
Springer Nature 2021 LATEX template

The Uncertainty Interaction Problem in Self-Adaptive Systems

Javier Cámara1*, Javier Troya1, Antonio Vallecillo1, Nelly Bencomo2, Radu
Calinescu3, Betty H.C. Cheng4, David Garlan5 and Bradley Schmerl5

1*ITIS Software, University of Málaga, Spain .
2Department of Computer Science, Durham University, UK .
3Department of Computer Science, University of York, UK .

4Department of Computer Science and Engineering, Michigan State University, USA .
5Institute for Software Research, Carnegie Mellon University, USA .

*Corresponding author(s). E-mail(s): jcamara@uma.es;
Contributing authors: jtroya@uma.es; av@uma.es; nelly.bencomo@durham.ac.uk;

radu.calinescu@york.ac.uk; chengb@msu.edu; garlan@cs.cmu.edu; schmerl@cs.cmu.edu;

Abstract

The problem of mitigating uncertainty in self-adaptation has driven much of the research proposed
in the area of software engineering for self-adaptive systems in the last decade. Although many solu-
tions have already been proposed, most of them tend to tackle specific types, sources, and dimensions
of uncertainty (e.g., in goals, resources, adaptation functions) in isolation. A special concern are the
aspects associated with uncertainty modeling in an integrated fashion. Different uncertainties are
rarely independent and often compound, affecting the satisfaction of goals and other system prop-
erties in subtle and often unpredictable ways. Hence, there is still limited understanding about the
specific ways in which uncertainties from various sources interact and ultimately affect the properties
of self-adaptive, software-intensive systems. In this SoSym expert voice, we introduce the Uncer-
tainty Interaction Problem as a way to better qualify the scope of the challenges with respect to
representing different types of uncertainty while capturing their interaction in models employed to
reason about self-adaptation. We contribute a characterization of the problem and discuss its rel-
evance in the context of case studies taken from two representative application domains. We posit
that the Uncertainty Interaction Problem should drive future research in software engineering for
autonomous and self-adaptive systems, and therefore, contribute to evolving uncertainty modeling
towards holistic approaches that would enable the construction of more resilient self-adaptive systems.

Keywords: Uncertainty, Modeling, Self-Adaptation, Assurances

1 Introduction

Complex systems in which software contributes
essential influences to the design, construction,
deployment, and evolution of the system, com-
monly referred to as software-intensive systems,
are increasingly relied upon to support tasks that

are typically characterized by a high degree of
uncertainty in different contexts.

Frequently, uncertainty is unavoidable. Having
a means to explicitly represent uncertainty can
significantly help avoid making decisions associ-
ated with a high level of unpredictability, which
can lead to actions involving major losses or

1

Springer Nature 2021 LATEX template

2 The Uncertainty Interaction Problem

costs, i.e., the so-called cost of being wrong [38].
Examples of such situations are a facial recogni-
tion system that misidentifies injured people in
a search and rescue operation due to a natural
disaster, an automatic triage application that mis-
classifies an emergency room patient as low risk
when she is actually critically ill, or the auto-
matic stock management system that decides to
make a substantial investment based solely on the
confidence of a computer system prediction, but
without considering its associated uncertainty, can
all lead to disastrous consequences if the wrong
decision is made. Having a measure of the degree
of uncertainty associated with a resulting decision
can be useful, for example to rule out any deci-
sion whose degree of uncertainty is above a certain
threshold [5, 24].

Addressing these situations by mitigating the
effects of uncertainty in software-intensive sys-
tems has been one of the focal points of self-
adaptation [9, 22], which is regarded as a promis-
ing way to engineer in an effective manner systems
that are resilient to run-time changes despite
the different uncertainties in their execution envi-
ronment (induced by, e.g., resource availability,
interaction with human actors), goals, or even
in the system itself (e.g., faults, noisy sensors,
machine learning-based components).

During the last decade, the research commu-
nity has made an important effort in supporting
the analysis and management of self-adaptive
systems under uncertainty. In particular, several
taxonomies of uncertainty have been proposed [16,
29, 35, 36], and a substantial body of work exists
on methods to manage uncertainty [21]. These
methods are able to individually detect, represent,
and mitigate uncertainties from various sources,
which may have distinctive effects on the sat-
isfaction of both functional and non-functional
requirements. However, these uncertainties are
rarely independent and often compound, affecting
the satisfaction of goals and other system proper-
ties in subtle and often unpredictable ways, as we
illustrate in the remainder of this article.

We believe that there is still limited under-
standing about the specific ways in which uncer-
tainties of different types and from various sources
interact and, ultimately, affect the properties of
self-adaptive, software-intensive systems. Repre-
senting the interactions of such combined uncer-
tainties, analyzing the impact of their emergent

effects on the satisfaction of requirements, and
mitigating them remain open challenges that are
the focus of this article.

The remainder of this paper is structured
as follows. Section 2 gives an introduction to
self-adaptive systems, explains the uncertainty
sources identified in this domain, and presents
a classification of uncertainties. Then Section 3
exemplifies the uncertainty interaction problem
in systems from two application domains, where
several types of uncertainty interactions are illus-
trated. Section 4 outlines research challenges that
should be addressed in order to deal with the
uncertainty interaction problem. Finally, Section 5
concludes the paper.

2 Background

In this section, we first present some general
background about self-adaptive systems. Next, we
introduce a categorization of the sources of uncer-
tainty in self-adaptive systems informed by the
work of Mahdavi-Hezavehi et al. [29], followed by
a taxonomy of uncertainty classified according to
its representation in software models [44].

2.1 Self-Adaptive Systems

What distinguishes a self-adaptive system from
any other system is its ability to continuously
deliver its service despite changes that may occur
in the system, its environment, or its goals. A
key component that enables self-adaptive systems
to handle changes at run-time is a controller or
self-adaptive layer (Figure 1) that implements a
set of adaptation functions and that relies on a
feedback loop for managing adaptations [9]. Con-
trollers execute actions via effectors or actuators
on the target system, based on information mon-
itored by probes or sensors both from the target
system and its environment, which consists of
all non-controllable elements that determine the
operating conditions of the system (e.g., hardware,
network, physical context, etc.).

In the context of complex software-intensive
systems, these controllers are usually built based
on patterns such as MAPE-K [25], which imple-
ments the traditional sense-plan-act architectures
and includes four distinct operational stages:

Springer Nature 2021 LATEX template

The Uncertainty Interaction Problem 3

Self-Adaptive Software System

Controller

Environment
Non-controllable software, hardware,

network, physical context

Target System

Effectors

Adapt

Probes

Monitor

MonitorAffect

M
o

n
it
o

r

Probes

Fig. 1 Self-adaptive system.

• Monitor: monitors the target system and envi-
ronment through sensors that provide informa-
tion about the value of relevant variables.

• Analyze: decides whether the current state
demands adaptation.

• Plan: if adaptation is required, decides the best
way to adapt the system.

• Execute: applies a sequence of control or adap-
tation actions through system-level effectors (or
actuators).

Key concerns with respect to the run-time
behavior of self-adaptive systems are related to
their non-functional attributes that include per-
formance, cost, availability, reliability, and safety.
Self-adaptive systems typically operate in envi-
ronments that feature high-levels of uncertainty
that emerge from different sources and have a
remarkable influence on the satisfaction of system
goals and other system properties. In the following
section, we identify a number of those sources.

2.2 Uncertainty Sources in
Self-Adaptive Systems

Several papers have identified types of uncertainty
in self-adaptive systems [8, 16, 45]. Among them,
the work by Mahdavi-Hezavehi et al. [29] defines
a comprehensive and structured organization that
identifies and categorizes sources of uncertainty.
The study identifies five dimensions of uncer-
tainty: location, source, nature, level/spectrum,
and emerging time. For our purposes, we focus on
source and location (i.e., the class of uncertainty
source), abstracting away from other dimensions

that are not essential to illustrate the ideas in
this paper. Next, we provide details of these two
dimensions of uncertainty.

Location. The place in which uncertainty
emerges in the self-adaptive system. Identified
locations 1 are:

1. Model: Models that the self-adaptive system
employs (typically for decision-making). One
example might be the abstraction of some
aspect of the real system that is not repre-
sented in its model, which induces epistemic
uncertainty.

2. Adaptation Functions: Functionalities that a
self-adaptive loop performs. An example is the
uncertainty caused by faulty sensors of the
adaptive system.

3. Goals: Goals that the self-adaptive loop uses
to manage the system. An example is not fully
anticipating changing goals in the future.

4. Environment: Context (including interactions
with human actors) in which the system is
running (e.g., the uncertainties induced by the
behavior of a human-in-the-loop, which is not
deterministic).

5. Resources: Components needed by the self-
adaptive system to operate. An example is
uncertainty from changes in resource availabil-
ity.

6. Managed System: Subsystem being managed by
the managing subsystem in the self-adaptive
system. An example is uncertainty caused by
the complexity of the managed subsystem.

Source. It represents specific sources of uncer-
tainty within the locations described above.
Table 1 describes the different sources of uncer-
tainty identified in [29].

In addition to the information presented in
the table, Figure 2 shows a UML class diagram
that represents the six uncertainty sources (classes
shaded in light brown color in the diagram) and
their relationships, which in this case represent the
possible interactions between them. For example,
the uncertainty of self-adaptive behaviour may be
aggravated by a goal uncertainty when combined.
Suppose that the threshold used to decide about a
change in behavior is not cleanly defined because

1In the remainder of this article, we use the term uncertainty
source informally to refer both to uncertainty source groups
(locations) and specific sources of uncertainty.

Springer Nature 2021 LATEX template

4 The Uncertainty Interaction Problem

Table 1 Sources of uncertainty (from [29]).

Source group
(location)

Uncertainty
source

Description

Abstraction Uncertainty caused by omitting certain details and information from models for the
sake of simplicity.

Incompleteness Uncertainty caused by parts (of models, mechanisms, etc.) that are knowingly missing
because of a lack of (current) knowledge.

Model Model drift Uncertainty caused by a discrepancy between the state of models and the represented
phenomena.

Different sources
of information

Uncertainty caused by differences between the representations of information provided
by different sources of information. Uncertainty may be due to different representations
of the same information, or result of having different sources of information, or both.

Complex models Uncertainty caused by complexity of runtime models representing managed sub sys-
tems.

Variability space
of adaptation

Uncertainty caused by the size of the variability space that the adaption functions need
to handle. This type of uncertainty arises from striving to capture the whole complex
relationship of the system with its changing environment in a few architectural config-
urations which is inherently difficult and generates the risk of overlooking important
environmental states [5].

Sensing Uncertainty caused by sensors that are inherently imperfect.

Effecting Uncertainty caused by actuators that are inherently imperfect.

Adaptation
functions

Automatic
Learning

Uncertainty caused by machine learning techniques of which the effects may not be
completely predictable.

Decentralization Uncertainty due to decision making by different entities of which the effects may not
be completely predictable.

Changes in
adaptation
mechanisms

Uncertainty due to required dynamicity of adaptation infrastructure to maintain its
relevance with respect to the changing adaptation goals (Villegas, Tamura, Müller,
Duchien, and Casallas, 2013).

Fault localization
and identification

Uncertainty caused by inaccurate localization and identification of faults in the man-
aged system.

Goal dependencies Dependencies between goals, in particular quality goals, may not be captured in a
deterministic manner, which causes uncertainty.

Future goal
changes

Uncertainty due to potential changes of goals that could not be completely anticipated.

Goals Future new goals Uncertainty due to the potential introduction of new goals that could not be completely
anticipated.

Goal specification Uncertainty due to lack of deterministic specifications of quality goals.

Outdated goals Uncertainty caused by overlooking outdated goals.

Execution context Uncertainty caused by the inherent unpredictability of execution contexts.

Environment Human in the loop Uncertainty caused by the inherent unpredictability of human behavior.

Multiple
ownership

Uncertainty caused by lack of proper information sharing, conflicting goals, and decision
making policies by multiple entities that own parts of the system.

Resources
New resources Uncertainty caused by availability of new resources in the system.

Changing
resources

Uncertainty caused by dynamicity of resources in the system.

Managed system System complexity
and changes

Uncertainty caused by complexity and dynamicity of nature of the managed system.

it depends on sensor values, which are impre-
cise. Suppose as well that the utility functions,
which define the objectives, are neither precisely
defined because stakeholders do not have a precise

idea about in what contexts they should priori-
tize performance over safety (the information can
be learned during run-time [3, 40]). Similarly, the
decision to change a resource may be much more

Springer Nature 2021 LATEX template

The Uncertainty Interaction Problem 5

Fig. 2 Uncertainty sources and their relationships.

difficult when it is not clear if the resource is
available or not, and such a decision is based on
imprecise functions. In the following sections we
will describe specific examples of these interac-
tions in two scenarios that we have chosen to illus-
trate some of the problems that can emerge when
combining uncertainties in self-adaptive systems.

2.3 Representing Uncertainty

Quoting DeMarco [13],“You can’t control what
you can’t measure”. In order to measure uncer-
tainty, first we need to represent it. The purpose
of explicitly representing uncertainty is twofold:
a software engineer who models or simulates a
system needs to capture the relevant characteris-
tics of uncertainty in a suitable way so they can
be made explicit and later analyzed; while a sys-
tems engineer analyses uncertainty to quantify it,
reduce it, or mitigate its effects [2, 31].

Scientists and engineers already know how to
deal with uncertainty in many of its forms (objec-
tive, subjective, epistemic, aleatory) [43], using
different approaches such as mathematical and
numerical models [32], probabilities [3, 18], Fuzzy
set theory [39, 48], variability analysis [42] or risk
assessment [37], among others.

The representation of uncertainty depends
largely on its nature. Expressing the precision
of a physical measurement is neither the same
as expressing the degree of belief that a person
has about a given fact, nor the design decisions
that a software engineer must contemplate under

imprecise user requirements. Different types of
uncertainty require different notations, underlying
logics, and inference mechanisms to reason about
them, for example, to analyze its properties or
how an uncertainty propagates. A classification of
uncertainty in terms of the notations used to rep-
resent it in software models was presented in [44],
which is summarized below. This classification is
relevant in our context since we need to represent
uncertainties in order to be able to study their
interaction and quantify them. Their combination
may be easier if they are similar in nature, admit
the same representations and are amenable to sim-
ilar reasoning mechanisms. Similarly, studying the
interaction of two uncertainties of very different
nature will pose more complex challenges. This
classification defines six dimensions:
Measurement uncertainty. This is an aleatory
uncertainty that refers to a set of possible states or
outcomes of a measurement [23]. For example, the
distance to an object can be expressed as 123±0.1
cm, assuming our sensor has a precision of 1 mm.
Similarly, a Boolean variable can be best repre-
sented by a number in the range [0,1] representing
the probability that the variable is true.
Occurrence uncertainty. This uncertainty
refers to the degree of belief that we have on the
actual existence of an entity, i.e., the real entity
that a model element represents. It is normally
represented in terms of probabilities [12], fuzzy set
theory [39] or subjective logic [24]. For instance,
we can be only 70% confident that the required
resource will be available when actually needed.

Springer Nature 2021 LATEX template

6 The Uncertainty Interaction Problem

Design uncertainty. This type of epistemic
uncertainty refers to a set of possible decisions
or system design options. It captures the usual
uncertainty that the developer has about the sys-
tem design, which may be different depending
on the conditions the system may face during
its operation and the expected requirements by
its intended users. This information is normally
unknown during the early analysis phase, but
heavily influences the system design. Variability
models are commonly used to represent this type
of uncertainty [17].
Behavior uncertainty. This epistemic uncer-
tainty refers to the lack of knowledge about the
behavior of the system or its environment. It is
common in self-adaptive [11, 46] or uncertainty-
aware systems [19, 47], whose operating envi-
ronments are unknown or may exhibit uncertain
behaviors; for example, a robot operating on Mars,
or an application whose users may have erratic or
random behaviors [29, 33].
Belief uncertainty. This epistemic uncertainty
occurs when belief agents are uncertain about how
the system has been modeled or about the sys-
tem itself. For example, two different users may
have different degrees of trust on the measure-
ments of the sensors depending on their previous
experiences with them, and therefore will inter-
pret their values differently. Again, probabilities,
fuzzy set theory, or subjective logic are used to
represent this type of subjective uncertainty (e.g.,
in self-adaptive system requirements [1]).
Spatio-temporal uncertainty. This type of
epistemic uncertainty refers to the lack of cer-
tainty about the geographical or physical location
of a system, its elements or its environment, or
about properties that relate to the timing of
events in the system or its environment. While
measurement uncertainty expresses possible vari-
ations of a measured value, and is of an aleatory
and objective nature, spatiotemporal uncertainty
implies vagueness and incompleteness, and is of
epistemic and subjective nature—e.g., stating that
an archaeological site is located “somewhere” in
Northern Europe, or that an event happened “a
bit later” than another.

3 The Uncertainty Interaction
Problem in Self-Adaptive
Systems

In this section we present two different scenar-
ios of self-adaptive systems and describe how the
six types of sources of uncertainty explained in
Section 2.2 can take place in each of them. We also
explain how the uncertainty interaction problem
may occur in these scenarios. Finally, we exemplify
uncertainty interactions, such as those that take
place between model and adaptation functions,
model and environment, as well as environment
and adaptation functions, among others.

3.1 ZNN News

Znn.com is a simple news service that uses MAPE-
K (embodied by the Rainbow framework to deal
with varying workloads—including slashdot effect
and DoS attacks) through different tactics [41].
As Figure 3 indicates, Znn.com has several servers
(some of which are inactive), a load balancer, and
a database. Rainbow monitors the load balancer,
servers, and the database to update the differ-
ent models of the system, environment, etc. to
make decisions. In order to adapt to changing
workloads, the self-adaptive layer executes differ-
ent tactics such as activating servers, deny-listing
clients, enabling a CAPTCHA, or changing the
quality of the contents served, among others.

c0

c1

c2

lbproxy

s0

s1

s2

s3

db

Fig. 3 Znn.com architecture.

3.1.1 Sources of Uncertainty

Let us consider a situation in which Znn.com,
receives a spike in workload with a high request
arrival rate and has to decide which of the tactics
to trigger (if any), in order to continue to satisfy
system goals. We may face different uncertainties
in such a situation. Some examples are provided
in Table 1, classified according to their source.

Springer Nature 2021 LATEX template

The Uncertainty Interaction Problem 7

• Model: The different models in the knowledge
base of the self-adaptive layer of Znn.com are
also potential sources of uncertainty. For exam-
ple, the abstraction level of system and environ-
ment properties (e.g., coarse-grained discretiza-
tion of numerical variables like the request
arrival rate at the load balancer in the envi-
ronment model), different representations of the
same information (e.g., there can be discrep-
ancies between the response time as directly
monitored by the system and the one calcu-
lated based on CPU load and queue length),
or the modelling paradigm used (e.g., queu-
ing models and continuous-time Markov chains
introduce error when modelling real-world phe-
nomena [34]).

• Adaptation functions: The exact outcome of
executing a given adaptation tactic (e.g., acti-
vating a new server) is unknown, in terms of pre-
cise improvements on throughput or response
time. Sensing is also imperfect so measurements
taken, e.g., at the load balancer to gauge the
request arrival rate, may be imprecise (averag-
ing windows are typically employed to mitigate
quick fluctuations), or even outdated by the
time they are incorporated in models. The time
that it takes to execute an adaptation tactic
(i.e., its latency) is also subject to uncertainty,
e.g., the time that it takes to activate a server
can suffer remarkable fluctuations depending on
environment conditions.

• Goals: In Znn.com, dependencies among goals
are not captured explicitly. Instead, the selec-
tion of adaptations to satisfy the set of extra-
functional goals (i.e., cost minimization, user
experience optimization, security) is driven by
utility functions that do not clarify for instance
under what conditions security has priority over
cost, and vice versa. In some cases, a spike in
incoming traffic due to a DoS attack can be han-
dled with security tactics, such as a deny list
for potentially malicious users, or just adding
more resources at the expense of increased cost
when the priority is to maintain adequate ser-
vice provision for legitimate users, rather than
eliminating potential attackers from the system.
Currently, goals are fixed in MAPE-K but this
constraint is likely to be suboptimal.

• Environment: the evolution of the request
arrival rate (e.g., whether it is going up, down,

or remains stable) can be predicted in some
cases, but only to some degree of certainty, e.g.,
using a time series predictor [30]. This is impor-
tant for anticipating to usage peaks when more
resources may be needed. The nature of the
access of clients to the system (i.e., whether they
are legitimate clients or bots attempting to per-
form a DoS attack) is unknown. We need this
information to decide whether preventive mea-
sures, such as the use of captchas, are worth the
potential inconvenience to most users.

• Resources: servers may fail, and considering
their expected failure rate may provide more
realistic estimates when sizing the system. How-
ever, predictions based on high uncertainty can
increase the number of servers required, thereby
unnecessarily increasing the overall costs. Sim-
ilarly, the availability of additional servers to
activate to spread workload across more servers
may only be known with some degree of cer-
tainty, because they may not be available at
all times. Their response times and perfor-
mance can also vary, introducing new sources of
uncertainty when predicting the overall system
performance.

• Managed system: This uncertainty is caused by
the complexity and dynamicity of the man-
aged system, which hinders the estimations of
its behavior. The system and its parts may
also evolve, incorporating new elements whose
behavior was not considered when the system
was designed. These parts may also fail or
behave in erratic or unexpected manners, e.g.,
the performance of the database can degrade
if the number of records goes above the limit
for which it was originally intended to store, or
can suffer attacks or intermittent failures. These
uncertainties may amplify the overall system
uncertainty when combined with others.

In this paper, we are interested in the cases
where two or more of these uncertainties are com-
bined, and the effects of the interactions between
them. The following subsections describe par-
ticular scenarios that serve to illustrate these
situations and their effects.

3.1.2 Uncertainties due to Model and
Adaptation Functions

In the MAPE-K loop implemented for Znn.com,
the analysis stage is in charge of detecting if the

Springer Nature 2021 LATEX template

8 The Uncertainty Interaction Problem

triggering of an adaptation mechanism is needed
due to invariant violation. One typical example
is the invariant stating that the current system
response time r should always be below some
threshold Rmax specified in one of the system
models. In this setting, we could observe the fol-
lowing situations related to the interference of
sources of uncertainty with respect to the correct
operation of the analysis:

• The imperfect sensing of the response time
property could yield values within some range
[r̂min, r̂max] that contains the ground truth
value r. If the observed value is above thresh-
old (r̂ ≥ Rmax), but the real value is not (r <
Rmax), this will lead to a false positive that will
trigger an adaptation planning and execution
cycle when it is not really needed, increasing the
cost of operating the system without need. The
symmetric case can be given when r̂ < Rmax ≤
r, meaning that the adaptation cycle will not
be triggered even if it is really needed, causing
an unnecessary degradation of performance that
could have been addressed otherwise.

• The coarse-grained discretization of the
response time property in the managed system
model can also result in undesired adaptation
triggers or the lack of required adaptations
when the discretized value rd of the property
is on the other side of the threshold, when
compared to the ground truth value r. Hence,
if response time is discretized with a granular-
ity of ηr = 200ms., response times measured
where ∥r − Rmax∥ ≤ 200 could be problem-
atic, depending on the concrete discretization
scheme used.

Avoiding the problems derived from the two
situations described above could involve the
explicit modeling of the uncertainty induced by
the imperfection in the sensing and the discretiza-
tion of the response time property values.

r̂d′ r̂ r

Rmax ηr

rd r̂d′r̂r

Rmaxηr

rd

(a) (b)

Fig. 4 Model-Adaptation function interaction: (a) caus-
ing execution of spurious adaptation (b) preventing execu-
tion of required adaptation.

However, these two sources of uncertainty
can interact with each other in multiple ways.
Consider for instance the situation illustrated in
Figure 4(a), where the ground truth value of the
variable r is observed with some error. Both r and
the observed value r̂ lie below threshold Rmax. In
the figure, dashed gray lines represent the values
that the variable can take in the discrete abstrac-
tion of the system model. Any real value observed
in the surrounding box will be snapped to that dis-
crete value. We observe that even if the observed
value of the variable r̂ contains some error, this
error on its own would not be enough to trigger
an undesired adaptation. However, due to the dis-
cretization of the observed variable values, r̂ will
be snapped to r̂d′ , which is above Rmax, triggering
a spurious adaptation. Note that without the error
induced by observation, the discretization process
on its own would not have been enough to trig-
ger this adaptation, given that r would have been
snapped to rd, which is below Rmax. Conversely,
we have the situation illustrated in Figure 4(b),
in which both the ground truth and the observed
value of the variable lie above the threshold. How-
ever, the discretization process snaps the value of
r̂ to r̂d′ , preventing the triggering of adaptation in
a situation in which it would have been required.
Analogously to the situation described in (a), nei-
ther the discretization process nor the observation
error on their own would have been enough to
prevent the execution of the required adaptation.
Instead, it is the compound effect of both sources
of uncertainty that causes the undesired situation.
Addressing this issue. This case could be
treated by representing numbers with their asso-
ciated uncertainty [23, 44]. In this context, com-
parison between numbers is no longer a Boolean
operation but returns a probability that expresses
the likelihood (or confidence) of being one number
less than, equal to, or greater than the other [4].
Given that the sources of uncertainty of the two
facts in this example are independent (accuracy
of r and its snapping r̂d′), their combination can
be computed by multiplying the confidence of
the comparison between the uncertain response
time and the threshold, with the degree of uncer-
tainty caused by the discretization process. Then
the decision can be made considering not only
whether r > Rmax but also its associated degree of
uncertainty, discarding those decisions where the
uncertainty is above a certain threshold.

Springer Nature 2021 LATEX template

The Uncertainty Interaction Problem 9

3.1.3 Uncertainties due to Goal and
Adaptation Functions

Similarly to other self-adaptive systems, the selec-
tion of an adaptation in Znn.com is driven by
a utility function U that balances the trade-
offs among multiple concerns. These functions are
often encoded as a linear combination of terms,
where each term is a utility function that captures
a given concern (e.g., performance, cost), moder-
ated by a weight that specifies user priorities:

U = wp · up(r) + wc · uc(c) (1)

In Equation 1, up, uc : R≥0 → [0, 1] are util-
ity functions for the concerns of performance and
cost, which map a response time r and a cost c,
respectively, to a utility value. Weights wp and wc,
which sum up to 1 capture the relative importance
of each term. Selection of a specific adaptation,
designated by the term adaptation strategy, is car-
ried out by analyzing the anticipated effect of the
different strategies available on the value of U , and
choosing the one that maximizes that value. This
analysis relies on models in the knowledge base
of the MAPE-K loop that capture the expected
impact of available adaptation actions (or adap-
tation tactics), which are the building blocks of
adaptation strategies, on the qualities of the sys-
tem. A simple model of expected adaptation tactic
impact could include entries similar to the follow-
ing one: ActivateServer [r : −500, c : +5]. This
entry captures that the tactic ActivateServer is
expected to reduce response time r by 500 ms and
to increase the operting system cost in 5 USD/hr.
Of course, this class of model is simple and does
not explicitly capture the obvious uncertainties
that concern, for instance, the variability of the
execution context (e.g., response time reduction
does not behave in a linear manner, and the acti-
vation of more servers does not always result in
the same reduction of 500 ms.).

Moreover, additional sources of uncertainty
may interfere with the adaptation strategy. First,
it may be the case that there are no servers avail-
able when they are needed (for instance, because
the monitors employed for service availability are
not completely reliable), so even when a given
strategy provides the best estimate, we cannot be
sure about its real outcome, or even if it can be
applied. Second, in practice the utility functions

up and uc of Equation (1) have associated uncer-
tainties, the same as the corresponding weights wp

and wc. This means that U should be more faith-
fully represented accompanied by an associated
uncertainty, i.e., given in terms of U ± d, where d
represents its standard deviation [23]. For exam-
ple, U1 = 0.7±0.3, which is more informative than
a crisp value of U1 = 0.7. Thus, the comparison
between strategies should be made by comparing
uncertain instead of crisp values, which will give
an indication of the confidence associated with the
resulting utility value. This may provide very use-
ful information. For example, if U(s1) = 0.70 and
U(s2) = 0.65 are two utility function values that
correspond to two competing alternative strate-
gies s1 and s2, the adaptive system will select the
former because clearly U(s1) > U(s2). However,
if we know that U(s1) = 0.7 ± 0.3 and U(s2) =
0.65± 0.2, then the situation is not as clear since
the probability that U(s1) > U(s2) is only 0.15.
In fact, in this case it would be better to select s2
because it has less associated uncertainty.

There is also another problem due to uncer-
tainties of epistemic nature, i.e., those caused by
lack of knowledge, and where probabilistic logic is
not expressive enough to capture them and, there-
fore, other belief logics are often used instead.
For example, suppose two stakeholders who assign
different levels of confidence to the values of the
utility functions because their trust in the sen-
sors’ values is different. Imagine that John trusts
the sensors that produce the values of up and uc,
but Eva is aware that they have been running for
too long, and thus their performance measures are
imprecise. Therefore, she assigns different degrees
of belief to their measurements and hence to the
value of up, whose uncertainty is altered accord-
ing to the confidence of Eva, but maintained in
the case of John. How to combine two types of
uncertainty, namely measurement uncertainty and
belief uncertainty, is not easy. In this case, Subjec-
tive logic [24] could be used to represent opinions,
combine them with the measurement values, and
thereby help the two engineers reach a consensus
using a fusion operator [5].

3.1.4 Uncertainties due to Adaptation
Functions

Different sources of uncertainty within the adap-
tation functions of a self-adaptive system can also

Springer Nature 2021 LATEX template

10 The Uncertainty Interaction Problem

time

re
sp
on
se

ti
m
e
(r
)

t
t
r t

t
r̂
t
e
r t

′e
r

lmin

t
e
r̂ t

′e
r̂

lmax

r(t) (trigger tt
r
) r

′(t) (trigger tt
r̂
) meup

in lmeup
meup

r̂(t) (trigger tt
r
) r̂′(t) (trigger tt

r̂
) lmeup

T

Rmax

Fig. 5 Adaptation function uncertainty interaction:
imperfect sensing and uncertainty in latency.

interact among themselves. Consider for instance
the uncertainty in the latency of the adaptation
tactics of a self-adaptive system (i.e., the time
that spans between the triggering of the execu-
tion of the adaptation action and the time instant
in which its effects take place), and the imperfect
sensing of system variables.

In the context of Znn.com, the adaptation tac-
tic ActivateServer mentioned in Section 3.1.3 has
a latency associated with the time that it takes to
boot up a new server and for it to start processing
incoming requests. Of course, there is an uncer-
tainty associated with that latency because under
different execution and network conditions, spin-
ning up a new server may take different amounts
of time that range between a few seconds and
several minutes [20]. Ignoring such uncertainty in
the latency can result in inefficiencies due to the
system performing a suboptimal sequence of adap-
tations. For example, the system may adapt to
handle a transient change in workload, only to
have to adapt back to the previous configuration
moments later. If the cost of performing those two
adaptations is higher than their benefit, then it
would be better for the system not to adapt at all.

We have also seen in previous sections that
imperfect sensing is a source of uncertainty that
can affect the normal operation of self-adaptation,
for instance, by inducing an error in the observed
value of the response time variable r̂.

Figure 5 illustrates the interaction between
imperfect sensing (in r) and uncertainty in tactic
latency (in ActivateServer). The figure illustrates
a situation in which response time goes above
threshold Rmax and triggers the tactic. One of the
first things that we can observe is that the error in
the sensing induces a delay in the triggering of the

tactic, which would be triggered at time ttr with-
out sensing error (r, dashed red line), and at ttr̂
when based on the observed value of the response
time (r̂, dotted red line).

Beyond that delay in tactic execution, we can
observe that there is an error induced in the mea-
surement of the satisfaction of system goals. Let
us recall that in Znn.com the satisfaction of goals
is measured by means of accrued instantaneous
utility (cf. Expression 1). Hence, we can charac-
terize the overall error in measured accrued utility
(corresponding to the performance concern up)
induced by imperfect sensing in an arbitrary time
interval [t1, t2] as:

meup
(t1, t2) ≡

∫ t2

t1

|up(r(t))− up(r̂(t))|dt (2)

For the overall execution of the system, we
can say then that the overall accrued utility error
due to measurement uncertainty is meup

(0, T). In
Figure 5, this error corresponds (i.e., is propor-
tional) to the light yellow and green areas between
the values of the ground truth and observed vari-
able values (dashed and dotted lines). Note that
the areas in the figure are for illustration purposes
and assume a simple linear mapping between
observed response time values and utility. How-
ever, due to the arbitrary shape of utility functions
(e.g., nonlinearities such as penalties associated
with high response times), the error in mea-
sured utility might actually be larger or smaller,
depending on the specific case.

Let us focus now on tactic latency. We assume
that the effects of executing the tactic can
take place in an interval of minimum/maximum
latency [tlmin, tlmax] and that the occurrence of
this event in time is distributed according to a
probability distribution (that we abstract away for
clarity). Hence, if no sensing imperfection exists,
the effect of the tactic execution will take place
in the interval [ter = ttr + tlmin, t

′e
r = ttr + tlmax],

whereas with the sensing imperfection, in this
example the effect would take place in the interval
[ter̂ = ttr̂ + tlmin, t

′e
r̂ = ttr̂ + tlmax]. Given these two

alternative scenarios for execution, the maximum
difference interval that can exist between the time
instants in which the effects of the latency takes
place is given by [ter, t

′e
r̂]. The case in which the

effects can take place at the earliest time instant
ter (minimum overall latency lmin) corresponds to

Springer Nature 2021 LATEX template

The Uncertainty Interaction Problem 11

perfect sensing and minimum tactic latency. On
the other end, the effects of the tactic can take
place at the latest (time instant t′er̂ , maximum
overall latency lmax) when imperfect sensing is
given along with maximum tactic latency.

This means, that during the period [ter, t
′e
r̂],

there are two different contributions by different
uncertainties to the error in the measurement of
accrued utility: one given by the measurement
error of r that corresponds to meup

(ter, t
′e
r̂) (green

areas in the figure), and another one that corre-
sponds to the alternative, delayed execution of the
tactic (r′).

The contribution to the error in measured
accrued utility of these two combined sources can
be characterized as follows:

lmeup
≡

∫ t′er̂

ter

|up(r̂(t))− up(r̂′(t))|dt (3)

In Figure 5, we illustrate the integrated error
over time that corresponds to the combination of
the green and pink areas of the figure, where we
observe that the error resulting from the inter-
action of the two uncertainties is different to
the sum of the different contributions considered
individually. Of course, this example is just one
instance that illustrates possible interactions that
may occur between imperfect sensing and tac-
tic latency: other situations are possible, such as
anticipated triggering of the adaptation tactic due
to measurement error, or effects in system vari-
ables that outlast the maximum latency period
(which we chose to bound in our example).

3.2 Autonomous Mobile Service
Robot

Mobile indoor service robots operate in environ-
ments where obstacles might dynamically appear,
light conditions may change, and batteries may
require recharging. They are also limited in what
they can sense, creating uncertainty in their loca-
tion, chances of colliding against obstacles, and
the resources that they may have left to com-
plete a plan. In spite of this uncertainty, they
must attempt to ensure safe operation, effective
use of resources like battery, and timeliness of
completing a task.

In a simple scenario, the mission of the robot is
navigating to a target location from an initial loca-
tion in the shortest possible time, with a limited
battery, and without bumping into obstacles or
walls. To achieve this goal, the robot can perform
physical actions (e.g., move between locations)
and change its configuration (e.g., change a sensor,
its localization algorithm, or its speed setting).
While accomplishing the mission, the main goals
are: (i) timeliness — the robot should get to the
target in the shortest possible time, (ii) safety —
the robot should arrive at the target location with-
out bumping into obstacles, and (iii) efficiency —
the robot should minimize the energy used to get
to the target location.

Provides light in dark corridors
Terrible efficiency

Only helps with cameras

Provides 2D image of behind

Excellent efficiency
Not good in the dark

OK obstacle detection

Provides 2D planar depth field
Reasonable efficiency

Not good at obstacle detection

Provides 3D depth field/2D image

Excellent efficiency
Needs transform component to

convert depth image to lidar info

Headlamp: useful

in dark corridors

Back camera: images

behind the robot

Planar Lidar: depth

scans in a plane

Kinect Sensor: depth

and camera images

Fig. 6 Mobile robotics architecture configuration space.

The MAPE-K architecture of the self-
adaptation layer synthesizes specifications for the
architecture and behavior of the robot to suc-
cessfully complete the mission, attending to the
criteria described above, despite situations that
include component or sensor failure, obstacles
blocking corridors, and unexpectedly low battery
level.

3.2.1 Sources of Uncertainty

Some of the uncertainties that can affect this robot
system are listed below, classified according to
their sources.

• Model: The fidelity of the models used to make
decisions may cause errors in the system behav-
ior. For example, an overly abstract model of
the robot or its environment may cause col-
lisions with external objects because some of
their protruding parts have not been considered
in the models, and hence clash with the envi-
ronment obstacles. Similarly, a coarse-grained
discretization of the navigation system or a very

Springer Nature 2021 LATEX template

12 The Uncertainty Interaction Problem

low resolution of the navigation time step can
produce that the robot reacts too late to unex-
pected situations, e.g., not being able to stop
in time when it detects an obstacle or another
robot crosses its path.

• Adaptation functions: The outcome of execut-
ing a given adaptation tactic (e.g., changing the
navigation component) is unknown. Sensing is
also imperfect, so decisions based on the val-
ues of sensors’ measurements (e.g., the position
of the robot and surrounding obstacles based
on information coming from the cameras) may
be wrong, or at least carry some uncertainty.
In some cases, information coming from sensors
may be inaccurate due to, e.g., miscalibrated
cameras, and even incomplete (obstacles that
do not intersect with the plane of the lidar can-
not be detected). The time that an adaptation
tactic takes (i.e., its latency) is also subject to
uncertainty, e.g., the time it takes to change the
localization algorithm.

• Goals: Robot goals (timeliness, safety and effi-
ciency) clearly conflict, so trade-offs between
them need to be established. In addition, the
weight assigned to each objective can change,
and also be different depending on the stake-
holders’ opinions. Of course, stakeholders are
not 100% confident about their opinions, so
there is an associated uncertainty that needs to
be handled. Besides, these opinions and their
associated uncertainties need to be merged and
reconciled in order to find consensus decisions.

• Environment: New obstacles can unexpectedly
appear.

• Resources: The remaining amount of energy
cannot be directly measured and has to be
estimated based on the output voltage.

• Managed system: The robot may suffer erratic
or intermittent failures in some of its compo-
nents.

In this case, interactions between these uncer-
tainties may also happen and cause undesirable
effects. For example, a too conservative design
that tries to avoid movements with too much
degree of uncertainty in several of these sources
(potential objects in front, low confidence in the
readings of a cheap camera or low precision of sen-
sors) may cause the robot to move too cautiously
and slowly, and therefore fail to achieve its goals.

Conversely, a more aggressive design that virtu-
ally ignores all uncertainties in order to achieve its
goals at all costs may cause the robot to collide
with other objects, suddenly run out of battery
power because it stretches it to the limit, or make
mistakes when grasping objects or performing its
tasks. Again, it is crucial to explicitly represent
and quantify the uncertainty associated to each
source, decide the appropriate manner to combine
these individual uncertainties when they interact,
and compute the combined uncertainty in order
to make better informed decisions. We illustrate
two of such interactions in the remainder of this
section.

3.2.2 Uncertainties due to Model and
Environment

Goals in cyber-physical systems tend to be of a
different nature, when compared to IT systems
like Znn.com and therefore can interact in dif-
ferent ways with other sources of uncertainty.
Consider for instance the uncertainty associated
with the abstraction of the models that cap-
ture the physical environment of the robot. An
overly abstract model might cause computation of
sub-optimal navigation paths or collisions against
objects that would not be given with a more
detailed model. This uncertainty affects all three
nonfunctional goals of the robot, degrading safety
due to the extra collisions, timeliness due to the
time required to maneuver and recover from them,
and efficiency due to all the energy consumed
during the recovery.

In addition to the degraded nonfunctional
goals, the unexpected appearance of obstacles that
were not present in the environment model can
compound with the uncertainty induced by model
abstraction, producing further effects.

Figure 7 illustrates a scenario in which the
robot has to traverse a corridor and arrive at a tar-
get location on the right, overcoming the obstacle
and the person in the middle. While the obsta-
cle is fixed and its presence known by the robot
(i.e., it is captured in its model), the presence
of the person is unknown a priori and consid-
ered part of the uncertainty associated with the
future evolution of the environment. The model of
the obstacle encoded in the robot is also consid-
ered in two variants: a high-resolution version that
includes the geometry of its protrusions, and a

Springer Nature 2021 LATEX template

The Uncertainty Interaction Problem 13

(a)

(b)

(c)

(d)

Collision with obstacle Task replanning

Battery depleted

Fig. 7 Environment and model uncertainty interaction:
(a) no uncertainty, (b) model uncertainty, (c) environment
uncertainty, and (d) combined environment and model
uncertainty.

coarse-grained variant consisting of an inaccurate
bounding box. Figure 7(a) shows the situation in
which there is no uncertainty associated with the
model or the environment (i.e., the robot has an
accurate portrayal of the geometry of the obsta-
cle and knows about the presence of the person in
the corridor). In this case, the robot goes around
the obstacle through the gap without any prob-
lems. Figure 7(b) shows the situation in which the
robot knows about the presence of the person, but
is not aware of the details of the geometry of the
obstacle. In this case, the robot again chooses to
go through the gap, but collides with the obstacle
before resuming its navigation towards the target
location, incurring a penalty in safety, timeliness,

and energy consumption. In Figure 7(c), the robot
does not know about the presence of the per-
son in the corridor, so it decides to go though
that side of the obstacle, and unexpectedly finds
that the corridor is blocked. This triggers replan-
ning, which incurs a time and energy consumption
penalty. Next, the robot decides to go around the
obstacle through the other side and arrives at its
destination. In 7(d) we observe the case in which
the two sources of uncertainty are combined. The
robot decides to go through the side of the cor-
ridor where the human is, needs to replan, and
decides to go through the other side of the obsta-
cle. However, in this case the inaccuracies in the
model cause the robot to collide with the obsta-
cle, which requires further time, maneuvering, and
energy consumption. At this point, the interaction
between the two types of uncertainty can make
other effects emerge that go beyond the sum of
the parts (i.e., degraded timeliness, energy con-
sumption, and safety). For instance, the battery
of the robot may not have enough energy to com-
plete the mission due to the extra energy spent
in the combination of the energy expense required
for replanning and recovering from the collision.
This situation would not be given in any of the
situations in which the sources of uncertainty are
given individually.

3.2.3 Uncertainties due to
Environment and Adaptation
Functions

Environment uncertainty can also interact with
adaptation functions such as sensing, and pro-
duce effects that only emerge when the two are
combined.

Let us continue with our robot example, which
is now in the scenario depicted in Figure 8. In
this scenario, the goal of the robot is arriving at
the target location on top (depicted as concentric
circles), avoiding obstacles, and with limited bat-
tery. One of the two corridors that the robot can
use to reach the target location is dark (left, in
gray). Environmental uncertainty in the scenario
can occur when the robot is not aware that the
left corridor is dark (represented by a question
mark in the thought bubble). Sensing uncertainty
is present when the robot is using a planar lidar
sensor to detect obstacles, instead of a camera.
In the example, we assume that the obstacles are

Springer Nature 2021 LATEX template

14 The Uncertainty Interaction Problem

(a)

Collision with obstacle Task replanning

Dark

Camera

(b)

?

Camera

(c)

Dark

Lidar

(d)

Lidar

?

Battery depleted

Fig. 8 Environment and sensing uncertainty interaction: (a) no uncertainty, (b) environment uncertainty, (c) sensing
uncertainty, and (d) combined environment and sensing uncertainty.

not detectable via lidar because they do not inter-
sect with the lidar plane and therefore the robot
is completely unaware of their presence.

Scenario (a) illustrates the case in which there
is no uncertainty: the robot is aware that the left
corridor is dark and the camera is able to detect
obstacles. Hence, the robot’s planner generates a
task plan to reach the target location through the
right corridor and eveything runs smoothly.

In scenario (b), the robot is not aware of the
lack of light in the left corridor. Hence, the planner
determines to go through it, but when the robot
arrives at the corner, its sensors detect that the
corridor is dark. At that point, task replanning
is triggered. The planner generates a plan to go
through the right corridor. However, due to the
limited battery, the robot stops by the charging
station in the corner before continuing the route
towards the target location.

Scenario (c) depicts the scenario in which the
robot knows that the left corridor is dark, but in
this case the sensor built in to detect obstacles
is the lidar instead of the camera. In this case,
the robot’s planner generates a task plan to go
through the right corridor. However, due to the
lack of obstacle detection capabilities, the robot
collides against the first obstacle. At this point,
the robot’s energy analysis determines that the
estimated level of battery might not be enough to
complete the mission, so the task plan is regen-
erated to charge in the station, and then proceed
towards the target location through the dark cor-
ridor again. The robot collides again with the
second obstacle, but despite the safety penalty
incurred due to the collisions, it manages to
accomplish the mission.

Finally, scenario (d) illustrates the case in
which environment and sensing uncertainty are
combined: the robot does not know about the lack
of light in the left corridor, and the built in sensor
is not able to detect any obstacles. In this case, the
robot’s planner determines that the robot should
go through the left corridor. Unlike in case (b),
going through the dark corridor should not rep-
resent any problems a priori because, unlike the
camera, the lidar sensor is not sensitive to low-
light conditions. Hence, the lack of light in the
corridor does not trigger any replanning, and the
robot keeps on advancing through the dark corri-
dor until it collides with the obstacle, which blocks
the way and hence, the robot cannot progress. At
this point, replanning is triggered, and the robot
decides to go back to the charging station, and
then proceed to the target location through the
right corridor. However, in this case the battery
is depleted before arriving at the charging station
and the mission fails.

An interesting observation that we can make
is that if the robot’s planner had decided to go
through the left corridor in the first place in sce-
nario (c), the outcome would have been similar to
that of scenario (d). This observation illustrates
that the ways in which uncertainty from different
sources interact can be subtle in many situations,
and that the provision of solid guarantees about
run-time system behavior in software intensive
systems demands further study about uncertainty
interaction.

4 Challenges

Based on the current limitations to mitigate
uncertainty interaction in self-adaptive systems

Springer Nature 2021 LATEX template

The Uncertainty Interaction Problem 15

as in the examples discussed in Section 3, we
have identified a set of challenges, which need
to be addressed as self-adaptive systems become
more prevalent, particularly in safety-critical sec-
tors. We also classify them in different categories
related to modeling, analysis, mitigation, and
exploration.

4.1 Modeling Challenges

These challenges refer to how the approach to
modeling uncertainties can influence the mitiga-
tion of the uncertainty interaction problem. The
following challenges have been identified:

Challenge M1: Combining uncertainties
with different representations. Different types
of uncertainties require disparate notations. For
example, a lack of response from a sensor whose
value is needed for deciding about a change of
behavior can be due to a delayed transmission or
to the fact that the sensor’s battery is exhausted
and therefore the sensor will never respond. How
long to wait for the response? And, if it is received
late, how much can we trust its value? In this case,
we need to represent all the elements required to
capture and quantify the combined uncertainty to
decide whether the overall degree of uncertainty
discourages any actions based on it. Similarly,
think of the combination of a sensor whose mea-
surements are expressed as fuzzy values, with a
decision threshold that uses probabilistic logic to
make decisions. Research is needed in the quest for
notations and logics that enable the combination
of uncertainties of different nature, or are specified
using different notations.

Challenge M2: Combining uncertainties
with different granularity, resolution, or
abstraction levels. Even if the interacting uncer-
tainties are expressed in similar notations and
use similar reasoning mechanisms, they may be
defined at different levels of abstraction or with
different levels of granularity. One challenge is how
to discover and compute the influence that each of
them may have in the interaction? For instance,
consider a moving robot that has a positioning
device with a precision of 1 cm, and a move base
with motors whose minimum energy pulses last
1 second and make the robot move a minimum
of several cm, moving in an unknown environ-
ment. In this context, any decision made by the

robot controlling software should be carefully con-
sidered because the coarse-grained granularity of
the movements can introduce significant impreci-
sion and vagueness—see the different uncertainties
described in Section 2.3. There is a need for
faithful abstraction and refinement mechanisms
that allow us to balance the levels of abstraction
and/or resolution of the corresponding uncertain-
ties, while respecting the system properties of
interest. For example, interpolation techniques
can be used to approximate the more abstract
model with a more refined one. Other mechanisms
should also be explored, as well as how they pre-
serve (or degrade) the properties of interest of the
system.

Challenge M3: Combinatorial explosion of
uncertainty interaction effects. Although we
managed to combine different interacting uncer-
tainties, the effects of the combination need to
be quantified and bounds established. The chal-
lenge here lies in how to analyze and measure the
effects of such a combination, which may be of an
exponentially amplifying character. For example,
a variability model describing the possible con-
figuration options under uncertain environmental
requirements may be significantly worsened by
imprecise values of the variables used to determine
the option to choose. Methods and techniques for
coping with these situations are needed. Further-
more, a better understanding of how two or more
uncertainties interact can also help to define limits
to the effects of their combination. Most mod-
els of uncertainty specification and analysis follow
the worst-case scenario. However, in the physical
world we see how uncertainties cancel each other
out or at least offset each other’s effects. Defin-
ing alternative models to those using worst-case
analysis (e.g., using means, medians or other cen-
tral values measures) that are more faithful to the
way in which real world systems is a promising
direction to overcome this challenge.

4.2 Analysis Challenges

In order to be able to manage uncertainty inter-
actions in self-adaptive systems, we need to be
able to identify such interactions, quantify their
impact, and determine those that require mitiga-
tion, leading to the following challenges:

Springer Nature 2021 LATEX template

16 The Uncertainty Interaction Problem

Challenge A1: Identifying uncertainty
interactions. Determining all the uncertainty
interactions that a self-adaptive system needs to
consider is extremely difficult. While Section 3
provides multiple examples of such interactions
for two prototypical self-adaptive systems, assem-
bling a comprehensive list of these interactions
for a given system is a complex and error-prone
process. Methods adapted from risk identification
could potentially be used for this purpose, sup-
ported by predefined lists of likely uncertainty
interactions and contributions from both domain
experts and the developers of the actual system.

Challenge A2: Quantifying the impact of
uncertainty interactions. Assuming that a
complete list of relevant uncertainty interactions
could be compiled, the next challenge is to deter-
mine their potentially disparate impacts. The
interaction between the model uncertainty due to
a coarse-grained discretization of the map used
for robot navigation and sensing uncertainty that
makes obstacle detection imprecise can have a con-
siderable impact on a robot’s ability to navigate
through an environment containing obstacles. In
contrast, the interaction between the same type of
model uncertainty and effecting uncertainty due
to actuator imprecision may have only a limited
impact if the system goals allow such imprecision.

Challenge A3: Determining the uncertainty
interactions that require mitigation. The
effort to devise, implement, test and deploy suit-
able mitigations for uncertainty interactions can
be considerable. As such, methods are required for
systematically determining which of these inter-
actions need to be addressed, and which can
be accepted. These methods must consider the
impact of all relevant uncertainty interactions, and
must carry out this assessment based on a set of
well-defined criteria provided by domain experts.
Where applicable, the intended users of the sys-
tem may need to be involved in this assessment.
For instance, uncertainty interactions that impact
the navigation of an assistive-care robot need to
be mitigated when the robot is helping a partially
sighted user, but may be acceptable for a fully
sighted user.

4.3 Mitigation Challenges

When dealing with uncertainty in self-adaptive
systems, one promising approach is to explic-
itly and proactively mitigate uncertainty through
uncertainty-reduction techniques [7, 31]. The key
idea is to allocate system resources to reducing
uncertainty in contexts where inaccurate deci-
sions might have a strong negative impact on
system utility. For example, in a robotic naviga-
tion scenario, a robot might decide to turn on a
spotlight in a darkened hallway to reduce uncer-
tainty in robot localization. Such actions, however,
come with a cost (e.g., in additional energy con-
sumed, more intrusive presence, etc.) and hence it
becomes important to reason about the net effect
of such uncertainty reduction techniques on over-
all utility. When considering interactions between
different forms of uncertainty, however, a number
of challenges arise:

Challenge Mt1: Uncertainty mitigation
dominance. Uncertainty reduction in one dimen-
sion may dominate, and possibly make irrelevant,
uncertainty mitigation in other dimensions. Con-
sider the robot example. One concern for such
systems is energy usage—we do not want the robot
to run out of battery power en route to its des-
tination. Under normal operating conditions we
may choose to query the power level to reduce
uncertainty about its usage. But such monitor-
ing may be completely dominated by the need to
reduce uncertainty in the environment, for exam-
ple by turning on the robot’s headlamp in a poorly
lighted space.

Challenge Mt2: Uncertainty mitigation
augmentation. A second form of uncertainty
mitigation interaction is augmentation: by reduc-
ing the uncertainty in one dimension we may
also reduce uncertainty in other dimensions. For
a robot, lighting a hallway to reduce localization
uncertainty may also affect occupancy uncertainty
(knowing how many people are in the space, and
hence how intrusive the robot is). In such a sit-
uation, it might be wise to pick an uncertainty
mitigation approach that is less effective in one
dimension, but through augmentation can reduce
uncertainty in multiple dimensions.

Challenge Mt3: Uncertainty mitigation
conflicts. This challenge is related to the third
form of uncertainty mitigation interaction, which

Springer Nature 2021 LATEX template

The Uncertainty Interaction Problem 17

is conflict: by reducing uncertainty in one dimen-
sion you may increase it in another. For a robot,
turning on a headlamp may reduce localization
uncertainty, but increase uncertainty about the
robot’s power level if the headlamp’s energy con-
sumption is not well-calibrated. It is important
to explore mechanisms in order to reduce the
uncertainty increase.

4.4 Exploration Challenges

Several factors for current and emerging systems
will necessitate sophisticated strategies for assess-
ing the impact of uncertainty. Cost as defined
in terms of human lives and monetary expense
provides perhaps the most compelling motiva-
tion for run-time relevant impacts of uncertainty.
While much of the work with uncertainty man-
agement centers around system development (e.g.,
how to make systems more robust and resilient to
uncertainty), it is also important to understand
the scope and impact of uncertainty. Specifically,
techniques are needed to explore uncertainty and
its impact. We highlight the following specific
challenges:

Challenge E1: Complementary uncertainty
exploration. Given the range of sources of uncer-
tainty, varying types and degrees of impact, tem-
poral relevance, and potentially conflicting strate-
gies for mitigating uncertainty, complementary
uncertainty exploration techniques are needed.
For example, multi-objective optimization tech-
niques can be leveraged to explore the cumula-
tive impact of multiple sources of uncertainty.
Probabilistic analysis, data mining, and (adver-
sarial) machine learning techniques can be used
to explore uncertainty based on historic data.
For the ZNN application, historic-use data and
uncertainty factors can be used to guide the self-
adaptation for changes to the server configuration
and networking support. Search-based techniques
such as evolutionary computing can be used to
explore uncertainty that is not predicated on pre-
viously known uncertainty data [10]. The different
sources of uncertainty for the robot (e.g., ter-
rain, lighting, obstacle size, wheel slippage) can
all affect the robot navigation and obstacle avoid-
ance. Evolutionary computing can be used to
explore the different combinations of the uncer-
tainty factors to determine contexts that would

be detrimental to the robot behaving accept-
ably [27, 28]. Exploring uncertainty with “What
if?” scenarios (e.g., using game theory) enables the
developer to explore uncertainty with respect to
specific operational contexts [6, 26].

Challenge E2: Utilization of digital twin
frameworks. Digital twin (DT) frameworks pro-
vide a potentially invaluable framework for uncer-
tainty exploration that supports “human in the
loop”. Digital twinning can be used in a number
of scenarios. For example, with uncrewed space
missions, DTs can incorporate run-time monitored
information regarding the environment and its
uncertainty factors, which can be analyzed and
explored in order to determine appropriate behav-
ior changes for the onboard control behavior for
a terrestrial rover. DT frameworks can also be
used to explore “What if?” scenarios based on his-
toric data and synthetic data [14, 15]. Effective
use of DTs for uncertainty exploration will nec-
essarily have to be informed by advances across
all the aforementioned challenge categories related
to the representation, analysis, and mitigation of
uncertainty interactions.

5 Conclusions

In this SoSym Expert Voice, we have described the
Uncertainty Interaction Problem in self-adaptive
systems, focusing on uncertainty modeling in
an integrated fashion. The motivation has been
illustrated with examples in two representative
application domains (an autoscaling news website
infrastructure and a mobile autonomous service
robot). We have outlined a set of challenges that
concern the representation, analysis, mitigation,
and exploration of interactions among uncertain-
ties from different sources. The set of potential
uncertainty interactions illustrated in this article
is by no means exhaustive and further collabo-
rative effort from the self-adaptive systems and
modeling communities will be required to develop
a detailed catalog of uncertainty interactions and
guidelines to deal with them. However, through
the Uncertainty Interaction Problem, we hope
to set the reference coordinates to reason about
the emergent effects of uncertainty interactions
and their impact on software-intensive systems.
We believe that this is an important area that
deserves the attention of the community, and that

Springer Nature 2021 LATEX template

18 The Uncertainty Interaction Problem

research in this direction will pave the way towards
more holistic approaches that enable the construc-
tion of safer and more resilient software-intensive
systems.

Acknowledgements

This work was partially supported by the Assur-
ing Autonomy International Programme project
‘Ambient Assisted Living for Long-term Moni-
toring and Interaction Integration’, the European
Commission (FEDER) and Junta de Andalucia
under projects APOLO (US-1264651), MBT-I4A
(P20-00067-FR) and EKIPMENT-PLUS (P18-
FR-2895), by the Spanish Government (FED-
ER/Ministerio de Ciencia e Innovación – Agen-
cia Estatal de Investigación) under project
COSCA (PGC2018-094905-B-I00), by Fundação
para a Ciência e a Tecnologia (Portuguese Foun-
dation for Science and Technology) through
the Carnegie Mellon Portugal Program under
Grant SFRH/BD/150643/2020, projects (POCI-
01-0247-FEDER-045915, POCI-01-0247-FEDER-
045907), by NASA (Award 80NSSC20K1720).
Bencomo’s work has been sponsored by the
EPSRC Research Project Twenty20Insight (Grant
No. EP/T017627/1). Cheng’s work has been
sponsored by National Science Foundation (DBI-
0939454), Ford Motor Company, General Motors
Research, and ZF; and the research has also
been sponsored by Air Force Research Laboratory
(AFRL) under agreement numbers FA8750-16-2-
0284 and FA8750-19-2-0002. The U.S. Govern-
ment is authorized to reproduce and distribute
reprints for Governmental purposes notwithstand-
ing any copy-right notation thereon. The views
and conclusions contained herein are those of the
authors and should not be interpreted as neces-
sarily representing the official policies or endorse-
ments, either expressed or implied, of Air Force
Research Laboratory (AFRL), the U.S. Govern-
ment, National Science Foundation, Ford, GM,
ZF, or other research sponsors.

References

[1] Baresi L, Pasquale L, Spoletini P (2010)
Fuzzy goals for requirements-driven adap-
tation. In: 2010 18th IEEE international
requirements engineering conference, IEEE,
pp 125–134

[2] Bencomo N (2015) Quantun: Quantification
of uncertainty for the reassessment of require-
ments. pp 236–240, https://doi.org/10.1109/
RE.2015.7320429

[3] Bencomo N, Belaggoun A, Issarny V (2013)
Dynamic decision networks for decision-
making in self-adaptive systems: A case
study. In: 2013 8th International Symposium
on Software Engineering for Adaptive and
Self-Managing Systems (SEAMS), pp 113–
122, https://doi.org/10.1109/SEAMS.2013.
6595498

[4] Bertoa MF, Burgueño L, Moreno N, et al
(2020) Incorporating measurement uncer-
tainty into OCL/UML primitive datatypes.
Softw Syst Model 19(5):1163–1189

[5] Burgueño L, Muñoz P, Clarisó R, et al (2022)
Dealing with belief uncertainty in domain
models. ACM Transactions on Software Engi-
neering and Methodology (TOSEM) To
appear.

[6] Cámara J, Garlan D, Moreno GA, et al
(2013) Analyzing self-adaptation via model
checking of stochastic games. In: de Lemos
R, Garlan D, Ghezzi C, et al (eds) Software
Engineering for Self-Adaptive Systems III.
Assurances - International Seminar, Dagstuhl
Castle, Germany, December 15-19, 2013,
Revised Selected and Invited Papers, Lec-
ture Notes in Computer Science, vol 9640.
Springer, pp 154–187

[7] Cámara J, Peng W, Garlan D, et al (2018)
Reasoning about sensing uncertainty and
its reduction in decision-making for self-
adaptation. Science of Computer Program-
ming 167:51–69

[8] Cheng B, Sawyer P, Bencomo N, et al
(2009) A goal-based modeling approach to
develop requirements of an adaptive system
with environmental uncertainty. In: Proc. of
MODELS’09, pp 468–483

[9] Cheng BHC, de Lemos R, Giese H, et al
(2009) Software engineering for self-adaptive
systems: A research roadmap. In: Soft-
ware Engineering for Self-Adaptive Systems,

https://doi.org/10.1109/RE.2015.7320429
https://doi.org/10.1109/RE.2015.7320429
https://doi.org/10.1109/SEAMS.2013.6595498
https://doi.org/10.1109/SEAMS.2013.6595498

Springer Nature 2021 LATEX template

The Uncertainty Interaction Problem 19

LNCS, vol 5525. Springer, pp 1–26

[10] Cheng BHC, Ramirez AJ, McKinley PK
(2013) Harnessing evolutionary computation
to enable dynamically adaptive systems to
manage uncertainty. In: 1st International
Workshop on Combining Modelling and
Search-Based Software Engineering, CMS-
BSE@ICSE 2013

[11] Cheng SW, Garlan D (2007) Handling
uncertainty in autonomic systems. In: In
Proc. of IWLU@ASE’07. ACM, URL http:
//acme.able.cs.cmu.edu/pubs/uploads/pdf/
IWLU07-HandlingUncertainties-pub.pdf

[12] Critch A (Retrieved 15 January 2019) Cre-
dence — using subjective probabilities to
express belief strengths. URL http://acritch.
com/credence/

[13] DeMarco T (1982) Controlling software
projects : management, measurement & esti-
mation. Yourdon Press, New York, NY

[14] DeVries B, Cheng BHC (2018) Run-
time monitoring of self-adaptive systems to
detect n-way feature interactions and their
causes. In: Proceedings of the 13th Interna-
tional Conference on Software Engineering
for Adaptive and Self-Managing Systems,
SEAMS@ICSE 2018. ACM, pp 94–100

[15] DeVries B, Fredericks EM, Cheng BHC
(2021) Analysis and monitoring of cyber-
physical systems via environmental domain
knowledge & modeling. In: 16th Interna-
tional Symposium on Software Engineering
for Adaptive and Self-Managing Systems,
SEAMS 2021

[16] Esfahani N, Malek S (2013) Uncertainty in
self-adaptive software systems. In: Software
Engineering for Self-Adaptive Systems II,
LNCS, vol 7475. Springer, p 214–238

[17] Famelis M, Chechik M (2019) Managing
design-time uncertainty. Software and Sys-
tems Modeling 18(2):1249–1284

[18] Feller W (2008) An Introduction to Probabil-
ity Theory and Its Applications. Wiley

[19] Giese H, Bencomo N, Pasquale L, et al (2014)
Living with Uncertainty in the Age of Run-
time Models. In: Models@run.time, LNCS,
vol 8378. Springer, pp 47–100

[20] Hao J, Jiang T, Wang W, et al (2021) An
empirical analysis of vm startup times in
public iaas clouds. In: 2021 IEEE 14th Inter-
national Conference on Cloud Computing
(CLOUD), pp 398–403

[21] Hezavehi SM, Weyns D, Avgeriou P, et al
(2021) Uncertainty in self-adaptive systems:
A research community perspective. ACM
Trans Auton Adapt Syst 15(4)

[22] Huebscher MC, McCann JA (2008) A survey
of autonomic computing - degrees, models,
and applications. ACM Comput Surv 40(3)

[23] JCGM 100:2008 (2008) Evaluation of mea-
surement data—Guide to the expression
of uncertainty in measurement (GUM).
URL http://www.bipm.org/utils/common/
documents/jcgm/JCGM 100 2008 E.pdf

[24] Jøsang A (2016) Subjective Logic – A For-
malism for Reasoning Under Uncertainty.
Artificial Intelligence: Foundations, Theory,
and Algorithms, Springer

[25] Kephart JO, Chess DM (2003) The vision of
autonomic computing. Computer 36

[26] Kinneer C, Garlan D, Goues CL (2021) Infor-
mation reuse and stochastic search: Manag-

ing uncertainty in self-* systems. ACM Trans
Auton Adapt Syst 15(1):3:1–3:36

[27] Langford MA, Cheng BHC (2019) Enhancing
learning-enabled software systems to address
environmental uncertainty. In: 2019 Confer-
ence on Autonomic Computing, ICAC 2019

[28] Langford MA, Cheng BHC (2021) Enki: A
diversity-driven approach to test and train
robust learning-enabled systems. ACM Trans
Auton Adapt Syst 15(2):5:1–5:32

http://acme.able.cs.cmu.edu/pubs/uploads/pdf/IWLU07-HandlingUncertainties-pub.pdf
http://acme.able.cs.cmu.edu/pubs/uploads/pdf/IWLU07-HandlingUncertainties-pub.pdf
http://acme.able.cs.cmu.edu/pubs/uploads/pdf/IWLU07-HandlingUncertainties-pub.pdf
http://acritch.com/credence/
http://acritch.com/credence/
http://www.bipm.org/utils/common/documents/jcgm/JCGM_100_2008_E.pdf
http://www.bipm.org/utils/common/documents/jcgm/JCGM_100_2008_E.pdf

Springer Nature 2021 LATEX template

20 The Uncertainty Interaction Problem

[29] Mahdavi-Hezavehi S, Avgeriou P, Weyns D
(2017) A classification framework of uncer-
tainty in architecture-based self-adaptive sys-
tems with multiple quality requirements

[30] Moreno GA, Cámara J, Garlan D, et al
(2015) Proactive self-adaptation under
uncertainty: A probabilistic model check-
ing approach. Association for Computing
Machinery, New York, NY, USA, ESEC/FSE
2015, p 1–12

[31] Moreno GA, Cámara J, Garlan D, et al
(2018) Uncertainty reduction in self-adaptive
systems. In: Andersson J, Weyns D (eds)
Proc. of SEAMS@ICSE’18. ACM, pp 51–57

[32] Oberkampf WL, DeLand SM, Rutherford
BM, et al (2002) Error and uncertainty in
modeling and simulation. Reliability Engi-
neering & System Safety 75(3):333–357

[33] Oquendo F (2019) Coping with uncertainty in
systems-of-systems architecture modeling on
the IoT with SosADL. In: Proc. of SoSE’19,
pp 131–136

[34] Paterson C, Calinescu R (2020) Observation-
enhanced qos analysis of component-based
systems. IEEE Transactions on Software
Engineering 46(5):526–548

[35] Perez-Palacin D, Mirandola R (2014) Uncer-
tainties in the modeling of self-adaptive sys-
tems: A taxonomy and an example of avail-
ability evaluation. In: Proceedings of the
5th ACM/SPEC International Conference on
Performance Engineering, ICPE ’14

[36] Ramirez AJ, Jensen AC, Cheng BHC (2012)
A taxonomy of uncertainty for dynamically
adaptive systems. In: 7th International Sym-
posium on Software Engineering for Adaptive
and Self-Managing Systems, SEAMS 2012.
IEEE Computer Society

[37] Rausand M (2013) Risk Assessment: Theory,
Methods, and Applications. John Wiley &
Sons

[38] Russell S, Chen F (2020) Controlling AI.
podcast

[39] Russell SJ, Norvig P (2010) Artificial Intelli-
gence, A Modern Approach, 3rd edn. Prentice
Hall

[40] Samin H, Bencomo N, Sawyer P (2022)
Decision-making under uncertainty: be aware
of your priorities. Softw Syst Model

[41] Schmerl BR, Cámara J, Gennari J, et al
(2014) Architecture-based self-protection:
composing and reasoning about denial-of-
service mitigations. In: Proc. of HotSoS’14.
ACM, p 2

[42] Seely AJ, Macklem PT (2004) Complex sys-
tems and the technology of variability analy-
sis. Critical Care 8:367–384

[43] Thunnissen DP (2003) Uncertainty classifi-
cation for the design and development of
complex systems. In: Proc. of the 3rd Annual
Predictive Methods Conference, Veros Soft-
ware

[44] Troya J, Moreno N, Bertoa MF, et al (2021)
Uncertainty representation in software mod-
els: A survey. Softw Syst Model 20(4)

[45] Whittle J, Sawyer P, Bencomo N, et al (2009)
RELAX: Incorporating Uncertainty into the
Specification of Self-Adaptive Systems. In:
Proc. of RE’09, pp 79–88

[46] Whittle J, Sawyer P, Bencomo N, et al (2009)
RELAX: Incorporating Uncertainty into the
Specification of Self-Adaptive Systems. In:
Proc. of RE’09. IEEE Computer Society, pp
79–88

[47] Zhang M, Ali S, Yue T, et al (2019)
Uncertainty-Wise Cyber-Physical Sys-
tem Test Modeling. Software and System
Modeling 18(2):1379–1418

[48] Zimmermann HJ (2001) Fuzzy Set The-
ory – and Its Applications. Springer Sci-
ence+Business Media

	Introduction
	Background
	Self-Adaptive Systems
	Uncertainty Sources in Self-Adaptive Systems
	Representing Uncertainty

	The Uncertainty Interaction Problem in Self-Adaptive Systems
	ZNN News
	Sources of Uncertainty
	Uncertainties due to Model and Adaptation Functions
	Uncertainties due to Goal and Adaptation Functions
	Uncertainties due to Adaptation Functions

	Autonomous Mobile Service Robot
	Sources of Uncertainty
	Uncertainties due to Model and Environment
	Uncertainties due to Environment and Adaptation Functions

	Challenges
	Modeling Challenges
	Analysis Challenges
	Mitigation Challenges
	Exploration Challenges

	Conclusions

