Skip to main content
Log in

GoRIM: a model-driven method for enhancing regulatory intelligence

  • Regular Paper
  • Published:
Software and Systems Modeling Aims and scope Submit manuscript

Abstract

Regulators are under constant pressure to demonstrate if and how the regulations they administer, which impose many requirements on various systems and processes, achieve intended societal outcomes. Traditionally, regulators have relied on impact assessments, risk analysis, and cost–benefit analysis to assess compliance with regulations. These methods, however, are effort and time intensive and focus on the efficiency of regulatory processes rather than on the effectiveness of the regulatory initiatives meant to improve compliance to regulations and the latter’s impact on intended societal outcomes. Goal-oriented modelling and data analytics approaches provide the basis for the development of more sophisticated methods and tools to better address the needs of regulators. This paper introduces the goal-oriented regulatory intelligence method (GoRIM), which enables effective management of regulations through modelling and data analytics. Through continuous monitoring, assessing, and reporting on efficiency and effectiveness aspects, GoRIM is meant to facilitate the analysis of feedback loops between regulations, regulatory initiatives, and societal outcomes. To demonstrate the applicability and perceived usefulness of GoRIM in addressing the first feedback loop between regulations and initiatives, we evaluated it through three case studies involving regulators from different contexts, with positive results. GoRIM extends the concept of regulatory intelligence beyond the analysis of compliance. It also provides practical guidelines and tools to regulators for making, in a timely way, evidence-based decisions related to the addition, modification, or repeal of regulations and related regulatory initiatives. In addition, GoRIM helps better identify software and information needs for enabling such decisions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Availability of data and material

The interview questionnaires used to validate GoRIM, together with the protocol and the thematic analysis of answers, are available at http://bit.ly/GoRIM-supp. Other data collected as part of this research cannot be made available due to constraints imposed by our institution’s Research Ethics Board.

Code availability

jUCMNav’s code, including OCL well-formedness rules, are available online at https://github.com/JUCMNAV/.

References

  1. Coglianese, C.: Measuring Regulatory Performance: Evaluating the Impact of Regulation and Regulatory Policy. OECD Publishing, Paris (2012). https://www.oecd.org/gov/regulatory-policy/1_coglianese%20web.pdf

  2. Plantin, G.: When Insurers Go Bust: An Economic Analysis of the Role and Design of Prudential Regulation. Princeton University Press, USA (2016)

    Google Scholar 

  3. OECD: OECD best practice principles for regulatory policy. OCSD iLibrary (2014). https://doi.org/10.1787/23116013

    Article  Google Scholar 

  4. Ellig, J., Broughel, J.: Regulation: What’s the Problem? George Mason University, USA (2011). https://www.mercatus.org/publication/regulation-whats-problem

  5. Crain, W.M., Crain, N.V.: The Cost of Federal Regulation to the US Economy, Manufacturing and Small Business. National Association of Manufacturers (2014). https://bit.ly/30GB3iB

  6. Head, B.W.: Three lenses of evidence-based policy. Aust. J. Public Adm. 67(1), 1–11 (2008). https://doi.org/10.1111/j.1467-8500.2007.00564.x

    Article  MathSciNet  Google Scholar 

  7. Parker, D., Kirkpatrick, C.: Measuring Regulatory Performance: The Economic Impact of Regulatory Policy: A Literature Review of Quantitative Evidence. OECD Publishing, Paris (2012). https://www.oecd.org/gov/regulatory-policy/3_Kirkpatrick%20Parker%20web.pdf

  8. Akhigbe, O., Amyot, D., Richards, G.: Information Technology Artifacts in the Regulatory Compliance of Business Processes: A Meta-Analysis, pp. 89–104. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-17957-5_6

    Book  Google Scholar 

  9. Gasmi, F., Noumba, P., Recuero Virto, L.: The role of institutional design in the conduct of infrastructure industry reforms—an illustration through telecommunications in developing countries. S. Afr. J. Inf. Commun. 200(9), 4–16 (2008). https://doi.org/10.23962/10539/19776

    Article  Google Scholar 

  10. Gasmi, F., Noumba, P., Recuero Virto, L.: Does political accountability matter for infrastructure regulation? The case of telecommunications. In: Infrastructure Regulation: What Works, Why and How Do We Know? pp. 61–82. World Scientific (2011). https://doi.org/10.1142/9789814335744_0003

  11. Berg, S.V.: Developments in best-practice regulation: principles, processes, and performance. Electr. J. 13(6), 11–18 (2000). https://doi.org/10.1016/S1040-6190(00)00120-2

    Article  Google Scholar 

  12. Berg, S.V.: Seven elements affecting governance and performance in the water sector. Util. Policy 43, 4–13 (2016). https://doi.org/10.1016/j.jup.2016.04.013

    Article  Google Scholar 

  13. Hahn, R., Hird, J.: The costs and benefits of regulation: review and synthesis. Yale J. Regul. 8(1), 233 (1991)

    Google Scholar 

  14. Savaya, R., Waysman, M.: The logic model: a tool for incorporating theory in development and evaluation of programs. Adm. Soc. Work 29(2), 85–103 (2005). https://doi.org/10.1300/J147v29n02_06

    Article  Google Scholar 

  15. Knowlton, L.W., Phillips, C.C.: The Logic Model Guidebook: Better Strategies for Great Results. SAGE, London (2012)

    Google Scholar 

  16. Felgate, T.: What is Regulatory Intelligence? (definitions) (2013). https://regulatory-intelligence.blogspot.com/2013/02/what-is-regulatory-intelligence.html

  17. Hynes, C.: Regulatory Intelligence: Implications for product development. TOPRA (2014). http://bit.ly/2pr5UiY

  18. Badreddin, O., Mussbacher, G., Amyot, D., Behnam, S.A., Rashidi-Tabrizi, R., Braun, E., Richards, G.: Regulation-based dimensional modeling for regulatory intelligence. RELAW 2013, 1–10 (2013). https://doi.org/10.1109/RELAW.2013.6671340

    Article  Google Scholar 

  19. Amyot, D., Mussbacher, G.: User requirements notation: the first ten years, the next ten years (invited paper). J. Softw. 6(5), 747–768 (2011)

    Article  Google Scholar 

  20. International Telecommunication Union.: Rec. Z.151 (10/18): User Requirements Notation (URN)-Language definition (2018). https://www.itu.int/rec/T-REC-Z.151/en

  21. Ghanavati, S., Amyot, D., Peyton, L.: A requirements management framework for privacy compliance. In: WER’07, pp. 149–159 (2007). http://www.inf.puc-rio.br/~wer/WERpapers/artigos/artigos_WER07/Qwer07-ghanavati.pdf

  22. Tawhid, R., Braun, E., Cartwright, N., Alhaj, M., Mussbacher, G., Shamsaei, A., Richards, G.: Towards outcome-based regulatory compliance in aviation security. In: 20th IEEE International Requirements Engineering Conference (RE), pp. 267–272 (2012). https://doi.org/10.1109/RE.2012.6345813

  23. Pourshahid, A., Amyot, D., Peyton, L., Ghanavati, S., Chen, P., Weiss, M., Forster, A.J.: Business process management with the user requirements notation. Electron. Commer. Res. 9(4), 269–316 (2009). https://doi.org/10.1007/s10660-009-9039-z

    Article  Google Scholar 

  24. Akhigbe, O., Amyot, D., Richards, G.: A systematic literature mapping of goal and non-goal modelling methods for legal and regulatory compliance. Requir. Eng. 24(4), 459–481 (2019). https://doi.org/10.1007/s00766-018-0294-1

    Article  Google Scholar 

  25. Aparicio, M., Costa, C.J.: Data visualization. Commun. Des. Q. 3(1), 7–11 (2015). https://doi.org/10.1145/2721882.2721883

    Article  Google Scholar 

  26. Radaelli, C., Fritsch, O.: Measuring regulatory performance: evaluating regulatory management tools and programmes. OECD Expert Paper No. 2 (2012). https://www.oecd.org/gov/regulatory-policy/2_Radaelli%20web.pdf

  27. Akhigbe, O., Amyot, D., Mylopoulos, J., Richards, G.: What can information systems do for regulators? A review of the state-of-practice in Canada. In: IEEE Eleventh International Conference on Research Challenges in Information Science (RCIS), pp. 57–65 (2017). https://doi.org/10.1109/RCIS.2017.7956518

  28. Nielsen, V., Parker, C.: Is it Possible to Measure Compliance? SSRN 935988 (2006). https://papers.ssrn.com/abstract=935988

  29. Robertson, A.S., Reisin Miller, A., Dolz, F.: Supporting a data-driven approach to regulatory intelligence. Nat. Rev. Drug Discov. (2020). https://doi.org/10.1038/d41573-020-00101-4

    Article  Google Scholar 

  30. Hevner, A., March, S.T., Park, J., Ram, S.: Design science in information systems research. MIS Quart. 28(1), 75–105 (2004)

    Article  Google Scholar 

  31. Wieringa, R.J.: Design Science Methodology for Information Systems and Software Engineering. Springer, Berlin (2014). https://doi.org/10.1007/978-3-662-43839-8_1

    Book  Google Scholar 

  32. Engström, E., Storey, M.A., Runeson, P., Höst, M., Baldassarre, M.T.: How software engineering research aligns with design science: a review. Empir. Softw. Eng. 25(4), 2630–2660 (2020). https://doi.org/10.1007/s10664-020-09818-7

    Article  Google Scholar 

  33. Bider, I., Perjons, E.: Design science in action: developing a modeling technique for eliciting requirements on business process management (BPM) tools. Softw. Syst. Model. 14, 1159–1188 (2015). https://doi.org/10.1007/s10270-014-0412-6

    Article  Google Scholar 

  34. Peffers, K., Tuunanen, T., Rothenberger, M., Chatterjee, S.: A design science research methodology for information systems research. J. Manag. Inf. Syst. 24(3), 45–77 (2007). https://doi.org/10.2753/MIS0742-1222240302

    Article  Google Scholar 

  35. Gregor, S., Hevner, A.: Positioning and presenting design science research for maximum impact. MIS Quart. 37(2), 337–356 (2013). https://doi.org/10.25300/MISQ/2013/37.2.01

    Article  Google Scholar 

  36. Braatz, B., Brandt, C.: A framework for families of domain-specific modelling languages. Softw. Syst. Model. 13, 109–132 (2014). https://doi.org/10.1007/s10270-012-0271-y

    Article  Google Scholar 

  37. van Brocke, J., Winter, R., Hevner, A., Maedche, A.: Special issue editorial—accumulation and evolution of design knowledge in design science research: a journey through time and space. J. Assoc. Inf. Syst. 21(3), 9 (2020). https://doi.org/10.17705/1jais.00611

    Article  Google Scholar 

  38. Venable, J., Pries-Heje, J., Baskerville, R.: FEDS: a framework for evaluation in design science research. Eur. J. Inf. Syst. 25(1), 77–89 (2016). https://doi.org/10.1057/ejis.2014.36

    Article  Google Scholar 

  39. Payne, G., Payne, J.: Key Concepts in Social Research. SAGE, London (2004)

    Book  Google Scholar 

  40. Mills, A., Durepos, G., Wiebe, E.: Encyclopedia of Case Study Research, Thousand Oaks, California (2010). https://doi.org/10.4135/9781412957397

  41. Yin, R.K.: Case Study Research: Design and Methods, 5th edn. SAGE, New York (2013)

    Google Scholar 

  42. Feldt, R., Magazinius, A.: Validity threats in empirical software engineering research—an initial survey. In: Proceedings of the 22nd International Conference on Software Engineering and Knowledge Engineering, pp. 374–379 (2010).

  43. Perry, D.E., Porter, A.A., Votta, L.G.: Empirical studies of software engineering: a roadmap. In: Proceedings of the Conference on the Future of Software Engineering, pp. 345–355 (2000). https://doi.org/10.1145/336512.336586

  44. Wieringa, R., Daneva, M.: Six strategies for generalizing software engineering theories. Sci. Comput. Program. 101, 136–152 (2015)

    Article  Google Scholar 

  45. Amyot, D., Shamsaei, A., Kealey, J., Tremblay, E., Miga, A., Mussbacher, G., Alhaj, M., Tawhid, R., Braun, E., Cartwright, N.: Towards advanced goal model analysis with jUCMNav. In: Advances in Conceptual Modeling (ER 2012), LNCS, vol. 7518, pp. 201–210 (2012). https://doi.org/10.1007/978-3-642-33999-8_25

  46. OMG.: Software & Systems Process Engineering Metamodel (SPEM), Version 2.0, formal/2008-04-01 (2008). https://www.omg.org/spec/SPEM/

  47. Kampars, J., Zdravkovic, J., Stirna, J., Grabis, J.: Extending organizational capabilities with Open Data to support sustainable and dynamic business ecosystems. Softw. Syst. Model. 19, 371–398 (2020). https://doi.org/10.1007/s10270-019-00756-7

    Article  Google Scholar 

  48. Shamsaei, A.: Indicator-based Policy Compliance of Business Processes. Doctoral thesis, University of Ottawa, Canada (2012). https://doi.org/10.20381/ruor-6171

  49. Akhigbe, O.: A Goal-Oriented Method for Regulatory Intelligence. Doctoral thesis, University of Ottawa, Canada (2018). https://doi.org/10.20381/ruor-22507

  50. Akhigbe, O., Alhaj, M., Amyot, D., Badreddin, O., Braun, E., Cartwright, N., Richards, G., Mussbacher, G.: Creating quantitative goal models: governmental experience. In: 33rd International Conference on Conceptual Modeling (ER 2014), LNCS, vol. 8824, pp. 466–473 (2014). https://doi.org/10.1007/978-3-319-12206-9_40

  51. Rashidi-Tabrizi, R., Mussbacher, G., Amyot, D.: Transforming regulations into performance models in the context of reasoning for outcome-based compliance. RELAW 2013, 34–43 (2013). https://doi.org/10.1109/RELAW.2013.6671344

    Article  Google Scholar 

  52. Liaskos, S., Jalman, R., Aranda, J.: On eliciting contribution measures in goal models. In: 20th IEEE International Requirements Engineering Conference (RE), pp. 221–230 (2012). https://doi.org/10.1109/RE.2012.6345808

  53. Trinkenreich, B., Santos, G., Perini Barcellos, M.: SINIS: a GQM+strategies-based approach for identifying goals, strategies and indicators for IT services. Inf. Softw. Technol. 100, 147–164 (2018). https://doi.org/10.1016/j.infsof.2018.04.006

    Article  Google Scholar 

  54. Hassine, J., Amyot, D.: An empirical approach toward the resolution of conflicts in goal-oriented models. Softw. Syst. Model. 16(1), 279–306 (2017). https://doi.org/10.1007/s10270-015-0460-6

    Article  Google Scholar 

  55. Fan, Y., Anda, A.A., Amyot, D.: An arithmetic semantics for GRL goal models with function generation. In: SAM 2018, LNCS, vol. 11150, pp. 144–162 (2018). https://doi.org/10.1007/978-3-030-01042-3_9

  56. Horkoff, J., Barone, D., Jiang, L., Yu, E., Amyot, D., Borgida, A., Mylopoulos, J.: Strategic business modeling: representation and reasoning. Softw. Syst. Model. 13(3), 1015–1041 (2014). https://doi.org/10.1007/s10270-012-0290-8

    Article  Google Scholar 

  57. IBM.: IBM Cognos Analytics (2016). https://www.ibm.com/ca-en/products/cognos-analytics

  58. Akhigbe, O., Heap, S., Islam, S., Amyot, D., Mylopoulos, J.: Goal-oriented regulatory intelligence: how can watson analytics help? In: 36th International Conference on Conceptual Modeling (ER 2017), LNCS, vol. 10650, pp. 77–91 (2017). https://doi.org/10.1007/978-3-319-69904-2_7

  59. Government of Canada.: Migratory Birds Convention Act, 1994 (S.C. 1994, c. 22) (1994). http://laws-lois.justice.gc.ca/eng/acts/M-7.01/

  60. Environment and Climate Change Canada.: Birds Protected Under the Migratory Birds Convention Act (2011). https://www.canada.ca/en/environment-climate-change/services/migratory-birds-legal-protection/convention-act.html

  61. Government of Canada.: Migratory Birds Regulations (C.R.C., c. 1035) (2016). http://laws-lois.justice.gc.ca/eng/regulations/C.R.C.,_c._1035/index.html

  62. Government of Canada.: Migratory Birds Regulations (C.R.C., c. 1035) - Game Birds (2016). http://laws-lois.justice.gc.ca/eng/regulations/C.R.C.,_c._1035/page-3.html

  63. Amyot, D., Horkoff, J., Gross, D., Mussbacher, G.: A lightweight GRL profile for i* modeling. In: Advances in Conceptual Modeling-Challenging Perspectives (ER 2009), LNCS, vol. 5833, pp. 254–264 (2009). https://doi.org/10.1007/978-3-642-04947-7_31

  64. Amyot, D., Rashidi-Tabrizi, R., Mussbacher, G., Kealey, J., Tremblay, E., Horkoff, J.: Improved GRL Modeling and Analysis with jUCMNav 5. In: 6th International i* Workshop (iStar 2013), CEUR-WS, vol. 978, pp. 137–139 (2013). http://ceur-ws.org/Vol-978/paper_26.pdf

  65. Government of Canada.: Metal and Diamond Mining Effluent Regulations (SOR/2002-222) (2002). http://laws-lois.justice.gc.ca/eng/regulations/SOR-2002-222/PITIndex.html

  66. Government of Canada.: Fisheries Act (R.S.C., 1985, c. F-14) (2007). http://laws-lois.justice.gc.ca/eng/acts/F-14/

  67. Braun, V., Clarke, V.: Using thematic analysis in psychology. Qual. Res. Psychol. 3(2), 77–101 (2006). https://doi.org/10.1191/1478088706qp063oa

    Article  Google Scholar 

  68. Saaty, T.L.: A scaling method for priorities in hierarchical structures. J. Math. Psychol. 15(3), 234–281 (1977). https://doi.org/10.1016/0022-2496(77)90033-5

    Article  MathSciNet  MATH  Google Scholar 

  69. Braun, E., Cartwright, N., Shamsaei, A., Behnam, S.A., Richards, G., Mussbacher, G., Alhaj, M., Tawhid, R.: Drafting and modeling of regulations: is it being done backwards? In: RELAW 2012, pp. 1–6. https://doi.org/10.1109/RELAW.2012.6347802

  70. Nair, C., de la Vara, J.L., Sabetzadeh, M., Briand, L.: An extended systematic literature review on provision of evidence for safety certification. Inf. Softw. Technol. 56(7), 689–717 (2014). https://doi.org/10.1016/j.infsof.2014.03.001

    Article  Google Scholar 

  71. Johnsen, S.O., Hoem, Å., Stålhane, T., Jenssen, G., Moen, T.: Risk-based regulation and certification of autonomous transport systems. In: Safety and Reliability—Safe Societies in a Changing World (ESREL 2018), pp. 1791–1799 (2018). https://doi.org/10.1201/9781351174664

  72. de la Vara, J.L., Ruiz, A., Attwood, K., Espinoza, H., Panesar-Walawege, R.K., López, Á., del Río, I., Kelly, T.: Model-based specification of safety compliance needs for critical systems: a holistic generic metamodel. Inf. Softw. Technol. 72, 16–30 (2016). https://doi.org/10.1016/j.infsof.2015.11.008

    Article  Google Scholar 

  73. Sharifi, S., McLaughlin, P., Amyot, D., Mylopoulos, J.: Goal modeling for fintech certification. In: iStar 2020, CEUR-WS 2641, pp. 73–78 (2020). http://ceur-ws.org/Vol-2641/paper_13.pdf

  74. Ghanavati, S., Amyot, D., Peyton, L., Siena, A., Perini, A., Susi, A.: Integrating business strategies with requirement models of legal compliance. Int. J. Electron. Bus. 8(3), 260–280 (2010). https://doi.org/10.1504/IJEB.2010.034171

    Article  Google Scholar 

  75. Ghanavati, S., Humphreys, L., Boella, G., Di Caro, L., Robaldo, L., van der Torre, L.W.N.: Compliance with multiple regulations. In: ER 2014: Conceptual Modeling, pp. 415–422 (2014). https://doi.org/10.1007/978-3-319-12206-9_35

  76. Rabinia, A., Ghanavati, S., Humphreys, L., Hahmann, T.: A methodology for implementing the formal legal-grl framework: a research preview. In: REFSQ 2020, LNCS, vol. 12045, pp. 124–131 (2020). https://doi.org/10.1007/978-3-030-44429-7_9

  77. Islam, S., Mouratidis, H., Jürjens, J.: A framework to support alignment of secure software engineering with legal regulations. Softw. Syst. Model. 10, 369–394 (2011). https://doi.org/10.1007/s10270-010-0154-z

    Article  Google Scholar 

  78. Elgammal, A., Turetken, O., van den Heuvel, W., Papazoglou, M.: Formalizing and applying compliance patterns for business process compliance. Softw. Syst. Model. 15, 119–146 (2016). https://doi.org/10.1007/s10270-014-0395-3

    Article  Google Scholar 

  79. El Kharbili, M.: Business process regulatory compliance management solution frameworks: a comparative evaluation. In: APCCM’12, pp. 23–32 (2012). https://doi.org/10.5555/2523782.2523786

  80. Jiang, J., Aldewereld, H., Dignum, V., Wang, S., Baida, X.: Regulatory compliance of business processes. AI Soc. 30(3), 393–402 (2015). https://doi.org/10.1007/s00146-014-0536-9

    Article  Google Scholar 

  81. Ghanavati, S., Hulstijn, J.: Impact of legal interpretation in business process compliance. TELERISE 2015, 26–31 (2015). https://doi.org/10.1109/TELERISE.2015.13

    Article  Google Scholar 

  82. Boella, G., Tosatto, S.C., Ghanavati, S., Hulstijn, J., Humphreys, L., Muthuri, R., Rifaut, A., van der Torre, L.W.N.: Integrating legal-URN and eunomos: towards a comprehensive compliance management solution. AICOL 2013, 130–144 (2013). https://doi.org/10.1007/978-3-662-45960-7_10

    Article  Google Scholar 

  83. Ingolfo, S., Jureta, I., Siena, A., Perini, A., Susi, A.: Nòmos 3: Legal compliance of roles and requirements. In: ER 2014: Conceptual Modeling, pp. 275–288 (2014). https://doi.org/10.1007/978-3-319-12206-9_22

  84. Giorgini, P., Rizzi, S., Garzetti, M.: GRAnD: a goal-oriented approach to requirement analysis in data warehouses. Decis. Support Syst. 45(1), 4–21 (2008). https://doi.org/10.1016/j.dss.2006.12.001

    Article  Google Scholar 

  85. Fekete, D, Vossen, G.: The GOBIA method: towards goal-oriented business intelligence architectures. In: FGDB 2015, CEUR-WS 1458, pp. 409–418 (2015). http://ceur-ws.org/Vol-1458/H03_CRC44_Fekete.pdf

  86. Barone, D., Topaloglou, T., Mylopoulos, J.: Business intelligence modeling in action: a hospital case study. In: CAISE 2012, LNCS, vol. 7328, pp. 502–517 (2012). https://doi.org/10.1007/978-3-642-31095-9_33

  87. Burnay, C., Jureta, I.J., Linden, I., Faulkner, S.: A framework for the operationalization of monitoring in business intelligence requirements engineering. Softw. Syst. Model. 15, 531–552 (2016). https://doi.org/10.1007/s10270-014-0417-1

    Article  Google Scholar 

  88. Lavalle, A., Maté, A., Trujillo, J., Rizzi, S.: Visualization requirements for business intelligence analytics: a goal-based, iterative framework. In: IEEE 27th International Requirements Engineering Conference (RE), pp. 109–119 (2019). https://doi.org/10.1109/RE.2019.00022

  89. Soltana, G., Sannier, N., Sabetzadeh, M., Briand, L.: Model-based simulation of legal policies: framework, tool support, and validation. Softw. Syst. Model. 17, 851–883 (2018). https://doi.org/10.1007/s10270-016-0542-0

    Article  Google Scholar 

  90. Mazur, E.: Outcome Performance Measures of Environmental Compliance Assurance: Current Practices, Constraints and Ways Forward. OECD Environment Working Papers, No. 18. OECD Publishing, Paris (2010). https://doi.org/10.1787/5kmd9j75cf44-en

  91. Henderson-Sellers, B., Ralyté, J., Ågerfalk, P., Rossi, M.: Situational Method Engineering. Springer (2014). https://doi.org/10.1007/978-3-642-41467-1

    Book  Google Scholar 

  92. Griffo, C., da Silva Teixeira, M.G., Almeida, J.P.A., Gailly, F., Guizzardi, G.: LawV: Towards an ontology-based visual modeling language in the legal domain. In: ONTOBRAS 2020, CEUR-WS 2728, pp. 75–88 (2020). http://ceur-ws.org/Vol-2728/paper6.pdf

Download references

Acknowledgements

The authors wholeheartedly thank J. Mylopoulos, L. Peyton, and S. Liaskos for their feedback on GoRIM, S. Heap, S. Islam, G. Labasse, and J. Habbouche for contributing to some GoRIM tooling, as well as N. Cartwright, E. Braun, D. Ikonomi, A. Neef, C. Ladanowski, A. Willsie, C. Doiron, and C. Lacroix for their collaboration and support. We are also grateful to the many key informants who participated to our evaluation.

Funding

This work was supported by Natural Sciences and Engineering Research Council of Canada’s (NSERC) through its Discovery Grant Program, Interis Consulting/BDO, and the University of Ottawa.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Amyot.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interests.

Additional information

Communicated by Silvia Abrahao.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Selected well-formedness rules for GRL models

Appendix A: Selected well-formedness rules for GRL models

In step 3 of our method (Sect. 4.3), the modeller checks the GRL models against well-formedness rules, listed in Table

Table 4 Mapping between regulatory initiatives (or societal outcomes) and GRL model elements

4. These 19 rules are user-selectable OCL constraints supported by jUCMNav [45]. Violations to these rules are reported automatically by jUCMNav, which then highlights the violating model elements. Satisfying these rules helps ensure that the input models satisfy specific static properties that go beyond standard URN.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akhigbe, O., Amyot, D., Richards, G. et al. GoRIM: a model-driven method for enhancing regulatory intelligence. Softw Syst Model 21, 1613–1641 (2022). https://doi.org/10.1007/s10270-021-00949-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10270-021-00949-z

Keywords

Navigation