
Part 1. Automated Change Detection and Characterization in Serial
MR Studies of Brain-Tumor Patients
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The goal of this study was to create an algorithm which
would quantitatively compare serial magnetic resonance
imaging studies of brain-tumor patients. A novel algo-
rithm and a standard classifyYsubtract algorithm were
constructed. The ability of both algorithms to detect and
characterize changes was compared using a series of
digital phantoms. The novel algorithm achieved a mean
sensitivity of 0.87 (compared with 0.59 for classi-
fyYYYsubtract) and a mean specificity of 0.98 (compared
with 0.92 for classifyYYYsubtract) with regard to identifi-
cation of voxels as changing or unchanging and classi-
fication of voxels into types of change. The novel
algorithm achieved perfect specificity in seven of the
nine experiments. The novel algorithm was additionally
applied to a short series of clinical cases, where it was
shown to identify visually subtle changes. Automated
change detection and characterization could facilitate
objective review and understanding of serial magnetic
resonance imaging studies in brain-tumor patients.
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INTRODUCTION

C omparison of serial MR studies of brain-tumor

patients is a common clinical task whose

difficulty is widely recognized. This difficulty

results from the method of data presentation, which

is not well suited to our cognitive capabilities,1,2 as

well as factors related to image acquisition and

processing.3 The issue of change detection has

been one of interest in fields of image processing

beyond those of medical imaging.4 Within medical

imaging, various methods have been used to effect

serial comparisons, including manual inspection,

measurement sampling (such as maximum diame-

ter methods),5Y11 volumetrics,12Y14 warping,15Y18

and temporal analysis.19,20 It is widely recognized

that each of these methods possesses both merits

and shortcomings; a thorough description of these

considerations may be found elsewhere.3 We

hypothesized that a system could be developed to

detect and characterize changes in serial magnetic

resonance (MR) studies of brain-tumor patients. It

was desired that this system be highly automated,

produce quantitative metrics, and be resistant to

acquisition-related changes.

METHODS

Image Acquisition

After IRB approval, we obtained informed

consent from 65 patients who had a prior biopsy-

confirmed diagnosis of glioma. Images were

acquired at baseline and for at least one follow-up

using T1, T1 Post-Gd, and FLAIR sequences with

acquisition parameters: T1: TR between 450 and

600, TE min full; FLAIR: TR 11,000, TE 144ef;

FOV 20Y22 cm; pixel size 0.86Y0.93 mm in X and

Y, and 3 mm in Z, with an interslice gap of 0 mm.

While the algorithm is not limited to these
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particular pulse sequences and acquisition param-

eters, these were the datasets used for this study.

Preparation of Cases

The preprocessing steps used in the present

work are shown in Figure 1. The first step con-

sisted of inhomogeneity correction using the N3

software package.21 In the second step, registra-

tion of serial examination pairs, both within a

particular exam, and between serial exams, was

performed so that a common spatial framework

was established. In this study, we used the mutual

information registration application of the ITK

software package22 (http://www.itk.org) to regis-

ter all images to the T1-weighted image from the

baseline acquisition. After this, a brain mask was

defined manually, separating the brain and cere-

brospinal fluid (CSF) from all nonbrain tissues. In

this study, this was performed using the Image

Edit component of the Analyze software pack-

age.23 Finally, samples of normal-appearing white

matter (NAWM) were defined also using the

Image Edit component of the Analyze software

package. For consistency, these samples were

specified within the frontal lobes and anterior

corpus callosum, unless this was impossible due

to pathology. In practice, no specific number of

voxels was required although 100 voxels served as

a useful target.

Change Detection Algorithm

The change detection algorithm may be de-

scribed as a series of processing steps (Fig. 2). In

the first step, sample points for all tissues of

interest are generated using the samples of

NAWM provided by the user, in conjunction with

anatomical knowledge and knowledge of relation-

ships between tissue intensities for each pulse

sequence. This process of automatically locating

sample points is performed for: CSF and normal

gray matter. The algorithm additionally either

locates or synthetically creates sample points for

three pathological Btissues^: nonenhancing T2

abnormality (NETTA), enhancing tissue, and

necrosis. It should be noted that while there are

often no Bpure^ pathologic tissues, within this

article, the most extreme examples of these

pathological states (i.e., enhancing lesion with

the brightest possible enhancement, NETTA with

the brightest possible FLAIR intensity, and ne-

crosis with the lowest possible T1 intensity) were

treated as if they are in fact distinct tissue types.

In order to either locate or create samples for

each of the normal and pathological tissues, the

algorithm first predicts the multispectral intensi-

ties of their centroids based upon the manually

defined NAWM intensities using a mathematical

model which we have developed, which consists

of a set of linear functions of NAWM intensity.

Using these predicted intensities, in conjunction

with anatomical knowledge, the algorithm

attempts to locate the samples of each of these

tissues within each exam. If the algorithm is able

to locate samples for a given tissue, the centroid

intensity of the located samples is calculated. If

the algorithm is unable to locate sample voxelsFig 1. Preprocessing.
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(i.e., when a certain exam does not have a

particular pathologic tissue type), synthetic sam-

ple points are generated based upon the intensities

predicted above. In all cases (i.e., whether the

centroid is calculated from real samples or

predicted via the model), the noise characteristics

are drawn from those of the manually provided

white-matter samples. The reason for always

using noise characteristics drawn from the manu-

ally defined NAWM samples is that for many

tissues (particularly pathological tissues), the

number of samples available is not adequate to

compute a reasonable estimate of the noise

characteristics even when a satisfactory estimate

of the centroid intensity is possible.

The change detection algorithm makes the

approximation that voxels contain mixtures of at

most two tissues. In this article, these mixtures will

be referred to as Btissue pairs^, and it is assumed

that changes observed in a voxel between exami-

nations occur between the pairs of tissues. In the

general case, dual-tissue classes may consist of any

pair of tissues which may be observed to be partial-

volumed or mixed within a voxel. In the present

study, we were interested only in dual-tissue

classes which were relevant to white-matter

changes due to primary brain tumors. The dual-

tissue classes relevant to the algorithm were thus:

NAWM and NETTA, NAWM and enhancement,

NETTA and enhancement, enhancement and ne-

crosis, and NETTA and necrosis. In a scatterplot

describing the feature space, lines can be drawn

connecting the centroids of the tissues in each of

the above pairs. In this article, these lines will be

called partial membership lines; an example of a

partial membership line is shown in Figure 3a; for

the tissue pair of NAWM and NETTA, i.e., as

white matter, which was previously normal-

appearing, acquires NETTA, we assumed in this

study that the voxel_s multispectral intensity would

follow this line in feature space (offset by noise).

This is an approximation which proved adequate

for the purposes of this study.

The second step in the change detection

algorithm is a feature extraction step. Feature

extraction is a process by which multidimensional

data are mathematically combined to create a new

data value. In the present study, the intensities of

the original volumes (T1, T1 Post-Gd, and

FLAIR) were combined mathematically to create

one new volume for each dual-tissue class at each

acquisition. In this study, the feature extraction

step consisted of recombining the intensities of

the original volumes on a voxel-by-voxel basis by

perpendicularly projecting the intensities of each

voxel in feature space onto lines connecting the

centroids of the relevant tissue pairs (Fig. 3b).

Equation 1 was used to effect this process. The

process of feature extraction reduces dimensional-

ity—these extracted volumes are what the algo-

rithm uses, one at a time, to compute memberships,

using equation 2, in a later step. The process of

feature extraction also increases contrast and

decreases noise. In addition to dimensionality

reduction, noise reduction, and improved con-

trast, this process of feature extraction affords a

degree of immunity against acquisition-related

changes, as the end points of the transition lines

are always formed by the centroids of the

constituent tissues regardless of their absolute

quantitative positions in multispectral image

space.24 The volumes which are created by this

feature extraction process will be referred to as the

transition-emphasizing extraction products (TEEPs)

(Fig. 4).

Fig 2. Change detection algorithm.
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quantity. In this case, the vectors are made up of

the multispectral intensities, i.e., T1, T1 Post-Gd,

and FLAIR. The derivation of the above equation

may be found elsewhere.25

In the third step, the algorithm determines which

dual-tissue class each voxel is most likely to belong

to at each acquisition. This step is predicated on the

assumption that voxels, which belong to a dual-

tissue class, will lie close to that dual-tissue class_
partial membership line in the full original feature

space. The step of assigning each voxel to a dual-

tissue class amounts to a form of classification

where the elongated Bclusters^ stretch from one

pure tissue centroid to the other. The algorithm

assumes Gaussian noise26Y34 and uses a transaxial

Mahalanobis distance-based metric (equation 3) to

determine the distance of a given voxel from the

line in feature space corresponding to each dual-

tissue class (Fig. 5). The algorithm then assigns

each voxel to the dual-tissue class it is closest to,

considering both baseline and follow-up acquisi-

tions. It may also permit a temporary assignment

to multiple partial membership lines if there exists

sufficient ambiguity to warrant doing so; the

resulting ambiguity in such a case is resolved in

a subsequent step.

In the fourth step, the algorithm uses the TEEP

volumes to compute the fractional membership of

each voxel at each time point within each of the

dual-tissue classes to which each voxel belongs.

Recall that in step 2, feature extraction was

accomplished by projecting voxels onto the partial

membership lines. In step 3, it was determined

which dual-tissue classes were consistent with the

data. In the current step, the change over the

Fig 4. Computing fractional membership from TEEPs. The line shown in the above figure corresponds to the NAWM6NETTA TEEP
from Figure 3c, and the point marked Bx^ corresponds to the more anterior of the two sample points. Within a given TEEP, the fractional
membership is determined by the relative linear fractional distance from either end point. A voxel exactly on top of the NETTA end point
would possess 1.0 membership in NETTA and 0.0 membership in NAWM, whereas the voxel situated at the marker shown would
possess a membership of 0.7 in NETTA and 0.3 in NAWM. The symbols x, mA, and mB are provided for correspondence with equation 2.

RFig 3. A feature extraction step is performed, which recombines
the original volumes to create a volume for each tissue pair at
each acquisition. Each of these recombined volumes will be
referred to as a transition-emphasizing extraction product
(TEEP). This process of feature extraction is accomplished by
casting a line through the centroids of each relevant pair of
tissues, and then perpendicularly projecting all points in feature
space onto the resulting line. (a) The intensities of voxels may
be shown in a scatterplot. For clarity, a two-dimensional feature
space made up of T1 and FLAIR is shown, but all three volumes
(T1, T1 Post-Gd, and FLAIR) were used in this study. The
intensities of two selected points from the volume are plotted
here to demonstrate a voxel containing moderate NETTA (lower
point), and another voxel containing more pronounced NETTA
(upper point). The line in feature space connecting the centroid
of NETTA with the NAWM centroid is also shown, as are the
centroids of these tissues. (b) The feature extraction is
accomplished by projecting all voxels onto the line connecting
the NAWM and NETTA centroids using equation 1. (c) The
output volume, or TEEP, is thus produced for each tissue-pair
and acquisition. Note that the values on the line have been
shifted to the right by 0.82 in order to ensure that the lowest-
valued voxel in the TEEP as a whole will be exactly 0.0. In the
case shown, the TEEP appears similar to the FLAIR image
because most of the contrast between NAWM and NETTA is
held in the FLAIR image. Voxels that are not either NETTA or
NAWM will be removed from consideration of NETTAYNAWM
transition in a later step (not shown in this figure). (d) The TEEP
represents both tissues in a tissue pair; this may be shown more
clearly by converting the values in the TEEP volume to two
membership volumes using equation 2. This process is shown
graphically for the more anterior of the two points in Figure 4.
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possible dual-tissue classes is computed using the

product of step 2. First, the extracted volumes

from step 2 are converted to membership vol-

umes. This is a simple transformation—the algo-

rithm assumes that partial-volumed voxels possess

a multispectral intensity equal to a weighted sum

of the multispectral intensities of the constituent

tissues, where the weight corresponding to each

contributing tissue is equal to that tissue_s frac-

tional volume.24,26,29Y31,35Y38 The reverse process,

converting from fractional position between the

two centroids corresponding to the tissue pair

back to memberships (or fractional volumes), is

accomplished using equation 2. Simple concrete

examples of this are shown in Figures 3d and 4.

membershipA ¼
x� �Bj j
�A � �B

;

membershipB ¼
x� �Aj j
�A � �B

ð2Þ

membershipA

and

membershipB

: refer to the memberships, to be computed,

in the two tissues making up a given

partial membership line

x : is the intensity of the voxel whose

membership in the two tissues is to be

computed,

mA : is the mean intensity of the first tissue

making up the partial membership line,

mB : is the mean intensity of the second tissue

making up the partial membership line

(where x, mA, and mB are all intensities

in the TEEP volume relevant to the given

partial membership line).

The fifth step is a noise reduction step. Virtually

every voxel will contain some variation in member-

ship, from one time point to the next, strictly due to

image noise. The algorithm makes use of the knowl-

edge that real change occurs in a spatially coherent

way, i.e., in the case of an actual change to the

patient_s brain, voxels will tend to change in the same

manner as their neighbors: one voxel previously

containing NETTA, which develops enhancement,

is not likely to be isolated—if the change is real, the

voxel and its

D2 ¼ x� �ð ÞT V�1 x� �ð Þ ð3Þ

D : Mahalanobis distance

x : A column vector containing the coordinate of the

point whose Mahalanobis distance is to be

computed

m : A column vector containing the coordinate of the

perpendicular projection of the new point on the

partial membership line of interest

V : The covariance matrix of the synthesized partial

membership points surrounding m
More details regarding this equation may be

found elsewhere. 39

neighbors will acquire enhancement together.

Change due to noise, however, will occur without

such spatial coherence: a given voxel will be

likely to be changing in a different way from its

neighbors. Confidence in which of these is the

source of an observed change is based on two

measurements: spatial extent of a region of

change and mean membership change within a

region. The larger the spatial extent of an

observed change, the greater the likelihood that

it is real and not due to noise; and secondly, the

greater the mean membership change of the

region, the more likely the change is real and not

due to noise. The algorithm identifies all regions

of the image, which are changing in a spatially

coherent manner, and then computes the mean

change in membership over that region. The mean

membership change is then compared to a

threshold, which varies according to the spatial

extent of the region (Fig. 6). If the mean

membership change within a given region exceeds

RFig 5. Computation of the transaxial Mahalanobis distance. As in
Figure 3a, the end points of the line corresponding to the
NAWM6NETTA dual-tissue pair, which were derived from part 1
of the algorithm, may be plotted. (b) Based upon the samples of
NAWM and Bextreme^ NETTA, the algorithm synthesizes sample
points following the line connecting the two centroids but offsets by
noise. These represent the locations in the scatterplot where the
algorithm would expect to find real NETTA possessing varying
degrees of T2 abnormality. (c) The location of one particular voxel of
real NETTA, drawn from the images, is shown in the scatterplot for
demonstration purposes. Its location on the scatterplot, as expected,
falls within the range of the synthesized NETTA points. (d) The line
originating from this point which is perpendicular to the
NAWM6NETTA partial membership line is determined. The inverse
of the square of the Mahalanobis distance from the point to its
perpendicular projection on the NAWM6NETTA partial membership
line is determined using equation 3. When points are members of a
given dual-tissue class, this inverse of the Mahalanobis distance
should be low (roughly speaking, within the range of the inverse of
the Mahalanobis distance for NAWM6NETTA points shown;
however, description of the precise mechanism of thresholding is
beyond the scope of this article). (e) The location of one particular real
voxel containing enhancing tissue (i.e., definitively not a member of
the NAWM6NETTA dual-tissue class) is shown, and this point_s
multispectral intensity is plotted on the scatterplot. As in step (d), the
linewhich originates from this point andwhich is perpendicular to the
NAWM6NETTA partial membership line is determined. The inverse
square of the Mahalanobis distance between the point and its
perpendicular projection onto the NAWM6NETTA partial member-
ship line is again determined using equation 3. When points are not
members of a given dual-tissue class, the inverse square of the
transaxial Mahalanobis distance is high.
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the threshold, the change is deemed real and is

retained; otherwise, it is discarded. As shown in

Figure 6, the threshold is based on a multiplier of

the standard deviation of memberships in the

given extracted feature/dual-tissue class, so the

threshold varies according to the amount of noise

actually present in the given dual-tissue class.

Once the algorithm has identified regions it

considers to contain real change, it generates

output in two forms (bottom row in Fig. 2): a

quantitative change map consisting of a series of

volumes encoding membership changes (for quan-

titative analysis purposes), and a color-coded

change map superimposed on the patient_s ana-

tomical image (for visual inspection). In the color

change map, regions which have been identified

as changing are colored according to the type of

change (Fig. 7). For example, orange corresponds

to previously NAWM which has acquired en-

hancement from one scan to the next in the serial

pair, whereas red corresponds to previously

NAWM which has acquired NETTA. Note addi-

tionally that changes of the opposite type are

assigned different colors for clarity, e.g., previ-

ously NAWM acquiring enhancement is colored

orange, whereas previously enhancing tissue

which is losing enhancing character is colored

blue. It should be noted that the color scheme

encodes change so that a voxel colored red need

not be absolutely normal to begin with nor

absolutely intense in T2 at follow-up. A given

voxel might possess slightly abnormal T2 in the

initial scan, have a slightly greater degree of

abnormal T2 at the follow-up scan, and would

therefore appear as a red of low intensity in the

color coded change map. An example of a color-

coded change map superimposed on a real patient

image is shown in Figure 8.

Change Detection Phantom

In order to provide quantitative evaluation of

the algorithm, a digital phantom was developed.

The purpose of the phantom is to embody

intensity characteristics as close as possible to

those of actual images while possessing a known

ground truth—i.e., the static memberships and

actual changes are known. The phantom genera-

tion program models the intensities of mixtures of

tissues as linear combinations of the intensities of

the constituent tissues, as does the change detector

algorithm.

The program to generate the phantoms used in

this study begins with a set of membership

volumes—each one corresponding to one of the

tissues to appear in the phantom. For this study,

these were: NAWM, gray matter, CSF, enhance-

ment, necrosis, and NETTA. Voxels in the

phantom contain mixtures of at most two tissues,

and the mixtures occur in varying degrees.

Mixtures of pathological tissues are represented,

such as NAWM and NETTA, in addition to

mixtures (i.e., simulated partial-volumed voxels)

of normal tissues, such as gray matter and CSF.

Mixtures of pairs of normal tissues are represented

in increments of 20%, i.e., 100% gray matter/0%

CSF, 80% gray matter/20% CSF, 60% gray

matter/40% CSF, etc. Mixtures involving patho-

logical tissues are represented in finer increments

of 10%, i.e., 100% NAWM/0% NETTA, 90%

NAWM/10% NETTA, 80% NAWM/20%

Fig 6. Relationship between the number of voxels in a given
region the and standard deviation multiplier used by the spatially
adaptive noise reduction routines. Smaller regions are required
to possess a higher mean change than larger regions in order to
be considered to be due to an underlying biological process and
not due to noise. In the figure, Bs^ is specific to the dual-tissue
class in question and is determined by how much static voxels
belonging to that partial membership line vary. Note that if the
region of spatial coherence is sufficiently large, a mean change
well below the noise floor will be correctly identified as real. The
actual form of the threshold was determined empirically; more
statistically rigorous approaches are possible.

Fig 7. The color scheme used for all change detection images
in this article. The color indicates the type of transition
occurring, whereas the intensity indicates the size of change.
Note that two colors correspond to each dual-tissue class
because a change may proceed in either direction, e.g.,
previously, NAWM may develop increased enhancement (or-
ange), and tissue which was already enhancing may also lose
enhancing character (light blue, extreme upper left).
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NETTA, etc. Furthermore, while the mixtures of

normal tissues remain static from one scan to the

next in the serial pair, the mixtures of pathological

tissues vary in discrete increments. Figure 9

shows source membership volumes and con-

structed phantom volumes for the synthetic base-

line scans, and Figure 10 shows these volumes for

the follow-up scans. Each grid contains 121

subelements to represent a variety of baseline

and follow-up membership combinations for each

tissue pair (11 mixtures of each pair at base-

line�11 mixtures of each pair at follow-up). This

wide variety of starting and stopping combina-

tions facilitates testing of the change detector

algorithm_s ability to identify changes not only of

a variety of membership sizes and tissue pairs but

additionally for a variety of baseline and follow-

up states. This is important because (as an

example) in real images, slightly edematous white

matter may acquire a greater edematous character

just as very edematous white matter may acquire a

greater edematous character. Both of these

changes have clinical importance.

For each voxel in the generated phantom vol-

umes, equation 4 was used to convert membership

volumes (top rows in Figs. 9 and 10) into synthetic

images (bottom rows in Figs. 9 and 10). For the

purposes of this study, intensity distributions from

18 patient exams were used to generate nine serial

phantoms (each of the nine serial phantoms pos-

sessed both a baseline and a follow-up exam).

IntensityPS ¼

MembNAWM � Random NAWMPSð Þþ

MembGrayMatter � Random GrayMatterPSð Þþ

MembCSF � Random CSFPSð Þþ

MembEnhancement � Random EnhancementPSð Þþ

MembNecrosis � Random NecrosisPSð Þþ

MembNETTA � Random NETTAPSð Þ

ð4Þ

PS : the pulse sequence to be simulated (T1, T1

Post-Gd, or FLAIR)

Random(x) : refers to the intensity of a randomly

selected voxel drawn from a real sample set

for the given tissue and pulse sequence

MembTissue : the desired membership of the synthetic

voxel in the given tissue

Fig 8. Asamplechangedetection image,demonstrating thedetectionof changeswhicharesubtlebutwhich involvea largearea. (a)T1Post-GdTime
0, (b)FLAIRTime0, (c)T1Post-GdTime1, (d) FLAIRTime1, (e)Unthresholdedcolor changemap (which isdarkbecause thechange,whileomnipresent,
is of quite small membership). (f) Simple thresholded color change map, (g) adaptive thresholded change map. Note that the simple threshold has
completely missed the change, but has not removed all noise, whereas the adaptive threshold technique eliminates virtually all noise and retains a large
region of subtle change. The color scheme is shown in Figure 7; the region shown consists of an area of development of subtle enhancement.
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Fig 9. Construction of the baseline change phantom. Themembership volumes for the desired phantom (top row) are used in conjunctionwith
intensity samples derived from patient brain images (not shown) to generate the synthetic pulse sequences (bottom row). The largest squares
show regions of pure tissues, all ofwhich can be seen to be invariant in terms ofmembership from the baseline to the follow-up scan. Themedium-
sized squares contain mixtures of normal tissues, all of which also can be seen to possess invariant membership mixtures from one time point to
the next. Each of the five grids contains mixtures of pathological tissues, with each grid corresponding to one of the dual-tissue classes.

Fig 10. Construction of the follow-up change phantom. As in Figure 9, the membership volumes for the desired phantom (top row) are
used to generate the synthetic pulse sequences (bottom row). Note the difference in orientation of the gradation within the grids at each
time point. The result is a broad range of starting and stopping membership values over each grid/dual-tissue class.
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Fig 11. Ground truth output for the change detection phantom (upper left), and output for both the classifyYsubtract and the change
detection algorithms for all nine serial phantoms.
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Benchmark for Detection of Change—
A Simple ClassifyYSubtract Algorithm

To serve as a benchmark for the change

detector algorithm described in this article, a

simple classifyYsubtract algorithm was con-

structed. For each serial pair, this algorithm

performs a simple supervised Mahalanobis-based

classification of the multispectral volume set at

each time point in a given serial pair to obtain a

pair of membership volume sets. The algorithm

then subtracts these. The classifyYsubtract algo-

rithm also makes a two-tissue assumption, analo-

gous to the two-tissue assumption made by the

change detection algorithm. It first computes the

change in membership over each tissue pair using

the same set of dual-tissue classes used by the

change detector algorithm. Obviously, as a result

of noise, the precise changes in membership over

these pairs are rarely exactly equal. In the almost

universal case of inequality at a given voxel, the

smaller of the two changes is used as the change

in membership over the dual-tissue class. In

keeping with the assumption of at most two

tissues per voxel, only the dual-tissue class with

the largest membership change is retained. Final-

ly, for the purposes of noise reduction, the

classifyYsubtract algorithm applies a flat threshold

of 0.1 (10% change in membership) so that only

membership changes of at least 10% are retained.

Phantom-Based Comparison of the Two
Algorithms

For each of the nine serial phantom pairs, both the

classifyYsubtract and the change detector algorithms

were run. The specificity of both algorithms was

computed, and additionally, two sensitivity mea-

sures were computed: one using a demanding

criterion, and another using a lenient criterion. For

the demanding criterion, a voxel was counted as

Bcorrect^ if the algorithm not only identified cor-

rectly that it was changing but additionally identi-

fied the correct tissue pair which was involved. For

the lenient criterion, a voxel was counted as

Bcorrect^ if it was correctly detected to be changing

without regard to whether the given algorithm

correctly identified the correct tissue pair. P-values

were computed for each of these metrics, compar-

ing the performance of the classifyYsubtract algo-

rithm with the performance of the change detector

over all nine phantoms and testing the null

hypothesis that there was no actual difference in

performance. A two-tailed Wilcoxon signed-rank

test was used to compute the P-value in all cases,

with 0.05 used as the requisite level of significance.

RESULTS

Change Detection Phantom

The outputs for the classifyYsubtract algorithm,

and the proposed change detection algorithm, are

shown graphically in Figure 11 for each of the

Fig. 12. Histograms of errors for phantom 1 over each dual-
tissue class. The x-axis labels (membership error) range from
j1 to +1 for all charts, with the bin corresponding to zero error
located at the center of each chart. The ideal histogram would
be one in which there was a single bar in the center of each
histogram, signifying that all voxels possessed zero error. The
distributions of errors for the change detector appear more
regular, Gaussian, and are centered on error=0.0 in all cases.
The distributions of errors for the classifyYsubtract algorithm
appear broader with bins located further from the center,
signifying a greater number of voxels with larger error. The
graphs corresponding to the classifyYsubtract algorithm addi-
tionally possess many large spikes, corresponding to voxels
where the classifyYsubtract algorithm failed to correctly identify
the dual-tissue class of voxels (the discreteness of these spikes
results from the discreteness of the phantom_s underlying bins).

Table 1. Algorithm: CS Indicates Classify YYYSubtract; CD Indi-

cates Change Detector

Phantom # Algorithm

Sensitivity—

Demanding

Criteria

(P=0.004)

Sensitivity—

Lenient

Criteria

(P=0.008)

Specificity

(P=0.035)

1

CS 0.62 0.71 0.96

CD 0.93 0.93 1.00

2

CS 0.54 0.77 0.90

CD 0.87 0.87 1.00

3

CS 0.62 0.77 0.90

CD 0.94 0.94 1.00

4

CS 0.59 0.71 0.98

CD 0.95 0.96 1.00

5

CS 0.55 0.77 0.80

CD 0.68 0.71 0.94

6

CS 0.57 0.75 0.87

CD 0.82 0.83 1.00

7

CS 0.65 0.78 0.95

CD 0.90 0.90 1.00

8

CS 0.58 0.72 0.97

CD 0.85 0.86 0.91

9

CS 0.62 0.74 0.98

CD 0.94 0.94 1.00

P-values were computed using two-tailed Wilcoxon signed-rank test.
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Fig 13. Subtle but important changes may hide in and around a lesion. The algorithm possesses the ability to identify and highlight
such subtle changes.
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Fig 14. Confirmation of stability can be as difficult as the detection of change. The change detector_s ability to reject noise can help
confirm the patient_s unchanging status.
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Fig 15. Change may be difficult to interpret because of the complexity of the lesion. Use of the change detector lessens this difficulty.
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Fig 16. Change may be subtle in parts but more dramatic when taken as a whole.
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nine phantoms along with the actual change

(upper left-hand corner of Fig. 11), all using the

color scheme from Figure 7. Visually, it is

apparent that the output of the proposed change

detection algorithm more closely resembles the

actual change compared with the output of the

classifyYsubtract algorithm. Sensitivity (using

both the demanding and the lenient criteria) and

specificity are shown in Table 1. The absolute

value of the mean errors was almost universally

smaller for the change detector algorithm (min

0.0, max 0.031, median 0.0068) compared with

the classifyYsubtract algorithm (min 0.000035,

max 0.14, median 0.0235). Graphical depiction

of the errors for phantom 1, over each dual-tissue

class, is shown in Figure 12 and demonstrates that

the errors associated with the novel change

detection algorithm are much more regular and

of smaller magnitude than those of the classi-

fyYsubtract algorithm.

DISCUSSION

The detection and characterization of change in

serial imaging studies of the brain is an important

task. A number of approaches exist, including the

current clinical standard of manual inspection and

a variety of computational approaches which have

been described in the literature. Manual inspection

is easy to apply—anyone can look at a pair of

images—but it is also notoriously noisy. Faced

with the same images, even experts often disagree

about the existence or nonexistence and nature of

changes. A method that could overcome these

problems could help objectively measure response

to therapies, in order to guide their use in

individual patients and additionally compare their

action across populations. The algorithm proposed

in this study embodies the beneficial aspects of

many of the prior algorithms, and it has advan-

tages which previous algorithms do not possess.3

The algorithm attempts to separate acquisition-

related changes from pathology-related changes

through feature extraction and spatially adaptive

noise reduction. The algorithm is able to highlight

very subtle changes (like subtraction) and produce

localized descriptions of those changes (like

subtraction and warping). It has the potential to

reduce the amount of data which must be

reviewed by the clinician, and the output of the

algorithm is highly intuitive (unlike subtraction

but like classifyYsubtract). It is relatively insensi-

tive to normalization problems (unlike subtraction

and warping but like classifyYsubtract). The

proposed algorithm successfully suppresses noise

(unlike subtraction).

Figure 12 clearly demonstrates the superiority

of the change detector over classifyYsubtract: the

output of the change detector more closely

resembles the actual change image (shown in the

upper left frame) than does the output of the

classifyYsubtract algorithm. In the change detector

case, each grid predominantly contains only two

colors, and they are the correct colors for the dual-

tissue class represented by that grid. In contrast,

the classifyYsubtract algorithm often produces

many colors for a single grid, which means that

this algorithm would misinterpret an actual

change of some given type as many different

dual-tissue classes. The grid representing the

enhancement6necrosis pair (lower left corner of

each phantom image) provides a striking example

of this. In all nine phantoms, the classifyYsubtract

algorithm has misclassified large numbers of

voxels from this dual-tissue class into incorrect

dual-tissue classes. The smooth gradation is also

apparent for the proposed change detection algo-

rithm from the diagonal possessing zero actual

change to the upper right and lower left corners,

which possess complete change from one tissue to

another. This should be contrasted with the

classifyYsubtract output, which shows Bcold

spots^ on the one hand (no computed change

when actual change is present) and Bhot spots^ on

the other hand (computed change is larger than the

actual change). This results from the classi-

fyYsubtract algorithm_s use of a Mahalanobis

distance-based classifier as the means for mem-

bership computation; using this metric, the com-

puted membership of a given voxel is very

nonlinear as it moves through feature space from

one centroid to another. This demonstrates the

value of separating tissue mixture assignment with

a Mahalanobis distance-based classifier (step 3)

and the separate computation of change in tissue

fraction (step 4).

Turning to Table 1, which shows the sensitivity

and specificity measures for the classifyYsubtract

and change detector algorithms, the superior

performance of the change detector compared

with that of the classifyYsubtract algorithm is
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once again apparent. The superior sensitivity of

the change detector algorithm is significant at a

0.05 level whether the change detector is required

to correctly identify the type of change which is

occurring (demanding criteria) or not (lenient

criteria). Superior specificity was also observed

for the proposed change detection algorithm. In

seven out of nine cases, the change detector was

able to achieve a perfect 1.0 specificity. The

figures shown in Table 1 are truncated, not

rounded, so 1.0 specificity represents a true

perfect identification of all unchanging voxels.

This is an important accomplishment because in

serial brain MR, the vast majority of voxels will

be unchanging whether or not there is actual

change present somewhere in the image. The

ability of a change detection algorithm to reject

false positives facilitates both manual and auto-

mated inspection of change detection images.

Figure 12 shows the histograms of the errors

over each dual-tissue class for the classifyYsubtract

and change detection algorithms for phantom 1.

The error distributions for the change detector are

taller and narrower than those of the classi-

fyYsubtract algorithm because most errors for the

change detector algorithm are close to zero. The

error distributions for the proposed change detec-

tion algorithm are also visibly more regular than

those of the classifyYsubtract algorithm. The dis-

crete spikes correspond to voxels for which the

correct type of change was not determined. The

discreteness of these spikes results from the dis-

creteness of the actual changes in the phantom

(which occur only in discrete membership incre-

ments of 10%). These spikes are much lower for

the change detection algorithm than for the

classifyYsubtract algorithm. For only one of the

dual-tissue classes (NETTA6necrosis) are there

spikes for the change detector algorithm, which are

comparable in height to those of the classi-

fyYsubtract algorithm (the NETTA6necrosis tis-

sue pair was challenging for both algorithms

because contrast between these two tissues is

extremely low in comparison with noise, which

makes identification of change difficult regardless

of the algorithm).

The output of the proposed change detector

algorithm is shown in Figures 13, 14, 15, 16 for

four clinical cases. Corresponding output for the

classifyYsubtract algorithm is not shown because

like the proposed change detector algorithm, the

classifyYsubtract algorithm requires samples of all

tissues (normal and pathological); however, the

classifyYsubtract algorithm does not possess a

method to generate synthetic samples when none

are available in the image, as does the change

detection algorithm. Additionally, it should be

noted that even when examples of all normal and

pathological tissues are present, the classi-

fyYsubtract algorithm performs poorly in the face

of subtle changes, as demonstrated in the data in

Figure 11. This figure also graphically demon-

strates the high sensitivity of the change detection

algorithm to change, with little susceptibility to

noise in unchanging regions. The change detec-

tion algorithm can also produce quantitative

measures of change, but validating these measures

is beyond the scope of this paper. We present

clinical cases in Figures 13, 14, 15, 16, as an

indication that the high accuracy demonstrated in

phantom work can be reasonably expected to be

found in clinical cases.

Change detection and characterization in med-

ical imaging is a relatively new field of imaging.

It shows great promise to augment the capabilities

of human observers by focusing their attention on

limited regions within the potentially vast datasets

being created today and by providing an objective

measure of change that is immune to human

variability.

CONCLUSIONS

We have described a highly automated algorithm

which numerically compares two serial multispec-

tral MR brain studies for the purposes of detecting

and characterizing changes. Using a digital phan-

tom, the algorithm has been compared to a simpler

classifyYsubtract method. It has been demonstrated

that the current algorithm is able to: (1) more

accurately determine if voxels in serial examina-

tions are changing, (2) define the category of

change which is occurring, and (3) more accurately

compute the membership change involved.
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