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The purpose of this study was to develop and test a

method to delineate lung field boundaries in dual-

energy chest x-ray images. The segmenting method

uses soft-tissue images and spatial frequency–de-

pendent, background-subtracted images. Large-scale

chest anatomy features are located and used to select

the lung apices, the lateral lung boundaries, and the

lung–mediastinum and lung–diaphragm boundaries.

Extraneous parts of the contours are removed and

they are joined to form complete lung boundaries.

The reliability measure uses a statistical shape model

to estimate the probability of occurrence of a contour.

The method was experimentally tested with 30 hu-

man subject images. It has higher accuracy and spe-

cificity and a sensitivity parameter equal to the best

previously reported method. The reliability measure

is able to detect contours with unusual lung outlines

or errors in the processing. The method exploits the

characteristics of dual-energy subtraction images to

improve lung field segmenting performance.
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LUNG FIELD SEGMENTING, the delin-
eation of the boundaries of the lungs in a

chest x-ray image, is an essential part of a
number of automated chest x-ray image analy-
sis systems. The lung outlines can be used di-
rectly as indicators of cardiomegaly1 or
pneumothorax,2 and they are also used in many
computer-assisted detection or diagnosis
(CAD) systems3 to determine the area of
processing. The soft-tissue images4 provided by
dual-energy technology5 eliminate ribs, which
are a major source of errors in these CAD
systems. Previous work in segmenting dual-
energy soft-tissue images6 used algorithms de-
veloped for conventional images. In this article,
I describe a segmenting method that exploits the
characteristics of dual-energy soft-tissue images
to improve performance.

The performance of the segmenting method is
tested by applying it to a set of human subject
dual-energy images. The performance is meas-
ured by computing the accuracy, sensitivity,
and specificity using the approach introduced
by Duryea and Boone,7 which was also used by
Vittitoe et al.8 and van Ginneken and Ter Haar
Romeny.9 Van Ginneken and Ter Haar Rom-
eny compute the performance measures for
other lung field segmenting methods reported in
the literature and provide a table of their values.
The results presented here show that the dual-
energy soft-tissue image segmenting method has
higher accuracy and specificity and a sensitivity
parameter equal to the best previously reported
method.
An essential element of any automated medi-

cal image analysis system is an estimate of the
reliability of the results. Biological variability
can result in degraded performance, and an in-
dication of reliability allows for corrective action
or, at the least, warning the user of potential
problems. I describe a reliability measure for
lung field segmenting algorithms based on sta-
tistical shape models.10 The measure uses a
training set of manually digitized lung bounda-
ries and principal components analysis to com-
pute an estimate of the probability of occurrence
of a contour produced by an automated algo-
rithm. Evaluation of the reliability measure with
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the contours produced by the dual-energy soft-
tissue image segmenting method shows that it is
able to detect both errors in the processing and
unusual lung anatomy.
Segmenting methods for conventional chest

x-ray images were reviewed by van Ginneken
(Ch. 2).11 The methods use two general ap-
proaches: rules-based and pixel classification.
Rules-based methods apply a sequence of image
processing operations such as image linear
combination, spatial filtering, thresholding, and
morphological operations to delineate the lung
field boundaries. In pixel classification, each
pixel in the image is individually classified as
lung/non-lung based on features such as image
data magnitude, location, and local texture
measures. Either approach can utilize global
knowledge, such as human thorax anatomy, (1)
implicitly through constraints and tests in the
algorithm logic, or (2) explicitly through a series
of rules expressed as logical constraints,12 or
with statistical shape models trained on hand-
digitized contours.13

As noted by Vittitoe et al.,8 the lung bound-
aries derived by the previous methods and the
method described in this article are actually the
unobscured lung regions—that is, those regions
of the lungs not obscured by the mediastinum,
heart, or diaphragm. The unobscured region
has been estimated to represent only approxi-
mately 57% of the lungs,14 so methods to seg-
ment and process the remaining parts of the
lungs are important. Unfortunately, segmenting
the complete area of both lungs is substantially
more difficult than segmenting the unobscured
regions and it is the subject of ongoing research.

MATERIALS AND METHODS

Segmenting Method Description

The method has four principal steps:

1. Locate large-scale chest anatomy features: the thorax

centerline, and the centerlines of the lungs.

2. Determine lung boundary contours as edges in spatial

derivatives of the soft-tissue and background-subtracted

images.

3. Eliminate extraneous parts of the contours that are not

part of the lung boundary with rules-based pruning

methods.

4. Resample the contours so that points correspond to

those of the statistical shape model.

Image Contour Computation and Selection

The lung boundary contours are computed from local

maxima (or minima) in spatial derivatives of the image data

with an approach similar to that used in the ‘‘rules-based

reasoning method’’ of van Ginneken and Ter Haar

Romeny.9 The spatial derivative images are computed by

convolving the original image with spatial derivatives of

a two-dimensional Gaussian function. By taking the two-

dimensional Fourier transform, it is easy to see that this

method is equivalent to smoothing the derivative of the

image with a Gaussian function. This approach is less

sensitive to noise and more suited to relatively large features

than alternatives such as Robert’s cross or Sobel operators

based on local differences.

We convolve the images using a standard algorithm

that extends the image values outside the original

boundaries by mirror reflection across the edge. The

Gaussian functions used as convolution kernels are

truncated at a specified multiplier of their standard devi-

ations. We compute gradient magnitude images by com-

bining the x and y derivative images pixel by pixel

IGradientMagnitudeðx; yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I2xderivðx; yÞ þ I2yderivðx; yÞ

q
:

A set of contours is computed from the local maxima

images by finding sets of 8-connected points using standard

computer vision software. Contours that fit selected geo-

metric criteria are selected by a voting process.9,15 The

method starts by associating a count variable with every

contour in an image and initializing it to zero. It raises the

count incrementally every time the contour satisfies a

criterion. An example is to find the contour closest to a

line x = x0 in a rectangular region. For each y value in

the region, the method searches along the x-direction to find

the closest contour passing through or contained within the

region and raises its vote count. After searching for all y-

values in the range, the contour with the highest number

of votes is selected. As an option, other contours whose y

values do not overlap with the high vote contour can be

included in the final result.

Background-Subtracted Soft-Tissue Image

In addition to the soft-tissue image, we use a special

background-subtracted image as input to the contour com-

putation. The background-subtracted image is created by

subtracting a frequency-dependent smoothed version of the

soft-tissue image. Unlike unsharpness masking, this method

preserves edges in the image, because the amount

of smoothing is smaller when the magnitude of the gradient

of the original image is larger as at edges. The image is

computed by first creating three images using a low, medium,

and high degree of smoothing. A gradient magnitude image

is also computed and it is scaled so its values are from 0 to 1.

The final image is computed by combining, at each pixel, the

values from the low to high smoothed images depending on

the magnitude of the gradient at that pixel. The combination

functions are shown in Figure 1. An example of a back-

ground-subtracted image is shown in Figure 2.
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Locate Large-Scale Anatomy Features

The large-scale anatomy features are computed from a

smoothed soft-tissue image using a Gaussian standard de-

viation of 0.05 (all dimensions are fractions of the number

of pixels in the horizontal x-dimension of the image). The

thorax centerline is selected from the contours resulting

from local minima in the x-direction. The selection is done

by voting for the contours closest to the line x = 0.5 in a

rectangular region with corners at (0.3,0.2) and (0.7,0.6).

After the thorax centerline is determined, its average

x-value, xcl, is computed and used in the further processing.

The lung centerlines are selected from contours resulting

from local maxima in the x-direction. The right lung cen-

terline is computed by voting for contours closest to the line

x= 0.25 in a box with corners (0.03, 0.2) and (xcl, 0.6). The

left lung centerline results from contours closest to x= 0.75

in a box with corners (xcl, 0.2) and (0.97,0.6). Once the

centerline contours were determined, straight lines were fit

to each contour for use in later processing. In addition, lines

perpendicular to the lung centerlines through the lung

contour center of mass were computed. Figure 3 shows an

image with centerlines, best-fit lines, and the lung boundary

contours computed as described in the paragraphs that

follow.

Locate Lung Apices and Diaphragm
Boundaries

First, individual points on the apices and diaphragms

were computed by finding the maximum values of the gra-

dient of the background-subtracted image on the straight

lines through the lung centerline contours. Next, the full

contours were computed using the voting method in local

maxima of the soft-tissue gradient-magnitude image. The

Fig 1. Combination functions for computing the frequency-

dependent smoothed image. The independent variable (x-

axis) is the normalized magnitude of the gradient. The three

functions shown multiply the image data from the low

(maximum value at 0), medium (maximum value at 0.5), and

highly smoothed (maximum value at 1) images.

Fig 2. Example of a background-subtracted soft-tissue im-

age used for contour computation. Background variation is

eliminated while retaining edges by subtraction of a fre-

quency-dependent smoothed image.

Fig 3. Large-scale thorax anatomy features: thorax and

lung centerlines. The image also shows the lung contours

before the pruning step. The contours are the bright white

lines. See text for description of computation method.
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right lung apex and diaphragm were the closest contours in

the y-direction to the y-coordinate of the intersection points.

The voting process was limited to a 0.025 range of x-coor-

dinates centered on the x-coordinate of the intersection

point. The left lung apex y-value was unreliable, so the right

lung apex value was used in the contour selection process,

relying on the symmetry of the lungs. The x-range of the

search was centered on the intersection of the left lung

centerline with the horizontal line y = yrightapex.

In a number of cases, the clavicle was not completely

subtracted in the soft-tissue image, causing an error in the

apex determination. To correct those cases, a rule was

added that if the y-coordinate of the apex point was greater

than 0.2 (the coordinate system is inverted so increasing y

coordinates are toward the bottom of the image), the search

was limited to the region beyond that point, In addition, in

some cases, the diaphragm maximum was found on a small

contour resulting from lung structure. These cases were re-

jected by testing the size of the contour. If it was less than

0.1, the maxima were located on a vertical line passing

through the center of mass of the lung centerline.

Lung-Mediastinum Boundary Contours

The lung–mediastinum contours were computed from the

local maxima (right) or minima (left) of the x-derivative of

the background-subtracted image. A point on the contour

was determined as the maximum (right) or minimum (left)

value along the line perpendicular to the lung centerline in

the segment from the lung centerline contour center of mass

to the intersection with the thorax centerline. Next, the

contours were determined by voting for contours closest in

the x-direction in a 0.025 x-range centered on the intersec-

tion points and from 0.2 to 0,4 in the y-direction.

Lateral Lung Boundaries

The lateral (i.e., farthest from the thorax center also

called ‘‘rib cage’’ boundary) lung contours were computed

from the local maxima (left) or minima (right) of the

x-derivative of the soft-tissue image. A point on the contour

was determined as the maximum (left) or minimum (right)

along the perpendicular to the lung centerline on a segment

from the outside edge of the image to three quarters of the

distance to the center of mass of the lung centerline contour.

Then the lateral lung boundary contours were selected as

the closest contours to the intersection point x-value along

the x-direction in a square region centered on the intersec-

tion point with sides equal to 0.04.

Prune Contours

The complete contour of each lung was formed from four

contours: the apex, mediastinum, diaphragm, and the lateral

lung boundaries, as shown in Figure 3. In some cases, the

contours extended past the lung, and in other cases they

covered only part of the true lung boundary. The final lung

field contours were computed in these cases with a ‘‘prun-

ing’’ procedure. The procedure either removed the parts

of the contours extending beyond the intersections of the

individual pieces or extended the ends of the pieces that did

not intersect with tangential straight lines fitted to the end

parts of the contours.

An algorithm was used to form complete lung contours

from the individual parts. On input, each component con-

tour’s points were sorted. The apex and diaphragm

boundaries were sorted in order of increasing x-coordinate,

and the mediastinum and lateral boundaries were sorted in

order of increasing y-coordinate. Two binary parameters,

called prune_before1 and prune_before2 in the listing be-

low, were used to indicate whether to remove or extend the

part of the contour before or after the intersection.

The ProcessCorner(contour1,prune_before1,contour2,

prune_before2) algorithm description in pseudo-code is as

follows:

1. intersect_point = FindIntersect(contour1, contour2)

2. if (contours intersect) then begin

3. ClipContour(contour1, intersect_point, prune_before1)

4. ClipContour(contour2, intersect_point, prune_before2)

5. end

6. else begin

7. line1 = FitTangentLine(contour1, prune_before1)

8. line2 = FitTangentLine(contour2, prune_before2)

9. intersect_point = FindIntersect(line1, line2)

10. point1 = FindNearestPoint(contour1, intersect_point)

11. point2 = FindNearestPoint(contour2, intersect_point)

12. ClipContour(contour1, point1, prune_before1)

13. ClipContour(contour2, point2, prune_before2)

14. end

The FindIntersect(contour1, contour2) procedure finds the

actual intersection point of the two contours or fits tan-

gential straight lines to the half of each contour closest to

the intersection and finds their intersection. The ClipCon-

tour(contour, point, prune_before) procedure removes

points from the contour before or after the specified point

depending on whether the parameter is true or false. The

FitTangentLine(contour, prune_before) procedure fits a

straight line to half of the points at the beginning or end of

the contour, depending on the value of the prune_before

parameter.

The ProcessCorner procedure was used repeatedly to join

the right lung contour pieces with the following parameters:

1. ProcessCorner(right_apex, false, right_lateral, false)

2. ProcessCorner(right_diaphragm, true, right_mediasti-

num, true)

3. ProcessCorner(right_apex, true, right_mediastinum,

false)

4. ProcessCorner(right_diaphragm, false, right_lateral,

true)

Similarly, the left lung contours were processed as follows:

1. ProcessCorner(left_apex, false, left_mediastinum, false)

2. ProcessCorner(left_mediastinum, true, left_diaphragm,

false)

3. ProcessCorner(left_diaphragm, true, left_lateral, true)

4. ProcessCorner(left_apex, true, left_lateral, false)

The values of the prune_before parameters were determined

by studying a diagram of the lung boundary and using the
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order of sorting of the contour points described above. An

example of the complete boundaries for both lungs is shown

in Figure 4.

Resample the Contours

The statistical shape model uses training data that are

manually digitized. The training data consist of 64 points per

lung, 128 points in all. The computer-generated contours are

sampled at high density, essentially one point per pixel. The

contours were resampled to correspond to the manually

entered contours by locating landmark points, shown in

Figure 5, using geometric constraints. Equally spaced points

are inserted between the landmarks using spline interpola-

tion. A procedure, NearestPoint(contour, point), finds the

contour point closest to the specified point by exhaustive

search. The Point(y) method finds the contour point with the

specified y-value. These procedures were applied to find the

landmark points as shown by the following pseudo-code:

Right lung contour:

1. point = (right_contour.xmin, right_contour.ymax)

2. right_contour_point_0 = NearestPoint(right_contour,

point)

3. right_contour_point_28 = Point(right_contour.ymin)

4. point = (right_contour.xmax, right_contour.ymax)

5. right_contour_point_51 = NearestPoint(right_contour,

point)

Left lung contour

1. point = (left_contour.xmax, left_contour.ymax)

2. left_contour_point_0 = NearestPoint(left_contour,

point)

3. point = (left_contour.xmin, left_contour.ymax)

4. left_contour_point_9 = NearestPoint(left_contour,

point)

5. left_contour_point_35 = Point(left_contour.ymin)

After the landmark points were found, other points were

inserted, equally spaced, along the original contour by using

spline interpolation of the x- and y-coordinates.

Statistical Shape Model

Before the results of any automatic processing are used,

they should be tested to estimate their reliability. The vari-

ability of biological structures makes this task difficult. Al-

though there is obvious regularity in the structure, the

variability implies the need for a statistical model, and the

results of a reliability test will be expressed as probabilities.

The statistical shape model introduced by Cootes et al.10 was

used to develop a segmentingmethod reliability measure that

uses prior knowledge of regularities in human anatomy.

The statistical shape model starts with a set of landmark

points, i.e., points on the lung contour that can be consist-

ently located in different examples of the object. Suitable

points are at corners, junctions, and regions of high curva-

ture. To describe the shape more accurately, additional

points are inserted, equally spaced, between the major

landmark points. The shape is represented by concatenating

the coordinates of the individual landmark points in the

order of a traversal of the contour. A clockwise traversal

was used for the segmenting method. If there are p land-

mark points, the shape is represented by a single 2 p element

vector

x ¼ ðx1; y1; x2; y2; . . . ;xp; ypÞ: ð1Þ

Note that, unlike the model of Cootes et al. a row vector

is used to represent the coordinates. This is consistent with

principal component analysis literature and corresponds to

the representation used in the computations.

The coordinates in Eq 1 are subjected to an ‘‘alignment’’

procedure that removes location, scale, and rotational

Fig 4. Final lung boundaries after the pruning process. This

is the output of the third step in the segmenting method.

Fig 5. Landmark points used for manual entry of lung

contours.
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effects. For the lung contours, each coordinate was divided

by the number of pixels in the x-direction. The contours for

both lungs were combined into a single shape vector and

then translated so that the center of mass was at the origin.

They were then scaled so that the range of y-coordinates was

equal to one. The coordinates were not rotated, because

patients were aligned during the x-ray examination by the

radiological technologist.

The statistical shape model is derived from a set of t

training images, usually manually digitized by an experi-

enced observer. Then, principal component analysis16 is

used to create a parameterized model of the training data

with smaller dimensionality. The principal components are

computed as follows:

1. Compute the mean of the data;

�x ¼ 1
t

Xt

i¼1
xi ð2Þ

2. Compute the covariance as follows (the superscript T

denotes a transpose);

S ¼ 1

t � 1
Xt

i¼1
ðxi � �xÞTð�xi � �xÞ ð3Þ

3. Compute the eigenvectors, /i, and the corresponding

eigenvalues, ai.;
S/ ¼ k/ ð4Þ

The eigenvectors specify a transformation of the original

data into a new set of uncorrelated variables, called the

principal components. The eigenvalues, also called charac-

teristic or latent roots, are the variances of the new variables

along their respective axes. Since the sum of the eigenvalues is

equal to the sum of the variances of the original variables, the

eigenvalues represent the part of the total variance repre-

sented by each of the principal components.

In many cases, a relatively small number of principal

components can be used to approximate the original data

while still representing a large fraction of its variation. This

is done by sorting the eigenvalues and corresponding ei-

genvectors in order of decreasing magnitude: a1 > a2 >…
A number of modes used is selected so that the model

represents a large fraction of the total variance of the

training data. The corresponding eigenvectors allow us to

approximate any member of the original data set using an m

dimensional vector, b,

x̂ ¼ x þ bUT ð5Þ

where/=(/1/2|…|/m
T and b ¼ ðx � xÞU. The results shown

later indicate that a small number of modes, compared to the

number of training images or the dimensionality of the shape

vectors, can approximate the lung contour shapes.

RELIABILITY MEASURES: STANDARDIZED

RESIDUALS AND SCALE PARAMETER

To test the reliability of a shape, we can compute the

residuals, i.e., the differences between the shape and its

approximation, using an m-mode statistical shape model.

Jackson and Mudholkar17 show that, under the assumption

that the model parameters, in our case the coordinates, are

normally distributed, the function s(Q) of the sum of the

squares of the residuals Q ¼ ðx � x̂Þðx � x̂ÞT is normally
distributed with mean 0 and variance 1.

SðQÞ ¼ h1

Q
h1

� �h0
� h2h0ðh0�1Þ

h21
� 1

� �
ffiffiffiffiffiffiffiffiffiffiffiffi
2h2h20

q ð6Þ

The constants in the expression depend on the eigen-

values and the number of modes, m, of the statistical shape

model retained:

h1 ¼
Xp

i¼mþ1
ki; h2 ¼

Xp

i¼mþ1
k2i ; h3 ¼

Xp

i¼mþ1
k3i ;

h0 ¼ 1�
2h1h3
3h22

:

I call s(Q) the standardized residuals.

The scale parameter, M, computed during the contour

alignment procedure, provides another useful measure of a

contour independent of shape. Recall that shapes ignore

location, scale, and rotational effects. The location and ro-

tation of the patient are controlled by the radiological

technologist during the x-ray examination, but the scale

depends on the size of the lungs and is subject to biological

variability. It is therefore a source of potential errors by the

segmenting algorithm.

The reliability measure, R, is defined to be the probability

of occurrence of a lung contour. If the probability is low,

then the results may have lower reliability. The measure is

computed as:

Rðq;mÞ ¼ Pr½SQ > jqj;M > jmj� ¼ Pr½SQ > jqj�Pr½M > jmj�;

where SQ is the random variable with the distribution of

S(Q) andM is the scale parameter. The second part of Eq 7

is justified because the results below show that SQ andM are

independent. The results also show that they can be ap-

proximated as Gaussian random variables, so we can

compute the probabilities on the right-hand side of the

equation as:

Pr½X > jxj� ¼ 1� cdfnormalðxÞ þ cdfnormalð�xÞ ð8Þ

where cdfnormal(x) is the cumulative distribution function of

a Gaussian random variable with mean l and standard
deviation r

cdfnormalðxÞ ¼
1

r
ffiffiffiffiffiffi
2p

p
Z K

�1
e�

1
2

x�l
rð Þ2dx: ð9Þ

Experimental Method

A set of 30 human subject images was used to test the

segmenting method and the reliability measure. Ten of the

images were acquired using an experimental electro-optical

detector and x-ray tube voltage switching with standard

computed radiography plates.18 Twenty images were ac-

quired with a commercial system that uses voltage switching

with rapid readout of a solid-state detector (GE Medical
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Systems RevolutionTM XR/d System). These systems ac-

quire two images with a low and high x-ray tube voltage

then process them to compute the soft-tissue image. Each

system used different software to compute the soft-tissue

images, but the images from both systems can be used as

input to the dual-energy segmenting algorithm.

The only inputs to the segmenting software are the soft-

tissue image and a parameter indicating the contrast of the

data. As shown in the results, the two systems have differing

contrast—i.e., thick areas had larger values in images pro-

duced by the experimental system and smaller values in im-

ages from the GE system. The result of the segmenting

software was a file for each subject, containing the coordi-

nates of the lung contour each divided by the number of

pixels in the x-dimension. The segmenting algorithm was

implemented using the C++ language.

The lung contours for all the images were manually

digitized from the background-subtracted, soft-tissue image.

The digitizing software created files in the same format as

the automatic software. A program read both contour files

for each subject and then classified each pixel in the image in

the four categories shown in Figure 6: true positive (TP),

true negative (TP), false positive (FP), and false negative

(FN), These were used to compute the accuracy, sensitivity,

and specificity as follows:

Accuracy ¼ NTP þ NTN

NTP þ NTN þ NFP þ NFN
ð10Þ

Sensitivity ¼ NTP

NTP þ NFN
ð11Þ

Specificity ¼ NTN

NTN þ NFP
ð12Þ

The tests of the statistical shape model and reliability

measure were performed using cross-validation with the

complete data set as a partition.19 The procedure is as

follows:

1. Leave out one lung contour from the hand-digitized set.

2. Calculate the statistical shape model using the remaining

contours in the hand-digitized set.

3. Compute the statistical shape model estimate (Eq 5) and

the reliability measures (Eq 6 and scale parameter) with

the automatically generated contour from the image of

the case excluded in step 1.

4. Repeat steps 1 to 3 for each contour in the experimental

set.

Note that the hand-digitized contours are used to generate

the statistical shape model, but the output of the segmenting

software is used to compute the model fit and the reliability

measures.

RESULTS

In this section, I describe the results of ex-
perimental tests of the segmenting method and
the statistical reliability measure. The tests
performed were as follows:

1. Plots of the lung contours computed by the
segmenting method superimposed on the
soft-tissue images

2. Average value and standard deviation of the
accuracy, sensitivity, and specificity

3. Plots of the first four modes of the statistical
shape model

4. Distribution of the reliability measures and
examples with individual images

Lung Contours

Figure 7 shows the lung contours generated by
the segmenting algorithm superimposed on
soft-tissue images. The images from the GE
system are at the top. Note the error in the
image at the lower right corner. This was due to
mis-positioning of the subject, placing the lung
apex below the search region. The accuracy,
sensitivity, and specificity of each image were
computed using Eq 10, 11, 12. The average
value and standard deviation of the perform-
ance measures were as follows:

Accuracy: 0.9747 ± 0.0101
Sensitivity: 0.9402 ± 0.0177
Specificity: 0.9875 ± 0.0107.

Statistical Shape Model Results

The statistical shape model was computed
using the hand-digitized contours from all the

Fig 6. Pixel classification. All pixels are classified into four

categories: true positive (TP), true negative (TP), false posi-

tive (FP), and false negative (FN). The drawing shows the true

contour (solid) and the computed contour (dashed) and ex-

amples of each class of pixels.
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images with Matlab software. Figure 8 shows
plots of the eigenvalues (right axis) and the
cumulative fraction of the total variance repre-
sented by the first m modes (left axis). Over
96% of the total variance of the 30 lung con-
tours can be represented by 10 modes. Figure 9
shows the variation of the lung shapes repre-
sented by the first four modes of the statistical
shape model.

Reliability Measure Results

Figure 10 shows a normal probability plot of
values for the standardized residuals S(Q) and
the scale parameter M. This plot gives a
graphical assessment of the accuracy of ap-
proximating the data with a normal distribu-
tion. If the data are normally distributed, the
values will fall on a straight line. The plots show

Fig 7. Computed lung contours superimposed on the soft-tissue images. Note the processing error in the image in the lower

right corner.
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that normal distributions are good approxima-
tions for both variables.
The correlation coefficient of the two varia-

bles was 0.0190, indicating very low correlation.
Because uncorrelated Gaussian random varia-
bles are also independent, the assumption in Eq
7 is justified.
By estimating the mean and standard devia-

tion of normal approximations to the reliability
measure distributions, Eq 7, 8, 9 can be used to
compute the reliability measure R of each lung
contour. Figure 11 is a bar chart of the relia-
bility measures on a logarithmic scale. Note
that the first two values are substantially lower
than the other values. Figure 12 shows the im-
ages for the first four cases in Figure 11, with
the lung contours superimposed as a bright
white line. The lowest two R value images are
on the left.

DISCUSSION

Segmenting is the key initial step in CAD
methods, and errors in this step could invalidate
the overall results. Furthermore, CAD is often
applied to screening examinations where the
fraction of images with true positives is quite
small, so a seemingly small error fraction is
significant. Van Ginneken and Ter Haar Rom-
eny9 list a range of accuracies for segmenting
methods reported in the literature. They also
estimate the highest attainable accuracy of a
segmenting method as the inter-observer varia-

bility. Table 1 compares the performance
measures for the dual energy soft-tissue image
segmenting method with the highest perform-

Fig 8. Eigenvalues of the statistical shape model (left axis)

and the cumulative fraction of the total variance represented

by the first m modes (right axis). A total of 10 modes repre-

sents 96% of the total variance.

Fig 10. Normal probability plots of the components of re-

liability measures. There are two superimposed plots. Each

plot shows the experimental probability versus the data

value for each point in the sample of a respective variable.

The solid line is a fit to the 25th and 75th percentiles of the

data and is therefore insensitive to the outliers. The y-scale is

not uniform but is proportional to the probability that a

normal random variable has that value; i.e., it is the inverse of

the cumulative distribution function of a normal random

variable.

Fig 9. Modes of the statistical shape model. Each of the

four rows shows the contours represented by the aver-

age ± 3r (standard deviation) of a statistical shape model

mode.
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ance method listed by van Ginneken and Ter
Haar Romeny9 the ‘‘classification correction’’
method. The dual energy method has higher
accuracy (at the 5% confidence level) and spe-
cificity (at the 0.1% confidence level) using a
one-sided t-test. The methods’ sensitivities are
equal at thea = 0.05 level using a two-sided
t-test.
As discussed by van Ginneken and Ter Haar

Romeny,9 improvements in performance should
be considered in the context the fraction of the
remaining errors eliminated compared to inter-

observer variability, which is the best perform-
ance attainable. The dual-energy method de-
scribed in this article eliminates 40% of the
remaining errors as measured by accuracy and
70% of the errors as measured by specificity.
These are large fractions of the remaining
errors, and the dual-energy method makes a
significant improvement in performance over
existing methods.
Figure 11 shows that a threshold can be

defined so that the reliability measure detects
a patient with an unusual lung boundary con-

Fig 11. Bar graph of the reliability measures for all the test images, sorted from smallest to largest. Note the step increase of the

reliability measure after the first two images. The dashed line is an example of a threshold that could be defined so that values

below the threshold are reported to the user. Two images fall below the threshold (see Fig 12).

Fig 12. The images for the first four cases in Figure 11. The computed lung outlines are the bright white lines. The two cases on

the left have reliability measures that fall below the threshold, and the two on the right are above it. See the text for a discussion.
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figuration or errors in the processing. The
image with the lowest reliability measure (far
left image in Figure 12) corresponds to a
patient with an unusual right lung boundary
and a high degree of asymmetry with the
left lung. As discussed by Armato et al.20 de-
tection of cases with unusual anatomy has
medical utility as an ‘‘automated triage’’ sys-
tem. The reliability measure was also able to
detect the one case among the 30 test images
where the segmenting method had large errors,
the second image from the left in Figure 12.
The other two images on the right of Figure 12
had the next highest reliability measures, but
they were above the threshold in Figure 11.
In these cases, the segmenting method gave
good results and the patients had normal lung
configurations.

CONCLUSIONS

The segmenting method described exploits
the characteristics of dual-energy soft-tissue
images to provide better performance results
than previous methods. A reliability measure,
using the standardized residuals and the
scale parameter of a statistical shape model,
detects unusual lung outlines and processing
errors.
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