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Abstract

Context. Container orchestration tools supporting

infrastructure-as-code allow new forms of collaboration

between developers and operatives. Still, their text-

based nature permits naive mistakes and is more

difficult to read as complexity increases. We can find

few examples of low-code approaches for defining the

orchestration of containers, and there seems to be

a lack of empirical studies showing the benefits and

limitations of such approaches.

Goal & method. We hypothesize that a complete

visual notation for Docker-based orchestrations could

reduce the effort, the error rate, and the development

time. Therefore, we developed a tool featuring such a

visual notation for Docker Compose configurations, and
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we empirically evaluated it in a controlled experiment

with novice developers.

Results. The results show a significant reduction in

development time and error-proneness when defining

Docker Compose files, supporting our hypothesis. The

participants also thought the prototype easier to use

and useful, and wanted to use it in the future.

1 Introduction

The concept of infrastructure-as-code (IaC) pertains

to the management of infrastructure (i.e., hardware,

software and network resources) through configuration

files within a code-base [1]. Early tools to support this

practice focused on bare-metal infrastructure [2,3] but

the notion later expanded to the management and

provisioning of infrastructure resources on the cloud [1,

4]. Containers, and Docker in particular, rely on IaC to

allow developers to fully specify runtime environments [5,

6], in a much more lightweight way than virtual machines

allow it [7,8]. Despite the interest given by industry and

research to IaC topics in the last few years, there is a

consensus that the best practices for developing and

maintaining IaC are still weakly established [9].
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Docker Compose is a tool for orchestrating multiple

containers using Docker. It supports defining an

orchestration through a YAML file, by which it

configures the containers of the application, the

corresponding images and how they are related to

each other, the volumes for data persistence, and

the networks for connecting the containers. The

containers can then be run conventionally through the

command-line interface (CLI), resulting in the creation

or execution of the declared resources. The YAML

files used by Docker Compose follow a well-defined

format named Compose Specification that claims to be

a “developer-focused standard for defining cloud and

platform agnostic container-based applications” [10].

The Compose Specification resulted from unifying the

file formats of versions 2.x and 3.x of Docker Compose.

The specification supports the definition of services,

networks, volumes, configs, and secrets.

The process of setting up orchestration files for

simple systems is reasonably straightforward, but the

textual nature of these files may become challenging

as the complexity of the system increases, due to the

number or the heterogeneity of the containers. In

such cases, we expect that understanding container

dependencies becomes difficult, as related definitions

begin to get further apart within the file. Also,

advanced configuration aspects, such as port mapping

and volume management, might be confusing for

inexperienced users. Additionally, developing such files

by trial-and-error seems to be common [11], and there

is some evidence that misconfigurations in IaC scripts

are a real concern [12].

Low-code approaches to software development enable

the visual development of applications, allowing to

create software through a graphical user interface rather

than the usual text-based computer programming. We

find such approaches useful for different purposes and

domains, such as in manufacturing, where it is often

used for configuring programmable logic controllers

(PLC) via ladder and sequential function charts [13,

14]. In software engineering, visual notations like the

Unified Modeling Language (UML) are reasonably

well known and adopted [15]. More recent applications

of visual approaches exist for educational purposes,

and in the area of Internet-of-Things (IoT) [16,17,

18]. There are also examples of such approaches in

the operations field, such as for managing cloud and

container resources—some of them focusing specifically

on Docker technologies [19].

We hypothesize that a complete visual approach

has the potential to be useful for a broad audience

of end-users ranging from first-time developers who

benefit from some support in understanding how the

technology works to more experienced users who might

take advantage of the visualization aspects to have a

clearer overview of complex configurations.

In the work reported in this article, we empirically

evaluate a low-code approach for container orchestration.

We expand on the work presented at the LowCode 2020

workshop [20], providing a detailed review of the most

relevant related works and a more detailed account of

the empirical study and of the discussion of the results.

Next, in this article, we start by presenting our

research goals and methodology (cf. Section 2) and

discuss relevant related works (cf. Section 3). Then

Section 4 describes our approach, and Sections 5 and 6

the empirical study and respective results. We end with

a discussion of the validation threats and some closing

remarks (cf. Sections 7 and 8).
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2 Research Goals and Methodology

The purpose of this work is to explore the benefits

of low-code for the development of docker compose

orchestration files. In particular, the hypothesis that

guides this work is that a complete visual notation for

developing orchestration files can improve the overall

developer experience and reduce the error proneness and

development time.

By a complete visual notation, we mean a way

to visually express all the elements of an orchestration

file that are supported by its text notation. This

includes elements such as containers, volumes, networks,

configs, and secrets, as well as different relationships

and dependencies.

By orchestration files we mean the descriptions

of what containers make a given system, and how they

depend on each other and on infrastructure resources.

For the scope of this work we consider the Docker

Compose Specification [10].

By developer experience, we mean the overall

ease-of-use and intuitiveness of the full experience,

considering the steps and actions needed to successfully

specify a container orchestration setup.

By error proneness and development time, we

respectively mean the number of errors and execution

attempts, and the time required to successfully specify

a container orchestration setup.

Given this, we consider the research questions:

RQ1 To what extent does a visual notation for the

orchestration of (Docker) containers reduce the

development time?

We aim to understand if a visual notation is truly

useful in reducing the time of development of a

Docker Compose file.

RQ2 To what extent does a visual notation for

(Docker) orchestration files reduce the number of

errors?

We aim to understand if a visual notation is

truly useful in reducing error proneness while

orchestrating a Docker Compose file.

RQ3 What is the perception of developers towards

using a visual notation for the orchestration of

(Docker) orchestration files?

We aim to understand if a visual notation is

perceived by the developers as enjoyable and

useful, and if they show intention of using it

again in the future after being exposed to it.

To find answers to these research questions we

start by surveying existing visual approaches

for managing and orchestrating container and

infrastructure resources (cf. Section 3), seeking to

find works that come closest to providing insights to

our research questions.

Next, we develop a tool prototype that offers a

low-code environment, with a complete visual notation

for developing orchestration files for Docker Compose

(cf. Section 4). We name this tool Docker Composer, and

we use it to empirically evaluate the benefits of using

such a visual notation. More specifically, we conduct a

controlled experiment with novice software developers,

where we gather performance and perception-based

metrics, and compare the use of a visual notation with

the conventional text-based one (cf. Section 5).

3 Related Work

As we sought to propose and evaluate a visual approach

for developing container orchestration files, we evaluated

related works employing visual tools for managing and

orchestrating containers. These tools allow to define or
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inspect Docker resources, locally or remotely, usually

for development purposes. Such resources can include

containers, images, volumes, and networks. Many times,

they work as wrappers for Docker’s CLI commands,

from common functions such as container creation and

deletion to the orchestration of containers.

Albeit less thoroughly, we also review tools to

visually manage and orchestrate infrastructure, as they

address a closely related domain and could support

useful additional insights. Such infrastructure resources

can include physical (i.e., hardware and facilities),

virtual machines, and network resources.

We started our analysis by using Google Scholar

and, upon realizing the low number of research

works addressing visual approaches for container and

infrastructure resources, extended our review to other

visual tools that are readily available to practitioners by

querying Google and GitHub. We based the analysis of

these tools primarily on their available documentation

and manually installed them when necessary.

3.1 Visual Tools for Managing and Orchestrating

Containers and Infrastructure

The next paragraphs briefly describe the tools that

we have surveyed. We sought to identify capabilities

and limitations of these tools and, for those supporting

the management and orchestration of containers, we

assessed the extent to which they support a complete

visual notation (cf. Section 2).

DockStation1 seems to be considerably adopted,

with over 1.8K stars on GitHub as of January of 2022. It

provides a native GUI for handling Docker containers in

local and remote environments and is aimed primarily at

development. It supports container management, such

1 DockStation, available at https://dockstation.io/

as creating and deleting containers, and a few container

monitoring utilities, including performance graphs.

We can instantiate a new project by creating a

new or loading an existing docker-compose.yml file.

We then visualize the overall containers scheme. The

containers and relationships are represented in a

graph-like diagram, and we can edit different aspects

through form fields, such as environment variables,

volumes, and ports. Changes are reflected in an

underlying docker-compose.yml file, which can also

be seen in its text form within the editor, in a different

tab. In the same way, changes to this text form will be

reflected on the diagram.

Fig. 1 showcases the scheme perspective in the

project tab for a simple Compose orchestration file

and some additional UI elements. The top action bar

includes quick actions which trigger Docker Compose

commands such as docker-compose up for the start

button. In the scheme itself, the boxes represent

the containers and the dotted arrows represent the

depends_on relation between the containers. To add

a container to the scheme, the user can drag the

intended image from the palette, to the left, to the

scheme area, to the right. In the current version, it

is not possible to visually add dependencies between

containers (i.e., depends_on), requiring the user to

instead use the editor and add the dependency textually

in the docker-compose.yml file.

This tool stands as one of the closest to the one we

propose in this work, although a few limitations stand

out: (a) volumes are specified via a form and have

no visual notation; (b) dependencies are represented

visually but they can only be defined through the

text editor; (c) configs and secrets are not represented

visually and can only be defined through the text

https://dockstation.io/
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Fig. 1: A simple docker-compose configuration in DockStation.

editor; and (d) both visual and textual representations

are available within the tool but one cannot view or

interact with both simultaneously. The user has to

explicitly click on a save button in the editor for the

changes to persist before switching.

Admiral2 seems to have a smaller user base

than DockStation, with over 252 stars on GitHub

as of January 20223. It offers a web-based GUI for

container management and provisioning over a cluster

of infrastructure. Unlike DockStation, this tool is

mainly deployment and production-oriented. Besides

the provisioning of single containers, it supports

orchestrating containers by the definition of templates.

These include four main components: containers,

2 Admiral, by VMware, available at https://github.com/

vmware/admiral
3 As of January of 2022 the project is marked as archived

on GitHub, suggesting that no future developments are to be

expected.

volumes, networks, and closures4. Each can be created

and configured via a form-based user interface. It is

then possible to visually connect each container or

closure with a network or volume by click-and-dragging

the mouse pointer from the source to the target

component. Each template can be directly provisioned

to a configured cluster or exported in one of two

formats—YAML Blueprints5 and Docker Compose

files—and it is also possible to import from these file

formats to visualize and edit the orchestration.

Fig. 2 displays a simple template containing 3

containers, 2 networks, and 1 volume. The user can

add a new component (container, network, volume, or

closure) by hovering over the empty box with the plus

icon and clicking on the desired element. Upon which

they are redirected to the corresponding form to edit

4 Closures are a notion supported by VMWare tools, and not

an official feature of the Docker Compose specification.
5 YAML Blueprints is a format specified by VMWare and used

by tools provided by the company, such as vRealize Automation.

https://github.com/vmware/admiral
https://github.com/vmware/admiral
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Fig. 2: Sample of Admiral’s template visual orchestrator.

its properties. Each container has a set of network and

volume anchor points, located at the bottom, for the

total number of networks and volumes declared in the

configuration (3 in this instance). These allow the user

to attach the containers to their corresponding volumes

and networks. Dependencies between containers, known

as links, are displayed and directly editable as properties

of a container, within its box. To edit more advanced

properties, the user must expand the container and

access its full edit form.

Four limitations stand out in Admiral: (a) like in

DockStation, configs and secrets cannot be visually

represented; (b) the dependencies between containers

(depends_on and links) can be specified via a drop-

down, but are not represented as lines connecting the

containers; (c) the user is not allowed to rearrange

any of visual elements, with the exception of network

connections; and (d) some elements supported by

Admiral are specific to VMWare tools (e.g., closures)

but not part of the Docker Compose specification, and

they are lost (with no warning) when exporting an

orchestration to a docker-compose.yml file, possibly

giving a false sense of what developers may expect to

be actually building with the tool.

Docker Studio6 and its predecessor, Docker

Designer [21], do not seem to be in common use by

professionals. The tool is an Eclipse-based prototype,

offering a native GUI. It employs a model-driven

approach to address deployment and maintenance in

production environments. Its user interface is shown

in Fig. 3. It features a palette on its right side that

allows configuring different container and infrastructure

elements. To the center, there is a design area that

provides a graphical representation of model. The tool

allows to visually establish the dependencies between

containers and represent their volumes and networks.

Docker Studio allows also to run or stop containers

in their execution environment. Green and red colors

6 Docker Studio is available at http://occiware.github.io/

content/user-guides/snapshot/connector-docker.html.

http://occiware.github.io/content/user-guides/snapshot/connector-docker.html
http://occiware.github.io/content/user-guides/snapshot/connector-docker.html
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represent respectively resources that are in running or

in stopped states.

Limitations of this tool include: (a) like in

DockStation and Admiral, configs and secrets cannot

be defined visually; and (b) there is no way of accessing

Docker’s output, which can become a concern when

trying to troubleshoot any issue that might arise.

Fig. 3: Sample of Docker Designer’s user interface,

adapted from Paraiso et al. [21].

CodeHerent7 is a web-based visual development

environment, leveraging a hybrid visual programming

language (VPL) for editing and visualizing Terraform

configuration files. Unlike DockStation, Admiral, and

Docker Studio, it does not address container resources.

A sample of its user interface can be seen in Fig. 4.

Although this tool initially adopted a box-based

representation in which the different elements are

hierarchically organized in boxes, more recent releases

opt for a graph-based diagram to represent the distinct

elements and their relationships.

7 CodeHerent, available at https://codeherent.tech/home

Fig. 4: Sample of CodeHerent’s user interface.

Visual Composer8 resembles CodeHerent but

focuses specifically on AWS EC2 CloudFormation

templates. It uses a web-based GUI, representing

infrastructure artifacts following a tree-like diagram and

offering multiple types of connections, such as arrows

for dependencies and references between resources. The

user can add a node as a descendent of another and edit

its properties in a form-based interface. Furthermore, it

includes snippets of documentation directly accessible

by hovering help icons for each element. Similar to

other hybrid visual approaches, it supports switching

between the visual composer and a built-in textual

editor of the corresponding YAML file. A sample of

Visual Composer’s GUI can be seen in Fig. 5.

8 Visual Composer, by CloudSoft, originally available at

https://cloudsoft.io/software/cfn-composer/ and on the

AWS marketplace at https://aws.amazon.com/marketplace/pp/

prodview-pqc3effdvhy3s, seems to have been discontinued as of

January 2022.

https://codeherent.tech/home
https://cloudsoft.io/software/cfn-composer/
https://aws.amazon.com/marketplace/pp/prodview-pqc3effdvhy3s
https://aws.amazon.com/marketplace/pp/prodview-pqc3effdvhy3s
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Fig. 5: Sample of Visual Composer’s interface.

Argon is an infrastructure modeling tool supporting

different IaC platforms [22]. Like Docker Studio, it is an

Eclipse-based tool and offers a native GUI. Argon allows

selecting such resources from a palette window and

editing each resource’s properties through a form-based

interface. The resulting visually-created model of the

infrastructure can then be used to generate scripts for

different IaC platforms (e.g., Ansible and Terraform),

unlike Codeherent and Visual Composer, which are

Fig. 6: Sample of Argon’s interface, adapted from

Sandobalin et al. [22].

bound to specific technologies. The experiments

conducted by Sandobalin et al. [23] with 67 Computer

Science students have empirically compared Argon with

a well-known IaC tool (Ansible) and showed promise

in the effectiveness and perceived ease of use and

usefulness of Argon’s visual approach.

3.2 Discussion

We can classify the surveyed tools as simultaneously

form-based (i.e., using form fields or a spreadsheet-like

user interface) and hybrid (i.e., combining text and

visual systems), according to the scheme proposed by

Boshernitsan et al. [24]. The tools that come closer

to supporting our goals are DockStation, Admiral and

Docker Studio, but they have yet to fully explore the

potential of a visual approach for the following reasons:

– Incomplete visual notations. One of the issues

found is the lack of visual representations for some

of the elements supported in the Docker Compose

Specification. In particular, Admiral and Docker

Studio appear to be the most complete, but they do

not support specifying Docker configs and secrets.

An incomplete visual notation encourages developers

to fall back into the text notation when something

cannot be understood from the visual notation. We

believe that the friction caused by this additional

context-switching may discourage using the visual

notation or reduce the benefits to be gained from

using it.

– Limited visual editing. Only Docker Studio

allows editing all of the elements and properties

of Docker Compose that it supports (configs

and secrets, as stated before, are not supported

at all). DockStation allows to circumvent this

limitation by providing a textual editor for the
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docker-compose.yml file within the application,

but the resulting workflow does not provide a

streamlined experience; a user must switch between

the textual and visual perspectives as needed.

– Sub-optimal directness. Current solutions

present lower directness [25] than desired, as they

require several steps to manipulate a Compose

orchestration file visually. For instance, Admiral

requires a few navigation steps to create or edit

an artifact. The user must first click on a button

that leads to a new page with form fields for input.

After altering the definition, the user must confirm

their action for it to take effect. This indirectness

is inconvenient, hindering the workflow, and hides

useful information that could otherwise be always

visible.

Table 1 (p. 10) summarises the surveyed tools,

illustrating their capabilities and limitations in visually

representing a container orchestration. This table also

contrasts the surveyed tools with Docker Composer, a

tool that we describe in the next section (Section 4).

Finally, it is worth noting that, as far as we know,

the only one of these tools that was used in the context

of an empirical study is Argon [23]. The positive results

of this study, albeit in the domain of infrastructure,

encouraged us further to evaluate the benefits and

possible limitations of using a low-code approach for

orchestrating containers.

4 The Docker Composer tool

We have considered using tools such as DockStation,

Admiral or Docker Studio to empirically evaluate the

benefits and limitations of a visual notation in the

development of container orchestration files. However,

we thought it essential that the tool handled all

the elements that one can understand or express

through the text notation of Docker Compose files.

Unfortunately, these tools do not yet provide such

support (cf. Section 3.2 and Table 1), so we have

ultimately decided to develop a new tool, which we

named Docker Composer.

Fig. 7 shows the high-level architecture of the

tool. Within the host environment, the prototype

(in the figure, represented as the Docker Composer

App) generates Docker Compose YAML files and

launches shell instances where it executes Docker

Compose via CLI commands. In turn, Docker Compose

communicates with the Docker Engine. Docker

Composer also generates requests to the remote Docker

Hub’s public API, to receive information about the

images hosted on this service.

Host

<<instantiates>>

<<uses>>

<<process>>

Docker Compose

<< generates>>

<<compoent>>

Docker Composer

App

<<artifact>>

docker-composer-tmp.yml

<<compoent>>

Docker Hub API

<<component>>

Docker Engine

Fig. 7: Deployment diagram of the prototype.

Furthermore, Docker Composer can open and save

any docker-compose.yml file. Opening one such file

translates its contents to an object model, which then

supports the features related to visualization and user

interaction. This object model is designed to express

all the elements that we can find in a Docker Compose

orchestration file. Saving back to a file is the reverse

process of serializing this object model to a YAML file

following the Docker Compose Specification.
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Table 1: Comparative overview of visual tools for managing and orchestrating container and infrastructure resources.

The latter refer to virtual machines and other resources that can be used to host containers but are not themselves

containers or part of containers. A filled circle ( ) is used for elements that can be diagrammatically represented

and edited (e.g., using boxes and arrows); a dot (•) for when editing the element is done through a form field; and

an empty circle (#) for when editing an element requires interacting directly with the fully textual form of the

Compose orchestration file.

Container Specification Infrastructure

Se
rv
ice
s

Vo
lum

es

Ne
tw
or
ks

Co
nfi
gs

Se
cre
ts

de
pe
nd
s_
on

li
nk
s

DockStation  • # #

Admiral  • • •

Docker Studio       

CodeHerent  

Visual Composer  

Argon  

Docker Composer        

In Fig. 8, we present the prototype’s main view,

which features five distinct panels, namely:

– Toolbar. To the left, it includes a status indicator,

which lights up different colors according to the state

of the running orchestration, and a set of buttons to

start and stop the services (containers). To the right,

it includes a few buttons for file management. The

settings menu allows to set the working directory

and adjust preferences when exporting files.

– Image Palette. Allows searching for images hosted

on Docker Hub and the addition of new services by

clicking and dragging the target image and dropping

it in the graph editor area.

– Graph editor. This area displays an interactive

visual map of the orchestration containing the

various artifacts that comprise it and their

dependencies.

– Properties Editor. Useful to access and edit the

various properties of the currently selected object

(artifact or connection) in the graph editor.

– Terminal view. Displays the output produced by

the services (containers) once created and started. It

contains a General tab with the combined output of

all services and additional logs (i.e., Docker Compose

logs) and individual tabs for the output of services

that comprise the orchestration.

Fig. 9 shows the visual notation of a service node.

It includes a set of anchor points located on the right

edge. Each anchor point is used as the source point to

set connections between the service and some target

artifact. This can be achieved by left-click dragging

from the source point to a compatible target artifact.

These connections are typed, meaning that only certain

artifacts are expected as targets, and the tool only

allows this type of connection. To make the type of the

connection more explicit, the colors of the anchor points
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Toolbar
Properties

editor

Image palette Graph editor Terminal view

Fig. 8: Layout of the prototype’s main view, showcasing the graph editor (drawing canvas), main control toolbar,

image palette (from Docker Hub) and the properties editor (corresponding to one of the services in the canvas).

match that of the allowed type of artifact, except for

depends_on (yellow) and links (blue) anchors. These last

two anchors are used to connect services; depends_on

establishes the order of container creation, while links

allows containers to be reachable at an alias hostname.

Fig. 9: Visual representation of a service artifact node.

Fig. 10 shows the remaining elements (volumes,

networks, configs and secrets). They are represented

by a similar notation, only differing in color, size, and

labels, depending on their type. All nodes allow to

input their key as exemplified in the figure for secrets

and configs.

The tool provides static validations while editing an

orchestration. These include duplicate key detection

and invalid property value formats (e.g., for values

specified as time duration or memory size). The result

of the validations is conveyed to the users through

warning icons that appear near the artifacts’ visual

representation. It is possible to hover these icons with

the mouse pointer to visualize a full summary of the

warnings. These inconsistencies are purely presented as

warnings and are not enforced as errors and ultimately

provide additional feedback to users. Fig. 11 shows
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Fig. 10: Example orchestration in Docker Composer.

The two services share the internal network, and the

mongodb service uses a volume for storing its data named

mongo-data. Both services also share a secret (an SSH

key) and the nodejs container uses a specific hostname

config. The two forms to the bottom of the figure show

the input fields for editing the secret and config as they

will appear on the right sidebar of Docker Composer

when the respective element is selected.

an example of static validation. The warning in this

example results from the use of the same key (ser) for

both services.

Fig. 11: Example of the static validation notation. Both

services include the warning icon because they define

the same key (ser).

Another form of validation is the mechanism used

to control the consistency of some property values.

In particular, when defining port mappings, the user

cannot define host ports without first setting a container

port. We achieve this by controlling whether inputs are

disabled or not. Additionally, the connections between

containers are typed, thus erroneous connections are not

allowed, such as trying to connect a Networks gate to a

Service block).

To more clearly compare and demonstrate the

differences of representation between the conventional

text-based approach and the designed visual approach,

Fig. 12 shows a concrete example with a side-by-side

comparison between the textual representation (a) and

the equivalent visual representation (b). While it may

not be immediately clear, both representations convey

the same information. While the visual approach makes

the artifacts themselves and their connections more

evident, some properties (e.g., stdin_open on the

client service) will be shown when hovering some of

the elements with a mouse pointer. The particular
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orchestration that is presented follows a client-server

architecture comprised of three services: a web frontend

service (client), a backend web service (server), and

MongoDB database service (db). We also include two

custom networks, named private and public, to isolate

the backend from the frontend as well as a named

volume, called mongo-data, for data persistence.

Docker Composer, and the entire low-code

environment that it provides, differs from the tools

that we review in Section 3 in different aspects, and

most notably in the support that it provides for the

Docker Compose Specification. The tools that are

most closely-related to Docker Composer (DockStation,

Admiral and Docker Studio) do not offer a visual

notation that covers all the elements that can be

expressed in textual Docker Compose files, as we can

see by the overview given in Table 1 (p. 10).

5 Empirical Study

With this study we seek to evaluate the viability and

practical usefulness of a low-code environment in the

domain of container orchestration. This is particularly

relevant as empirical work in this field is still fairly

limited [26]. Although the theoretical benefits have been

thoroughly evaluated in the past, there is still a severe

lack of studies to assess whether these truly translate

to practical scenarios.

The empirical study focuses on the evaluation of

three activities in software engineering—analyzing,

debugging, and implementing—in the context of Docker

Compose configurations. A task was prepared for each

(a) Docker Compose. (b) Docker Composer.

Fig. 12: Concrete example of a Docker compose file. (a) presents the default textual representation of a

docker-compose.yml file, and (b) a visual representation of the same file using Docker Composer.
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activity, and we collected both performance-based and

perception-based metrics.

5.1 Participants

We selected a total of 16 students from the MSc

in Informatics and Computing Engineering at the

University of Porto, who volunteered to participate in

the experiment. This methodology makes our sample

a convenience sample [27]. All participants had prior

experience with Docker and Docker Compose due to

their academic path and were randomly distributed

between two groups, corresponding to the treatments:

control (CG) and experimental (EG). Both

groups were asked to solve the same set of tasks. The

participants of the CG had access to a text editor to

edit the orchestration file and to a command-line shell

to access the conventional toolchain. The participants

of the EG had access to the experimental prototype to

manage the orchestration as well as a command-line

shell to execute additional commands if required

(Docker related or not). In addition, both groups had

complete access to the official Docker and Docker

Compose documentation as well as any other resources

on the internet.

5.2 Environment

The experimental sessions were conducted remotely. We

opted for a remote workstation, set up in advance with

the required software and materials, which was later

made available to the participants. These resources

included a browser (to access the experimental guidelines

and surveys), a text editor set up in the appropriate

directory, a command-line shell set up in the appropriate

directory for both groups and the prototype tool for the

EG.

5.3 Task Definition

As previously stated, the goal was to evaluate the

behavior of the tool for three basic activities: analyzing,

debugging, and implementing an orchestration file.

This effort was translated into 4 tasks each featuring a

corresponding scenario. In Task 1 (T1) a functioning

Docker Compose configuration was provided and the

goal was to analyze its structure and understand

the overall behavior. In Task 2 (T2) a buggy

configuration was provided and the goal was to debug

and fix the faulty behavior. Task 3 (T3) focused on

implementing and was divided into T3.1—build a

simple configuration from the ground up, involving two

containers, two environment variables, a custom network

and a volume (implementation)—and T3.2—modify

the configuration to use secrets instead of environment

variables (increment).

To ensure a balance between scale, complexity,

realism, and expected time to completion in the tasks,

we conducted a brief study to characterize the typical

size of Docker Compose files. Namely, we tried to

> 3000
3.1%
1500..1999
2.6%
1000..1499
4.5%
500..999
24.9%

0..499
62.2%

Fig. 13: Distribution of 875 526 Docker Compose YAML

files on Github by size, in bytes, as of January 2022.
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determine the typical number of containers in projects

using Docker Compose, using GitHub as a data source.

As depicted in Fig. 13, approximately 62% of the 875

526 considered files had sizes up to 500 bytes, which we

equated to low complexity—typically containing one or

two containers and minimal additional configurations.

We gathered this data using the official code search

API for files named specifically docker-compose.yml

and, thus, limited by search mechanism both in terms

of precision and number of results9 .

5.4 Procedure

A full session took between 50 minutes to 2 hours per

participant. Each session was conducted individually

with the researcher overseeing and observing the full

procedure. Communication was done via remote voice

call. The participants were encouraged to think aloud

throughout the session so that the researcher could more

clearly understand and follow along with their rationale.

This strategy was also useful in identifying potentially

unforeseen issues with the experiment’s design.

Once the connection to the remote workstation

was established, the participant had access to the

instructions for the full procedure available in the

remote environment. We make these instructions

available as part of our replication package10 [28]. The

procedure was organized in the following steps:

– Background Survey. This survey contained a

set of questions to assess the current degree of

experience with technologies which we had foreseen

to potentially be confounding factors.
9 GitHub Code Search, https://docs.github.com/en/

search-github/searching-on-github/searching-code
10 A replication package to facilitate and encourage the

independent replication of this experimental design is accessible

at https://doi.org/10.5281/zenodo.4001049.

– Tutorial. Before solving the actual tasks, the

participants had to follow a simple tutorial

reviewing some basics of Docker Compose. This

was mostly targeted to the EG so that they had

some prior hands-on experience with the prototype.

Nonetheless, to maintain consistency between both

groups, participants in the CG also had to achieve

the same goal with the conventional toolchain.

– Experimental Tasks. Participants were instructed

to solve a set of four orchestration-related tasks. To

maintain the total duration reasonable, time limits

were set for each task. Participants were asked to

advance to the next task whenever this time limit

was exceeded.

– Post-experiment Survey. Participants were asked

to fill a survey to assess their experience and evaluate

the experience of working with the tools. The survey

in the EG differed from the control since it included

an additional set of questions to specifically evaluate

the solution prototype.

5.5 Research Variables

We use both performance-based metrics and perception-

based metrics as dependent variables in our study.

The performance-based metrics consist of:

– Task Completion, which refers to the ratio

between the participants that successfully completed

a task and the number of participants that tried to

complete it.

– Work Context Times refers to the times spent on

different work contexts, which we define later in this

section.

– Task Times refers to the total time spent

completing each task.

https://docs.github.com/en/search-github/searching-on-github/searching-code
https://docs.github.com/en/search-github/searching-on-github/searching-code
https://doi.org/10.5281/zenodo.4001049
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– Execution Attempts refers to the the number of

times a participant tried to run the orchestration.

– Context Switches refers to the number of times

participants accessed each of the contexts.

Some of these performance-based metrics lean on

the different existing work contexts that participants

switched between when executing the tasks, and that

we define as:

– Script. Time spent looking at the instructions and

task description.

– Documentation. Time spent in the official Docker

and Docker Compose documentation and Docker

Hub.

– Composer. Time spent in the solution prototype,

Docker Composer (only applicable to the

experimental group)

– Browser. Time spent on the browser when accessing

service’s UIs and other documentation resources

outside of those specified in the Documentation

context.

– Editor. Time spent on the text editor to access and

edit the materials.

– Terminal. Time spent on the terminal, mostly

for executing Docker and Docker Compose CLI

commands.

The perception-based metrics we use were first

introduced by Davis et al. [29,30] and consist of:

– Perceived Ease of Use (PEOU) refers to how

much effort would be required to use the prototype.

– Perceived Usefulness (PU) refers to how well

the prototype satisfies the participant’s needs and

expectations.

– Intention to Use (ITU) refers to the degree that

the participant wishes to use the tool in the future.

5.6 Data Collection

The results of the background questionnaire consist of

answers of different types, including items using 5-point

Likert scale, linear numeric scales, and multiple-choice

questions.

Performance measurements for tasks were recorded

manually by the researcher. An application named Turns

Timer11 was used to register the time spent on individual

activities, as well as the number of changes between

contexts. This was achieved by attributing a timer for

each context. The sum of all the timers was the total

time spent on that task.

Participants were asked to register the start and

end time for each task in the form as a redundancy

precaution in case some data was lost or incorrectly

recorded by the researcher. In addition, the number of

execution attempts was also registered by the researcher.

These performance metrics, namely, durations and

execution attempts, addressed RQ1 and RQ2.

Participants were also asked to save their solutions in

the workstation. This was done for subsequent review if

needed. The solutions considered the answers given and

the developed docker-compose.yaml files as requested

in the tasks.

RQ3 was addressed through the post-experiment

survey. This questionnaire mostly contained Likert-scale

questions as well as a few open-ended questions. The

former questions focused on the perception-based

metrics—PEOU, PU and ITO (cf. Section 5.5)— for

which we opted to follow a similar design to that

employed by Sandobalin et al. [23].

11 Turns Timer, is an Android application available at

https://play.google.com/store/apps/details?id=com.

deakishin.yourturntimer

https://play.google.com/store/apps/details?id=com.deakishin.yourturntimer
https://play.google.com/store/apps/details?id=com.deakishin.yourturntimer
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It is important to note that we measure PEOU

in both groups but measure PU and ITU exclusively

in the experimental group. We adopt this approach

for PU and ITU because these metrics intrinsically

assume a subjective reference point. We believe that

participants in the CG would state their perception in

relative terms to the non-existence of Docker Compose,

and participants in the EG would most likely state it

in comparison to manipulating a docker-compose.yml

file directly. Participants could also share further

observations and considerations in the open-ended

questions. These were primarily useful in detecting

potentially overlooked issues with the experimental

procedure and even unforeseen validity threats.

5.7 Pilot Experiments

We conducted two pilot experiments to gather feedback

about the quality and consistency of the materials and of

the experimental procedure itself. The first pilot allowed

us to realise that some tasks were too complex to fit

within the time of the experiment. As a result, we have

redesigned and simplified them. The second pilot allowed

to refine details in the materials, including typos and

small inconsistencies, as well as to streamline the data

collection process, in particular, the use of the Turns

Timer application to register context times.

6 Results and Discussion

The data collected was mainly quantitative, and we

have used it for hypothesis testing, employing the Mann-

Whitney U (MW-U) [31,32] and McNemar [33] tests

against our variables of interest. The notation used

represents H0 as the null hypothesis and H1 as the

alternative hypothesis, u for the U statistic of MW-U

tests, and ρ as the probability of rejecting H0. We also

denote σ as the standard deviation and x as the mean.

6.1 Background and Tutorial

The background survey gathers information about

confounding factors to ensure that the groups are

balanced in experience and skills. Questions are defined

as Likert items and numeric values and inquire if

the participants consider themselves experienced

with (1) visual programming, (2) orchestration

frameworks and tools, (3) Docker and (4) Docker

Compose—configuration of volumes, networks, configs

and secrets.

We show a summary of the results for the Likert

and numeric scale questions in Table 2. Considering the

alternative hypothesis stating that the control group

is different from the experimental group (CG 6= EG)

for each of the background questions, we found no

significant difference in experience or skills between

the groups, except for BQ6. We discuss this difference

at the end of this section.

The participants were also asked to specify what

other orchestration frameworks, if any, had they used

in the past. Only Kubernetes came up in the answers,

with 2 participants of the CG and 3 of the EG reporting

to have used it. Considering an alternative hypothesis

that the control group is different from the experimental

group (CG 6= EG) for the number of participants that

have used Kubernetes in the past, the results show no a

significant difference of experience and skills between

the groups (cf. Table 3).
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CG EG MW-U

x σ x σ H1 u ρ

BQ1 2.88 0.398 3.13 0.398 6= 29.0 0.372

BQ2 2.13 0.581 1.63 0.263 6= 30.5 0.431

BQ3 4.00 0.189 4.13 0.350 6= 25.5 0.214

BQ4 3.25 0.412 3.13 0.389 6= 30.5 0.434

BQ5 3.25 0.412 2.75 0.458 6= 25.0 0.223

BQ6 2.88 0.295 1.63 0.263 6= 9.0 0.060

BQ7 4.38 0.822 4.88 0.515 6= 26.0 0.262

BQ8 2.88 0.895 2.63 0.925 6= 31.0 0.458

BQ9 3.50 1.052 3.75 0.675 6= 25.5 0.244

I consider myself experienced with ...

BQ1. ... visual programming tools.

BQ2. ... with orchestration frameworks.

BQ3. ... with the Linux OS.

BQ4. ... with Docker.

BQ5. ... with Docker Compose for development purposes.

BQ6. ... with Docker Compose in production environments.

Until now, approximately in how many projects have you ...

BQ7. ... worked on which have used Docker Compose?

BQ8. ... created/updated a docker-compose.yml file?

BQ9. ... used docker-compose.yml files created by others?

Table 2: Summary of the answers to the Likert and

numeric scale questions in the background questionnaire.

CG EG MW-U

x σ x σ H1 u ρ

OF 0.25 0.463 0.38 0.518 6= 28 1.000

OF. Number of orchestration frameworks used

Table 3: Summary of the number of previously used

tools specified in the background questionnaire.

Another question inquired subjects about what

individual Docker Compose configuration options

they had configured in the past. The same number of

participants in each group reported having configured

secrets and configs. To confirm that there is not a

significant difference in the use of volumes and networks,

we ran a McNemar test. Considering an alternative

hypothesis that the control group is different from the

experimental group (CG 6= EG), the results do not

show a significant difference between the groups

(cf. Table 4).

CG EG McNemar

% % H1 ρ

Volumes 37.5 62.5 6= 0.687

Networks 37.5 25.0 6= 1.000

Table 4: Results of the McNemar test for configured

Docker Compose options.

To conclude the background analysis, taking into

account all of the data collected and corresponding

analysis, we believe that we can argue with some level of

confidence that the subjects were balanced across both

groups. Unfortunately, we cannot explain the answers to

BQ6, and perhaps they translate a statistical anomaly,

as they are not consistent with the answers pertaining

to the number of projects (BQ7, BQ8, and BQ9), nor

with the number of orchestration frameworks used (OF)

or the Docker Compose options that participants have

configured in the past.

To further ensure the groups were under equivalent

conditions, before starting the experimental tasks, they

have run a simple tutorial in the respective toolchain

that they were requested to use.

6.2 Experimental Tasks

During the task we measured the task completion, work

context times, task times, execution attempts and context

switches, as analysed next.

6.2.1 Task Completion

We have considered the effectiveness of task execution

by looking at task completion. We define this metric as

the ratio between successfully completed tasks and the
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total number of tasks. A task is successfully completed

only if the subject finished within the allotted time limit

and the solution was correct.

Fig. 14 displays the distribution of completed tasks

by group. While all participants completed T1 and T3.2,

there is a clear difference in T2 and T3.1. While most of

the participants in the EG completed the experimental

tasks, only approximately half of the participants in

the CG were able to complete them. The participants

in both groups who were unable to complete the tasks

were so due to the imposed time constraints on solving

them. No case was registered in which the solution was

incorrect. We can conclude that fewer participants in

the CG finished the task T2 and T3.1. This, in turn,

impacts the metrics considered for the remainder of this

analysis since the registered times were capped up to

the moment when the time limit was exceeded. If the

time limit was not set, the differences might have been

even sharper. However, this was a necessary sacrifice to

keep the overall time reasonable and manageable.

# 
C
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Fig. 14: Distribution of total completed tasks per group.

6.2.2 Work Context Times

The times spent on each work context allow us to

understand the behavior of the participants better.

Table 5 and Fig. 15 overview the global times per

context. We shall first look into those that are most

directly comparable between the two groups—Script,

Docs (documentation) and Browser.

By looking at the data in Fig. 15, we can identify a

large discrepancy in the time spent on the Docs context

for reading documentation. This is further supported

by the discrepancy of the time spent on the Browser

context, which was also mostly dedicated to reading

other non-official documentation resources. We ran a

Mann-Whitney U test for the independent contexts to

confirm our intuition.

Considering the alternative hypothesis that the time

spent in the Docs and Browser contexts is higher for the

CG, the results shown in Table 6 confirm that, indeed,

the CG spent significantly longer than the EG in

these contexts. We can also see that there is not a

significant difference between the groups in the time

spent on the Script context for reading the script.

It is difficult to draw any other useful information

from the remainder of the variables when considered

individually, as they are either exclusive to some group

(i.e., Composer for the EG) or partly replace the purpose

of one another across both groups. However, we can

consider the sum of time spent on editor and terminal

(E+T) in the CG to be roughly equivalent to the sum of

time spent on the textual editor (which mostly equates

to the time spent accessing other textual materials such

as configuration files which were used in the tasks) and

on Docker Composer (E+C) in the EG. No participant

in the EG used the terminal to execute any other

Docker or Docker Compose CLI commands besides those

that were available in the prototype. We refer to this

composite context focused on the management of the

orchestrations as Stack Management and show it as the

last line in Table 5. The time difference shown in this line

does not appear to be very high. Testing the hypothesis
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(CG > EG using the MW-U test rendered u = 29 and

ρ = 0.399. These results do indeed not show that the

participants in the EG have spent significantly less

time managing the containers than those of the CG.

Therefore, it seems reasonable to conclude that the

biggest impact on the overall duration was the time

spent consuming documentation. This difference is in

line with the expectation that a visual programming

language promotes an exploratory approach in which

the solution space is constrained by the options that

are explicitly made available through the user interface,

and users are able to converge to solutions by searching

the options provided by our prototype.

6.2.3 Task Times

Analyzing the times per context provides detailed insight

into the participants’ behavior. We can, however, also

look at the time spent globally (i.e., the total sum of

time spent on each activity) to assess the overall speed.

Fig. 16 displays the distribution of times by task for

each group. We can identify that the participants in the

EG generally have finished tasks T2, T3.1, and T3.2

sooner than the participants in the CG. In contrast, for

task T1, both groups are more balanced.

Table 7 summarizes the results obtained for the

times of each task along with the results of the MW-U

significance test performed to compare both. By

considering this data and the expected alternative

hypothesis which states that the participants in the

EG would finish tasks faster than those of the CG

(i.e., CG > EG) for all tasks, the results demonstrate

that EG did indeed finish task T2, T3.1 and

T3.2 significantly faster than the CG. These tasks

evaluated debugging, implementing, and updating

activities. Particularly, it is interesting to note the

significant difference in T3.2. The scenario in this task

required the participants to use a particular feature

of Docker Compose—secrets—with which most did in

fact not have any prior experience. In practice, the

workflow to use this feature in the prototype was very

similar to that of other artifacts, such as volumes and

networks. These results support that the prototype was

sufficiently intuitive for participants to learn how to use

this new feature, after having some experience with it,

simply by following a similar rationale and without the

need to consult additional documentation.

The prototype successfully reduced the overall

time required to develop and debug orchestrations.

Table 5: Summary of the global time registered per activity for the sum of time taken in all tasks, with the mean

and standard deviation for each group. The Composer context does not contain data for the CG as this

context was not available for this group and was exclusive to the EG.

CG EG

Context
∑

x σ
∑

x σ

Script 2:06:04 15:46 06:10 1:29:40 11:13 03:52

Composer - - - 3:50:08 28:46 10:29

Docs 1:51:36 13:57 06:25 0:18:59 02:22 02:15

Browser 0:41:44 05:13 04:02 0:11:36 01:27 01:53

Editor 2:52:17 21:32 03:57 0:04:51 00:36 00:29

Terminal 1:53:03 14:08 02:38 0:02:10 00:16 00:31

Stack Management 3:34:01 26:45 07:16 3:54:59 29:22 10:47
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Fig. 15: Distribution of the global times for each subject by context, by group. The Stack Management context

refers to the sum of time spent on the Editor and Terminal contexts for the CG and the sum of time spent on the

Editor and Composer contexts for the EG.

Table 6: Result of the Mann-Whitney U equality test

for the sum of time spent on three contexts.

Context H1 u ρ

Script > 17 0.065

Docs > 2 <0.001

Browser > 9 0.007

While there was no meaningful improvement for task

T1 (in which participants had the goal of analyzing

an orchestration), overall, the prototype managed to

reduce the duration of the remaining tasks. Some of

the questions in T1 required a deeper knowledge of

concepts that were not immediately conveyed by the

prototype. Although the participants in EG already

had some hands-on experience with the prototype

during the tutorial, we think that they spent some time

Table 7: Summary of the completion times for each task

across groups.

CG EG MW-U

Task x σ x σ H1 u ρ

T1 0:13:05 0:05:51 0:12:12 0:05:19 > 31 0.480

T2 0:22:59 0:04:55 0:14:41 0:05:59 > 11 0.014

T3.1 0:24:56 0:07:04 0:13:47 0:06:57 > 3 0.001

T3.2 0:09:35 0:04:26 0:04:01 0:01:56 > 6 0.002

exploring the features of the prototype, in search of

answers for the first task.

6.2.4 Execution Attempts

In addition to the task times, the execution attempts

were also registered for each task, that is, the number of
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Fig. 16: Distribution of times to completion for each

subject by task, by group.

times a participant tried to run the orchestration (i.e.,

run the command docker-compose up).

Fig. 17 displays the distribution of execution

attempts by task for each group. We can see that the

participants in the EG have generally performed fewer

execution attempts in tasks T2, T3.1, and T3.2 than

the participants in the CG. In contrast, for task T1,

both groups are more balanced, but it is important

to note that the results for T1 are not very revealing

as the execution of the orchestration was completely

optional for this task.

Table 8 displays the results for execution attempts.

Considering this data and the expected alternative

hypothesis which states that the EG would need fewer

execution attempts than the CG (i.e., CG > EG) for

all tasks, the results demonstrate that EG did require

significantly fewer execution attempts for T3.1

and T3.2.

Fig. 17: Distribution of execution attempts for each

subject by task, by group.

Table 8: Summary of the execution attempts for each

task across both groups.

CG EG MW-U

Task x σ x σ H1 u ρ

T1 0.38 0.518 0.50 0.535 > 28.0 0.500

T2 7.00 3.928 5.63 2.560 > 21.5 0.134

T3.1 10.13 4.357 5.25 4.097 > 11.5 0.014

T3.2 3:50 1.690 1.75 0.463 > 13.0 0.016

These results are in line with the time difference

established above. Overall, the participants in the

EG were more efficient and did not spend as much

time restarting the containers. This behavior was also

expected as in practice, many execution attempts in the

CG resulted from syntax errors. The prototype avoided

most syntax errors simply due to the more strict

form inputs (with stronger validation) and subsequent

automatic code generation, free of errors. We believe

that this was the biggest factor contributing to the

non-significant difference in T2 since a partially working
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orchestration was provided in this task, and it required

few changes.

6.2.5 Context Switches

In addition to the work context times, the context

switches were also recorded, that is, the number of

times the participant accessed each of the contexts. To

keep this metric uniform across participants, we consider

the context switches per minute (s/m) instead of to the

total count of context switches. This metric is useful in

evaluating participants’ degree of focus when using the

tool. We argue that a higher number of context switches

translates into a less optimized experience since users

have to shift their attention more frequently.

We analyze the global context switches during the

full session, that is, the total sum of the switches between

all contexts for all tasks. Fig. 18 seems to suggest that

the participants in the EG performed fewer context

switches than those of the CG. To confirm this intuition,

we performed a MW-U test (cf. Table 9). Considering

this data and the alternative hypothesis which states

that participants in the EG would execute fewer context

switches than those in the CG (i.e., CG > EG) overall,

the results show that the participants in the EG did, in

fact, execute significantly fewer context switches

than those in the CG. These results suggest that the

process was more streamlined for the EG, which is in

line with the results of the task time analysis performed

previously.

Notwithstanding, to interpret these results, we

must also consider that CG participants used external

terminal windows to execute CLI commands, rather

than a built-in terminal within the text editor. It

is reasonable to expect that we would see a smaller

difference in context switching across the two groups if

we were to condition the CG to use a built-in terminal.

Fig. 18: Distribution of global context switches for each

subject by group.

Table 9: Results of the MW-U test for global context

changes.

CG EG MW-U

s/m x σ x σ H1 u ρ

Global 4.628 0.912 3.479 0.929 < 10 0.010

6.3 Assessment Survey

This survey had the goal of gathering insights on the

perception of participants regarding aspects of the

experiment itself and of the visual approach that we

aimed to evaluate. We start by asking how participants

perceived the environment (cf. Section 6.3.1) and

the clarity of the instructions and task descriptions

(cf. Section 6.3.2), with the goal of detecting unforeseen

confounding factors. The subsequent questions intend

to collect data about three perception-based metrics:

perceived ease of use (PEOU, cf. Section 6.3.3),
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perceived usefulness (PU, cf. Section 6.3.4), and

intention to use (ITU, cf. Section 6.3.5). The survey

provided to EG featured an additional set of questions

to evaluate the perceived usefulness of individual

features and overall PU as well as ITU sentiment

towards the prototype. The questions which focused on

PU were formulated to compare the usefulness of the

prototype in relation to the participant’s perception of

the conventional method and toolchain.

6.3.1 Environment

Analyzing the data in Table 10 and considering an

alternative hypothesis that the perception of the CG

of environment factors differs from the EG for all

environment-related questions, the results demonstrate

that there is not a significant difference between

the groups. These results support the hypothesis that

the influence of environmental factors on performance

during tasks was balanced across both groups and

therefore, did not have a meaningful impact on the

outcomes.

Table 10: Summary of the answers to the ENV Likert-

scale items of the assessment survey.

CG EG MW-U

x σ x σ H1 u ρ

ENV1 4.13 1.356 3.75 1.282 6= 25.5 0.231

ENV2 1.88 1.356 2.13 1.458 6= 29 0.367

ENV1. It was easy working in the remote machine.

ENV2. The environment was distracting.

6.3.2 Clarity of the Instructions and Task Descriptions

We found a significant difference regarding how the

task descriptions were perceived across both groups, as

shown by Table 11, and the means suggest that the

EG found the task descriptions more understandable

than the CG. This discrepancy implies a relevant

threat to validity, since it could entail that differences

in performance reflect an intrinsic difficulty by the

CG in understanding the instructions. However, the

balance between the two groups that we report in

Section 6.1 makes us believe that that is unlikely.

Another explanation that we must consider is that

this difference in perception is the result of the more

pronounced difficulties of the CG in executing the

task—that is, in moving from the problem space to

the solution space—and that this difficulty may have

influenced their judgment about the instructions.

The prototype used by the EG provided a more

streamlined and focused experience (as supported by

the lower context switching) which, we think, has helped

participants to concentrate on the provided instructions

and take a more linear approach to performing the

tasks.

Table 11: Summary of the answers to the CLR Likert-

scale items of the assessment survey.

CG EG MW-U

x σ x σ H1 u ρ

CLR1 2.25 1.282 1.25 0.463 6= 17.0 0.080

CLR2 3.00 0.926 1.50 0.756 6= 6.5 0.005

CLR1. I found the procedure instructions complex and hard to follow

CLR2. I found the task descriptions complex and hard to follow.

6.3.3 Perceived Ease of Use

By analyzing the data in Table 12 and considering

the hypothesis that participants in the EG would

find the prototype easier to use (i.e., CG > EG for

PEOU1 and PEOU2 and CG < EG for PEOU3) for

all equivalent PEOU questions, the results demonstrate

that the EG did indeed find that it was significantly
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easier to work with the prototype. Therefore we

can state with some confidence that participants did

find the prototype easier to use than the conventional

method. Additionally, the exclusive question PEOU4

also demonstrates that the participants in EG strongly

agreed that the tool is easy to learn.

Table 12: Summary of the results of the answers to

the Likert-scale questions related to perceived ease of

use (PEOU) in the assessment survey. (*) PEOU4 was

exclusive for the EG.

CG EG MW-U

x σ x σ H1 u ρ

PEOU1 2.64 1.188 1.00 0.000 > 8.0 0.002

PEOU2 2.63 0.916 1.13 0.354 > 5.5 0.001

PEOU3 3.63 0.744 5.00 0.000 < 4.0 0.001

PEOU4* n/a n/a 4.88 0.354 n/a n/a n/a

PEOU1. Overall, I found the tool difficult to use.

PEOU2. I found it difficult to understand stacks with the tool.

PEOU3. I found it easy to define stacks with the tool.

PEOU4. Overall, I found the tool easy to learn.

6.3.4 Perceived Usefulness

This and the next section are about questions exclusive

to the survey provided to the EG, as they were

specifically about Docker Composer, and could only be

answered by the group that used it.

The survey provided to the EG contained a section

dedicated to evaluating the perceived usefulness of our

prototype when compared with a usual workflow without

Docker Composer. The questions focused on specific

features, namely, the visual map of artifacts (VM),

Docker Hub integration (DHI), visual feedback (VF),

and executing commands on the UI (UIC). They are used

to assess the perceived usefulness with more granularity

and support us in better understanding the impact of

each feature in the overall perception.

Table 13 summarizes the obtained results and allows

us to conclude that the feature considered most useful

was the visual map of artifacts (VM) while the least was

the Docker Hub integration (DHI). These results match

our expectations as the DHI feature was secondary

and mostly added for ease-of-use and convenience. The

designed tasks did not take full advantage of this feature

since participants could copy and paste the image names

and tags from the provided script without the need to

locate them manually. In contrast, the VM feature was

the direct result of the hypothesis of this dissertation

and corresponded to the most novel and premeditated

feature. Regardless, the response was positive for all

features.

Table 13: Summary of the results of the answers to the

Likert-scale questions related to perceived usefulness

of features in the assessment survey. n/a means not

applicable.

VM DHI VF UIC

x σ x σ x σ x σ

ULE 4.88 0.35 4 1.20 4.50 0.76 n/a n/a

UQ 4.75 0.46 4 1.20 4.75 0.71 n/a n/a

DLE 4.88 0.35 4 1.20 n/a n/a 4.75 0.71

DQ 4.88 0.35 4 1.20 n/a n/a 4.75 0.71

I find the [VM|DHI|VF|UIC] ...

ULE. ... helpful to understand stacks with less effort.

UQ. ... helpful to understand stacks more quickly.

DLE. ... helpful to define stacks with less effort.

DQ. ... helpful to define stacks more quickly.

The answers to questions about the overall perceived

usefulness are shown in Table 14. Taking into account

this feedback and that about the usefulness of individual

features (cf. Table 13), we can state that participants

did indeed find the tool useful.
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Table 14: Summary of the results of the answers to the

Likert-scale questions related to the overall perceived

usefulness in the assessment survey.

x σ

PU1 5.00 0.000

PU2 5.00 0.000

PU3 1.50 0.756

PU4 1.00 0.000

PU5 4.88 0.354

PU1. I believe this tool would reduce the effort required to define

stacks.

PU2. Overall, I found the tool useful.

PU3. A stack visualized with the tool would be more difficult to

understand.

PU4. Overall, I think this tool is ineffective for defining stacks.

PU5. Overall, I think this tool improves the stack definition process.

6.3.5 Intention to Use

Taking into account the results displayed in Table 15,

we can state with some confidence that participants do

indeed intend to use the tool in the future.

Table 15: Summary of the results of the answers to the

Likert-scale questions related to the overall perceived

usefulness in the assessment survey.

x σ

ITU1 4.50 0.535

ITU2 4.75 0.463

ITU3 5.00 0.000

ITU4 4.50 0.756

ITU5 4.75 0.463

ITU1. This tool would make it easier for practitioners to define

orchestrations.

ITU2. Using this tool would make it easier to explain the stack.

ITU3. I would recommend this tool to work with Docker Compose.

ITU4. I would like to use this tool in the future.

ITU5. It would be easy for me to become skillful in using this tool.

Overall, the results demonstrate that the response to

the prototype was overwhelmingly positive and generally

very consistent across participants. The participants

found the approach more straightforward to use than

the conventional method, generally useful, and were

interested in using it in the future.

7 Validation Threats

We identify and discuss threats that might hinder the

soundness of the obtained results. We tried to mitigate

most threats throughout the experimental planning and

design. Nevertheless, we identify the following threats.

7.1 Internal Validity

Psychological bias. For the results to be unbiased, it

is important to ensure that participants are unaware

of what group they belong to. However, this is hard to

achieve in practice. Participants may have suspected

they were part of the EG, since they were asked to use

a tool that was not known to them. Nevertheless, all

efforts were made to mitigate this threat, particularly

by preparing the materials to omit any relevant

information and avoiding any verbal exchange during

the experiments themselves, which could allude to this

fact.

Experience differences. It is crucial to ensure that

the results are independent of possible skills and

experience differences between groups. For this reason,

the background questionnaire was part of the process,

and the data analysis supports that both groups were

balanced. Therefore, we believe we can discard this

threat.

Environment influences. Performing the sessions

remotely raised additional concerns in regards to

possible deviations due to uncontrolled external factors.

However, we believe that we were able to ensure

a consistent environment for all participants with

this approach. In addition, the researcher’s constant
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observation during the sessions was also useful in

identifying any unforeseen anomalies. The results in the

assessment questionnaire further support that there

was not any significant difference between groups. Thus,

we believe we can discard this threat.

7.2 External Validity

Limited sample size. The somewhat small sample

size limits the extent to which we can confidently assert

the generalizability of our findings. To do so, replications

of these studies should try to use a larger sample size

to mitigate this threat.

Sample bias. All the participants were students

with similar backgrounds. While this helped to ensure

that there was not a significant experience disparity

between groups, the results may be biased towards

novice software developers. Research conducted by

Host et al. [34] concluded that graduate students can

be appropriate subjects, if properly trained, as they

represent the future generations of developers. Salman

et al. [35] also conclude that, independently of the

experience level, subjects perform similarly when they

apply a new approach for the first time. Thus, we

believe the results are meaningful. Despite this, further

studies may obviously provide more insights, especially

if they feature a more heterogeneous sample, with

more diverse backgrounds, to achieve results with more

confidence and mitigate this threat.

7.3 Construct Validity

Clarity of the questions. There is always the

chance that some participants have interpreted our

questionnaire items in a different way than the one we

intended. To address this concern, we have first run

two pilot experiments, as described in Section 5.7. This

allowed improving potentially dubious questions before

running the experiment.

Auto-layout inefficiencies. As described in Section 4,

the prototype implemented an automatic layout

algorithm to position artifacts when loading an

orchestration from a YAML file. However, the

layouts achieved were not as good as if manually

constructed. To mitigate possible deviations resulting

from this limitation, the orchestrations provided to

the experimental group were prepared in advance to

a more readable format and were loaded using the

custom storage feature. In practice, this did not seem

to influence the results as no participant suggested this

improvement, therefore we believe that we can discard

this threat.

8 Conclusions

Our findings support some of the benefits that we

expected to have from using low-code in this domain

and, in particular, support the hypothesis that a

visual approach for orchestration can indeed reduce

development time and error-proneness significantly. We

delve into this hypothesis in more detail by answering

the three research questions that we first introduce in

Section 2.

RQ1 To what extent does a visual notation for the

orchestration of (Docker) containers reduce the

development time?

Answer: The work context times show a positive

impact of Docker Composer, but the clearest

gains are specifically in the reduction of the time

spent reading documentation (cf. Section 6.2.2).

Nevertheless, a clear improvement can be

observed in task times, and the most visible



28 Bruno Piedade et al.

benefits appear specifically in tasks involving

the development or debugging of orchestrations

(cf. Section 6.2.3).

RQ2 To what extent does a visual notation for

(Docker) orchestration files reduce the number of

errors?

Answer: Both the analysis of the execution

attempts (cf. Section 6.2.4) and of the context

switches (cf. Section 6.2.5) suggests that the

experience was overall more streamlined when

using a visual notation. Docker Composer,

allowed to spend less time restarting containers

and to avoid syntax errors, which resonates

with the significantly lower number of context

switches.

RQ3 What is the perception of developers towards

using a visual notation for the orchestration of

(Docker) orchestration files?

Answer: The findings related to perception-

based metrics were positive overall (cf.

Section 6.3). The participants felt that

Docker Composer was more comfortable to use,

was generally useful, and they showed strong

intentions of using it in the future. These results

give us some confidence that developers find

the tool easy-to-use and intuitive, considering

the steps and actions needed to configure some

orchestrations successfully.

8.1 Future Work

While the results that we have obtained are promising,

we do not consider the prototype production-ready.

Additional research would be useful to consolidate

further and confirm our findings, primarily to address

some of the validation threats described above. To this

end, we make our prototype and experimental package

readily available and provide a roadmap along three

different topics—the visual approach, the developed

prototype, and the empirical evaluation.

8.1.1 Visual Approach

The designed visual approach is highly tied to the

underlying concepts of Docker Compose, but we

believe that similar visual approaches are applicable

to a broader context and, in particular, to other

orchestration technologies. Therefore, it would be

interesting to explore domain-specific visual notations

for other orchestration technologies (e.g., Kubernetes).

Furthermore, one can even consider the possibility of

a more generic and technology agnostic model-driven

approach, useful for a wider set of use-cases. In

conjunction with the growing adoption of microservices

architectures, the positive results obtained in this work

provide strong motivation to promote research in this

field.

8.1.2 Prototype

We propose evolving the prototype to a production-ready

application by refining and expanding existing features

and exploring other ideas that go beyond the immediate

objective of this work, which we believe may further

improve the orchestration process. Some of these ideas

stem from the conceptual stages of our implementation

but were ultimately not realized as they did not directly

contribute towards our goal, while others result from

how we foresee the prototype could evolve.

– Textual editor. We propose the inclusion of a

textual editor, which would work in parallel with

the graphical editor, as the similar feature offered

by DockStation. However, unlike DockStation,
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we propose to view both perspectives on the

same window simultaneously. This would require

real-time sync mechanisms to maintain both

views consistent on change in either one and

could be achieved through techniques for MDSE

bidirectional transformation [36,37,38,39] and

flexible modeling [40]. We consider this as one of the

most significant improvements since it could broaden

the potential target audience of the prototype, as

many developers (especially the more experienced

ones) seem to prefer working with text files. This

addition would mean that the solution would not

substitute the conventional method and instead

complement it with more information and options.

– Automatic layout. As previously noted the

automatic layout feature was sub-optimal and

requires further research to improve the display

arrangement of the different visual nodes. The

approach should ideally optimize placement based

on the type of artifact rather than considering all

the elements on the same level (e.g., it may make

sense to tend to represent volumes and networks on

the lower half of the layout).

– Visual feedback. This is a broad subject, in

which we may consider minor changes, such as

more detailed status indicators, to more substantial

improvements, such as optimizing feedback for other

technologies, like Docker Swarm and its multiple

containers per service.

– Static validation. While the prototype considers

validations for some property fields, there is the

potential to further enrich this feature with even

more. These include validations for ports taking into

account the available host ports.

– Exploring liveness. Liveness is a characteristic of

development environments that refers to its ability

to provide information to the developer about what

they are constructing [41]. Tanimoto established a

scale that can be used to evaluate the level of liveness

of an environment [42].

We may use liveness as an indicator of how much

these tools can provide timely feedback to their

users and, therefore, how much they can discourage

switching between these and other applications.

While the previous two points above already

contribute towards a more live experience, we can

see the possibility of exploring this concept more

exhaustively to improve the process of defining

orchestrations.

8.1.3 Empirical Evaluation

Replication of our study would help to consolidate and

increase the confidence level of these results. With this

in mind, we have compiled a replication package as

described in Section 5.4.

Furthermore, we can see different variants to our

controlled study that would complement the results

presented in this article:

– Running the same study with professionals would

show how much the results we obtained here with

beginners are really extendable to professional

software developers.

– Conditioning the CG to use a terminal built-into the

text editor, instead of an external one, would provide

a baseline that is closer to the environment currently

used by developers and a more accurate account

of the amount of context-switching in question (cf.

Section 6.2.5).
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– Expanding our study design to consider DockStation,

Admiral and Docker Studio would show the extent

to which our findings hold independently of the

idiosyncrasies of specific implementations. Even

though these two tools don’t provide a complete

visual notation for Docker Compose files, they could

still allow narrower studies to be done on the merits

of visual programming languages in this domain.

While controlled user studies are powerful in

identifying isolated cause-effect relations, they fail to

fully capture the intricacies of real-world scenarios.

Case Conducting a case study with Docker Composer in

an industrial environment would be another invaluable

source of insight into the actual behavior of the

approach in more realistic scenarios.
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