
Software and Systems Modeling (2021) 20:1857–1887
https://doi.org/10.1007/s10270-021-00914-w

SPEC IAL SECT ION PAPER

Automatic generation of atomic multiplicity-preserving search
operators for search-basedmodel engineering

Alexandru Burdusel1 · Steffen Zschaler1 · Stefan John2

Received: 12 May 2020 / Revised: 12 March 2021 / Accepted: 13 July 2021 / Published online: 16 August 2021
© The Author(s) 2021

Abstract
Recently, there has been increased interest in combining model-driven engineering and search-based software engineering.
Such approaches usemeta-heuristic search guided by search operators (modelmutators and sometimes breeders) implemented
as model transformations. The design of these operators can substantially impact the effectiveness and efficiency of the meta-
heuristic search. Currently, designing search operators is left to the person specifying the optimisation problem. However,
developing consistent and efficient search-operator rules requires not only domain expertise but also in-depth knowledge
about optimisation, which makes the use of model-based meta-heuristic search challenging and expensive. In this paper,
we propose a generalised approach to automatically generate atomic multiplicity-preserving search operators for a given
optimisation problem. This reduces the effort required to specify an optimisation problem and shields optimisation users
from the complexity of implementing efficient meta-heuristic search mutation operators. We evaluate our approach with a set
of case studies and show that the automatically generated rules are comparable to, and in some cases better than, manually
created rules at guiding evolutionary search towards near-optimal solutions.

Keywords Model-driven optimisation · Search-based software engineering · Multi-objective optimisation

1 Introduction

Search-based software engineering (SBSE) [23] has seen
increasing interest over the past decade. SBSE views soft-
ware engineering as a problem of searching a, potentially
very large, design space for optimal solutions and proposes
techniques and tools for automating this search, frequently
using meta-heuristic search techniques. As a result, more
design alternatives can be explored more quickly than would
be possible manually. More recently, there has been an
increasing interest in applying SBSE techniques in the con-

Communicated by Tao Yue, Man Zhang, and Silvia Abrahao.

B Alexandru Burdusel
alexandru.burdusel@kcl.ac.uk

Steffen Zschaler
szschaler@acm.org

Stefan John
stefan.john@uni-marburg.de

1 Department of Informatics, King’s College London, 30
Aldwych, London WC2B 4BG, UK

2 Department of Informatics, Philipps-Universität Marburg,
Hans-Meerwein-Straße 6, 35043 Marburg, Germany

text of MDE [8], making the benefits of domain-specific
modelling languages (DSMLs) available in an SBSE con-
text.

Typical approaches (e.g. [1,18]) use evolutionary algo-
rithms (EA). Users provide small endogenous model trans-
formations (e.g. expressed as Henshin rules [43]) to specify
mutation operators, which are then used for generating new
candidate solution models. Writing these transformations is
difficult: naïve implementations can easily cause the search
to get stuck in local optima or to work very inefficiently.

In this paper, we present a novel technique for auto-
matically generating mutation operators from a declarative
specification of an optimisation problem. We generate oper-
ators that are consistency preserving, a key property for
enabling the search to move out of local optima (without
consistency preservation, operators would temporarily try
to invalidate constraints, which would be penalised by the
search algorithm). In particular, the approach we describe is
focused on multiplicity constraints. We call such operators
multiplicity-preserving search operators (MPSOs).

We will show, through case-study–based experimental
evaluation, that our automatically generatedMPSOs result in
search that is at least as efficient and effective as (and in some

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10270-021-00914-w&domain=pdf

1858 A. Burdusel et al.

cases better than) search based on rules created manually. At
the same time, the automatic generation avoids the complex-
ity and effort of manual creation and reduces the likelihood
of erroneous or sub-optimal search operators being used. To
the best of our knowledge, only [42] proposed an alternative
approach for automatic generation of search operators, based
on meta-learning. In contrast, our proposed technique avoids
the need for a learning phase for each new problem.

This paper extends the work in [12], where we provided a
general description and classification ofMPSOs, followed by
a description and evaluation of an algorithm for generating
atomic MPSOs that preserve multiplicity constraints. In this
paper, we add the following additional material:

1. Detailed examples of rule application patterns for the
generated atomic MPSOs (aMPSOs);

2. A description and examples of the types of generated
iterative aMPSOs;

3. Additional experiments to evaluate the efficiency of
aMPSOs, in particular with respect to non-multiplicity
constraints;

4. An analysis of the impact of changing mutation step size
when using aMPSOs; and

5. A more extensive discussion of related work.

The remainder of this paper is structured as follows: In
Sect. 2, we introduce some relevant background, followed
by a running example in Sect. 3. Section 4 contains the main
contributions, describing MPSOs and the generation algo-
rithm. Section 5 presents the experimental setup, followed
by Sect. 6 in which we discuss results. In Sect. 7, we evalu-
ate related work.

2 Background

In this section, we briefly describe the relevant background to
our research. In particular, we cover key MDE concepts, fol-
lowed by an introduction to search-based model engineering
(SBME) and a discussion of higher-order transformations.

Model-driven engineering MDE considers models to be the
primary artefact in software development [6]. Models are
expressed in higher-level languages providing abstractions
that are just right for the problem to be solved. Such lan-
guages are often called domain-specificmodelling languages
(DSMLs), and their (abstract) syntax is captured in meta-
models (object-oriented models of the language concepts
and their relationships). Model transformations—programs
that take one or more models and produce new model(s)
from them—are fundamental to MDE and to the power-
ful automation support it provides. Model transformations
are often expressed using specialised languages and tools.

Henshin [43] is one example, based on graph-transformation
theory.

Search-basedmodel engineering Search-based approaches
in software engineering often use evolutionary search tech-
niques. Evolutionary search (ES) [17] starts from a popu-
lation of candidate solutions and evolves these iteratively
by applying mutation (and possibly breeding) operators to
generate new candidate solutions. In each evolution step, all
new candidate solutions’ fitness is evaluated against the pro-
vided objective functions and this is used to rank solutions
and select the best ones to carry over to the next generation.
This process is repeated until a given number of iterations
is reached or a different stopping condition is met. A par-
ticular type of evolutionary algorithms are multi-objective
evolutionary algorithms (MOEAs) [17], which can handle
multiple, possibly conflicting objective functions. A com-
mon problem with ES is that it may get stuck in so-called
local optima; that is, solutions that are better than their neigh-
bours (solutions that can be reached by a single application
of a mutation operator) but that are not globally optimal. A
typical reason for algorithms to get stuck in a local optimum
is the inability of the mutation operators to generate solu-
tions that are better than the current best solution found . In
this paper, we aim to generate atomic mutation operators that
seek to alleviate this problem, ensuring that they can always
be applied successfully to generate new search solution can-
didates.

Evolutionary algorithms have been applied to MDE in
multiple ways [8,26]: some approaches (e.g. [1,18]) encode
candidate solutions as sequences of transformation rules
applications and apply genetic algorithms to solve the search
problems. Other approaches (e.g. [47]) directly use models
as candidate solutions. In both cases, model transformations
are used to specify the available mutation operators. Fitness
functions and constraints are specified asmodel queries using
OCL or Java.

Higher-order transformations The term higher-order trans-
formations (HOTs) [44] refers to transformations that pro-
duce new model transformations. These are particularly
useful when building advanced tools for MDE. In this paper,
we are building on work on HOTs in two areas: generat-
ing consistency-preserving edit operations and generating
model-repair transformations.

In [28], the authors introduce the SiDiff Edit Rule Gener-
ator (SERGe). SERGe is an Eclipse plugin to automatically
generate consistency-preserving edit operations (CPEOs),
encoded as Henshin transformation rules, from an EMF
metamodel. A CPEO is an atomic operation that, when
applied to a consistent model instance, always generates a
transformed consistent model instance. SERGe generates a
complete set of CPEOs that can generate or delete any con-

123

Automatic generation of atomic multiplicity-preserving search operators... 1859

sistentmodel instance through repeated applications. SERGe
requires input metamodels to adhere to additional constraints
on the supported multiplicities [27, Sect. 7.3.1]. Our rule-
generation algorithm is based on the SERGe algorithm but
additionally modifies the generated rules to ensure efficient
search.

The term model repair refers to the process of evolving an
inconsistent model to make it consistent with its metamodel.
In [38], the authors propose an approach for automatically
generating repair operators encoded as Henshin rules, which
can be used to repair an inconsistent model. The generated
repair rules can be applied in a semi-interactive way to trans-
form an invalid model into a valid instance of themetamodel.
We make use of the catalogue of repair operations identified
in [38].

Henshin Model Transformations In this paper, we use Hen-
shin as a model transformation framework [5]. Henshin is
an Eclipse plugin that offers an in-place model transforma-
tion language built to run directly on EMFmodels. Users can
specify model transformations using either a diagram editor
or an XText based DSL [43]. Henshin uses typed attributed
graph theory to encode transformations for EMFmodels [7].

A Henshin transformation rule consists of a left-hand side
(LHS) and a right-hand side (RHS) graph. Henshin trans-
formation rules can be applied both in a deterministic and
non-deterministic way, configurable from the transforma-
tion engine. Through deterministic rule application, the tool
applies thematches found for a transformation rule in sequen-
tial order. When using non-deterministic matching, Henshin
randomly selects a match to apply from the list of matches
found.

The LHS of a Henshin transformation rule supports spec-
ifying application conditions to identify the conditions under
which a transformation rule can be applied. Application con-
ditions are patterns used to indicate the absence or presence of
a graph pattern in a model [5]. A negative application condi-
tion (NAC) specifies a graph pattern to indicate the absence of
a subgraph before the graph transformation is applied, while
a positive application condition (PAC) specifies a graph pat-
tern to indicate that a subgraph is present before the graph
transformation is applied.

The Henshin visual syntax uses colours and tags to high-
light the presence of a node or edge in the LHS or RHS of the
graph transformation rule. Nodes and edges found in the LHS
graph are marked by �delete� and �preserve�, while
nodes found in the RHS graph are marked by�create� and
�preserve�. NACs for nodes and edges are marked with
�forbid� (to indicate that a node should not be present).
PACs are marked with �require� (to indicate that a node
or edge should be present). Henshin uses the red colour to
mark elements with �delete� tags, grey for �preserve�

elements, green for�create� elements, blue for�forbid�
elements and brown for �require� elements.

MDEOptimiser MDEOptimiser (MDEO)1 is an SBME
optimisation tool that allows users to specify optimisation
problems in MDE using a DSL. The tool can be used as
an Eclipse plugin as well as in standalone mode using a
command line interface.With the help of theScale [10] exper-
iments orchestration language, MDEO can be used to run
large scale parallelised experiments using AmazonWeb Ser-
vices cloud infrastructure. The search algorithms supported
by MDEO are implemented using MOEAFramework.2

Figure 1 shows an overview of the inputs required to spec-
ify a problem to be solved using MDEOptimiser. The user
must provide a set of inputs consisting of a problem descrip-
tion and a problem instance model.

The set of required user inputs is composed of the follow-
ing elements:

– A problem metamodel describing the structure of prob-
lems and solutions;

– A set of endogenous model transformations typed over
the problem metamodel, called mutation operators;

– A set of solution constraints. These are eithermultiplicity
constraints refining the problem metamodel multiplic-
ities or additional well-formedness constraints imple-
mented using OCL or Java. These constraints together
with the problem metamodel are used to define the solu-
tion metamodel, that is, the metamodel to which all valid
problem solutions conform to;

– A set of objective functions implemented as OCL or Java
queries over solution models;

– A valid instance of the problem metamodel, providing
initial problem constraints;

Using these inputs, MDEO runs an ES algorithm to find
near-optimal models. The input model is used to generate the
initial population by making one copy for each population
individual followed by a random mutation to ensure varia-
tion. The tool uses the specified mutations to generate new
candidate solutions in each algorithm step. Figure 2 shows an
overview of how new search solution candidates are gener-
ated at each algorithm step. Candidate solutions are evaluated
after each generation, using the specified constraint and
objective functions. Algorithm 1 shows the pseudocode of an
evolutionary algorithm that uses only mutation to generate
new search solution candidates. MDEO currently supports
mutation only evolutionary algorithms. Efficient breeding
operators for graph structured models are difficult to pro-
duce.

1 https://mde-optimiser.github.io.
2 https://moeaframework.org.

123

https://mde-optimiser.github.io
https://moeaframework.org

1860 A. Burdusel et al.

Fig. 1 MDEOptimiser approach general overview [26]

Fig. 2 MDEOptimiser new candidate generation overview [26]

Algorithm 1 Abstract Mutation Only EA
1: procedure ea(μ, λ) � μ evolved solutions generate λ offspring
2: Population ← []
3: for μ times do
4: Population ← Population ∪ initialiseSolution
5: end for
6: Population ← evaluatePopulation
7: repeat
8: NewSolutions ← []
9: while sizeNewSolutions < λ do
10: C ← SelectPopulation
11: NewSolutions ← NewSolutions ∪ mutatecopyC
12: end while
13: Population ← evaluatePopulation, NewSolutions
14: until Termination Condition
15: return Population
16: end procedure

Evolutionary Search Parameter Control When using EAs, a
key challenge arises from the need to configure ideal algo-
rithm parameters, both, offline, before the start of the search
and, online during the search [2]. The parameters used at the

start and during execution can help steer the search towards
having a greater chance of finding near-optimal solutions.
Common evolutionary algorithm parameters that can have a
direct impact on algorithm performance and the quality of
produced solutions are: crossover rate, used to control the
probability of applying the recombination operators when
generating a new offspring solution; mutation rate which
controls the probability of applying a mutation to a new
solutions; mutation step size denotes the degree of changes
caused by amutation operator to an offspring solution; popu-
lation size controls the size of the algorithm population; and
termination condition defines the search algorithm stopping
criteria (e.g. a certain number of algorithm steps have elapsed
or there is no significant solution quality improvement) [17].

The EA parameter search process can be separated in two
phases based on the stage when it takes place [17]:

– Parameter tuning is used before starting the search and
the aim is to find the ideal parameter values to start the
EA with;

123

Automatic generation of atomic multiplicity-preserving search operators... 1861

– Parameter control is concerned with changing parameter
values during search.

3 Running example

In this section, we introduce a running example of an SBME
optimisation problem that can be specified using MDEO.
Consider the scenario of a software development team who
use Scrum as an agile software development methodology.
Scrum is a process management framework that proposes the
use of fixed time iterations, also called sprints, during which
a set of tasks defined as user stories are implemented, tested
and released into the product under development [39].

We will briefly introduce the core Scrum concepts as
described in [39]. The key artefacts of Scrum are the prod-
uct, the product backlog and the sprint backlog. The product
backlog is the list of all user stories that, when implemented,
will result in a completed product. The sprint backlog is the
list of user storieswhich the teamaims to complete in a sprint.
Each user story has associated story points, which serve as
an estimate of the effort needed to complete it. The prod-
uct owner is in charge of prioritising the backlog to make
sure the most important user stories are worked on first. For
the duration of a project, the development team completes
several sprints. The average number of story points resulting
from the completed user stories in a sprint is also known as
team velocity.

In our example, we will consider that the user stories
forming the backlog have an Importancemetric, denoting
how important they are for a stakeholder, in addition to the
Effortmetric, which shows the required effort for comple-
tion. The product owner is required to prioritise these tasks so
that the average stakeholder importance is equally distributed
across the sprints required to implement the work items in
the backlog. We call this objective the Stakeholder Satisfac-
tion Index, and we calculate it as the standard deviation of
average stakeholder importance across sprints.

In Fig. 3, we show a metamodel of this problem. The goal
of the problem is to assign WorkItem elements to a num-
ber of Sprints with the following objectives: Objective
1 minimise the Sprint effort deviation; Objective 2 min-
imise the Stakeholder Satisfaction Index. In Listings 1 and 2,
the twoproblemobjective functions are given inOCL.Objec-
tive 1 calculates the standard deviation of SprintEffort.
This objective is minimised to ensure that all Sprints
have close to identical Effort values. Objective 2 first
calculates the Importance standard deviation for each
Stakeholder across allSprints. Then, to ensure that all
stakeholders have an even Importance distribution across
all Sprints, the objective calculates the standard devia-
tion of all Stakeholders Importance distributions.
This objective is minimised to prefer solutions with small

1 context Plan def: MinSprintEffortDeviation : Real =
2 self .model. sprints−>collect (committedItem. effort−>sum()) .

standardDeviation ()

Listing 1 SP Objective 1 in OCL

1 context Plan def: CustomerSatisfactionIndex : Real =
2 self . stakeholders
3 −>collect (sh |
4 sh . sprints
5 −>collect (
6 committedItem
7 −>select (ci | ci . stakeholder = sh)
8 . importance
9 −>sum())
10 . standardDeviation ())
11 . standardDeviation ()

Listing 2 SP Objective 2 in OCL

standard deviations between Stakeholders Importance
distributions.

The problem has the following constraints: Constraint
1 all WorkItem entities must be assigned to a Sprint;
Constraint 2 no solution must have fewer Sprints than
total backlog effort divided by team velocity. In Listings 3
and 4 we give the two problem constraints in OCL. Con-
straint 1 counts the number of WorkItem entities that are
not assigned to a Sprint. This constraint is equivalent with
refining the metamodel multiplicity from a lower bound of
0 to a lower bound of 1 for the sprints edge between
a Plan and Sprint and also for the isPlannedFor
edge between a WorkItem and a Sprint. Constraint 2
calculates the total number of Sprints desired using total
WorkItems Effort and the maximum Effort that can
be delivered in a Sprint and the ensures that there are
no planned Sprints with more Effort than the team
Effort velocity.

To explore the search space of the Scrum planning prob-
lem, themutation operatorsmust create Sprint entities and
assignWorkItem elements to them, until all theWorkItem
elements belong to a Sprint. In Fig. 4,we include themuta-
tion operators implemented manually for this case study.
Figure 4a shows the mutation operator to create a new
Sprint and assign to it a WorkItem that has not already
been assigned to another Sprint. In Fig. 4b, we include
the operator that deletes an empty Sprint, which deletes a
Sprint that has no WorkItems assigned to it. In Fig. 4c,
we include the operator used to add WorkItems to an exist-
ing Sprint, ensuring that any WorkItems allocated by
this operator are not already assigned to another Sprint.
Finally, in Fig. 4d we include a mutation operator that unas-
signs a WorkItem from a Sprint and assigns it to another
Sprint. This operator can create empty Sprints, which
can then be deleted by the delete sprint operator in Fig. 4b.

123

1862 A. Burdusel et al.

Fig. 3 Scrum planning
metamodel

Fig. 4 Summary of the mutation operators implemented manually for
the sprint planning case study

1 context Plan def: NoUnassignedWorkItems : Integer =
2 self . backlog .workitems
3 −>select (isPlannedFor−>isEmpty())−>size ()

Listing 3 SP Constraint 1 in OCL

1 context Plan def: AllowedMaxSprints : Integer =
2 let effort = self . backlog .workitems. effort−>sum() in
3 let maximumVelocity = 25 in
4 let desiredSprints =
5 (effort / maximumVelocity) . round() in
6 let nonEmtpySprints =
7 plan . sprints
8 −>select (committedItem−>notEmpty)
9 −>size () in
10 i f (nonEmptySprints > desiredSprints) then
11 desiredSprints − nonEmptySprints
12 else
13 0
14 endif

Listing 4 SP Constraint 2 in OCL

Readers familiar with constraint solving may be tempted
to argue that this specific problem could be solved using
an optimising constraint solver like Choco [13]. However,
solving the problem in such a way would require substan-
tial encoding effort to express the problem in a format that
constraint solvers can understand, which is fairly far away
from the original problem description, even when using so-
called high-level languages like Essence [21]. Therefore, our
work aims to reduce the amount of encoding effort required
as much as possible.

4 Generatingmutation operators

Rather than asking the user to manually specify the muta-
tion operators, our goal is to automatically generate them.
In this section, we identify requirements for good mutation
operators, introduce a general structure for mutation opera-
tors satisfying those requirements, and propose a systematic
algorithm for generating them.

As a result, a user will no longer be required to explic-
itly provide mutation operators as part of the optimisation
problem specification. Instead, theywill specify the submeta-
model for which mutation operators should be generated.

123

Automatic generation of atomic multiplicity-preserving search operators... 1863

This explicitly separates the parts of the metamodel that
specify problem constraints from those which hold solution
information. In our running example, the user would spec-
ify that the Sprint node and all its edges can be modified.
This will produce rules that create new Sprints and assign
WorkItems to them.

4.1 Requirements onmutation operators

Generally, any transformation typed over the problem meta-
model could be used as a mutation operator. However, here
we are focusing on transformations that make small-granular
changes (e.g. adding a node). Thiswill allow a detailed explo-
rationof the search space.To identify additional requirements
onmutation operators, wewill explore two problems that can
occur when operators are constructed naïvely: getting stuck
in local optima and changing applicability of rules during
different search phases.

The search process can get stuck in local optima when
the constraints prevent the mutation operators from generat-
ing new and diverse individuals with a single transformation
application. Consider the Scrum planning use case including
the following two operators: one for creating a new Sprint
and one for moving a WorkItem from one Sprint
to another. Once all the WorkItem elements have been
assigned to a Sprint, no more new Sprint nodes can
be created: because there are no more free WorkItem ele-
ments, the lower-bound constraint that no Sprint should be
empty can no longer be satisfied for these new Sprints. If
all the WorkItems have initially been assigned to a small
number of Sprints, and no new Sprints can be cre-
ated, the search will be unable to find solutions that have
a good average distribution of WorkItems across the cre-
ated Sprints. Note that creating two mutation operators,
one to create an empty Sprint and one to move an existing
WorkItem to the newly created Sprint, won’t solve this
problem: until the constraint is satisfied, the search algorithm
would have to include the invalid solution in the archive and
then apply the required repair operator in one of the following
iterations. However, if all the other population individuals are
valid, they will dominate the one with the invalid Sprint,
which will be removed from the population. Generally, this
problem is encounteredwhere there are nonzero lower-bound
multiplicities. In these cases, we require mutation operators
to apply both edit and repair in one step.

The search can be split into two phases: in the first phase,
all candidate solutions conform to the problem metamodel,
but may not yet satisfy the additional solution constraints; in
the second phase, all candidate solutions satisfy the addi-
tional solution constraints. These two phases potentially
require different repair steps. Consider again a mutation
operator creating a new Sprint node. In the first phase, the
appropriate repair is to find a WorkItem that has not yet

Fig. 5 MPSOs structure

been assigned to another Sprint and assign it to the new
Sprint. In the second phase, this rule is not applicable any-
more because no unassigned WorkItems remain. However,
there is an alternative repair that takes a WorkItem from
an existing Sprint with at least two WorkItem elements
assigned to it.Weneed to generate appropriatemutation oper-
ators for each phase of the search.

Mutation operators that satisfy the requirements imposed
by the conformance to the solution metamodel and the
additional problem multiplicity constraints, we will call
multiplicity-preserving search operators (MPSOs).

4.2 General structure of MPSOs

Aswehave seen in the previous subsection,MPSOs are trans-
formation rules that combine a change to the model (an edit
operation) with the necessary repair. In Fig. 5, we show the
structure of MPSOs as well as further categorising edit and
repair operations. We consider that edit operations can be
either atomic or compound (a composition ofmultiple atomic
operators). Atomic operators will either change a single node
or a single edge. A repair operation can be atomic, iterative or
recursive. Atomic repairs focus on a single edge and will not
create or delete nodes beyond the original edit operation. An
iterative repair is a combination of multiple atomic repairs
for the same edit, for example, where constraints on multiple
edges would be broken by the edit. In contrast, a recursive
repair creates or removes nodes as part of the repair, requir-
ing recursive repair steps to be considered. In this paper, we
only consider atomic edit operations and atomic or iterative
repair. We call the resulting operators atomic multiplicity-
preserving search operators (aMPSOs).

4.3 Generation algorithm

In our current approach, we focus only on multiplicity
constraints. Supporting arbitrary constraints is not a trivial
problem, and it is beyond the scope of this paper to also
support such constraints with our generation algorithm. In
separate work, Kosiol et al. [32] make the first steps towards
support for arbitrary constraints for aMPSOs and introduce

123

1864 A. Burdusel et al.

Fig. 6 Multiplicity patterns

a formalisation to reason about the impact of graph transfor-
mations on graph constraints.

Kehrer et al. [27,28] introduce the concept of consistency-
preserving edit operations (CPEOs) and propose a mecha-
nism for automatically generating them from a metamodel
with multiplicity constraints. CPEOs can be used as MPSOs
in cases where the solution metamodel only has open multi-
plicities. Any multiplicity is open if the lower bound is zero.
Kehrer et al.’s mechanism does not support the generation
of CPEOs for edges with closed multiplicities on both sides.
Where only one multiplicity is closed, the mechanism only
generates a limited range of repairs, which still causes the
search to get stuck in local optima.

In this section, we propose an algorithm to generate aMP-
SOs. We will structure the discussion based on the type of
edit operations. For each edit operation, we will then dis-
cuss relevant repair actions. We distinguish edit operations
for nodes—namely create and delete—and for edges—add,
remove, change, and swap. The available repair operations
depend on the multiplicity pattern. Figure 6 shows the labels
we will use in our discussion below. In Fig. 7, we include an
example metamodel that contains two nodes, A and B, with
multiplicity patterns supported by our rule generation algo-
rithm.We use this metamodel to show examples of generated
rules in this section.

For each multiplicity pattern we consider, we aim to gen-
erate the minimal set of rules that would allow the search to
avoid getting stuck in local optima.

4.3.1 Manipulating nodes

In this section, we describe the repair operations required for
manipulating nodes. The types of aMPSOs that we generate
for this are composed of the atomic rule to create (delete)
a node and a repair operation to connect (disconnect) the
created (deleted) node to (from) mandatory neighbours (B
nodes). The choice of repairs that can be applied is given
by the multiplicity pattern between the node being edited
and its neighbours. For some repairs, there are many variants
in-between; however, we seek to minimise the number of
generated rules, so we only generate the rules described.

Creating a node In this section, we introduce the types of
repair operations generated for creating a nodeA fromFig. 6.
For each repair,we include themultiplicity patterns forwhich
the generated repair is applicable. We include a summary of

the generated rules in Table 1. Figure 9 shows an example
for each type of generated node creation aMPSO.

The generated create node aMPSOs described in this
section follow a set of principles that seek to satisfy the mul-
tiplicity requirements of a node of type A for nodes of type
B that have to be assigned. These principles consist of: either
assigning existing B nodes and using a NAC to ensure their
constraints are not invalidated; relocating existing B nodes
from another single node of type A; or by getting each B
from a different existing source node A, making sure that the
source node lower bound constraint is not invalidated. We
will discuss these three options below.

There are other options for repairs (e.g. picking multiple
Bs from the sameA, but not all Bs from the sameA), however
weare not considering these asweare interested in generating
the smallest possible set of rules, while still giving the search
algorithm different options for leaving a local optimum.

– NAC repair: The first type of aMPSO that we generate,
is for creating nodes that have a multiplicity pattern with
(n > 0). For this case, we generate a rule to create a node
of type A and connect it to n existing nodes of type B. If
(l < ∗), then a negative application condition (NAC) is
added for the connected nodes B to ensure that no upper-
bound multiplicity invalidations occur (no more than l
nodes of type A assigned for each B). Nodes that have an
open multiplicity don’t need a repair operation.

Example NAC repair rules Figure 8a shows an example
of this aMPSO for the SP case study, generated for creat-
ing a Sprint node, that is connected to a note of type
WorkItem. The rule includes a NAC for the WorkItem
node which requires that the WorkItem node is not already
assigned to a Sprint node.

An example of this aMPSO for multiplicity pattern (n =
1) and (l = 5) is included in Fig. 9e. The generated aMPSO
contains l forbid A nodes connected to node B.

– Single source lower bound repair: The second type of
aMPSO for creating a node is for creating nodes that
have a multiplicity pattern with (n > 0) and (l < ∗).
This pattern means that A must have at least n nodes of
type B assigned to it, and node B can have a limited num-
ber of nodes of typeA assigned to it.We generate a rule to
create a node of type A, and connect it to n nodes of type
B. Then, the upper bound for the existing n nodes of type
B is repaired by deleting the edges between the required
n nodes of type B from a single existing node of type A
and creating edges between them and the newly created
node of type A. A positive application condition (PAC)
is generated for the existing source node A to ensure its
lower-bound multiplicity (n) is not broken after the node
B used in the repair is unassigned. The multiplicity pat-

123

Automatic generation of atomic multiplicity-preserving search operators... 1865

Fig. 7 Metamodel used to show
rulegen examples. Nodes A and
B have the multiplicity pattern
shown in Fig. 6

Table 1 Create node aMPSOs n = 0 n = 1 and m > n n > 1 and m > n n = m

k ≥ 0 c A c A add n B (f#l A) c A add n B (f#l A) c A add n B (f#l A)

l > k c A lb r single B c A lb r single B

l <* c A lb r many B

k ≥ 0 c A add n B

l = ∗
k = l c A lb r single B c A add n B N/A

c A lb r single B

c A lb r many B

In the table, ‘c’ stands for ‘create’, ‘lb r’ for ‘lower-bound repair’, and ‘f#l’ for ‘forbid l’

tern for this aMPSO partially overlaps with the pattern
for NAC repair, and when this is the case during the gen-
eration stage, both operators are generated.

Example single source lower bound repair rules In Fig. 8b,
we show an example of this aMPSO for the SP case
study, generated for creating a Sprint node, when all
WorkItems are already assigned to other Sprints. The
rule includes a PAC for the existing Sprint node from
which the WorkItem node used for the repair is taken, to
make sure that the lower-bound multiplicity is not invali-
dated.

An example of this aMPSO for multiplicity pattern (n =
1), (m = ∗) and (k = 1), (l = 5) is included in Fig. 9c.

– Multiple sources lower bound repair: The third type of
aMPSO for creating a node is for creating nodes that
have a multiplicity pattern with (n > 1) and (l < ∗).
This pattern means that A must have at least n nodes
of type B assigned to it, and node B can have a limited
number of nodes of type A assigned to it. For this case,
we generate a rule to create a node of type A and connect
it to n nodes of type B. Then, we repair the upper bound
for the existing n nodes of type B by deleting the edges
between the required n nodes of type B from n existing
nodes of type A and creating edges between them and the
newly created node of type A. A PAC is generated for the
existing nodes of type A to ensure that the lower-bound
multiplicity is not broken by this operation.

Example multiple sources lower bound repair rule An
example of this aMPSO for multiplicity pattern (n = 2),
(m = ∗) and (k = 2), (l = 2) is included in Fig. 9d. The rule
creates a node A and connects it to 2 mandatory B nodes dis-
connected from two other A nodes, while ensuring that each
source A node still satisfies the lower-bound requirement.

For node pairs that have a fixed multiplicity (n = m∧k =
l), at both ends of any edge, we do not generate a create
node aMPSO. Any repair operation for this case requires the
creation of the nodes at the opposite end of the edge, and thus
a recursive repair.

Deleting a node As with the description for the create oper-
ations, we divide the explanation based on repair type. We
include a summary of the generated rules in Table 2. Fig-
ure 10 shows an example for each type of generated node
deletion aMPSO.

Similarly to the generated create node aMPSOs described
in the previous section, the delete node aMPSOs described
in this section follow a set of principles, that seek to sat-
isfy the multiplicity requirements of a node of type A for
nodes of type B, that have to be unassigned. These principles
consist of: either unassigning existing B nodes and using a
PAC to ensure their constraints are not invalidated; relocat-
ing existing B nodes from deleted node A to another single
node of type A; or by moving each assigned node B to a
different existing node A, making sure that the target node
upper bound constraint is not invalidated. We will discuss
these three-node deletion repair options below.

123

1866 A. Burdusel et al.

Fig. 8 Generated node manipulation aMPSOs for the Scrum Planning
case study encoded as Henshin model transformations

It is possible to use other repairs (e.g. moving multiple Bs
to the sameA, but not all Bs to the sameAnode); however,we
are not considering these as we are interested in generating
the smallest possible set of rules, while still giving the search
algorithm different options for leaving a local optimum.

– PAC repair: The first type of aMPSO that we generate is
for deleting nodes that have a closedmultiplicity (k > 0).
This pattern means that B must have at least k nodes
of type A assigned, and each node of type A must be
assigned to at least n nodes of type A.
For this case, we generate a rule to delete a node of type
A and for each of its connected nodes of type B, a PAC is
added to ensure that no lower-bound multiplicity invali-
dations occur after the deletion of the A node. This rule
is not generated for cases where (k = l) because nodes
with multiplicity (k = l) cannot be repaired with a PAC.

Example PAC repair rules
In Fig. 8c, we include an example of this aMPSO for the
SP case study, generated for deleting a Sprint node,
that has a WorkItem assigned to it. For this exam-
ple rule, there is no PAC generated for the WorkItem
because there is no lower-bound multiplicity limit.
An example of the generated aMPSO of this type for
multiplicity (k = 2) is included in Fig. 10b. The aMPSO
deletes node A and requires that node B still has 2 nodes
of type B connected to it.
For cases when (k = 0), no PAC is generated for node B,
and node A is simply deleted. An example aMPSO for
this scenario is shown in Fig. 10a.

– Single target lower bound repair: This type of aMPSO
for deleting a node is for manipulating nodes that have
a multiplicity pattern (k = l and k > 0). This pattern
means that each node of type B must be assigned to k
nodes of type A.
For this case, we generate a repair to satisfy the lower-
bound for the n nodes B, by creating edges between them
and another single existing node of type A. A NAC is
generated for the existing nodeA to ensure that the upper-
bound multiplicity is not broken if (m < ∗). This repair
ensures that after the A node to which k nodes of type
B are assigned is deleted, the B nodes are assigned to
another node A not to invalidate their multiplicity con-
straint.

Example single target lower bound repair rules Fig-
ure 8d shows an example of this aMPSO for the SP case
study, generated for deleting a Sprint node, that has a
WorkItem assigned to it. For this example rule, there
is no NAC generated because there is no upper-bound
multiplicity limit.

Figure 10c shows an example of this aMPSO for mul-
tiplicity pattern (m = 2). Because of the upper-bound
multiplicity limit for node A is not ∗, the rule contains
a NAC repair. An example of the rule for the case when

123

Automatic generation of atomic multiplicity-preserving search operators... 1867

Fig. 9 Examples of generated create node aMPSOs

Table 2 Delete node aMPSOs

m > n and m < * m = ∗ n = m

k = 0 d A

k > 0 d A (require each B still has #k A)

l > k

k = l = 1 d A r lb sg B (f#m A) d A r lb sg B N/A

k = l > 1 d A r lb sg B (f#m A) d A r lb sg B N/A

d A r lb mn B (f#m A) d A r lb mn B

In the table, ‘d’ stands for ‘delete’, ‘r lb sg’ for ‘repair lower bound
single’, ‘r lbmn’ for ‘repair lower boundmultiple’, and ‘f#m’ for ‘forbid
m’

(m > 0) and no NAC repair is necessary can be seen in
Fig. 10d.

– Multiple target lower bound repair delete: This type of
aMPSO is used for deleting nodes that have amultiplicity
pattern with (k = l) and (l > 1). This pattern means that
Amust have at least n nodes of type B assigned, and each
node of type B must be assigned to exactly k nodes of
type A.

For this case, we generate a repair to satisfy the lower
bound for node B by creating edges between them and
another existing n nodes of type A. If required, a NAC is
generated for the existing nodes of type A to ensure that
the upper-bound multiplicity is not broken if (m < ∗).
We only generate this rule for the case where exactly n
nodes of type B are attached to the A node to be deleted.

Examplemultiple target lower bound repair delete rules

Figure 10e shows an example of this aMPSO for mul-
tiplicity pattern (n = 2), (m = 5) and (k = l = 2).
The rule contains a NAC for each node of type A that is
assigned a node of type B from the deleted node B. For
the casewhen noNAC is necessary (e.g.m = ∗), noNAC
is generated as seen in the aMPSO shown in Fig. 10e.

For node pairs that have a fixed multiplicity (n = m∧k =
l), at both ends of any edge, we do not generate a delete

123

1868 A. Burdusel et al.

Fig. 10 Examples of generated delete node aMPSOs

Table 3 Add-edge aMPSOs m < ∗ m = ∗ n = m

l < ∗ Add edge NAC A B Add edge NAC B Swap edge

l = ∗ Add edge NAC A Add edge Swap edge

k = l Change edge (P/N A) Change edge (P/N A) Swap edge

In the table (P/N) denotes the presence of optional PAC and NACs that may be required by the source or target
node multiplicity

123

Automatic generation of atomic multiplicity-preserving search operators... 1869

Table 4 Remove-edge aMPSOs n = 0 n > 0 n = m

k = 0 Remove edge Remove edge PAC A Swap edge

k > 0 Remove edge PAC B Remove edge PAC AB Swap edge

k = l Change edge (P/N A) Change edge (P/N A) Swap edge

In the table (P/N) denotes the presence of optional PAC and NACs that may be required by the source or target
node multiplicity

node aMPSO. Similar to the create node operations, a repair
operation for this case requires the deletion of the node at
the opposite end of the node being deleted. We regard this
type of operation as recursive, which wewill look at in future
work.

4.3.2 Manipulating edges

In this section, we show the types of aMPSOswe generate for
manipulating edges between two nodes. Namely, to add and
remove an edge from a node, together with corresponding
repair operations. The add and remove edge operations are
composed to obtain themore complex change and edge-swap
operations. A complete list of the generated edge aMPSOs
is included in Tables 3 and 4. Figure 12 shows an example
for each type of generated edge creation aMPSO. Figure 14
shows an example for each type of generated edge removal
aMPSO.

Adding an edge The aMPSO to add an edge between two
existing nodes is identical to the add edge CPEO generated
by Kehrer et al. This aMPSO includes a NAC to avoid inval-
idating any upper-bound constraints between the source and
target nodes. This aMPSO is generated for all multiplicity
patterns except for cases having a fixed multiplicity at one
end or at both ends of the connected nodes (n = m∨ k = l).

Example addedgeaMPSOs In Fig. 11a,we include an exam-
ple of an aMPSO for the SP case study that adds an edge
between a Sprint and a WorkItem with a NAC, forbid-
ding that the two nodes are already connected.

Figure 12d includes an example of the generated aMPSO
for this case with multiplicity pattern (n = 0), (m =
∗) and (k = 0), (l = ∗). The aMPSO has a NAC to avoid
being applied in cases when there is already an edge between
the two nodes being connected. We include example aMP-
SOs generated for the case when there is an upper bound
(m = 1) and (l = 1 for both A and B nodes being connected
in Fig. 12a. Figure 12b, c shows example aMPSOs contain-
ing NACs for nodes B and A, respectively, when an upper
bound limit is present.

Fig. 11 Generated edge manipulation aMPSOs for the Scrum Planning
case study encoded as Henshin model transformations

Removing an edge This aMPSO is identical to a CPEO that
Kehrer et al. generate, consisting of an operation to remove
an edge between two existing nodes A and B.

The generated aMPSO includes a NAC to avoid invali-
dating any lower-bound constraints between the source and
target nodes. This aMPSO is generated for all multiplicity
patterns except for cases having a fixed multiplicity at one
end or at both ends of the connected nodes (n = m∨ k = l).

123

1870 A. Burdusel et al.

Fig. 12 Examples of generated add edge aMPSOs

Fig. 13 Examples of generated change and swap edge aMPSOs

Fig. 14 Examples of generated remove edge aMPSOs

123

Automatic generation of atomic multiplicity-preserving search operators... 1871

Example remove edge aMPSOs Figure 14a includes an
example of the generated aMPSO for this casewithmultiplic-
ity pattern n = 0,m = ∗ and k = 0, l = ∗. The generated
rules can contain a PAC for node A if there is a lower bound
n = 1 present (e.g. Fig. 14b), or a PAC for node B if there is a
lower bound k = 1 present (e.g. Fig. 14c), or a PAC for both
nodes A and B if there is a lower bound n = 1 and k = 1
present (e.g. Fig. 14d).

In Fig. 11b, we include an example of an aMPSO that
removes an edge between a Sprint and a WorkItemwith
a PAC, requiring that after the application of this rule, the
Sprint node still has at least one WorkItem node still
assigned to it, to satisfy the lower-bound multiplicity.

Changing an edge A change edge aMPSO moves a node of
type B with a lower bound multiplicity pattern (k > 0), to
another node of type A, without invalidating the multiplicity
constraints. The generated aMPSO includes PAC and NAC
conditions to ensure that after the rule application, no lower-
bound or upper-bound multiplicities are invalidated for the
source and target nodes, respectively, of typeA (to ensure that
no node has too many or too few nodes of type B after this
rule application). This aMPSO is also generated for closed
multiplicity patterns where a multiplicity pattern for either
of the connected nodes is fixed (e.g. n = m ∨ k = l).

Example change edge aMPSOs Figure 11c shows an exam-
ple of this aMPSO for the SP case study, generated for
changing an edge between a WorkItem and twoSprints.
The rule includes a PAC for the Sprint element fromwhich
the WorkItem element is unassigned to ensure that the
lower-bound multiplicity of this node is not invalidated after
the application of the rule.

In Fig. 13a, we include an example of the generated
aMPSO for the generic metamodel in Fig. 7.

Swapping two edges An edge swap aMPSO is generated
for fixed multiplicity patterns on the A side (n = m). This
operation exchanges two nodes between two pairs of similar
node types. For two existing, connected nodes A and B, the
aMPSO, finds two other nodes of the same type, A′ and B ′
and disconnects node A from node B and A′ from B ′, and
connects node A to B ′ and A′ to B.

Example swap edge aMPSO We include an example of this
aMPSO in Fig. 13b, in which two B nodes are exchanged
between two A nodes.

4.3.3 Iterative repair

Iterative repair rules are generated by creating combinations
of the possible repair types described above for all the edges
of a node that has to be mutated. This approach increases

the number of rules generated for nodes that have multiple
edges.

To demonstrate this feature, we include in Fig. 15 a refined
version of the metamodel shown in Fig. 7 with changed mul-
tiplicities for the edges between node B and nodes A and
C. As a result of this refinement, there is a requirement that
when a node B is created, it is connected to both node A and
C, ensuring that their multiplicity constraints are satisfied.

Example iterative repair aMPSOs Figure 16 shows two
example generated iterative repair rules for node B. In
Fig. 16a, node B is created and the mandatory neighbours
are lower-bound repaired, then in Fig. 16b node B is created
and only node C is lower-bound repaired, while node A is
connected to the created node B, with a NAC to ensure that
no more than 2 nodes of type B are connected to it.

4.3.4 Generation algorithm completeness

In our approach, completeness refers to the ability of the
aMPSOs to generate any of the supported modifications to
themodel. The changeable parts of amodel are defined by the
user, who can specify single ormultiple nodes or edgeswhich
are allowed to be varied at search time. Our aMPSO genera-
tion algorithm produces the minimal set of atomic operations
composed with the necessary repairs to ensure that the rules
are applicable for any of the supported multiplicity patterns.

The generated aMPSOs form a complete set of rules that
can reach any consistent variation of the changeable parts of
a model through the application of a single operator or by
chaining multiple operators.

The generated aMPSOs can create or delete a node and
add or remove edges between any two nodes that have the
multiplicity pattern as shown in Fig. 6. These operations are
enabled by complementing every node and edge creation
or deletion with a corresponding repair to ensure that the
operation is possible for any valid metamodel instance with
respect to to the supported multiplicity patterns. The repairs
also ensure that the resulting model instance does not invali-
date the metamodel multiplicities after the application of the
aMPSO.

4.3.5 Generation algorithm limitations

The rule generation algorithm presented in this chapter is
aimed at producing atomic rules which can manipulate two
nodes connected by an edge, as shown by the highlighted
nodes A and B in the metamodel from Fig. 7. The described
approach does not support the generation of more complex
rules where additional context information is needed to gen-
erate a valid rule (e.g. software refactoring patterns, feature
model configuration). For such cases, the approach princi-
ples can be maintained (e.g. create or delete node, add or

123

1872 A. Burdusel et al.

Fig. 15 Iterative repair
metamodel. Nodes A, B and C
have the multiplicity pattern
shown in Fig. 6 for the
connecting edges between them

Fig. 16 Examples of generated iterative node repair aMPSOs

remove edge), however, a domain-specific rule generation is
required such that the additional domain information can be
included in the generation algorithm.

4.4 Running search with aMPSOs

The algorithm proposed in the previous subsection gener-
ates operators that preserve the consistency, with respect to
to multiplicities, of the models modified. This addresses the
first requirement on mutation operators that we identified in
Sect. 4.1. It does not yet address the second requirement that
mutation operators should work in both phases of an evo-
lutionary search: phase 1, when some candidate solutions
may not yet fully satisfy the solution-metamodel constraints,
and phase 2 when all candidate solutions satisfy all solution-
metamodel constraints. To satisfy this second requirement,
we run the algorithm from Sect. 4.3 twice: First, we use it
to generate rules based on problem-metamodel constraints.
Next, we generate rules based on solution-metamodel con-
straints. We then use the union of the two sets of rules as the
set of mutation operators for the evolutionary search.

5 Experiments

To evaluate our rule generation approach, we seek to answer
the following research question:

RQ:What are the search quality and performance benefits
of automatically generated mutation operators compared
to mutation operators created manually?

To answer this research question, we ran experiments on 9
problem instances from 3 different case studies. These exper-
iments aim to show that the generated mutation operators
are at least as good as a set of operators created manually.
The automatic generation of transformations is already an
improvement over the manual process, as we remove the
error-prone process of manual rule creation. Our evaluation
aims to investigate whether there is a loss in search per-
formance from generated operators. For each case study,
we prepared a set of manually created mutation opera-
tors. Then, we configured MDEOptimiser to automatically
generate mutation operators. Using both pairs of mutation
operators, we ran experiments to solve the same problem
instances. We compare the results from the two approaches

123

Automatic generation of atomic multiplicity-preserving search operators... 1873

Table 5 Summary of CRA input models

Input model A B C D E

Attributes 5 10 20 40 80

Methods 4 8 15 40 80

Data dependencies 8 15 50 150 300

Functional dependencies 6 15 50 150 300

to validate that the solutions obtained using the automatically
generated aMPSOs are comparable with the results obtained
using manually implemented search operators.

We do not include a comparison between our tool and
other tools. Such a comparison isn’t useful in this paper,
as the focus is comparing the effectiveness and efficiency
of the Man and Gen operators. In [26], we compare the
performance ofMDEOptimiser andMOMoT, another model
search tool that encodes search solutions as transformation
chains.

5.1 Case studies

Weselected a set of combinatorial optimisation problems that
were implemented using MDEOptimiser. In the following
subsections,we include a brief description of each case study.

5.1.1 Class-responsibility assignment

The class responsibility assignment (CRA) case study was
introduced at the 2016 Transformation Tool Contest (TTC)
[19]. The goal of this problem is to transform a procedu-
ral software application to an object-oriented architecture
while maintaining good cohesion and coupling. The quality
of the produced solutions is measured using the CRA index
defined in [19] as a single objective. The problem supplies a
responsibility dependency graph that contains a set of func-
tions and attributes with dependencies between them. In the
metamodel, these entities are instances of the abstract type
Feature.

To solve this problem, the user is required to create
Classes in the ClassModel and assign Features to
them such that: all Features are assigned to a Class; the
model with the highest CRA index value is found. The prob-
lem has an additional constraint requiring that each Feature
is assigned to only one Class at a time.

For the CRA case study, authors provide a set of five
input models. The difference between them is the number
of Features present. Model A is the smallest model with only
nine features. The largest model provided is model E, with
160 features. Across all models, each set of features has an
increasing number of dependencies between them. A sum-
mary of all the input models is included in Table 5.

Table 6 Summary of input
models for SP case study

Input model A B

Stakeholders 5 10

WorkItems 119 254

Backlog Size 455 1021

We are specifying the CRA case study using two sets of
transformations. The first set is implemented manually and
consists of four operators as suggested in [9]. Other TTC’16
participants that used a similar approach to solve the case
studies used similar rules [19,37]. The second set of operators
are aMPSOs generated using the approach presented in this
paper.

5.1.2 Scrum planning

We are running two experiments for the Scrum planning (SP)
case study described in Sect. 3. This case study has a simi-
lar problem specification as the CRA case study with the
following differences: the assigned items do not have any
dependencies between each other as Features do in the
CRAcase, and this case study is specified as amulti-objective
problem.

In Table 6, we include a description of the input models
used in experiments for this case study. These have been
automatically generated by the authors using a randommodel
generator.

Through this case study evaluation, we explore how the
difference in the number of objective functions affects the
behaviour of manual and generated rules.

5.1.3 Next release problem

The goal of the next release problem (NRP) is to find the
optimal set of tasks to include in the next release for a soft-
ware product, to minimise the cost and to maximise the
customer satisfaction [45]. Each Customer has a desire
which can consist of one or many SoftwareArtifacts.
SoftwareArtifacts can have a recursive dependency
on other SoftwareArtifacts.

To solve this problem, the user is required to assign
instances of SoftwareArtifacts to a Solution such
that the total cost of the selected SoftwareArtifacts is
minimised and the total customer satisfaction is maximised.

We are specifying the next release problem using two sets
of evolvers. One set was manually designed by the third
author, who was not involved in developing the rule gen-
eration algorithm. The second set uses the automatically
generated aMPSOs, using the approach described in this
paper.

123

1874 A. Burdusel et al.

Table 7 Summary of input
models for the NRP case study

Input model A B

Customers 5 25

Requirements 25 50

Software Artifacts 63 203

The minimal set of required rules for this case study
is simple, only requiring mutations to add and remove an
edge between a Solution and a SoftwareArtifact.
However, the difference between this case study and the
others considered in this paper is that the selection of a
SoftwareArtifact directly influences the Cost fitness
function and indirectly influences the Customer Satisfaction
objective. A SoftwareArtifact is considered for the
calculation of a RequirementRealization, onlywhen
all its dependencies are also assigned to the solution. The set
of evolvers manually designed for this case study uses this
additional information, ensuring that a SoftwareArtifact and
all its dependencies are added in a single step. In contrast,
the automatically generated aMPSOs do not use any addi-
tional problem information. With this difference, we aim to
evaluate how the generated rules explore the search space
in cases where the fitness functions provide only coarse-
granular guidance.

The input models used for this case study have also been
automatically generated by the authors using a randommodel
generator. A brief description of these models is included in
Table 7.

5.2 Experiment configurations

We run experiments and compare the quality of the solu-
tions obtained using two configurations:Manwith manually
specified mutation operators and Gen with automatically
generated mutation operators. For multi-objective problems,
we use the hypervolume indicator and the ratio of best
solutions for our comparison. For the CRA case, which is
single-objective, we compare the quality of the solutions
based on the median CRA score.

Experimental Setup All the experiments were repeated 30
times for statistical significance [4] and were executed on
Amazon Web Services (AWS) c5.large spot instances run-
ning Amazon Linux 2 build 4.14.101-75-.76.amzn1.x86_64
running Java version 11.0.3+7-LTS.

We ran our experiments using the NSGA-II algorithm
[15], which is a well-established evolutionary search algo-
rithm that has been used successfully in many SBSE appli-
cations [8].

We undertook our experiments in two stages. The first
stagewas for determining ideal algorithm parameters (hyper-
parameters) that worked well for both configurations.

The second stage used the hyperparameters found in the
first stage and compared the quality of Gen with Man.

We performed a systematic search for ideal population-
size and number-of-evolutions hyperparameters that allow
each configuration to find the best solutions. The com-
binations of analysed parameter configurations were each
repeated 10 times to ensure robust results.

To identify a good number of evolutions to use in our
experiments, we set the population size to 100 solutions.
First, we analysed the growth of the median objective value
for the single-objective problems and median hypervolume
for themulti-objective problems. Then, we selected the num-
ber of evolutions afterwhich therewas no significant increase
until the number of fitness evaluations has been exhausted,
and the algorithm stopped. After we selected the number
of evolutions based on the plateau of the fitness functions,
we tried to reduce the size of the population by applying
decrements of 25, until we reached a population size of 50.
However, upon evaluating the results across all case studies,
we determined the population size of 100 to be the best value
for our experiments.

In Fig. 17, we show the evolution of the median CRA
objective found by configurations with 5000 evolutions and
population size 100. We observe that for all input models,
except for E, the CRA index value plateaus after 2000 evolu-
tions. For input model E, the Gen configuration continues to
increase, even after the Man configuration starts to plateau
after passing 2000 evolutions.

Figure 18 shows a summary of the hyperparameter runs
for the SP case study. We observe that Man is getting stuck
in more than half of the experiment repetitions, leading to a
medianHVof 0 for this configuration. TheGen configuration
is consistent at finding good solutions with a high HV value
and starts to plateau after 2000 evolutions.

In Fig. 19, we show the evolution of the median HV by
configurations with 5000 evolutions and population size 100
for the NRP case. We observe that there is no noticeable dif-
ference betweenMan and Gen for input model A. However,
for input model B,Man finds a higher HV metric than Gen.
We also observe that all configurations stop finding solu-
tions after 500 evolutions for model A and 1000 evolutions
for model B.

Based on the results of the experiment configurations dis-
cussed in this section, we selected the algorithm parameters
for the experiment configurations used in our experiments.
The selected number-of-evolutions parameter values are
included in the Evol column in Table 9 for the CRA case,
Table 11 for the SP case and Table 13 for the NRP case.

123

Automatic generation of atomic multiplicity-preserving search operators... 1875

(a) (b) (c) (d) (e)

Fig. 17 Parameter search runs for the CRA case study. The X axis shows the number of algorithm steps, and the Y axis shows the median objective
calculated across all batches ran for the parameter search

(a) (b)

Fig. 18 Parameter search runs for the SP case study. The X axis shows
the number of algorithm steps, and the Y axis shows the median hyper-
volume calculated across all batches ran for the parameter search

(a) (b)

Fig. 19 Parameter search runs for the NRP case study. The X axis
shows the number of algorithm steps, and the Y axis shows the median
hypervolume calculated across all batches ran for the parameter search

Hypervolume indicator Comparing solutions of optimisa-
tion problems that have more than one objective value is not
a trivial problem. This is because when one objective value
changes, the value of the other objectives can change as well.
To overcome this problem, the hypervolume unary indicator
has been proposed in [46]. This single-valuemetric measures
the dominated volume between the solution points belong-
ing to the Pareto front and a reference point (also nadir point)
defined by the objective values of the worst solution. Higher
hypervolumes indicate a Pareto front closer to the theoretical
optimum.

Ratio of Best Solutions Formulti-objective problems,we are
calculating the best solutions ratio (BSR) to show the number
of non-dominated solutions contributed to the Pareto front by
each configuration as presented by [22]. In our approach, we
are building the reference set (RS) using the best solutions
found by all runs for both configurations. This metric allows
us to measure the percentage of the contributions made to the
reference set by each configuration.

BSR = |S ∩ PFpseudo|
|PFpseudo| (1)

PFpseudo stands for the reference set obtained by merging all
the known non-dominated solutions for a problem instance.
S stands for the reference set of the configuration for which
the metric is being calculated.

Statistical Analysis We use the Mann–Whitney U test to
perform a statistical analysis of our results [33]. To measure
the size of the differences between the configurations, we use
Cohen’s d effect metric [14].We also include standard devia-
tion (SD), skewness (Skew) andKurtosis (Kurt) in our results
tables to give a better indication of the solutions distribution
found in our experiments.

6 Results

In this section, we present our experiment results for each
of the case studies introduced in the previous section. We
discuss each case study individually below. The complete
data set can be downloaded from [11].

6.1 Class responsibility assignment

In Table 8, we list the mutation operators used for the two
experiment configurations.

Both configurations use three mutation operators to create
a class (CreateClass) and assign and change a feature (Assign
Feature, Change Feature) with some small differences.

123

1876 A. Burdusel et al.

Table 8 Summary of CRA mutation operators for Man and Gen

Manual Gen aMPSO

Create class Create class

N/A Create class Lb repair

Assign feature Assign feature

Change feature Change feature

N/A Remove feature

Delete empty class Delete class

N/A Delete class Lb repair

For Gen the Change Feature operator contains a PAC
requiring that the source Class still has at least one
Feature assigned following the application of this oper-
ator. At the same time, the Man Change Feature operator
can generate an empty class upon its application, and such
instances are fixed by the delete empty class operator.

In addition to these operators, Gen contains two addi-
tional operators to create and delete a Class after all
the Features have been assigned. These ensure that the
search does not get stuck in local optima in cases where the
Features are assigned to too many or too few Classes.

Table 9 shows summary statistics for theCRA index found
using the two configurations. In Fig. 20, we include charts

showing the median CRA value growth as the number of
evolutions increases for both Man and Gen configurations
across all input models. For the smaller input models A, B
and C, both Man and Gen configurations find the highest
objective value in the first 200 evolutions and plateau after-
wards.

For input model D, Man does not find solutions that
improve the CRA objective after 750 evolutions. The Gen
configuration is slower than Man at finding solution can-
didates with good objective values, however, after 500
evolutions, it finds a better CRA value than Man and con-
tinues to find better solutions until reaching 2000 evolutions,
after which it plateaus. For input model E, Man finds a bet-
ter CRA objective value slightly faster than Gen. After 1200
evolutions, Gen surpasses the Man configuration and con-
tinues to find solutions with better CRA values, while Man
starts to plateau.

For all input models, the configuration with automati-
cally generated rules (Gen) consistently finds better median
CRA index values than the configuration with manual rules
(Man). In all cases, Gen also finds higher minimum (Min)
and maximum (Max) CRA scores than Man. These results
are confirmed by Table 10 which shows the p and U values
of the Mann–Whitney test and Cohen’s d effect size.

Table 9 CRA results for Man
and Gen

Config Evol Median Min Max SD Skew Kurt

Man A 500 2.333 0.850 3.000 0.552 -0.679 -0.509

Gen A 500 3.000 3.000 3.000 0.000 0 0

Man B 500 1.865 1.238 3.104 0.514 0.642 -0.032

Gen B 500 3.167 1.826 4.083 0.599 -0.470 -0.376

Man C 500 2.224 1.148 3.240 0.572 -0.089 0.824

Gen C 500 3.129 2.110 3.806 0.428 -0.539 -0.039

Man D 2000 5.191 3.557 7.041 0.837 0.068 0.339

Gen D 2000 9.863 7.634 12.273 1.257 -0.176 0.782

Man E 2500 11.572 8.879 14.691 1.639 0.122 0.663

Gen E 2500 17.323 11.698 20.051 1.604 -1.106 -3.176

The median column contains the median objective value across all experiment runs. For each model, the best
configuration is highlighted in bold

(a) (b) (c) (d) (e)

Fig. 20 Experiment results for the CRA case study. The X axis shows the number of algorithm steps, and the Y axis shows the median objective
calculated across all experiment batches

123

Automatic generation of atomic multiplicity-preserving search operators... 1877

Table 10 Summary of statistical testing results for CRA

A B C D E

p value < 0.05% < 0.05% 0.05% 0.05% 0.05%

U-value 795 809.5 817 900 884

Cohen’s d Large Large Large Large Large

Table 11 SP results for Man and Gen configurations

Config Evol Median Min Max SD RS RSC BSR

Man A 1500 0.000 0.000 0.960 0.460 13 0 0.00

Gen A 1500 0.959 0.957 0.995 0.010 13 13 1.00

Man B 2500 0.492 0.000 0.996 0.505 25 19 0.76

Gen B 2500 0.988 0.983 0.998 0.004 25 6 0.24

For each model, the best configuration is highlighted in bold

Table 12 Summary of SP mutation operators for Man and Gen

Manual Gen aMPSO

Create sprint Create sprint

N/A Create sprint Lb repair

Add WorkItem Add WorkItem

Change WorkItem Change WorkItem

N/A Remove WorkItem

Delete empty sprint Delete sprint

N/A Delete sprint Lb repair

The quality of the results found by Gen is attributed to
the aMPSO operators which allow classes to be created and
deleted, after all the features have been assigned to a class,
without invalidating the multiplicity constraints.

The results for this experiment help us answer our RQ
by showing that our approach is good at generating mutation
operators, which lead to finding better solutions than the ones
found using manually specified mutation operators.

6.2 Scrum planning

The SP case study is specified as a multi-objective prob-
lem. To compare the results, we will use the hypervolume
metric.

In Table 12, we include the mutation operators used for
the two experiment configurations. Because the multiplicity
pattern between the Sprint and WorkItem metamodel
entities is identical to the multiplicity between Class and
Feature, the Gen mutation operators are similar to the
ones generated for the CRA case study.

Table 11 and Fig. 21 show a comparison of the calculated
hypervolumes for this case study for input models A and B.

For both input models, Man finds fewer constraint satis-
fying solutions, compared to Gen. For model A, Man only

(a) (b)

Fig. 21 Experiment results for the SP case study. The X axis shows the
number of algorithm steps, and the Y axis shows the mean hypervolume
calculated across all experiment batches

(a) (b)

Fig. 22 Comparison of SP reference set Pareto fronts forMan andGen

found valid solutions in 10 out of the 30 experiment runs,
compared to Gen, which found no invalid solutions. For
cases where only invalid solutions have been found, we allo-
cated a value of 0 for the hypervolume, because there are
no constraint satisfying solutions generated, and the covered
hypervolume space in those cases is 0.

The same effect can be observed for model B, for which
Man finds valid solutions for 15 out of 30 experiments,
compared toGen, which always found a valid solution. Com-
paring the median hypervolume values for the configurations
with valid solutions, we observe that Gen is better thanMan
for both input models.

For model A, the highest hypervolume values have been
found by Gen, and all the reference set contributions (RSC)
are generated by this configuration, which has a BSR rate of
100%. In Fig. 22a, we include the Pareto fronts found by the
two configurations for model A, and in this figure, we can
see that that Gen’s reference set solutions dominates all the
solutions found by Man. The Man reference set contains 5
solutions, while the Gen one has 13. The Mann–Whitney U
test shows that Gen is better than Man for model A (p =
4.266E − 6, U = 761, Cohen’s d =Large).

For model B, Gen also found a higher median hypervol-
ume value. However, for this model, Man found 19 out of
25 reference set solutions, giving it a BSR rate of 76% while
Gen only found 6 reference set solutions, with a BSR rate

123

1878 A. Burdusel et al.

(a) (b)

Fig. 23 Experiment results for the NRP case study. The X axis shows
the number of algorithm steps, and the Y axis shows the median hyper-
volume calculated across all experiment batches

of 24%. The Mann–Whitney U test shows that Gen is as
good as Man for model B (hp = 0.25, U = 527, Cohen’s
d =Large).

In Fig. 22b, we include the Pareto fronts found byGen and
Man for model B. As indicated by the BSR rate,Man finds
more dominating solutions than Gen in the runs that found
valid solutions; however, Gen found more diverse solutions
that cover a wider area along the Pareto curve. The Man
reference set contains 19 solutions, while the Gen one has
40 solutions.

We believe that Man is getting stuck in local optima
and the operators are unable to explore new solutions with-
out temporarily invalidating or decreasing the quality of the
current solutions. At the same time, Gen can explore new
solutions without invalidating the constraints, but it is also
affected by being stuck in local optima. We attribute the bet-
ter results for model B found by Man to the fact that after
constraint satisfying solutions are discovered, the best solu-
tions are found by moving WorkItem elements between
Sprints until the right configuration is found (Fig. 23).

To answer our RQ for this case study, we observe that
Gen finds a consistently good hypervolume, with a small SD
value across all the repetitions, as seen in theMedian and SD
columns in Table. 11. The difference between the numbers of
valid solutions found shows that the addition of the aMPSOs
helped the search to find consistent solutions.

6.3 Next release problem

In contrast to the other use cases, the operators used in the
NRP case are substantially different for both configurations
(Table 14). The Gen operators only cover the basics: addi-
tion and removal of single SoftwareArtifacts. In both
situations, chances are that costs are raised without improv-
ing customer satisfaction due to the introduction of missing
dependencies.

The first operator of Man overcomes this problem, only
adding a SoftwareArtifact if all of its dependencies

(a) (b)

Fig. 24 Comparison of NRP reference set Pareto fronts for Man and
Gen

are already part of the solution. Likewise, the removal of an
artefact is only possible if no dependent artefacts are left over.
The secondoperator allows for larger steps through the search
space by adding and removing SoftwareArtifacts
together with their direct dependencies and dependent arte-
facts, respectively. Assign Highest Realisation
tries to exploit the fact that among Realisations of the
same Requirement those with the highest percentage
contribute most to the customer satisfaction. Considering
all Realisations with yet unfulfilled dependencies, the
operator selects the one with the highest percentage of
fulfilment and adds its missing SoftwareArtifacts to
the solution.

Note that none of the aforementioned operators take
transitive dependency relations into account. Therefore,
to counter the emergence of missing dependencies, the
last operator is responsible for either adding all depen-
dencies of an already selected SoftwareArtifact or
removing the dependent artefacts of a formerly removed
SoftwareArtifact.

For model A, we can observe that Gen consistently finds
a hypervolume that is identical toMan. Both configurations
find the same solutions forming the reference set, and each
has a BSR rate of 100%. We can also observe that the stan-
dard deviation metric between the hypervolumes across all
30 runs for each configuration is 0. This can also be observed
in Fig. 24a which includes the identical Pareto fronts for both
configurations. Because the solutions found are identical for
this model, we are not including the statistical testing results
in the paper. For model B, the hypervolume value found by
Man is higher than the one for Gen. However, on a closer
inspection of the generated Pareto fronts for both configura-
tions in Fig. 24b, we see that the solutions found byGen, are
subsets of the fronts for the Man configuration. This is also
confirmed by the data in Table 13. Man has a BSR rate of
100%, whileGen only has a BSR rate of 22.4%. In this case,
Man also includes all the solutions generated by Gen. For
model B the Mann–Whitney test shows at 5% confidence
level that Man finds solutions of better quality than Gen,
with a large effect size.

123

Automatic generation of atomic multiplicity-preserving search operators... 1879

Table 13 NRP results for Man
and Gen

Config Evol Median Min Max SD RS RSC BSR

Man A 750 0.791 0.791 0.791 0.000 32 32 1.00

Gen A 750 0.791 0.791 0.791 0.000 32 32 1.00

Man B 1500 0.718 0.712 0.722 0.003 281 281 1.00

Gen B 1500 0.641 0.635 0.643 0.002 281 63 0.22

For each model, the best configuration is highlighted in bold

Table 14 Summary of NRP
mutation operators for Man and
Gen

Manual Gen aMPSO

Modify software artifact N/A

Modify SA with dependencies N/A

Assign highest realisation N/A

Fix dependencies N/A

N/A Add software artifact

N/A Remove software artifact (PAC)

We attribute this behaviour to how the Man operators
have been designed, compared to the ones automatically
generated. The Man operators are developed such that
a SoftwareArtifact, together with all its dependen-
cies, are all assigned to a Solution in a single application.
At the same time, the Gen operators assign Software-
Artifacts, one by one, by adding or removing edges, in
atomic operations. Because the Customer Satisfaction objec-
tive does not guide the solutions, unless all Software-
Artifacts realising a complete Realisation are assigned,
Gen is slower at finding converging solutions, requiringmore
evolutions. However, comparing the structure of the opera-
tors, a single operation of the manual operator, which moves
a SoftwareArtifact together with all its dependencies
in a single evolution, is equivalent to multiple applications
of the Gen operator for adding an edge.

This suggests that we may be able to overcome Gen’s
deficiency by allowing multiple Gen operators to be applied
in each algorithm step.We refer to the number of applications
as the ’step size’.

Allowing the search to apply multiple mutation steps to
derive an offspring model allows the generated mutation
operators to outperform the manually constructed ones. This
is remarkable given that the generated operators are much
simpler than the manually constructed ones for the NRP case
study. However, it is worth noting that the success of this
approach depends on how the operators are applied: recurrent
application of the same operator multiple times is helpful,
non-recurrent application, consisting of randomly choosing
a new operator for each application is not.

This behaviour can be observed in the reference set solu-
tions found by each mutation application strategy, as can
be seen in Figs. 25 and26. For this case study, the recurring
mutation application strategy is better than the non-recurring

(a) (b)

Fig. 25 Comparison of NRP reference set Pareto fronts for Man and
Gen with a mutation step size of 5 and recurrent mutation application

(a) (b)

Fig. 26 Comparison of NRP reference set Pareto fronts for Man and
Gen with a mutation step size of 5 and non-recurrent mutation applica-
tion

one. In Fig. 273 we include charts that compare the median
hypervolume betweenMan andGenwith a step size of 1 and

3 The charts in this figure show hypervolume for the step size 1 metric
calculated against a reference point that includes the additional solutions
found by the increased step size strategies. This causes the step size 1
hypervolumemetric to be lower than those reported in Table 13 because
the step size 1 reference set covers a smaller portion of the step size 5
reference set.

123

1880 A. Burdusel et al.

(a) (b) (c)

Fig. 27 Pairwise comparison of NRP hypervolume between Man and
Gen configurations with a mutation step size of 1 and a mutation step
size of 5 using recurrent mutation application. The X-axis shows the

number of algorithm steps, and the Y -axis shows the median hypervol-
ume calculated across all experiment batches

Man and Genwith a step size of 5, using recurring mutation
application.

For input model A, the additional step size does not lead to
finding better solutions for either configuration. Therefore,
we do not include the charts for this model.

For input model B, Man can find a better median hyper-
volume with the increased step size. The Gen configuration
also finds better solutionswith the increased step size and can
find identical solutions to the ones foundbyMan. Comparing
the HV of Genwith step size 5 andManwith step size 1, we
can see that by using the aMPSOs combined with increased
step size, the search can find results that are better than the
configuration using more complex manually designed muta-
tion operators.

Figure 27c shows that Man finds a better hypervolume
faster than Gen when either set of operators are used with
a step size of 5. This effect appears because the Man oper-
ators perform more than one atomic operation in a single
application, and by increasing the step size, the number of
performed operations also increases, leading to faster conver-
gence. The Gen configuration needs more time to identify
the ideal order of mutations to apply to search solution candi-
dates to find the same solutions. Both configurations plateau
after 1000 evolutions.

An in-depth analysis of this effect is out-of-scope for the
present paper.We areworking on a detailed analysis of differ-
ent mutator selection and application strategies, which will
be presented in a future publication.

These results help us answer our RQ for this case study by
showing that atomic operators generated using our approach
can be just as good as more complex manually created muta-
tions.

6.4 Search operators efficiency comparison

We also compared the efficiency of the generated operators
with the manually created ones. In the NRP case study, the
generated operators led to shorter (or at most equal) aver-
age runtimes for the ES. For the CRA and SP scenarios, the
generated rules were less efficient than the manual ones.

In Table 15, we include a runtime summary for the two
configurations we are evaluating across all input models for
the CRA case study. We observe a higher runtime for Gen
configurations, that is almost double the time required by the
Man configuration. We attribute this difference to the higher
number of rules used by the Gen configuration. We differ-
entiate two different matching strategies in MDEOptimiser:
the classic strategy4 first finds all possible matches for all
operators and then uniformly randomly selects one of them,
while the non-deterministic matching strategy uses Hen-
shin’s non-deterministic matching algorithm by uniformly
randomly selecting one mutation operator and then letting
Henshin apply this for a random match. For the CRA case,
there are more generated operators than manual ones, which
means that more matches must be generated in the ‘classic
strategy’. As a result, under this strategy, the search with
generated rules took up to approximately 3 times as long
as with manual rules as shown in Table 15. With the ‘non-
deterministic matching strategy’, the generated rules led to a
faster search than the manual rules.

In Table 16, we include a summary of the runtime for the
SP case study. We observe that Gen is slower than Man.
After closely inspecting the generated results, we observed
thatGen findsmore constraint satisfying solutions, andmore

4 Which the tool authors used in their submission to TTC’16 [9].

123

Automatic generation of atomic multiplicity-preserving search operators... 1881

Table 15 Summary of CRA elapsed time in seconds for the Man and Gen configurations across all input models using ‘classic’ matching

Time Man A Gen A Man B Gen B Man C Gen C Man D Gen D Man E Gen E

Mean 15.10 27.90 23.27 43.76 41.32 75.28 611.40 1177.70 2972.65 4298.16

Median 14.92 27.61 22.04 44.24 41.07 75.65 590.75 1188.91 2869.16 4198.20

Min 11.44 26.48 17.33 33.92 26.79 64.19 452.90 991.29 2193.35 3582.67

Max 17.64 30.09 34.99 50.13 58.43 86.35 853.47 1416.96 4202.11 5189.39

Table 16 Summary of SP elapsed time in seconds for the Man and
Gen configurations across all input models using ‘non-deterministic’
matching

Time Man A Gen A Man B Gen B

Mean 119.13 291.25 484.90 3069.18

Median 120.67 291.87 487.76 3016.74

Min 107.63 261.25 447.16 2686.92

Max 130.47 367.78 510.77 4171.07

Table 17 Summary of NRP elapsed time in seconds for the Man and
Gen configurations across all input models using ‘non-deterministic’
matching

Time Man A Gen A Man B Gen B

Mean 275.42 223.42 1677.80 1355.29

Median 274.96 224.27 1676.22 1348.97

Min 258.84 215.79 1610.85 1312.45

Max 307.71 234.52 1813.63 1412.93

time is spent evaluating the fitness functions. At the same
time, the NSGA-II archive contains more solutions for the
Gen configuration compared toMan, which results in more
time being required to perform the required domination and
crowding comparisons. This leads to an increase in the run-
time for Gen.

Table 17 shows the runtime summary for the NRP case
study. For both input models in this case study, the Gen con-
figuration reaches the termination condition in less time than
Man. This time difference is caused by the Man operators,
which are more complex than the Gen ones (Add Software
Artifact and Remove Software Artifact) and require more
time to be applied.

In Fig. 28, we show the values returned by each individual
problem constraint function for the Man and Gen configu-
rations in the CRA and SP case studies.

The values shown are the medians for each problem con-
straint function (one constraint function for CRA and two
constraints for SP) over the 30 experiment repetitions.

A solution candidate is considered feasible with respect to
the problem constraint functions when the constraint func-
tions return a value of 0. A value returned by a constraint

function, different from 0, indicates how far a solution is
from satisfying the constraint.

The metrics are calculated using the solutions in the algo-
rithm archive. Across all the CRA problem instances, we can
observe that the number of steps required to satisfy the prob-
lem constraint (minimise the number of features not assigned
to a class) is identical for all problem instances for bothMan
and Gen. For input model E, Gen is slightly faster at finding
solutions that satisfy the problem constraint; however, the
difference in the number of steps is small. We attribute this
effect to the higher number of mutation operators in the Gen
configuration, which can improve the problem constraint.

In the SP case study, for Constraint 1, bothMan and Gen
require a similar number of steps to find satisfying solutions.
As in the case of the CRA problem instances,Gen is slightly
faster at finding solutions that satisfy Constraint 1 for both
problem instances in this case study.

For Constraint 2, as shown in Fig. 28g for input model
A and Fig. 28i for input model B, Man is unable to find
constraint satisfying solutions and for some experiments it
gets stuck in local optima. This is indicated by the flatmedian
constraint value observed in the charts.

6.5 Threats to validity

The validity of the conclusions we draw from our data
depends on a number of factors: (1) the degree to which the
selected case studies are representative of real-world prob-
lems, (2) the chosen hyperparameters (e.g. population size,
number of evolutions, ...), (3) the degree to which the chosen
input models are realistic and representative of real-world
problems, and (4) the provenance of the manual rules used
in our experiments.

We used a varied selection of case studies that cover both
single and multi-objective scenarios and allow a system-
atic exploration of different aspects of the overall problem.
All hyperparameter values were selected systematically to
ensure that no approach is favoured over the other.We applied
the recommended steps to ensure that our results are accu-
rate and correctly interpreted and described [4]. Inputmodels
were either provided as part of pre-existing case studies
(CRA [19]), or were randomly generated, ensuring consis-
tency with the given problem metamodel. Recently, better

123

1882 A. Burdusel et al.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 28 Comparison of the median constraint values for the CRA and SP case studies. The X axis shows the number of algorithm steps, and the Y
axis shows the median constraint value calculated across all experiment batches for the specific problem instance

model generators have been proposed [40,41] that aim to
produce more realistic model instances for such evaluations.
We are interested in exploring the use of such generators
for further evaluation of our approach. Finally, the manual
rules that we used in our experiments were all producedwith-
out consideration of the generative principles we propose in
this paper: the CRA rules were produced by the authors in

2016 [9], well before we started considering the automatic
generation of rules; the SP rules are very similar to the CRA
rules. The 3rd author, who was not involved in the design of
the rule generation algorithm, produced the NRP rules taking
into account the structure of the objective functions during
rule construction.

123

Automatic generation of atomic multiplicity-preserving search operators... 1883

7 Related work

7.1 Model-based optimisation

Moawad et al. [35] proposed Polymer, an approach that runs
search directly over models using an optimisation frame-
work that is built as an extension of the Kevoree modelling
framework [20]. Polymer offers interfaces for implementing
variation operators and fitness functions. Compared to our
approach Polymer does not use model transformations to
evolve models. Instead, variation operators and fitness func-
tions are executed directly over models and are implemented
as Java classes by the user, making use of domain-specific
entities specified in the metamodel. Specifying mutation
operators using Java, however,makes itmore difficult to auto-
matically generate them.

Fleck et al. [18] proposed marrying optimisation and
model transformations (MOMoT), a tool that optimises
sequences of model transformation rules applications.
MOMoT is implemented as an Eclipse plugin and allows
users to specify optimisation problems using a flexible DSL.
The model transformations used by MOMoT are encoded
using Henshin. The tool uses mutation and crossover search
operators applied to the search solution candidates encoded
as sequences of transformation rules applications. An addi-
tional repair step is required during the search to ensure that
after the application of search operators, the resulting rules
applications sequences produce feasible solutions. The opti-
misation algorithms used byMOMoTare implemented using
MOEAFramework.

Abdeen et al. [1] proposed a multi-objective, rule-based
design space exploration (DSE) framework built using
the ViatraDSE framework [24]. The multi-objective imple-
mentation uses the NSGA-II algorithm to find efficient
model derivation chains. The framework uses mutation and
crossover operators, and a repair mechanism is implemented
to ensure that the resulting sequences of transformation rules
applications produce feasible solutions. Infeasible rule appli-
cations sequences are truncated or discarded if they cannot
be applied to the initial model.

Because they encode search solution candidates as
sequences of transformation rules applications, both Via-
traDSE and MOMoT can use mutation and crossover search
operators, while in MDEOptimiser, which searches directly
over models, only mutation is currently supported.

ViatraDSE and MOMoT have the advantage that they
can be more memory efficient compared to model-based
approaches because they only keep a sequence of transforma-
tions to be applied to an initial model compared to individual
copies of models.

One drawback of this approach is that for each fitness eval-
uation, the sequence of transformations (sometimes along

with potential repair operations) has to be applied to obtain
a phenotype for evaluation.

Compared to MDEOptimiser, ViatraDSE and MOMoT
do not offer any mutation operator generation, and users are
required to provide model transformations to be used for
search space exploration. John et al. [26] evaluate the perfor-
mance of model-based and rule-based search by comparing
MDEOptimiser and MOMoT.

Other uses of model-based search techniques are the
approaches used to solve the problem of metamodel/model
co-evolution, either automatically [30] or interatively [29,
31]. In their automated approach, Kessentini et al. [30]
require the user to provide as inputs the initial and revised
metamodels, a set of input models conforming to the origi-
nal model and a set of allowed edit operations. The generated
outputs consist of minimal sequences of transformations to
apply to the input models so they conform to the revised
metamodels. In the interactive metamodel/model evolution
approach [29], the authors use clustering to reduce the num-
ber of feasible search solutions and use human input to guide
the search towards preferred solutions.

Mutation Generation The generation of mutation operators
for evolutionary algorithms has been studied in the wider
optimisation literature. To the best of our knowledge, Fit-
nessStudio [42] is the only approach in an MDE context.
FitnessStudio is a meta-learning tool for generating in-place
model transformation rules that can be used as search oper-
ators in model-based optimisation. The algorithm generates
mutation operators that obtain good results for the CRA case
study [19]. The main drawback is that the user is required to
first execute a learning operation on a test model and then run
the optimisation with the generated rules on the rest of the
models that have to be optimised. The effectiveness of the
approach depends on the model used for learning, its cov-
erage of the metamodel and its similarity to the remaining
models. In contrast to FitnessStudio, our approach does not
require the additional meta-learning step.

Honget al. [25] present anofflinehyper-heuristic approach
that automatically generatesmutationoperators usinggenetic
programming and meta-learning. These are then used in evo-
lutionary programming to solve several test functions. This
technique requires an already existinggenetic encodingof the
problem. In contrast, we support problems that are naturally
encoded in a suitable domain-specific modelling language.
The work of Hong et al. [25] is similar to the work of
Strüber [42], requiring a training step to first generate the
mutation operators, which are then used to solve other prob-
lems. Our algorithm generates the mutation operators using
the problem specification and does not require a training step.

Alhwikem et al. [3] introduce an approach for generat-
ing mutation operators for MDE languages. The goal of this
approach is to use the generated operators to generate test

123

1884 A. Burdusel et al.

inputs when performing mutation analysis. The systemati-
cally generated mutations can be used to change features of
Ecore-basedmodels by adding, removing or changing values
of a model feature in order to increase test coverage.

The atomic mutations generated by this approach are sim-
ilar to some operations we generate for the simple cases,
namely to add, remove and change an element. In addition to
these operators, our approach also generates more complex
repairs.

Mengerink et al. [34] propose a methodology for creating
a complete DSL operator library for evolving EMF-based
languages. The operators are atomic, and the proposed list of
themost used operators, based on their occurrence in theDSL
evolution history, includes the aMPSO and MPSO operators
generated by our approach and the SERGe rules generator.
This library aims to be a complete list of all the possible
atomic mutation operators for EMF-based languages. The
important contribution we make is to selectively generate
only those operators useful in the context of ES.

Kosiol et al. [32] propose a classification and formalisation
for graph transformations based on the effect they have on
the graph constraints: consistency sustaining transformations
manipulate graphswithout decreasing the number of satisfied
constraints; consistency improving transformations, seek to
reduce the number of graph constraint violations. The for-
malisation proposed by the authors enables precise reasoning
about the behaviour of graph transformations used as search
operators. Kosiol et al. [32] also provide static analysis tech-
niques for checking if a transformation rule is sustaining or
improving. It would be interesting to apply this analysis to
the rules generated by our approach.

Mutation Weighting Doerr et al. [16] propose the use of
operator strengths to increase the degree of changes per-
formed by an operator. The authors show that a combination
of atomic changes combined with variably sized changes, is
the best for increasing the speed of solving optimisation prob-
lems. Using only atomic operators, the search can be slow,
requiring many steps to be performed, while using operators
that perform bigger changes, the search can have difficulty
in finding neighbouring solutions that have better fitness.

The case study evaluation presented in this paper showed
that this is also a problem affecting our approach. For NRP
and the case study presented by Murphy et al. [36], the
generated aMPSOs require more applications to find good
solutions, compared to operators that perform multiple oper-
ations in a single step. One potential solution to this problem
is increasing the number of evolutions, and at the expense of
longer runtime, the search can find better solutions if the fit-
ness functions can efficiently guide each aMPSOapplication.
Alternatively, the problem can be solved using a combina-
tion of operators consisting of aMPSOs and compositions of
multiple aMPSOs that are applied in a single step. Our ini-

tial experiments using this approach for the NRP case study,
in which we applied 5 aMPSOs in a single evolution step,
have shown promising results. This is a problem we seek to
explore in future work to improve the performance of aMP-
SOs generated using our approach.

8 Conclusions

We showed how mutation operators for search-based model
engineering can be generated automatically without the need
for meta-learning. The efficiency and effectiveness of the
atomic multiplicity-preserving search operators (aMPSOs)
we generate are comparable to search operators manually
specified by expert users (and better in some cases).However,
automatic generation requires less human effort and reduces
the risk of accidentally introduced errors.

Our generated rules coped well with single- and multiple-
objective problems as well as with a problem where the
objective function provides only fairly coarse-grained guid-
ance to the search. However, improvements are clearly
possible. In particular, in our future work, we plan to inves-
tigate the following questions:

– We validated the correctness of our approach by using
a suite of unit tests to check that the generation algo-
rithm produces the expected output for each supported
scenario. Formalising our approach, along with provid-
ing a correctness and completeness proof, is left for future
work.

– In the CRA case study, we saw that the startup behaviour
of our generated rules differs from that of the manual
rules, such that the manual rules find better solutions in
early evolutions. We will study what affects this startup
behaviour and how we may be able to improve our gen-
erated rules in this area. For example, it may be useful to
use separate sets of rules for the two phases of the search
(cf. Sect. 4.1) to ensure more focused exploration during
the first phase.

– Optimisation problems use other constraints beyondmul-
tiplicities.
Arbitrary constraints are difficult to handle without addi-
tional user input; however, specific types of constraints
or constraint templates can be more easily incorporated.
For example, we are currently working on implementing
rule generation for feature-model constraints.

– Recursive repair offers additional opportunities for repair
in MPSOs, but at the cost of higher generation effort and
a larger set of search operators. Which, if any, recursive
repair strategies offer benefits to the overall search?

– Some problems, including some of the examples dis-
cussed in this paper, may be solvable by optimising
constraint solvers. However, constraint solvers work off

123

Automatic generation of atomic multiplicity-preserving search operators... 1885

a relatively low-level problem encoding, making them
more difficult to use. We are interested in understand-
ing if, and under what circumstances, it is possible to
translate automatically from our high-level problem rep-
resentation into an encoding that can be efficiently solved
by a constraint solver.

Acknowledgements This work has been supported by the Engineer-
ing and Physical Sciences Research Council (EPSRC) under Grant
No.1805606.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Abdeen, H., Varró, D., Sahraoui, H., Nagy, A.S., Debreceni, C.,
Hegedüs, Á., Horváth, Á.: Multi-objective optimization in rule-
based design space exploration. In: Proceedings of International
Conference on Automated Software Engineering, pp. 289–300.
ACM (2014). https://doi.org/10.1145/2642937.2643005

2. Aleti, A., Moser, I.: A systematic literature review of adaptive
parameter control methods for evolutionary algorithms. ACM
Comput Surv (2016). https://doi.org/10.1145/2996355

3. Alhwikem, F.H.M., Paige, R.F., Rose, L.M., Alexander, R.D.: A
systematic approach for designing mutation operators for MDE
languages. In: Proceedings of Workshop on Model-Driven Engi-
neering, Verification and Validation, vol. 1713, pp. 54–59. CEUR
(2016)

4. Arcuri, A., Briand, L.: A hitchhiker’s guide to statistical tests for
assessing randomized algorithms in software engineering. Softw.
Test. Verif. Reliab. 24(3), 219–250 (2014). https://doi.org/10.1002/
stvr.1486

5. Arendt, T., Biermann, E., Jurack, S., Krause, C., Taentzer, G.:
Henshin: advanced concepts and tools for in-place EMF model
transformations. In: Proceedings of International Conference on
Model Driven Engineering Languages and Systems, pp. 121–135
(2010). https://doi.org/10.1007/978-3-642-16145-2_9

6. Bézivin, J.:Model driven engineering: an emerging technical space,
pp. 36–64 (2005). https://doi.org/10.1007/11877028_2

7. Biermann, E., Ermel, C., Taentzer, G.: Formal foundation of
consistent EMF model transformations by algebraic graph trans-
formation. Softw. Syst. Model. 11(2), 227–250 (2012)

8. Boussaïd, I., Siarry, P., Ahmed-Nacer, M.: A survey on search-
based model-driven engineering. Autom. Softw. Eng. 24(2), 233–
294 (2017). https://doi.org/10.1007/s10515-017-0215-4

9. Burdusel, A., Zschaler, S.: Model optimisation for feature class
allocation using MDEOptimiser: a TTC 2016 submission. In: Pro-
ceedings of 9th Transformation Tool Contest, pp. 33–38. CEUR
(2016)

10. Burdusel, A., Zschaler, S.: Towards scalable search-based model
engineering with MDEOptimiser Scale. In: Proceedings of Work-
shop on Artificial Intelligence and Model-Driven Engineering, pp.
189–195. IEEE (2019). https://doi.org/10.1109/models-c.2019.
00032

11. Burdusel,A., Zschaler, S., John, S.:Automatic generationof atomic
consistency preserving searchoperators for search-based model
engineering—accompanying data. http://dx.doi.org/10.6084/m9.
figshare.12284468

12. Burdusel,A., Zschaler, S., John, S.:Automatic generationof atomic
consistency preserving search operators for search-based model
engineering. In: Proceedings of International Conference onModel
Driven Engineering Languages and Systems, pp. 106–116. IEEE
(2019). https://doi.org/10.1109/models.2019.00-10

13. Choco-solver. https://choco-solver.org/. Accessed: 2020 Nov 04
14. Cohen, J.: Statistical Power Analysis for the Behaviors Science,

2nd edn. Laurence Erlbaum Associates, London (1988)
15. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and

elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans.
Evol. Comput. 6(2), 182–197 (2002). https://doi.org/10.1109/
4235.996017

16. Doerr, B., Doerr, C., Kötzing, T.: The right mutation strength for
multi-valued decision variables. In: Proceedings of the Genetic
and Evolutionary Computation Conference, pp. 1115–1122. ACM
(2016)

17. Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computing,
2nd edn. Springer, Berlin (2015). https://doi.org/10.1007/978-3-
662-44874-8

18. Fleck, M., Troya, J., Wimmer, M.: Search-based model transfor-
mations. J. Softw. Evol. Process 28(12), 1081–1117 (2016). https://
doi.org/10.1002/smr.1804

19. Fleck, M., Troya, J., Wimmer, M.: The class responsibility assign-
ment case. In: Proceedings of 9th Transformation Tool Contest,
vol. 1758, pp. 1–8. CEUR (2016)

20. Fouquet, F., Nain, G., Morin, B., Daubert, E., Barais, O., Plouzeau,
N., Jézéquel, J.M.: An EclipseModelling Framework alternative to
meet the models@runtime requirements. In: Proceedings of Inter-
national Conference on Model Driven Engineering Languages and
Systems, pp. 87–101. Springer (2012)

21. Frisch, A.M., Harvey, W., Jefferson, C., Martínez-Hernández, B.,
Miguel, I.: Essence: A constraint language for specifying combi-
natorial problems. Constraints 13(3), 268–306 (2008)

22. Hansen, M.P., Jaszkiewicz, A.: Evaluating the quality of approx-
imations to the non-dominated set. Technical Report. IMM-REP-
1998-7, Technical University of Denmark, Department of Mathe-
matical Modelling (1998)

23. Harman, M., Jones, B.F.: Search-based software engineering. Inf.
Softw. Technol. 43(14), 833–839 (2001). https://doi.org/10.1016/
S0950-5849(01)00189-6

24. Hegedüs, Á., Horváth, Á., Ráth, I., Varró, D.: A model-driven
framework for guided design space exploration. In: Proceedings
of the 26th IEEE/ACM International Conference Automated Soft-
ware Engineering (ASE’11), pp. 173–182 (2011). https://doi.org/
10.1109/ASE.2011.6100051

25. Hong, L., Drake, J.H., Woodward, J.R., Özcan, E.: A hyper-
heuristic approach to automated generation of mutation operators
for evolutionary programming. Appl. Soft Comput. 62, 162–175
(2018). https://doi.org/10.1016/j.asoc.2017.10.002

26. John, S., Burdusel, A., Bill, R., Struber, D., Taentzer, G., Zschaler,
S., Wimmer, M.: Searching for optimal models: comparing two
encoding approaches. Proc. Int. Conf. Model Transform. (2019).
https://doi.org/10.5381/jot.2019.18.3.a6

27. Kehrer, T.: Calculation and propagation of model changes based on
user-level edit operations: a foundation for version and variantman-
agement in model-driven engineering. PhD thesis, University of

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/2642937.2643005
https://doi.org/10.1145/2996355
https://doi.org/10.1002/stvr.1486
https://doi.org/10.1002/stvr.1486
https://doi.org/10.1007/978-3-642-16145-2_9
https://doi.org/10.1007/11877028_2
https://doi.org/10.1007/s10515-017-0215-4
https://doi.org/10.1109/models-c.2019.00032
https://doi.org/10.1109/models-c.2019.00032
http://dx.doi.org/10.6084/m9.figshare.12284468
http://dx.doi.org/10.6084/m9.figshare.12284468
https://doi.org/10.1109/models.2019.00-10
https://choco-solver.org/
https://doi.org/10.1109/4235.996017
https://doi.org/10.1109/4235.996017
https://doi.org/10.1007/978-3-662-44874-8
https://doi.org/10.1007/978-3-662-44874-8
https://doi.org/10.1002/smr.1804
https://doi.org/10.1002/smr.1804
https://doi.org/10.1016/S0950-5849(01)00189-6
https://doi.org/10.1016/S0950-5849(01)00189-6
https://doi.org/10.1109/ASE.2011.6100051
https://doi.org/10.1109/ASE.2011.6100051
https://doi.org/10.1016/j.asoc.2017.10.002
https://doi.org/10.5381/jot.2019.18.3.a6

1886 A. Burdusel et al.

Siegen (2015). http://dokumentix.ub.uni-siegen.de/opus/volltexte/
2015/963/

28. Kehrer, T., Taentzer, G., Rindt, M., Kelter, U.: Automatically
deriving the specification of model editing operations from meta-
models. In: Proceedings of International Conference onTheory and
Practice of Model Transformations, pp. 173–188 (2016). https://
doi.org/10.1007/978-3-319-42064-6_12

29. Kessentini, W., Alizadeh, V.: Interactive metamodel/model co-
evolution using unsupervised learning and multi-objective search.
In: Proceedings of the International Conference on Model Driven
Engineering Languages and Systems, pp. 68–78 (2020)

30. Kessentini, W., Sahraoui, H., Wimmer, M.: Automated meta-
model/model co-evolution: a search-based approach. Inf. Softw.
Technol. 106, 49–67 (2019)

31. Kessentini,W.,Wimmer,M., Sahraoui, H.: Integrating the designer
in-the-loop formetamodel/model co-evolution via interactive com-
putational search. In: Proceedings of the International Conference
on Model Driven Engineering Languages and Systems, pp. 101–
111 (2018)

32. Kosiol, J., Strüber,D., Taentzer, G., Zschaler, S.: Graph consistency
as a graduated property: consistency-Sustaining and -Improving
graph transformations. In: Proceedings of International Conference
on Graph Transformation, pp. 189–195. Springer (2020). https://
doi.org/10.1007/978-3-030-51372-6_14

33. Mann,H.B.,Whitney,D.R.:On a test ofwhether one of two random
variables is stochastically larger than the other. Ann. Math. Stat.
18(1), 50–60 (1947). https://doi.org/10.1214/aoms/1177730491

34. Mengerink, J.G.M., Serebrenik, A., Schiffelers, R.R.H., v. d.
Brand, M.G.J.: A complete operator library for DSL evolution
specification. In: Proceedings of the International Conference on
Software Maintenance and Evolution, pp. 144–154. IEEE (2016).
https://doi.org/10.1109/ICSME.2016.32

35. Moawad, A., Hartmann, T., Fouquet, F., Nain, G., Klein, J.,
Bourcier, J.: Polymer: a model-driven approach for simpler, safer,
and evolutive multi-objective optimization development. In: Pro-
ceedings of International Conference on Model-Driven Engineer-
ing and Software Development, pp. 1–8. IEEE (2015)

36. Murphy, J., Burdusel, A., Michael, L., Zschaler, S., Black, E.:
Deriving persuasion strategies using search-based model engineer-
ing. In: Proceedings of International Conference on Computational
Models of Argument, vol. 305, pp. 221–232. IOS Press (2018)

37. Nagy, A.S., Szárnyas, G.: Class responsibility assignment case: a
Viatra-DSE solution. In: Proceedings of the 9th transformation tool
contest, pp. 39–344. CEUR (2016)

38. Nassar, N., Radke, H., Arendt, T.: Rule-based repair of EMF
models: an automated interactive approach. In: Proceedings of
international conference on theory and practice of model transfor-
mations, pp. 171–181. Springer (2017). https://doi.org/10.1007/
978-3-319-61473-1_12

39. Rubin, K.S.: Essential Scrum. Addison-Wesley, New York (2012)
40. Schneider, S., Lambers, L., Orejas, F.: Symbolic model generation

for graph properties. In: Proceedings of International Conference
on Fundamental Approaches to Software Engineering, pp. 226–
243. Springer (2017). https://doi.org/10.1007/978-3-662-54494-
5_13

41. Semeráth, O., Nagy, A.S., Varró, D.: A graph solver for the
automated generation of consistent domain-specific models. In:
Proceedings of the International Conference on Software Engi-
neering, pp. 969–980. ACM (2018)

42. Strüber, D.: Generating efficient mutation operators for search-
based model-driven engineering. In: Proceedings of International
Conference on Theory and Practice of Model Transformations,
pp. 121–137. Springer (2017). https://doi.org/10.1007/978-3-319-
61473-1_9

43. Strüber, D., Born, K., Gill, K.D., Groner, R., Kehrer, T., Ohrndorf,
M., Tichy, M.: Henshin: a usability-focused framework for EMF

model transformation development. In: Proceedings of Interna-
tionalConference onGraphTransformation, pp. 196–208. Springer
(2017). https://doi.org/10.1007/978-3-319-61470-0_12

44. Tisi, M., Jouault, F., Fraternali, P., Ceri, S., Bézivin, J.: On the use
of higher-order model transformations. In: Proceedings of Euro-
pean Conference onModel Driven Architecture—Foundations and
Applications, pp. 18–33. Springer (2009). https://doi.org/10.1007/
978-3-642-02674-4_3

45. Zhang, Y., Harman, M., Mansouri, S.A.: The multi-objective next
release problem. In: Proceedings of Annual Conference onGenetic
and Evolutionary Computation, pp. 1129–1137 (2007). https://doi.
org/10.1145/1276958.1277179

46. Zitzler, E., Thiele, L.:Multiobjective optimization using evolution-
ary algorithms—a comparative case study. In: Eiben, A.E., Bäck,
T., Schoenauer, M., Schwefel, H.P. (eds.) Parallel Problem Solving
from Nature-PPSN V, pp. 292–301. Springer, Berlin (1998)

47. Zschaler, S., Mandow, L.: Towards model-based optimisation:
using domain knowledge explicitly. In: Proceedings of Workshop
on Model-Driven Engineering, Logic and Optimization, pp. 317–
329 (2016). https://doi.org/10.1007/978-3-319-50230-4_24

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Alexandru Burdusel is currently a
Research Associate at King’s Col-
lege London. His research focuses
on argumentation, planning, opti-
misation methods, model-driven
engineering and search-based soft-
ware engineering. He received his
doctoral degree in Computer Sci-
ence from King’s College Lon-
don.

Steffen Zschaler is a Research
Associate at King’s College Lon-
don, UK, and director o MDENet,
the expert network in
model-driven engineering
(www.mde-network.org). His
research focuses on the founda-
tions, tools, and applications of
model-driven engineering, includ-
ing search-based approaches to
finding optimal models, support
for modular models and transfor-
mations, and modelling languages
for simulation engineering. He
obtained his doctoral degree from

Technische Universität Dresden, Germany. More information is avail-
able at www.steffen-zscaler.de.

123

http://dokumentix.ub.uni-siegen.de/opus/volltexte/2015/963/
http://dokumentix.ub.uni-siegen.de/opus/volltexte/2015/963/
https://doi.org/10.1007/978-3-319-42064-6_12
https://doi.org/10.1007/978-3-319-42064-6_12
https://doi.org/10.1007/978-3-030-51372-6_14
https://doi.org/10.1007/978-3-030-51372-6_14
https://doi.org/10.1214/aoms/1177730491
https://doi.org/10.1109/ICSME.2016.32
https://doi.org/10.1007/978-3-319-61473-1_12
https://doi.org/10.1007/978-3-319-61473-1_12
https://doi.org/10.1007/978-3-662-54494-5_13
https://doi.org/10.1007/978-3-662-54494-5_13
https://doi.org/10.1007/978-3-319-61473-1_9
https://doi.org/10.1007/978-3-319-61473-1_9
https://doi.org/10.1007/978-3-319-61470-0_12
https://doi.org/10.1007/978-3-642-02674-4_3
https://doi.org/10.1007/978-3-642-02674-4_3
https://doi.org/10.1145/1276958.1277179
https://doi.org/10.1145/1276958.1277179
https://doi.org/10.1007/978-3-319-50230-4_24
http://www.mde-network.org
http://www.steffen-zscaler.de

Automatic generation of atomic multiplicity-preserving search operators... 1887

Stefan John is a Ph.D. student at
the Phillips-Universität Marburg.
His current research interests are
in model-driven engineering and
search-based software engineering,
with a focus on investigating evo-
lutionary search operators in the
context of model-driven optimisa-
tion. Contact him at stefan.john
@uni-marburg.de.

123

	Automatic generation of atomic multiplicity-preserving search operators for search-based model engineering
	Abstract
	1 Introduction
	2 Background
	3 Running example
	4 Generating mutation operators
	4.1 Requirements on mutation operators
	4.2 General structure of MPSOs
	4.3 Generation algorithm
	4.3.1 Manipulating nodes
	4.3.2 Manipulating edges
	4.3.3 Iterative repair
	4.3.4 Generation algorithm completeness
	4.3.5 Generation algorithm limitations

	4.4 Running search with aMPSOs

	5 Experiments
	5.1 Case studies
	5.1.1 Class-responsibility assignment
	5.1.2 Scrum planning
	5.1.3 Next release problem

	5.2 Experiment configurations

	6 Results
	6.1 Class responsibility assignment
	6.2 Scrum planning
	6.3 Next release problem
	6.4 Search operators efficiency comparison
	6.5 Threats to validity

	7 Related work
	7.1 Model-based optimisation

	8 Conclusions
	Acknowledgements
	References

