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The modulation transfer function (MTF) of a medical
imaging display is typically determined by measuring its
response to square waves (bar patterns), white noise,
and/or line stimuli. However, square waves and white
noise methods involve capture and analysis of multiple
images and are thus quite tedious. Measurement of the
line-spread function (LSF) offers a good alternative.
However, as previously reported, low-frequency re-
sponse obtained from the LSF method is not as good as
that obtained from measurement of edge-spread func-
tion (ESF). In this paper, we present two methods for
evaluating the MTF of a medical imaging display from its
ESF. High degree of accuracy in the higher frequency
region (near the Nyquist frequency of the system) was
achieved by reducing the noise. In the first method,
which is a variant of the Gans’ original method, the
periodic raster noise is reduced by subtracting a shifted
ESF from the ESF. The second method employs a low-
pass differentiator (LPD). A novel near maximally flat
LPD with the desired cut-off frequency was designed for
this purpose. Noise reduction in both the methods was
also achieved by averaging over large portions of the
image data to form the ESF. Experimental results show
that the MTF obtained by these methods is comparable
to that obtained from the square wave response.
Furthermore, the MTFs of rising and falling edges of a
cathode ray tube (CRT) were measured. The results
show that the rising and falling vertical MTFs are
practically the same, whereas the rising horizontal MTF
is poorer than the falling horizontal MTF in the midfre-
quency region.
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INTRODUCTION

The relevance of image quality control of

liquid crystal displays (LCDs) and cathode

ray tubes (CRTs) for the purpose of soft-copy

diagnosis has been well recognized, and several

methods have been proposed for performing

quality evaluation.1Y4 One common measure of

performance is the spatial resolution of the

imaging system, which is usually described by

its modulation transfer function (MTF).

The conventional practice is to measure the

MTF of an electronic display based on the

response to square waves (bar patterns), lines,

and white noise stimuli.4 In these methods, an

image of the portion of the display containing the

test stimulus is captured using a charge-coupled

device (CCD) camera. The MTF is then deter-

mined quantitatively by evaluating an ensemble of

such images. However, the use of square waves is

very labor-intensive. The MTF has to be assem-

bled frequency by frequency from the output

modulations of the fundamental and various

harmonic frequencies in the spectra of usually 10

different spatial square waves used (one-onYone-

off, two-onYtwo-off, . . ., ten-onYten-off ), each of
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which requires a separate image acquisition and

analysis. Similarly, the method of measuring the

response to white noise also entails acquisition of

a large number of images and calculation of the

noise power spectrum from each image to obtain a

smooth MTF. Measurement of the MTF from the

line-spread function (LSF) offers a good alterna-

tive, although it is prone to errors in calculation of

a correction for the finite line width.5 Moreover,

it was shown by Cunningham and Reid6 that

measurement of the edge-spread function (ESF)

yields superior response at low spatial frequencies

than the LSF method.

The edge-based technique has been used for

measuring the presampled MTF of digital radio-

graphic systems, but to our knowledge, it has never

been used to measure the MTF of a medical

imaging display. In this article, we describe two

methods to obtain the MTF of a CRT from its ESF.

The ESF is spatially unlimited because its end

level differs from its starting level. Therefore it

is typically differentiated to obtain the spatially

limited LSF. The MTF is then deduced by Fourier

transform methods. However, differentiators inher-

ently boost the noise levels at higher frequencies.7

Several methods have been suggested to reduce

the noise associated with the ESF method by low-

pass filtering the ESF,8 fitting the ESF to a

parametric equation9 or by local smoothing of

the ESF.10 In the latter approach, the ESF is

oversampled and then smoothed by utilizing a

fourth-order, Gaussian-weighted, moving polyno-

mial fit. The order of the polynomial and the

window size were deduced empirically, but a

general solution was not derived in that work.

The two methods described in this article are

designed to reduce the noise inherent in the

calculation of the MTF from ESF. In the first

method, which is a variant of the Gans’ original

method,11 a shifted ESF is subtracted from the

original (nonshifted ESF). Because of this sub-

traction, the high-frequency raster noise (not

required for MTF measurement) of the display is

considerably reduced. Fourier transform tech-

niques are then applied to obtain the MTF. In

the second method, a novel low-pass differentiator

(LPD) was designed and used to obtain the LSF

from the ESF. The LPD, which differentiates only

low frequencies, ensures that the high-frequency

noise does not contribute to the MTF. Further-

more, in both methods, signal averaging over a

large portion of the edge is used to obtain an ESF

with a satisfactory signal-to-noise ratio.

An additional aim of this project was to

investigate the difference between the MTFs of

rising and falling edges (called rising and falling

MTFs for convenience) on a CRT. It was shown

by Roehrig et al.12 that compensation of the

degradation caused by the display’s MTF signif-

icantly improves its diagnostic image quality.

However, their method ignores the differences

between the behavior of rising and falling edges,

and both types of edges have been incorrectly

characterized with the same MTF. Knowledge of

the difference in their MTFs can be used to further

improve the image quality on a display by sepa-

rately enhancing the rising and falling edges of the

displayed image.

MATERIALS AND METHODS

The measurements were made on a high-performance

monochrome CRT display with P45 phosphor and a pixel

matrix of 2,560 � 2,048. The size of the CRT pixel (size of the

Gaussian spot) was 0.144 mm; the Nyquist frequency was

therefore 3.47 lp/mm. The CRT was set for a maximum

luminance of 350 cd/m2 and a minimum of 0.75 cd/m2. Data

were acquired with a CCD camera that recorded test images

displayed by the CRT. The experimental setup is shown in

Figure 1. The resolution of the CCD camera was 1,316 � 1,036

pixels at 6.8 mm. The magnification was such that that an array

of 4 � 4 CCD pixels covered (sampled) one display pixel. This

provided sufficient oversampling so that the effects of aliasing

were minimal. Henceforth, for convenience, the term magni-

fication will refer to the dimension of this 4 � 4 matrix of CCD

pixels, 4 in this case. Figure 2 shows the actual output of a

CCD camera imaging a rising horizontal edge on a CRT.

Several 1-D profiles across the captured image were averaged

to generate a single profile, which was then used for the MTF

measurement. The resultant ESF then refers to this averaged

1-D profile of the edge.

ESF is not spatially limited. Direct application of discrete

Fourier transform (DFT) on ESF therefore causes truncation

errors. This is because the periodicity assumed by DFT causes

abrupt transitions in the data.7 DFT therefore cannot be directly

applied to spatially unlimited ESF without introducing unde-

sirable artifacts. This can be explained by considering a

continuous-space rising horizontal step edge stimulus of

infinite length. In theory, this will produce an ESF, f0(x), of

infinite length and amplitude K, where x is the spatial

coordinate and f0 is the measured luminance, such that,

f0 xð Þ ¼ fi xð Þ; x G 0

¼ f2 xð Þ; 0 � x G x2

¼ ff xð Þ; x � x2 ð1Þ
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where x denotes the position on the monitor, fi(x) is the

function representing the initial part of the edge, ff (x) denotes

the final part of the edge (of mean value K ), and f2(x) (as

shown in Figure 3) is the ESF captured by the CCD camera

from the display within its observable field of view, 0 e x e x2.

Clearly, f2(x) simply represents the truncated portion of the

infinite edge f0(x), whose Fourier transform we are interested

in. In a CRT, there will also be raster noise, which is periodic

and synchronized with the display pixels, with approximately

zero mean and small amplitude relative to the edge stimulus.

Thus, the initial part of the ESF, f0(x), consists of just the raster

noise and the final part consists of raster noise plus a constant

offset (i.e., the plateau of the step edge).

Mathematically, the Fourier transform F2( j!) of the

truncated edge f2(x) is given by

F2 j!ð Þ ¼
Z þ1
�1

f2 xð Þe�j!x

¼
Z þ1
�1

f0 xð Þ � fi xð Þ � ff xð Þ
� �

e�j!xdx

¼ F0 j!ð Þ � Fe j!ð Þ ð2Þ

where F0( j!) is the desired transform and Fe( j!) is the

erroneous term introduced by truncation of the edge function.

Hence, F0( j!) can only be determined from this method if the

error term Fe( j!) is removed from F2( j!). This can be

achieved by converting f0(x) into a spatially limited form.

In this section, the theoretical background behind the two

methods used for measurement of the MTF will be discussed: a

variant of the Gans’ method and the low-pass differentiator

method.

Gans’ Method

f0(x) can be converted to a spatially limited form by sub-

tracting a shifted version of the ESF from the original ESF, i.e.,

f3 xð Þ ¼ f0 xð Þ � f0 x� x1ð Þ; x1 G x2 ð3Þ

Fig 1. Measurement of display performance parameters with a CCD camera.

Fig 2. Actual output of a CCD camera imaging a rising
horizontal edge on a CRT. Several profiles like the one drawn
across the image are averaged to evaluate the MTF. (Contrast of
the image has been enhanced so that the raster and noise can be
clearly seen in the image.)
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The resultant function f3(x) is approximately zero outside the

observable field (x G 0 and x > x2) and therefore can be

considered spatially limited within a reasonable approximation.

Consequently, f3(x) (shown in Figure 4) can be represented as

one period of a periodic waveform, thus allowing it to be

represented by a Fourier series. The Fourier transform of f3(x)

is given by

F3 j!ð Þ¼
Z þ1
�1

f3 xð Þe�j!xdx

¼
Z x2

0

f3 xð Þe�j!xdx

¼ F0 j!ð Þ 1� e�j!x1
� �

¼ F0 j!ð Þ 1� cos !x1 � j sin !x1ð Þ½ �

) F3 j!ð Þj j¼ 2 F0 j!ð Þj j sin !x1=2ð Þ ð4Þ

|F0( j!)| can then be found from |F3( j!n)| at all frequencies !.

In particular, if x2 = 2x1, at frequencies !n = n�/x1,

F3 j!nð Þj j ¼ 2 F0 j!nð Þj j; n ¼ �1; � 3; � 5; . . .

¼ 0; n ¼ � 2; � 4; � 6; . . . ð5Þ

Therefore, as shown in Figure 5, the MTF can be calculated

by dividing F3( j!) by the input modulation at each discrete

frequency !n.

Because the value of discrete frequency !n depends on the

shift x1, the edge can be shifted by different values to obtain all

the frequency points of interest. To obtain the MTF, we simply

divide f3(x) by the corresponding input—i.e., a difference of

two ideal step functions, or a rectangular pulse. Hence, for any

other shift x2 m 2x1, the MTF can be directly derived from f3(x)

by dividing |F3( j!)| by a sinc function (Fourier transform of an

ideal rectangular pulse13), except at frequencies where the sinc

function is singular, i.e.,

MTF !ð Þ ¼ F3 j!ð Þj j
x1 sinc x1!=2�ð Þ ; ! 6¼ 2n�=x1; n ¼ �1;�2; . . .

ð6Þ

Differentiator

Because differentiation of a signal gives an estimate of its

rate of change, the ESF can alternatively be differentiated to

obtain the LSF.6 To obtain the MTF, the LSF is Fourier-

transformed, corrected for the finite line width, and normalized

at DC to a value of 1.

The ideal differentiator has a magnitude response that is

proportional to the frequency. It has the following frequency

response:

H !ð Þ ¼ j!; !j j � � ð7Þ

Sources of significant high-frequency noise on CRTs and

LCDs are, respectively, raster effects and fluctuations in the

luminance level resulting from interspaced dark regions

between pixels. As a result of oversampling by the CCD

camera (4 pixels capture 1 CRT pixel), frequencies four times

the Nyquist frequency of the display are acquired. The high-

frequency components extending beyond the Nyquist frequen-

cy of the monitor do not contribute to its MTF and hence need

to be removed. However, an ideal differentiator (shown as

Bideal response^ in Figure 6) amplifies undesirable high-

frequency noise because of its high-pass characteristics.7

Fig 3. Portion of an infinite edge f0(x), denoted by f2(x), captured by a CCD camera along with its shifted version jf0(x j x1), denoted
by jf2(x j x1). The sum of these two is f3(x).
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In practical implementations, the ideal differentiator must be

approximated because the ideal impulse response has infinite

length. The differentiators commonly used are approximated by

difference operations where the inputYoutput relation is simply

given by y(n) = x(n) j x(n j 1) (Samulson’s differentiator) or

y(n) = a[x(n + 1) j x(n j 1)] (central-difference algorithm),

where a is a constant factor.10 The corresponding frequency

responses are given by

H !ð Þ ¼ 1� cos !ð Þ þ j sin !ð Þ and

H !ð Þ ¼ a 2j sin !ð Þ½ � ð8Þ

Although Samulson’s differentiator and the transfer function

of Gans’ method described in the previous section are identical

for the case when x1 = 1 in ( Equation 4), Samulson’s

differentiator is an all-pass differentiator. Unlike Gans’ method,

where the noise is reduced due to subtraction of two images

with shifted edges, Samulson’s differentiator boosts high fre-

quencies and, hence, also the noise. The central-difference algo-

rithm with frequency response given in Equation (8) closely

approximates Equation (7) for very low frequencies (approxi-

mately until �/7, for certain values of a), as shown in Figure 6,

and then deviates from the ideal behavior. Even for the best-

case scenario of a = 0.5, the frequencies from approximately

�/7 until �/2 are not linearly boosted. This not only causes

unexpected error in the output, but also boosts unwanted high-

frequency noise. Therefore, if Samulson’s simple differentiator

or the central-difference algorithm is applied to an ESF ob-

tained from an LCD or CRT display, high-frequency noise will

be amplified, producing errors in the obtained MTF.

Fig 5. Magnitude of the Fourier transform of f3(x), which is exactly equal to twice that of an infinite edge at certain discrete
frequencies if x2 = 2x1.

Fig 4. f3(x). As desired, f3(x) is spatially limited. At certain discrete frequencies, the magnitude of its Fourier transform is related to that
of a spatially unlimited edge with a constant.
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One way to reduce the noise is to apply a low-pass filter to

the ESF and then differentiate it in two cascaded stages of

filter. Alternatively, these can be combined into a single linear

filter—a low-pass differentiator (LPD). An ideal LPD has a

desired frequency response given by

Hd
LPD !ð Þ ¼

j

0;

!; !j j�!c

!c G !j j � �

(
ð9Þ

where !c (cut-off frequency) denotes the upper limit of the

differentiator band. Such a filter behaves as a differentiator in

the frequency range [0, !c] and attenuates the higher frequency

components.

A digital filter of length N can be represented by the transfer

function,

H zð Þ ¼
XN�1

n¼0

h nð Þz�n ð10Þ

where h(n) is the impulse response of the filter. In the design of

the LPD, the impulse response of the filter, hLPD, is required to

be antisymmetric because the frequency response of such a fil-

ter, as indicated in Equation (9), is imaginary. A causal Type III

filter,13 whose length (N ) is odd, is designed in this paper.

Thus, we have

hLPD nð Þ ¼ �hLPD N � 1� nð Þ; n ¼ 0; 1; . . . N � 3ð Þ=2 ð11Þ

and

hLPD

N � 1

2

� �
¼ 0 ð12Þ

Consequently, the frequency response of the filter is given by

~HH !ð Þ ¼ e
�j N�1ð Þ!=2e j�=2

M !ð Þ; !j j � � ð13Þ

where

M !ð Þ ¼
XN�1ð Þ=2

k¼1

c kð Þ sin k!ð Þ ð14Þ

and

c kð Þ ¼ 2hLPD N � 1ð Þ=2� k½ � ð15Þ

In the past, LPDs have been designed using the Remez

algorithm (essentially minimizing the relative error),14 using

relative mean-square error minimization,15Y17 and using the

Kaiser window.18 Recent works have been published proposing

a maximally flat LPD.19 In our work, the LPD is designed

using the window method. However, unlike the method of

Wong and Antoniou,18 which utilizes an empirically chosen

shape parameter � for the Kaiser window and which causes a

slight shift in the resultant cut-off frequency, the value of � is

determined iteratively, which results in a filter that closely

approximates a maximally flat differentiator with a cut-off

frequency being exactly !c. The design of such a differentiator

is discussed in the following subsection.

LPD Designed by the Window Method

Because the desired frequency response of an LPD,

hLPD
d (!), is known, it is possible to determine the desired

impulse response of the filter, hLPD
d (n), by obtaining the inverse

Fourier transform of hLPD
d (!). Thus,

hd
LPD nð Þ ¼ 1

2�

Z !c

�!c

j!e j!n d!

¼ �j

2�n2
e j!cn j!cn� 1ð Þ � e�j!cn �j!cn� 1ð Þ
� �

¼ !c

�n
cos !cnð Þ� 1

�n2
sin !cnð Þ; n¼ 0; 1; . . . N�3ð Þ=2

ð16Þ

Fig 6. Magnitude response of an LPD designed via the window method for N = 31 and different cut-off frequencies.
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Because such a filter is infinite in length, a finite impulse

response (FIR) filter is obtained by multiplying hLPD
d (n) by a

window function, w(n):

hLPD nð Þ ¼ hd
LPD nð Þw nð Þ ð17Þ

Here, hLPD is required to be antisymmetric so its frequency

response
�
H ð!Þ satisfies Equations (13Y15). Common window

functions were investigated, including, among others, the rect-

angular window, Hanning window, Hamming window, and the

Kaiser window. The Kaiser window, which is a near-optimal

window in terms of the trade-off between the mainlobe width

and sidelobe area,13 was used for the present application.

However, the shape parameter � cannot be found by mini-

mizing the mean squared error because this criterion leads to

adverse behavior at !c, where hLPD
d (!c) is discontinuous.13 The

value of � was instead determined iteratively, such that first,
�
H ð!Þ is linear at ! = 0, and second, its magnitude response is

maximum at ! = !
c
. The first condition requires that

d

d!
M !ð Þ ¼ 1; ! ¼ 0 ð18Þ

Hence, the coefficients c in Equation (14) (forcing the con-

dition of Equation 18 on Equation 15) are given by

c 1ð Þ þ 2c ð2Þ þ � � � þ N � 1ð Þ
2

c
N � 1

2

� �
¼ 1 ð19Þ

The second condition requires that

d

d!
M !ð Þ ¼ 0; ! ¼ !c ð20Þ

In order for the above statement to be true, the coefficient c

must satisfy

c 1ð Þ cos !cð Þ þ 2c 2ð Þ cos 2!cð Þ þ � � �

þ N � 1ð Þ
2

c
N � 1

2

� �
cos

N � 1

2
!c

� �
¼ 0 ð21Þ

Values of � that satisfy the first criterion in Equation (18)

shift the effective cut-off frequency away from!c in the resultant

filter. Therefore, the cut-off frequency in Equation (16) was

tuned iteratively to satisfy the second criterion (Equation 21).

Because of the rather severe constraints on the slope of
�
H ð!Þ,

it was found that its magnitude deviates from the desired

response at the cut-off frequency (magnitude is less than !c at

!c). Therefore, a lower limit was set for the magnitude of
�
H ð!Þ

at the cut-off frequency. We found that a limit of j3 dB

usually guarantees a solution. As shown in Figure 6, the resul-

tant filter is maximally flat at ! = � for low cut-off frequencies,

i.e.,

dm

d!m
M !ð Þ ¼ 0; ! ¼ �; m ¼ 2; 3; . . . 2N � 3 ð22Þ

FILTER DESIGN EXAMPLES

An LPD with a specific length (N) and cut-off

frequency (!c) was designed by the method

described in the previous section. Figure 6 shows

the frequency response of a family of differ-

entiators with constant N and different cut-off

frequencies. Because only Type-III differentiators

were designed, N is a positive odd integer. For

comparison with maximally flat LPDs designed

by Selesnick,19 N was chosen to be equal to 31.

The differentiators satisfy Equations (18) and (20),

and hence are linear at ! = 0 and their magnitude

response peaks at the desired cut-off frequency.

Although the resultant filter is not maximally

linear at ! = 0 (not satisfying Equation 8 in

Ref. 19), the third derivative was reasonably close

to 0. For low cut-off frequencies, the differ-

entiators are maximally flat at ! = �, satisfying

Equation (22). The value at the cut-off frequency

was within the T3 dB limit of the desired

response. This value improves by choosing larger

values of N, as illustrated in Figure 7, where

differentiators of different orders and the same

desired cut-off frequency, �/4, are plotted. As

illustrated, higher values of N cause a sharper

transition into the stop band. Figure 6 also shows

the frequency response of a third-order differ-

entiator with impulse response,

hLPD ¼ a 1; 0;�1½ � ; a 2 0; 1ð Þ ð23Þ

As can be seen, the response of such a filter is

linear at low frequencies only if a = 0.5. At other

values of a, the resultant differentiator rapidly

deviates from the ideal response even at very low

frequencies. Also, such differentiators have a fixed

cut-off frequency of �/2 and, hence, will continue

to boost frequencies until �/2 even if they lie

beyond the Nyquist frequency of the system.

Furthermore, because not all the frequencies up

to �/2 are linearly boosted, there are errors in

filter’s output, as explained in the next section.

EXPERIMENTAL RESULTS

The MTF derived from the edge response was

compared to that obtained from the square wave

response. For quantitative purposes, the normal-

ized mean squared error (NMSE) was computed be-
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tween the two MTFs and is presented in Table 1.

The NMSE is given by

NMSE¼ 1

Nnyquist

XNnyquist

k¼1

MTFsq:wave fkð Þ�MTFedge fkð Þ
MTFsq:wave fkð Þ

� �2

ð24Þ

where Nnyquist is the number of frequency points

up to the Nyquist frequency of the display at

which the MTF is sampled. As the MTF from the

square wave response is sampled at very few

points,5 it was interpolated with a fifth-order

polynomial. Most imaging systems have low-pass

characteristics, so the NMSE provides greater

weight to the error in the high-frequency region.

Because the edge-based method of MTF estima-

tion is expected to boost noise at high frequencies,

the NMSE is well suited for evaluating the

performance.

Because rising and falling edges have different

MTFs (as discussed in Rising and Falling Edges),

horizontal and vertical MTFs were computed by

averaging the rising and falling edge response in

the respective directions.

Gans’ Method

The 1-D profile of the image with original

(nonshifted) ESF [denoted by f2(x) in an earlier

section and in Figure 3] was analyzed. The length

of f2(x) was 2x1 (i.e., in Figure 3, x2 = 2x1). If the

edge in the original ESF is at x1/2, a shift of f2(x)

by x1 would result in a shifted ESF, f2(x j x1),

with the edge at 3x1/2. One can also shift the edge

by x1/2. Because the edge on the display can be

shifted only by integral values, x1/2 is required to

be a multiple of the magnification value. For a

magnification of 4 and a horizontal edge, the

value of x1 that satisfies this condition (and which

provides the highest resolution in the frequency

domain) was found to be 512. Similarly, for a

vertical edge, x1 was 656.

Three images, one with the original ESF with

edge at x1/2, and the other two with edges shifted

to x1 and 3x1/2, were acquired by the CCD

camera. It must be noted that the 1-D profile of

the image with the original ESF was subtracted

from the 1-D profile of the image with the shifted

edge instead of actually shifting the edge f2(x)

Fig 7. Magnitude response of an LPD designed by the window method for the same cut-off frequency p/4 and different N.

Table 1. Normalized mean squared error between vertical MTF

derived from ESF and square-wave response

NLPD

!c

�/5 �/6 �/7 �/8

27 0.5643 0.2788 0.0228 0.0564

29 0.5704 0.1448 0.0142 0.0537

31 0.5697 0.2562 0.0197 0.0568

33 0.6072 0.2353 0.0289 0.0609

39 0.8550 0.1140 0.0533 0.0597

49 0.7912 0.2110 0.0708 0.1605

The ESF was differentiated by an LPD designed via the window

method. !c indicates the cut-off frequency of such a filter, and

N is its length. The corresponding error obtained from a filter

with impulse response hLPD = [0.5, 0, j0.5] is 1.331.
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by x1 and subtracting from itself as originally

suggested by Gans and Nahman.11 The DFT was

applied to the resultant subtracted profile, which is

the shape of a rectangular function, as shown in

Figure 4. Then as explained in Equation (5), at

certain discrete frequencies the magnitude of the

Fourier transform is twice that of the original

edge. The two shifted edges yield two different

sets of such discrete frequency points, which are

assembled to obtain the output modulation. The

MTF is obtained by dividing the output modu-

lation by the input modulation (an ideal edge is

the input) and correct normalization. Figure 8

shows the MTF obtained by Gans’ method. The

MTF from the square-wave response has also

been shown for comparison purposes. The NMSE

is 0.0241.

LPD Designed by Window Method

The line-spread function (LSF) can be derived

from the ESF by differentiating it. The ESF was

obtained from a single image acquisition by the

CCD camera. It was differentiated with an LPD to

obtain an LSF. Figure 9 shows LSFs obtained

using an LPD of length 29 and different cut-off

frequencies. In the figure, the raster frequency

representing high-frequency noise on a CRT is

suppressed. An FFT is then applied to the LSF.

Correction for finite line width on the CRT is then

applied and the MTF derived. To perform the

differentiation, LPDs of different lengths and cut-

off frequencies were designed by the window

method. The resultant MTFs were compared to that

obtained from the square wave response. As shown

in Figures 10 and 11, only a filter length of 29 and a

cut-off frequency (!c) of �/7 result in an MTF

equivalent to that obtained from the square wave

response. As illustrated in Table 1, such a filter

results in a minimum NMSE of 0.0142 in the

obtained MTF. Increasing the value of N or !c

increases the error.

Fig 8. Comparison of vertical MTFs obtained from ESF and
square wave response. Gans’ method was applied to determine
the MTF from the ESF. (Nyquist frequency = 3.47 lp/mm.)
NMSE = 0.0241.

Fig 9. LSF obtained after differentiating an edge using an LPD with N = 29 and various cut-off frequencies.
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Rising and Falling Edges

MTFs of rising and falling edges in both the

vertical and horizontal directions were deter-

mined. As shown in Figure 12, MTFs of rising

and falling edges on a CRT are different.

Although the vertical MTFs (for horizontal edges)

remain practically the same, the horizontal falling

and rising edges show significant differences. It has

been shown by Chawla et al.5 that on LCDs, the

rising and falling MTFs are practically the same.

As shown in Figure 13, the horizontal edge has

the same falling and rising characteristics. Howev-

er, the falling vertical edge in Figure 13(a) has a

much steeper transition than the rising vertical

edge. This has direct implications in the horizontal

MTF. As seen in Figure 12, the horizontal rising

MTF has a considerable drop in the midfrequency

region as compared to the horizontal falling MTF.

As noted by Compton,20 Bthe electron optics

controls the vertical dimension and the video

amplifier controls the horizontal dimension of each

Fig 11. Comparison between vertical MTFs derived from ESF and square wave response on a 5-megapixel, high-precision CRT
(Nyquist frequency = 3.47 lp/mm). The ESF was differentiated by an LPD (wc = p/7) designed by the window method. The filter with
N = 29 gives the least deviation of the MTF from the square-wave response.

Fig 10. Comparison between vertical MTFs derived from ESF and square wave response on a 5-megapixel, high-precision CRT at
luminance of 37 cd/m2 (Nyquist frequency = 3.47 lp/mm). The ESF was differentiated by an LPD (N = 29) designed via the window
method. The filter with wc = p/7 gives the least deviation of the MTF from the square wave response.

DETERMINING THE MTF OF MEDICAL IMAGING DISPLAYS USING EDGE TECHNIQUES 305



pixel. The ability of the video amplifier to

transition from one command level to another is

the determining factor controlling the pixels’ width

and profile.^ It can therefore be concluded that the

significant differences in the rising and falling

horizontal MTFs are caused by differences in the

rising and falling times of the video amplifier. The

phosphor used in a CRT is not part of the pixel

spread associated with the amplifier’s response.

Phosphors are all but instantaneous turning on.

DISCUSSION

The edge response of a 5-megapixel, high-

performance monochrome CRT was determined

using a variant of Gans’ method and the differ-

entiator technique. Because square waves, lines,

and white noise yield practically identical MTFs,4

the MTFs obtained via the edge response were

compared only to that obtained from the square

wave response.

Gans’ method requires the image of the shifted

edge to be subtracted from the image of the

original edge. This direct subtraction was found to

be an effective way of reducing the raster noise,

which on a CRT is predominantly periodic and

synchronized with the display pixels. The vari-

ance (i.e., noise power, or the area under the

power spectral density curve) in the lower and

upper levels of the original edge ( f2(x)) on a CRT

was 184.6 and 352.3, respectively. On the other

hand, it was 28.2 and 116.4, respectively, in the

lower and upper levels of f3(x). It should be noted

that the performance of Gans’ method depends on

how well the periodic structures in the two images

are aligned so that they are cancelled when the two

images are subtracted. Misalignment may intro-

duce high-frequency noise in the subtracted image.

Proper alignment is also necessary for f3(x) in

Figure 4 to be approximated as spatially limited.

Improper alignment may occur as a result of me-

chanical jitters in the CCD camera while captur-

ing the images and/or the raster jitter on a CRT.

The differentiator technique has traditionally

been used to obtain the MTF from the ESF.

However, because differentiating boosts high fre-

quencies, the ESF has typically been used to

determine only the low-frequency response of the

system. However, application of an LPD to

differentiate the ESF not only preserves the low-

frequency response of the system but also gives a

Fig 12. Comparison of horizontal/vertical MTFs obtained from rising and falling ESFs on a 5-megapixel, high-precision CRT at
luminance of 37 cd/m2 (Nyquist frequency = 3.47 lp/mm).
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reasonably correct estimate of the high-frequency

response with a proper combination of N and !c.

This is shown in Figures 10 and 11. A right

combination of N and !c is important because

different values of the two parameters can cause

deviation from the actual response in the high-

frequency region. A filter with a higher value of !c,

as illustrated in Figure 6, differentiates over a

greater frequency range and hence boosts higher

frequencies. This is the reason why a filter with a

cut-off frequency of �/7 gives the least error

(Fig 10), although the Nyquist frequency of the

oversampled system (oversampled by 4) is �/4. In

general, a higher value of !c causes larger

deviations of the MTF from the square wave

response at the Nyquist frequency.

As the performance of a filter, in general, im-

proves by increasing its length, one might expect

that higher values of N will reduce the error in the

obtained MTFs. This, as illustrated in Figure 11,

may not be true because higher values of N cause

an increase in spread of the LSF obtained by dif-

ferentiating the ESF. As seen in Figure 7, the filter

with a higher value of N has a sharper transition

into the stop-band further attenuating the higher

frequencies, which in turn has the effect of an

Fig 13. Comparison of falling and rising vertical/horizontal edges. Whereas a steeper transition in falling vertical edge makes horizontal
falling MTF better than the horizontal rising MTF (in the mid-frequency region), such a difference is not seen in falling/rising horizontal
edge. Consequently, vertical MTFs of falling/rising edges are practically the same (as illustrated in Figure 12).
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increase in the spread of the LSF in the spatial

domain. This can also be understood by consider-

ing that the output of convolution of a signal of

length K with a filter of length N has resulting

length K + N j 1.

The highest NMSE (1.331), however, is given

by a differentiator with impulse response h =

[0.5, 0, j0.5]. Even in the low-frequency range,

the MTF obtained by this differentiator is very

noisy and provides a slightly different low-frequen-

cy response than either of the LPDs or the square

wave response. It may be safely concluded that this

differentiator will not provide a faithful measure-

ment of the frequency response of a system as much

as the LPDs, even at low frequencies.

The LPD designed with the window method was

compared with one designed with the Remez al-

gorithm. The filters designed with the Remez algo-

rithm are optimal in the sense that the maximum

error between the desired frequency response and

the actual frequency response is minimized accord-

ing to the Bminimax^ criterion.14 However, the

Remez algorithm does not give an optimal filter if

other criteria such as the Bmaximally flat^ or

Fig 14. Comparison between LPDs designed via the window method and the Remez algorithm.

Fig 15. Comparison of near-maximally at LPDs designed via the window method and the Remez algorithm.
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Bleast-squared error^ are used. For a fixed filter

length, Remez-designed LPD with greater linear-

ity in the pass-band will have greater ripple in the

stop-band. For example, as shown in Figure 14,

for the same filter length N = 29, transition band

of [0.4, 0.6] rad/s, %1 = 0.085 and %2 = 0.280 in the

pass-band and the stop-band, respectively, and the

same cut-off frequency �/7, the Remez filter is

more linear than the window-designed filter in the

pass-band. However, the stop-band error in the

Remez-designed filter is equiripple as compared to

the stop-band error in the window-designed filter,

which decreases toward the Nyquist frequency.

Consequently, the LPD designed by the Remez

algorithm yields a higher NMSE of 0.0575 in the

resultant MTF compared to 0.0142 for the LPD

designed by the window method. If we allow the

transition band to be very wide, it is possible to

derive an LPD from the Remez algorithm with

nearly the same frequency response as the LPD

derived from the window method. This is shown in

Figure 15. The transition band for this Remez filter

is [0.04, 1.48] rad/s (for a cut-off frequency of �/7).

Although d1 and d2 in this case are 8.5�10j16 and

2.8�10j10, respectively, the NMSE in the MTF

derived by such an LPD is still 0.0183, which is

larger than the NMSE of 0.0142 obtained by the

LPD designed by the window method.

Although the LPD method achieves the lowest

NMSE (0.0142) in the MTF as compared to 0.0241

for Gans’ method, the latter is easier to implement.

This is because the order (N ) and cut-off frequen-

cy (!c) of an LPD for an accurate measurement

are presently determined empirically. However, as

these two parameters depend strictly on the

Nyquist frequency of the display, the LPD offers

promising technique for noise reduction. Because

of the convenience in data acquisition and

analysis in both the methods, they can be used

for obtaining the MTFs of electronic displays in

real-time.

CONCLUSIONS

The MTF of a high-precision CRT used for dis-

play of high-resolution medical images was deter-

mined from its edge response. Two methods were

employed for this purpose: (1) a variant of Gans’

original method and (2) a low-pass differentiator

(LPD) that combines the behavior of a differen-

tiator and a low-pass filter. The MTF can be ac-

curately estimated over all frequencies up to the

Nyquist frequency of the system. The two methods

achieve this by reducing the high-frequency noise

associated with the ESF method. The MTF obtained

is comparable to that obtained from the square wave

response, but is less labor-intensive than the square

wave technique.

MTFs of rising and falling edges of a CRT were

measured. It was found that the rising and falling

horizontal MTFs were remarkably different. This

may be a result of insufficient bandwidth of the

video amplifier to support the high density of

high-resolution (5 megapixels) diagnostic CRTs.

The rising and falling vertical MTFs were practi-

cally identical.

Although the two methods described in the

paper to determine the MTF from the ESF have

been applied to images of a CRT, they can also be

used to determine the MTF of LCDs. However, as

the MTF of LCDs is almost perfect, the MTF of

CRTs offers more interesting study.
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