on past user actions and parameters.

– Level 4. Identification: the intelligent UI manager iden-
tifies the best decision for the user to make from among
all the proposals.

– Level 5. Execution: the intelligent UI manager executes
the decision made by the end-user. For example, the end-
user selects one of the new layouts presented in Fig. 11
to replace the existing one.

– Level 6. Restriction: the intelligentUImanager postpones
the UI adaptation for a certain amount of time. If the end-
user does not react, theUI adaptationwill be processed as
suggested. Otherwise, the end-user should use the adap-
tation manager UI to specify which actions to take.

– Level 7. Information: the intelligentUImanager performs
the UI adaptation and triggers the adaptation transitioner
and/or explainer in order to inform the end-user of this
decision.

– Level 8.On-demand: the intelligentUImanager performs
the UI adaptation and triggers the adaptation transitioner
and/or explainer only if the end-user demands it.

– Level 9. Self-explanation: the intelligent UI manager
performs the UI adaptation and triggers the adaptation
transitioner and/or explainer when it decides to do so.

– Level 10. Adaptivity/self-adaptation: the intelligent UI
manager performs the UI adaptation entirely automati-
cally without any user intervention.

Levels 2 to 9 represent various cases of mixed-initiative
adaptation. While these levels cover a wide range of automa-
tion levels, they mainly relegate the end-user to a secondary
role of decision maker. These levels should, therefore, be
accompanied by appropriate actions that the end-user should
take within the adaptation manager UI, which should offer
more high-level actions to support UI adaptation. These lev-
els are cumulative, thus requiring a sophisticated adaptation
manager.

To be more practical, we suggest distributing the mixed
initiative between the end-user, the system, and any third
party according to the seven stages of adaptation (Fig. 1):
goal, initiative, specification, application, transition, inter-
pretation, and evaluation. For example, AB-HCI [22] sup-
ports a mixed initiative for the three steps belonging to the
gulf of execution, i.e. from initiative to application, but not the
subsequent stages belonging to the gulf of evaluation. Each
stage is managed through a particular agent in a multi-agent
architecture which adequately distributes responsibilities.

An alternate characterisation of the adaptation automation
degree could balance the UI adaptation with equal respon-
sibility (when the UI adaptation is performed equally by
the end-user and the adaptation manager), with more user
involvement (when the UI adaptation is mostly performed

by the user) or less involvement (when the UI adaptation is
mostly performed by the adaptation manager). These cases
should cover various degrees of user involvement depending
on her willingness to drive the process and the knowledge
required for this purpose. Most existing model-based/driven
UI adaptation approaches do not properly involve the end-
user during the adaptation process. Moreover, most of them
use only data or information as external sources. There is
consequently a shortage of approaches that use knowledge
and wisdom to drive the adaptation process.

17©Adaptation logic, which refers to the algorithm(s) used
to perform the UI adaptation. Typical examples of adaptation
algorithms are:

– Probabilistic-based: the adaptation logic is performed by
a probabilistic model (e.g Bayesian network).

– Rule-based: the adaptation logic is performed by rules
(e.g. Event-Condition-Action (ECA) rules in the adap-
tation engine shown in Fig. 3). For example, Yigitbas et
al. [43] presented a model-based approach with which to
build context-adaptive UIs based on an adaptation model
containing ECA rules.

– Case-based: the adaptation logic is based on case-based
reasoning.

– Logic-based: the adaptation logic is based on logic (e.g.
first-order predicate logic).

– Ontology-based: the adaptation logic is based on an
ontology (e.g. a domain ontology).

– Evidence-based: the adaptation logic is performed by an
evidence theory.

– Fuzzy-based: the adaptation logic is performedby a fuzzy
approach (e.g. fuzzy sets).

18©Tool support, which refers to the automation level pro-
vided by theUI adaptationmanager.We define the following
levels:

– Level 0. Not automated: all steps of the UI adaptation are
performed manually.

– Level 1. Partially automated: one or more steps of the UI
adaptation are supported by the Adaptation Manager and
can be manipulated via its adaptation manager UI.

– Level 2. Fully automated: all steps of the UI adaptation
are supported by the Adaptation Manager. For example,
Slime [35] adapts a final UI, in a completely automatic
manner, in order to avoid the awkward problem posed by
the bezels of contiguous displays (Fig. 13).

123



1346 S. Abrahão et al.

Fig. 13 Dual monitor UI adaptation [35]

4 Opportunities for themodelling
community

The majority of the challenges related to the adaptation of
software systems addressed by the modelling community in
the last two decades have been mostly of a technical nature.
However, in order to attain the full potential of the concep-
tual reference framework and its properties, the community
should also address challenges that arise from the intersection
of SE and HCI related to the engineering of human-centred
aspects, along with other challenges that may appear as a
result of the combined use of MDE and AI.

In the following, we explain some key properties of the
framework and discuss the major challenges that need to
be addressed in order to take advantage of the opportunities
provided by model-based intelligent UI adaptation:

1. Take advantage of user models. Many aspects can be
captured in a user model such as gender, age, emotions,
personality, language, culture, and physical and mental
impairments, all of which play an essential role in intelli-
gent UI adaptation. How can we effectively and precisely
capture these aspects and use them to propose appropri-
ate UI adaptation? There is no shortage ofmeans to probe
the user as more sensors become affordable. For exam-
ple, wearable devices capture biometric data and external
sensors acquire data on the user’s behaviour in order to
discover adaptation patterns. The question is not somuch
how to probe the user, but how to make real use of the
information obtained while respecting privacy. Another
challenge is related to the integration of the user model
with other models (e.g. user interface model, context
model) in order to ensure the traceability and consistency
of these models during the adaptation process.

2. Towards “greymodels”.TheMDEcommunity has long
sought the ultimately expressive models and adaptation
engines that would optimise UI adaptation in most con-
texts of use, thus producing “white boxes” that can be
parsed, analysed, and reasoned about. On the other side,
the AI community investigates ML techniques that are
based solely on users’ data, thus producing “black boxes”
that cannot be scrutinised in order to understand them.
Why not mix the best of both fields by feeding classical
or new models with users’ data abstracted by means of
ML techniques [27], thus obtaining “grey models”? A
representative example is a model-based reinforcement
learning approach proposed by Todi et al. [38], which
plans a sequence of adaptation steps (insteadof a one-shot
adaptation) and exploits amodel to assess the cost/benefit
ratio.

3. Towardsa systematic explorationof adaptationautoma-
tion degrees.While Fig. 1 decomposes the UI adaptation
into stages to be explicitly supported by tools, Fig. 12 sug-
gests the application of various degrees of automation.
Very few of these degrees have been investigated to date
when performing model-based/driven UI adaptation and
there is a lack of knowledge on how and when to apply
them. These challenges open up new research directions
to be explored in the future, including the definition
of strategies with which to progressively increase the
level of automation and ’intelligence’ of the Adaptation
Engine by exploiting the data, information, knowledge
and wisdom captured from specific domains.

4. Keeping the Human-in-the-loop paradigm. The afore-
mentioned challenges will never be properly addressed
if the end-user is not actively involved, and not just pas-
sively grazing between adaptation steps. The application
of ML techniques could be structured on the basis of
a “Perception-Decision-Action (PDA)” cycle (Fig. 2):
the UI adaptation manager uses all available means to
perceive/sense the user and probe her context of use in
order to suggest and make an appropriate decision for
UI adaptation that could be undertaken in various mixed-
initiative configurations. Similarly, the end-user should
also enter a second PDA scheme in which the UI adap-
tation is adequately perceived, thus triggering certain
human decisions and executing corresponding actions,
and a new cycle then starts over. Adaptive systems and
models at runtime are core enabling techniques behind an
intelligent UI. Models at runtime has been successfully
used to automatically reflect changes from a system into
changes in models, and vice versa. However, as human
cognition is involved, the traditional adaptation in which
all the variabilities are pre-defined is not sufficient. We
should turn to intelligent UIs that can learn how to adapt
to different users based on a user model that captures
the user preferences, style of interaction, expertise, emo-

123



Model-based intelligent user interface adaptation: challenges and future directions 1347

tions, etc. However, models at runtime is rarely applied
to such models, and this may be challenging.

5. Relying on software co-evolution. Changes in soft-
ware resulting from UI adaptation go far beyond merely
modifying the UI and could potentially impact on any
component of the software system or the others repre-
sented in Fig. 3. For example, how can we align user
interface changes with changes in the software architec-
ture and vice versa? There is a need to formalise these
changes in order to reason about them for purposes such
as maintainability, traceability, etc. The field of software
evolution has an established tradition as regards formal-
ising these aspects, but rarely as regards UI aspects.
When the UI comes into play, software evolution should
upgrade to software co-evolution in which changes on
both sides, the user interface and the software system,
should be formalised.

6. Considering adaptation as a multi-factorial problem.
Sincemany contextual aspects could influence the quality
of UI adaptation, multiple quality factors (e.g. adap-
tation QAs, adaptation automation degree, the user’s
characteristics) should be considered together in the same
multi-factorial problem. Improving user performance
could come about at the expense of cognitive destabil-
isation. Another challenge is related to the analysis and
resolution of conflicting UI adaptation alternatives. In
this context, ML techniques could be used to support the
decision making as regards the selection of the best UI
adaptation that is closer to the end-user’s intention.

The aforementioned suggestions represent opportunities
for the modelling community to leverage UI adaptation of
software systems by investigating some new avenues. A
limitation of this approach is that the conceptual reference
framework does not provide any prioritisation of its key fea-
tures and how they should be explored. In addition, it is
impossible to consider them all together, although they are
intertwined. We need, therefore, to investigate trade-offs and
dependencies among the different properties and their levels
to get a better understanding of the potential of the proposed
framework. Software co-evolution, as suggested, is a form of
keeping the human-in-the-loop paradigmwhen theUI should
be adapted asmuch as possible as a collaboration between the
end-user, the system, and any third party, especially when no
consensus is reached between the end-user and the system.

Some properties of the reference framework present a
level-wise assessment which represents particular capabili-
ties of an approach to support intelligentUI adaptation,which
increases the higher the level. More efforts are needed to val-
idate more thoroughly the property levels for a wider set
of existing adaptation approaches. In addition, instantiating
the framework to specific model-based adaptation scenar-
ios and building prototypes of the main components of the

reference framework (e.g. adaptation engine, adaptation tran-
sitioner, adaptation machine learning, adaptation explainer)
would allow us to get further insights.

The authors of this expert voice trust that the proposed
framework for model-based intelligent user interface adap-
tation will serve as a call for action that could lead to research
initiatives by the modelling community.

Acknowledgements This work is supported by the Spanish Ministry
of Science, Innovation, and Universities under Grant No.: TIN2017-
84550-R, Adapt@Cloud Project and by the Generalitat Valenciana
under Grant No.: AICO/2020/113, UX-Adapt Project. Arthur Sluÿters
is funded by the “Fonds de la Recherche Scientifique - FNRS” under
Grant n40001931.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Abrahão, S., Bourdeleau, F., Cheng, B.H.C., Kokaly, S., Paige,
R.F., Störrle, H., Whittle, J.: User experience for model-driven
engineering: Challenges and future directions. In: Proceedings of
the 20th ACM/IEEE International Conference on Model Driven
Engineering Languages and Systems,MODELS 2017, Austin, TX,
USA, September 17-22, 2017, pp. 229–236. IEEE Computer Soci-
ety (2017). https://doi.org/10.1109/MODELS.2017.5

2. Akiki, P.A., Bandara, A.K., Yu, Y.: Adaptive model-driven user
interface development systems. ACM Comput. Surv. 47(1), 91–
933 (2014). https://doi.org/10.1145/2597999

3. Akiki, P.A., Bandara, A.K., Yu, Y.: Engineering adaptive model-
driven user interfaces. IEEE Trans. Softw. Eng. 42(12), 1118–1147
(2016). https://doi.org/10.1109/TSE.2016.2553035

4. Alvarez-Cortes, V., Zarate, V.H., Ramirez Uresti, J.A., Zayas,
B.E.: Current challenges and applications for adaptive user
interfaces. In: I. Maurtua (ed.) Human-Computer Interaction,
chap. 3, pp. 49–68. IntechOpen, London, UK (2009). https://doi.
org/10.5772/7745. https://www.intechopen.com/books/human-
computer-interaction/current-challenges-and-applications-for-
adaptive-user-interfaces

5. Blouin, A.,Morin, B., Beaudoux, O., Nain, G., Albers, P., Jézéquel,
J.M.: Combining aspect-oriented modeling with property-based
reasoning to improve user interface adaptation. In: Proceedings
of the 3rd ACM SIGCHI Symposium on Engineering Interactive
Computing Systems, EICS ’11, p. 85–94. Association for Com-
puting Machinery, New York, NY, USA (2011). https://doi.org/10.
1145/1996461.1996500

6. Bouillon, L., Limbourg, Q., Vanderdonckt, J., Michotte, B.:
Reverse engineering of web pages based on derivations and
transformations. In: Proceedings of Third Latin American Web
Congress, LA-WEB ’05, pp. 11. IEEE Computer Society Press,

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/MODELS.2017.5
https://doi.org/10.1145/2597999
https://doi.org/10.1109/TSE.2016.2553035
https://doi.org/10.5772/7745
https://doi.org/10.5772/7745
https://www.intechopen.com/books/human-computer-interaction/current-challenges-and-applications-for-adaptive-user-interfaces
https://www.intechopen.com/books/human-computer-interaction/current-challenges-and-applications-for-adaptive-user-interfaces
https://www.intechopen.com/books/human-computer-interaction/current-challenges-and-applications-for-adaptive-user-interfaces
https://doi.org/10.1145/1996461.1996500
https://doi.org/10.1145/1996461.1996500


1348 S. Abrahão et al.

Piscataway, USA (2005). https://doi.org/10.1109/LAWEB.2005.
29

7. Bouzit, S., Calvary, G., Coutaz, J., Chêne, D., Petit, E., Vanderdon-
ckt, J.: The PDA-LPA design space for user interface adaptation.
In: Proceedings of the 11th IEEE International Conference on
Research Challenges in Information Science, RCIS ’17, pp. 353–
364. IEEE Press, Hoboken, New Jersey, USA (2017). https://doi.
org/10.1109/RCIS.2017.7956559

8. Browne, D., Totterdell, P., Norman, M. (eds.): Adaptive User Inter-
faces. Computers and People Series. Academic Press, London, UK
(1990)

9. Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q., Bouillon, L.,
Vanderdonckt, J.: A unifying reference framework for multi-target
user interfaces. Interact. Comput. 15(3), 289–308 (2003). https://
doi.org/10.1016/S0953-5438(03)00010-9

10. Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q., Souchon, N.,
Bouillon, L., Florins, M., Vanderdonckt, J.: Plasticity of user inter-
faces: A revised reference framework. In: Proceedings of the First
International Workshop on Task Models and Diagrams for User
Interface Design, TAMODIA ’02, p. 127–134. INFOREC Pub-
lishing House Bucharest (2002). https://doi.org/10.5555/646617.
697235

11. Coutaz, J.: Meta-user interfaces for ambient spaces. In: Coninx,
K., Luyten, K., Schneider, K.A. (eds.) Task Models and Diagrams
for Users Interface Design, pp. 1–15. Springer, Berlin (2007)

12. Dessart, C.E., Genaro Motti, V., Vanderdonckt, J.: Showing user
interface adaptivity by animated transitions. In: Proceedings of the
3rd ACM SIGCHI Symposium on Engineering Interactive Com-
puting Systems, EICS ’11, pp. 95–104. ACM,NewYork, NY, USA
(2011). https://doi.org/10.1145/1996461.1996501

13. Dieterich, H., Malinowski, U., Kuhme, T., Schneider-Hufschmidt,
M.: State of the art in adaptive user interfaces. In: M. Schneider-
Hufschmidt, T. Kuhme, U. Malinowski (eds.) Adaptive User
Interfaces Principles and Practice, chap. 10, pp. 13–48. Elsevier
Science Publishers, Amsterdam (1994). https://www.elsevier.
com/books/adaptive-user-interfaces/schneider-hufschmidt/978-
0-444-81545-3

14. Furtado, E., Furtado, V., Silva, W.B., Rodrigues, D.W.T.,
da Silva Taddeo, L., Limbourg, Q., Vanderdonckt, J.: An
ontology-based method for designing multiple user interfaces. In:
Proceedings of International Workshop on Multiple User Inter-
faces, MUI’ 01 (2001). https://www.researchgate.net/publication/
2567741_An_Ontology-Based_Method_for_Universal_Design_
of_User_Interfaces

15. Gajos, K.Z., Chauncey, K.: The influence of personality traits and
cognitive load on the use of adaptive user interfaces. In: Proceed-
ings of the 22Nd International Conference on Intelligent User
Interfaces, IUI ’17, pp. 301–306. ACM, New York, NY, USA
(2017). https://doi.org/10.1145/3025171.3025192

16. García Frey, A., Calvary, G., Dupuy-Chessa, S., Mandran, N.:
Model-based self-explanatory uis for free, but are they valuable? In:
P. Kotzé, G.Marsden, G. Lindgaard, J. Wesson, M.Winckler (eds.)
Human-Computer Interaction–INTERACT 2013–14th IFIP TC 13
International Conference, Cape Town, South Africa, September 2-
6, 2013, Proceedings, Part III, Lecture Notes in Computer Science,
vol. 8119, pp. 144–161. Springer (2013). https://doi.org/10.1007/
978-3-642-40477-1_9

17. Horvitz, E.: Principles of mixed-initiative user interfaces. In: Pro-
ceeding of the ACM International Conference on Human Factors
in Computing Systems, CHI ’99, pp. 159–166. ACM, New York,
NY, USA (1999). https://doi.org/10.1145/302979.303030

18. Hui, B., Partridge, G., Boutilier, C.: A probabilistic mental model
for estimating disruption. In: Proceedings of the 14th International
Conference on Intelligent User Interfaces, IUI ’09, p. 287–296.
Association for Computing Machinery, New York, NY, USA
(2009). https://doi.org/10.1145/1502650.1502691

19. ISO: ISO/IEC 25010: Software Quality Product Standard. stan-
dard, International Standard Organization, Geneva (2019). https://
iso25000.com/index.php/en/iso-25000-standards/iso-25010?
limit=3&limitstart=0

20. Kühme, T., Dieterich, H., Malinowski, U., Schneider-Hufschmidt,
M.: Approaches to adaptivity in user interface technology: Survey
and taxonomy. In: Proceedings of the IFIP TC2/WG2.7 Working
Conference on Engineering for Human-Computer Interaction, pp.
225–252. North-Holland Publishing Co., Amsterdam, The Nether-
lands, The Netherlands (1992). https://doi.org/10.5555/647103.
717564. http://dl.acm.org/citation.cfm?id=647103.717564

21. Lavie, T., Meyer, J.: Benefits and costs of adaptive user
interfaces. Int. J. Human Comput. Stud. 68(8), 508–524
(2010) https://doi.org/10.1016/j.ijhcs.2010.01.004. http://www.
sciencedirect.com/science/article/pii/S1071581910000145

22. López-Jaquero, V., Simarro, F.M., González, P.: AB-HCI: an inter-
face multi-agent system to support human-centred computing.
IET Softw. 3(1), 14–25 (2009). https://doi.org/10.1049/iet-sen:
20070108

23. López-Jaquero, V., Vanderdonckt, J., Simarro, F.M., González,
P.: Towards an extended model of user interface adaptation:
The ISATINE framework. In: J. Gulliksen, M.B. Harning, P.A.
Palanque, G.C. van der Veer, J. Wesson (eds.) Proceedings of
the Joint Working Conferences on Engineering Interactive Sys-
tems, EIS’07-EHCI’07-DSV-IS’07-HCSE’07, Salamanca, Spain,
March 22–24, 2007, Lecture Notes in Computer Science, vol. 4940,
pp. 374–392. Springer (2007). https://doi.org/10.1007/978-3-
540-92698-6_23. https://link.springer.com/chapter/10.1007/978-
3-540-92698-6_23

24. Martínez-Ruiz, F.J., Arteaga, J.M., Vanderdonckt, J., González-
Calleros, J.M., González, R.M.: A first draft of a model-driven
method for designing graphical user interfaces of rich internet
applications. In: J.A. Sánchez (ed.) Fourth Latin American Web
Congress (LA-Web 2006), 25–27 October 2006, Cholula, Puebla,
Mexico, pp. 32–38. IEEE Computer Society (2006). https://doi.
org/10.1109/LA-WEB.2006.1

25. McKinley, P.K., Sadjadi, S.M., Kasten, E.P., Cheng, B.H.C.: Com-
posing adaptive software. Computer 37(7), 56–64 (2004). https://
doi.org/10.1109/MC.2004.48

26. Melchior, J., Vanderdonckt, J., Roy, P.V.: A comparative evaluation
of user preferences for extra-user interfaces. Int. J. Hum. Com-
put. Interact. 28(11), 760–767 (2012). https://doi.org/10.1080/
10447318.2012.715544

27. Mezhoudi, N., Vanderdonckt, J.: Toward a task-driven intelligent
GUI adaptation by mixed-initiative. Int. J. Hum. Comput. Interact.
(2020). https://doi.org/10.1080/10447318.2020.1824742

28. Motti, V.G., Vanderdonckt, J.: A computational framework for
context-aware adaptation of user interfaces. In: Proceedings of
the 7th IEEE International Conference on Research Challenges in
Information Science, RCIS ’13, pp. 1–12 (2013). https://doi.org/
10.1109/RCIS.2013.6577709

29. Nichols, J.: Using the crowd to understand and adapt user inter-
faces. In: Proceedings of the 5th ACM SIGCHI Symposium on
Engineering Interactive Computing Systems, EICS ’13, pp. 1–
2. ACM, New York, NY, USA (2013). https://doi.org/10.1145/
2494603.2480344

30. Nierstrasz, O., Meijler, T.D.: Research directions in software com-
position. ACM Comput. Surv. 27(2), 262–264 (1995). https://doi.
org/10.1145/210376.210389

31. Nivethika,M., Vithiya, I., Anntharshika, S., Deegalla, S.: Personal-
ized and adaptive user interface framework for mobile application.
In: Proceedings of International Conference on Advances in
Computing, Communications and Informatics, ICACCI ’13, pp.
1913–1918. IEEE Press, Piscataway, USA (2013). https://doi.org/
10.1109/ICACCI.2013.6637474

123

https://doi.org/10.1109/LAWEB.2005.29
https://doi.org/10.1109/LAWEB.2005.29
https://doi.org/10.1109/RCIS.2017.7956559
https://doi.org/10.1109/RCIS.2017.7956559
https://doi.org/10.1016/S0953-5438(03)00010-9
https://doi.org/10.1016/S0953-5438(03)00010-9
https://doi.org/10.5555/646617.697235
https://doi.org/10.5555/646617.697235
https://doi.org/10.1145/1996461.1996501
https://www.elsevier.com/books/adaptive-user-interfaces/schneider-hufschmidt/978-0-444-81545-3
https://www.elsevier.com/books/adaptive-user-interfaces/schneider-hufschmidt/978-0-444-81545-3
https://www.elsevier.com/books/adaptive-user-interfaces/schneider-hufschmidt/978-0-444-81545-3
https://www.researchgate.net/publication/2567741_An_Ontology-Based_Method_for_Universal_Design_of_User_Interfaces
https://www.researchgate.net/publication/2567741_An_Ontology-Based_Method_for_Universal_Design_of_User_Interfaces
https://www.researchgate.net/publication/2567741_An_Ontology-Based_Method_for_Universal_Design_of_User_Interfaces
https://doi.org/10.1145/3025171.3025192
https://doi.org/10.1007/978-3-642-40477-1_9
https://doi.org/10.1007/978-3-642-40477-1_9
https://doi.org/10.1145/302979.303030
https://doi.org/10.1145/1502650.1502691
https://iso25000.com/index.php/en/iso-25000-standards/iso-25010?limit=3&limitstart=0
https://iso25000.com/index.php/en/iso-25000-standards/iso-25010?limit=3&limitstart=0
https://iso25000.com/index.php/en/iso-25000-standards/iso-25010?limit=3&limitstart=0
https://doi.org/10.5555/647103.717564
https://doi.org/10.5555/647103.717564
http://dl.acm.org/citation.cfm?id=647103.717564
https://doi.org/10.1016/j.ijhcs.2010.01.004
http://www.sciencedirect.com/science/article/pii/S1071581910000145
http://www.sciencedirect.com/science/article/pii/S1071581910000145
https://doi.org/10.1049/iet-sen:20070108
https://doi.org/10.1049/iet-sen:20070108
https://doi.org/10.1007/978-3-540-92698-6_23
https://doi.org/10.1007/978-3-540-92698-6_23
https://link.springer.com/chapter/10.1007/978-3-540-92698-6_23
https://link.springer.com/chapter/10.1007/978-3-540-92698-6_23
https://doi.org/10.1109/LA-WEB.2006.1
https://doi.org/10.1109/LA-WEB.2006.1
https://doi.org/10.1109/MC.2004.48
https://doi.org/10.1109/MC.2004.48
https://doi.org/10.1080/10447318.2012.715544
https://doi.org/10.1080/10447318.2012.715544
https://doi.org/10.1080/10447318.2020.1824742
https://doi.org/10.1109/RCIS.2013.6577709
https://doi.org/10.1109/RCIS.2013.6577709
https://doi.org/10.1145/2494603.2480344
https://doi.org/10.1145/2494603.2480344
https://doi.org/10.1145/210376.210389
https://doi.org/10.1145/210376.210389
https://doi.org/10.1109/ICACCI.2013.6637474
https://doi.org/10.1109/ICACCI.2013.6637474


Model-based intelligent user interface adaptation: challenges and future directions 1349

32. Paramythis, A., Weibelzahl, S., Masthoff, J.: Layered evaluation of
interactive adaptive systems: framework and formative methods.
User Model. User Adapt. Interact. 20(5), 383–453 (2010). https://
doi.org/10.1007/s11257-010-9082-4

33. Parasuraman, R., Riley, V.: Humans and automation: use, misuse,
disuse, abuse. Hum. Fact. 39(2), 230–253 (1997). https://doi.org/
10.1518/001872097778543886

34. Schlee, M., Vanderdonckt, J.: Generative programming of graphi-
cal user interfaces. In: Proceedings of the Working Conference on
Advanced Visual Interfaces, AVI ’04, p. 403–406. Association for
Computing Machinery, New York, NY, USA (2004). https://doi.
org/10.1145/989863.989936

35. Sluÿters, A., Vanderdonckt, J., Vatavu, R.D.: Engineering slidable
graphical user interfaces with slime. Proc. ACM Hum. Comput.
Interact. (2021). https://doi.org/10.1145/3457147

36. Sottet, J.S., Calvary, G., Coutaz, J., Favre, J.M.: A model-driven
engineering approach for the usability of plastic user interfaces.
In: Gulliksen, J., Harning, M.B., Palanque, P., van der Veer, G.C.,
Wesson, J. (eds.) Engineering Interactive Systems, pp. 140–157.
Springer, Berlin (2008)

37. Teevan, J., Dumais, S.T., Liebling, D.J., Hughes, R.L.: Chang-
ing how people view changes on the web. In: Proceedings of the
22nd Annual ACM Symposium on User Interface Software and
Technology, UIST ’09, p. 237–246. Association for Computing
Machinery, New York, NY, USA (2009). https://doi.org/10.1145/
1622176.1622221

38. Todi, K., Bailly, G., Leiva, L., Oulasvirta, A.: Adapting user inter-
faces with model-based reinforcement learning. In: Proceedings of
the 2021 CHI Conference on Human Factors in Computing Sys-
tems, CHI ’21. Association for Computing Machinery, New York,
NY, USA (2021). https://doi.org/10.1145/3411764.3445497

39. Vanderdonckt, J., González-Calleros, J.M.: Task-driven plasticity:
One step forward with ubidraw. In: P. Forbrig, F. Paternò (eds.)
Engineering Interactive Systems, Proceedings of Second Con-
ference on Human-Centered Software Engineering, HCSE 2008,
and 7th International Workshop on Task Models and Diagrams,
TAMODIA 2008, Pisa, Italy, September 25–26, 200, Lecture Notes
in Computer Science, vol. 5247, pp. 181–196. Springer (2008).
https://doi.org/10.1007/978-3-540-85992-5_16

40. Vatavu, R.: Nomadic gestures: A technique for reusing gesture
commands for frequent ambient interactions. J. Ambient Intell.
Smart Environ. 4(2), 79–93 (2012). https://doi.org/10.3233/AIS-
2012-0137

41. van Velsen, L., van der Geest, T., Klaassen, R., Steehouder, M.F.:
User-centered evaluation of adaptive and adaptable systems: a
literature review. Knowl. Eng. Rev. 23(3), 261–281 (2008)https://
doi.org/10.1017/S0269888908001379. https://www.cambridge.
org/core/journals/knowledge-engineering-review/article/abs/
usercentered-evaluation-of-adaptive-and-adaptable-systems-a-
literature-review/C77A0D4AE8BAF5808E55214884245965

42. Yigitbas, E., Jovanovikj, I., Biermeier, K., Sauer, S., Engels, G.:
Integrated model-driven development of self-adaptive user inter-
faces. Softw. Syst. Model. 19(5), 1057–1081 (2020). https://doi.
org/10.1007/s10270-020-00777-7

43. Yigitbas, E., Sauer, S.: Engineering context-adaptive UIs for task-
continuous cross-channel applications. In: Human-Centered and
Error-Resilient Systems Development—IFIP WG 13.2/13.5 Joint
Working Conference HCSE 2016 and HESSD 2016 Stockholm,
Sweden, August 29–31, 2016, Proceedings, pp. 281–300. Springer
(2016). https://doi.org/10.1007/978-3-319-44902-9_18

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Silvia Abrahão is an Associate
Professor at Universitat Politéc-
nica de Valéncia, Spain. Her res-
earch interests include quality assur-
ance in model-driven engineering,
empirical assessment of software
modeling approaches, model-dri-
ven cloud services development
and monitoring, and the integra-
tion of usability into software devel-
opment. Contact her at sabrahao@-
dsic.upv.es

Emilio Insfran is an Associate
Professor at Universitat Politéc-
nica de Valéncia, Spain. His rese-
arch interests include requirements
engineering, model-driven engineer-
ing, DevOps, and cloud services
development and evaluation. Con-
tact him at einsfran@dsic.upv.es

Arthur Sluÿters is a PhD student
in Computer Science at Université
catholique de Louvain, Belgium,
where he is an “aspirant FNRS”
under contract no. 1.A434.21. His
research interests include intelli-
gent user interfaces (IUI), gesture
recognition, gestural user inter-
faces, and radar-based interaction.
Contact him at arthur.sluyters@u-
clouvain.be

Jean Vanderdonckt is a Full Pro-
fessor at Université catholique de
Louvain, Belgium, where he leads
the Louvain Interaction Lab. His
research interests include engineer-
ing of interactive systems (EICS),
intelligent user interfaces (IUI),
multimodal systems such as ges-
ture-based, information systems,
and model-based/driven engineer-
ing of user interfaces. Contact him
at jean.vanderdonckt@uclouvain.be

123

https://doi.org/10.1007/s11257-010-9082-4
https://doi.org/10.1007/s11257-010-9082-4
https://doi.org/10.1518/001872097778543886
https://doi.org/10.1518/001872097778543886
https://doi.org/10.1145/989863.989936
https://doi.org/10.1145/989863.989936
https://doi.org/10.1145/3457147
https://doi.org/10.1145/1622176.1622221
https://doi.org/10.1145/1622176.1622221
https://doi.org/10.1145/3411764.3445497
https://doi.org/10.1007/978-3-540-85992-5_16
https://doi.org/10.3233/AIS-2012-0137
https://doi.org/10.3233/AIS-2012-0137
https://doi.org/10.1017/S0269888908001379
https://doi.org/10.1017/S0269888908001379
https://www.cambridge.org/core/journals/knowledge-engineering-review/article/abs/usercentered-evaluation-of-adaptive-and-adaptable-systems-a-literature-review/C77A0D4AE8BAF5808E55214884245965
https://www.cambridge.org/core/journals/knowledge-engineering-review/article/abs/usercentered-evaluation-of-adaptive-and-adaptable-systems-a-literature-review/C77A0D4AE8BAF5808E55214884245965
https://www.cambridge.org/core/journals/knowledge-engineering-review/article/abs/usercentered-evaluation-of-adaptive-and-adaptable-systems-a-literature-review/C77A0D4AE8BAF5808E55214884245965
https://www.cambridge.org/core/journals/knowledge-engineering-review/article/abs/usercentered-evaluation-of-adaptive-and-adaptable-systems-a-literature-review/C77A0D4AE8BAF5808E55214884245965
https://doi.org/10.1007/s10270-020-00777-7
https://doi.org/10.1007/s10270-020-00777-7
https://doi.org/10.1007/978-3-319-44902-9_18

	Model-based intelligent user interface adaptation: challenges and future directions
	Abstract
	1 Introduction
	2 Current state of model-based UI adaptation
	3 Conceptual framework and properties for UI adaptation
	3.1 The conceptual reference framework
	3.2 The conceptual properties for UI adaptation
	3.2.1 Who
	3.2.2 What
	3.2.3 Why
	3.2.4 Where
	3.2.5 When
	3.2.6 How


	4 Opportunities for the modelling community
	Acknowledgements
	References




