Software and Systems Modeling (2022) 21:2097-2099
https://doi.org/10.1007/s10270-022-01057-2

EDITORIAL

f')

Check for
updates

Reflection on the differences between modeling and programming

Jeff Gray' - Bernhard Rumpe?

Published online: T November 2022
© The Author(s) 2022

For a 2012 editorial [1], the relationships between modeling
and programming languages were discussed. A decade later,
it seems appropriate to revisit this issue because there is still
not a widely accepted consensus on the main purpose of mod-
eling languages and their models in software development. In
this editorial, we highlight the most important aspects when
identifying commonalities and differences between model-
ing and programming languages. We are fully aware that a
detailed examination of all these relationships, properties,
and their interdependencies is far beyond this short reflec-
tion.

An important property of a program is its ability to be
executed. Many models are also created with executability
in mind. An executable model must incorporate all relevant
aspects, including structure and behavioral properties, such
that a code generator or interpreter can derive executable code
from the model. However, models sometimes also serve dif-
ferent purposes that programming languages do not handle
well or not at all, which is why modeling languages for soft-
ware development are needed.

Abstraction is often better served by appropriate model-
ing languages, where abstraction mechanisms are part of the
language and defined within the model. Examples are super-
state, sub-state mechanisms in Statecharts, or simulation
relations between Statecharts, or logical implication that can
be applied as a refinement relation between logical formulae,
such as preconditions or invariants. Programming languages
mainly concentrate on super/sub-classes in object-oriented
languages when introducing abstraction mechanisms.

Along with abstraction, an important need is the ability or
even necessity to specify structural and behavioral proper-
ties that are not directly executable. Underspecification is an
intrinsic abstraction concept that programming languages do

B Bernhard Rumpe
bernhard.rumpe @sosym.org

Jeff Gray
jeft.gray @sosym.org

1 University of Alabama, Tuscaloosa, Alabama, USA

2 RWTH Aachen University, Aachen, Germany

not offer. Underspecification permits a broader range of pos-
sible behaviors, in comparison to a program that in the same
situation always describes the identical deterministic behav-
ior (weignore arandom function as an ineffective mechanism
to mimic underspecification). Underspecification is needed
because during development, not all requirements are already
known and sometimes design decisions need to be delayed
until further information is available. Examples are choices
of (non-deterministic) transitions in Statecharts, groups of
actions in activity diagrams (where their sequential execution
is not yet defined), intervals of time delays for execution, or
undetermined types for attributes in conceptual models.

Support for underspecification enables a language to
offer refinement techniques such that a specification model
is refined into a more detailed specification or even a fully
determined implementation. Refinement has several forms,
for example being expressed through language constructs
within the models (e.g., sub-/super-classes in class diagrams)
or as operators between models, such as replacing an abstract
behavioral specification through a more detailed one.

Variability in software product lines can be expressed
using underspecification techniques, because an underspec-
ified, generalized specification for structural and behavioral
aspects of a variability point can be refined through a set
of available feature realizations. When using specification
and refinement, features (then by construction) are correct
implementations of their variability point. Programming lan-
guages provide variability mainly at the structural level of
super- and subclasses and provide the possibility to override
methods and their behavior in an unconstrained way. It is
a well-known problem that a programming language only
provides deterministic implementations of methods, but no
general mechanism for specifying the desired behavior (with
Bertrand Meyer’s Fiffel and its use of pre-/postcondition con-
cepts as a praiseworthy exception).

Often, it is an advantage that models may have less pre-
cision and detailedness than program code. However, it
must not be forgotten that the precision of the model does
not necessarily correlate with the precision of the language

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s10270-022-01057-2&domain=pdf

2098

J. Gray, B. Rumpe

used—very imprecise models can be created in a very pre-
cise language. Yet, it is challenging to create a precise model
using an imprecise language (e.g., a natural language).

When thinking precisely about refinement or synthesizing
code from models, the precision of a model cannot be differ-
ent from the precision of the generated code. This requires a
precisely defined and unambiguous modeling language. Of
course, models are sometimes only used as “thought models”
and remain in a developer’s head as an unclear level of pre-
cision without an explicit graphical, diagrammatic, tabular,
or textual representation.

Furthermore, the degree of compactness plays a major
role in a model’s practical use. Sophisticated language con-
structs and potential library elements may reduce the size of
amodel specification and lead to more effective development
due to the reduction of repetitive and verbose overstating of
model properties.

UML, SysML and many domain-specific languages
(DSLs) have shown that models and their various forms
support the definition of explicit views on various different
aspects of the final system to be implemented. Programming
languages focus on the statically definable structural part,
which are classes, attributes, methods, and things like sin-
gleton objects defined within static variables. UML allows
the explicit modeling of state-based behavior, interaction
sequences, interaction patterns, activities and their logical
dependencies, and component structures. However, there are
many different forms of usage for this kind of view; e.g., a
constructive form to derive or synthesize code or also in a
testing form, by checking the validity of the implementation
against the specification. Such synthesis and testing activi-
ties can be done during design time (generation, testing) or
during runtime (interpreting, monitoring) and may have var-
ious consequences. Although a modeling language has more
expressivity in terms of these views, it depends on the tooling
used and how to deal with these views constructively, ana-
lytically or in verificational form. Programming languages
generally do not offer these different options.

Considering these differences, shared characteristics, and
uses of programming and modeling, it is obvious that there
is one technical difference: a programming language is a
coherent, clearly defined and relatively stable homogeneous
language. In contrast, the various aspects and viewpoints
in a modeling language should span the phases of early
requirements, through high-level and detailed design, up to
implementation, testing, and verification. This broader cov-
erage often requires the use of modeling sub-languages that
are appropriate for the level of precision needed at each stage
of development. When describing a software system, a het-
erogeneous set of models must consistently work together.
This complicates development of sophisticated tooling in the
modeling domain.

@ Springer

It seems that programming languages have solved this
issue better by incorporating smart mechanisms of import
and reuse, which allows many concepts to be removed from
the core language and deferred to external libraries. Using
specific libraries or frameworks considerably changes the
style of programming (e.g., the callback functions in GUI
frameworks). Also, design patterns and especially architec-
tural patterns (e.g., the state pattern) enforce a special form
of code. These kinds of styles are also possible in modeling,
but the modeling community still continues to discuss which
styles are most helpful.

In summary, programming languages can influence model
engineers on how to define, use and manage our models.
However, there are some major differences, and in particular
various needed forms of abstractions during early phases of
development that do not have a strong analogy with program-
ming languages. Agile development and other methodologies
that support development of larger, complex systems might
benefit from a dedicated and explicit modeling activity if
done well and assisted by useful tools.

1 Content of this issue

1. Expert Voice

e “Modeling should be an independent scientific disci-
pline” by Jordi Cabot and Antonio Vallecillo

2. Theme Section on Model-Driven Requirements Engi-
neering

o Guest editors: Ana Moreira, Gunter Mussbacher, Jodo
Araujo, and Pablo Sanchez

3. Regular Papers

e "An investigation of the relationship between joint
visual attention and product quality in collaborative
business process modeling: a dual eye-tracking study"
by Duygu Findik-Coskuncay and Murat Perit Cakir

e "An efficient line-based approach for resolving merge
conflicts in XMI-based models" by Alfonso de la Vega
and Dimitris Kolovos

e "Instant and global consistency checking during col-
laborative engineering" by Michael Trols, Luciano
Marchezan, Atif Mashkoor, and Alexander Egyed

e "Model-driven management of BPMN-based business
process families" by Andrea Delgado, Daniel Calegari,
Felix Garcia, and Barbara Weber

Funding Open Access funding enabled and organized by Projekt
DEAL.



Reflection on the differences between modeling and programming

2099

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

Reference

1. France, R., and Rumpe, B.: On the relationship between model-
ing and programming languages. In: Journal Software and Systems
Modeling(SoSyM). Springer Berlin/Heidelberg. ISSN 1619-1366.
Vol. 11(1), pp. 1-2, (2012). Available at https://www.sosym.org/
editorials/files/FR12a.pdf

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

@ Springer


http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.sosym.org/editorials/files/FR12a.pdf

	Reflection on the differences between modeling and programming
	1 Content of this issue
	Reference




