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During the last ten years or so, diffusion tensor imaging
has been used in both research and clinical medical
applications. To construct the diffusion tensor images, a
large set of direction sensitive magnetic resonance
image (MRI) acquisitions are required. These acquisi-
tions in general have a lower signal-to-noise ratio than
conventional MRI acquisitions. In this paper, we discuss
computationally effective algorithms for noise removal
for diffusion tensor magnetic resonance imaging (DTI)
using the framework of 3-dimensional shape-adaptive
discrete cosine transform. We use local polynomial
approximations for the selection of homogeneous
regions in the DTI data. These regions are transformed
to the frequency domain by a modified discrete cosine
transform. In the frequency domain, the noise is
removed by thresholding. We perform numerical experi-
ments on 3D synthetical MRI and DTI data and real 3D
DTI brain data from a healthy volunteer. The experi-
ments indicate good performance compared to current
state-of-the-art methods. The proposed method is well
suited for parallelization and could thus dramatically
improve the computation speed of denoising schemes
for large scale 3D MRI and DTI.
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INTRODUCTION

D iffusion Tensor Magnetic Resonance Imag-
ing (DTI) is an important magnetic reso-

nance imaging protocol used in both research and
in clinical applications. The DTI modality has the
advantage that highly structured tissue, for exam-
ple the nerve fibers in the human brain, can be
studied noninvasively.1,2 From a series (typically
6–50) of direction-sensitive MR acquisitions a 3×3
diffusion tensor can be estimated for each voxel of
the imaging domain.3–6 From these voxel-wise

diffusion tensors, a number of interesting clinical
quantities can be estimated and used to investigate
or differentiate between normal and abnormal
tissue, e.g., in Multiple Sclerosis or Schizophrenia
research.7–9

However, it is a well-known fact that the MRI
signal from the scanner contains measurement noise,
which degrades the quality of the images. In the
following, we model the MRI true signal Snoisy as a
composition of clean (or “true”) signal and additive
normally distributed noise, for example.

S noisy ¼ S clean þ �;with � � N 0; �2
� �

: ð1Þ

Although we cannot in general assume that the
noise is normally distributed with zero mean and
variance σ2, we may approximate the noise by
such a distribution. The signal-to-noise-ratio
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(SNR) in DTI is low compared to standard MRI.
This makes it important to construct good models
and methods for noise removal for diffusion tensor
data. Because of the huge amount of data, the
methods should ideally be efficient with regards to
computational time.
Several successful methods for denoising of

diffusion tensor MRI have been proposed.10–15 A
large class of existing state-of-the-art methods are
based on partial differential equations. The nature
of these methods typically makes them computa-
tionally heavy. These methods are iterative meth-
ods, and often many computationally heavy
iterations must be performed before convergence
is reached. This is in particular true when gradient
methods are used in the solution process. In this
paper, we introduce an alternative method for
regularization of matrix-valued images, based on
application of the shape-adaptive discrete cosine
transform (SA-DCT).16–19 This is a direct method,
i.e., only one “iteration” is needed in the solution
process. Moreover, the method can be parallelized
in a straightforward manner since the computations
for each voxel can be performed without any
knowledge of the computations performed in any
of the other voxels. In the last section of this paper,
we make a quantitative and visual comparison of
the method proposed in this paper with a recently
introduced Partial Differential Equations (PDE)
method for regularization of tensor valued
images.11 Interestingly, we observe that the pro-
posed transform-based method gives results, which
are very similar to the results from the completely
different PDE-based method. Although the SA-
DCT methodology may not be superior to other
methods, it is an interesting alternative methodol-
ogy for denoising of tensor-valued images.

BACKGROUND

Diffusion Tensor Imaging

Tensor-valued data occur in many branches of
mathematical sciences; see, e.g., Weickert and
Hagen20. In this paper, the tensor-valued data
comes from diffusion tensor MRI of the human
brain. From a set of K direction sensitive
magnetic resonance images Skf gKk¼1 a symmetric
positive definite tensor D 2 R3�3 is constructed in

each voxel of the image domain. This matrix
yields structural information of the tissue in each
voxel.
The relationship between each direction weight-

ed measurement and the diffusion tensor D is
given by the Stejskal–Tanner equation 21,22

Sk ¼ S0e
�bgT

k
Dgk

; k ¼ 1; . . . ;K; ð2Þ

where b is a positive scalar given by the measuring
pulse sequence, and gk 2 R3 is one of the prede-
fined selected directions for which measurement Sk
is acquired. From K direction weighted measure-
ments we obtain K equations that we use for
estimating the six unknowns of the diffusion tensor
D. This can be done, for example, by a linear least-
squares method, or other more adaptive methods.5

We note that as the transformation (Eq. 2) is
nonlinear, we do not know the distribution of the
noise in each element of the tensor D. Hahn et al.23

have studied how noise propagates through the
estimation process.
In structured tissue such as in the heart muscle

or in the white matter of the brain, the self-
diffusion of water is highly anisotropic. In gray
matter and in cerebrospinal fluid, the self-diffusion
of water is almost isotropic. Based on knowledge
of the diffusion tensor D, a model of the
myelinated nerve fiber pathways in the white
matter can be constructed via fiber tracking
algorithms.1,2,24,25

The quality of the estimated diffusion tensor
depends on several parameters. One particular
parameter is the number of acquisitions or
excitations (NEX) performed in each of the
diffusion sensitizing directions. A high number
of acquisitions in each direction gives a tensor
estimate of good quality, provided the patient
does not move during the acquisitions, whereas a
small number of acquisitions give a shorter
examination time for each patient. Therefore, we
have a compromise between efficiency of the
acquisitions and quality of the resulting images.
In this paper, we investigate the possibility of
post-processing the data from a small number of
acquisitions, and still being able to construct
tensor estimates of high quality. Thus, a practical
research goal is to decrease the scanner time
required for each patient.

298 BERGMANN ET AL.



Shape-Adaptive Discrete Cosine Transform

The 2-dimensional discrete cosine transform
(DCT) is extensively used in image science. In its
original formulation, it transforms a quadratic
region in the spatial domain into the frequency
domain. Being a harmonic transform, the DCT has
a compactification property, i.e., good approxima-
tions of the image can be constructed by employ-
ing only a few of the coefficients in the frequency
domain.26,27 However, when the image domain of
the transform contains sharp edges and only a few
of the coefficients in the frequency domain are
employed for the reconstruction to the spatial
domain, various artifacts such as smearing of
edges and Gibbs phenomena occur. To avoid these
artifact, the region should be as homogeneous as
possible. This is achieved by replacing the static
regions from the standard DCT by regions Ωx,
which adapts to the information in the image
around a point x. We choose these regions in such
a way that the data can be well approximated by a
smooth, slowly varying function. Such a function
is well approximated by few coefficients from the
frequency domain. The regions Ωx should ideally
not contain any discontinuities.
In a series of papers, Katkovnik, Foi, Egiazarian,

Astola, and others describe shape adaptive DCT
(SA-DCT) for denoising of 2D grayscale and
color images.16–19 The algorithm can be divided
into three different stages: (1) construction of an
adaptive neighborhood for each point in the
domain, (2) transformation and thresholding of
each neighborhood, and (3) estimation of the
noise-free image. The adaptive neighborhoods are
constructed by local polynomial approximations
(LPA) in combination with the intersection of
confidence intervals (ICI) rule. The transformation
of each neighborhood to the frequency domain is
done by a DCT algorithm, and hard thresholding is
applied on the coefficients in the frequency
domain. The inverse DCT algorithm is then
applied. This results in a denoised region. Since
each pixel x has its own region Ωx, and in general
these regions may overlap, we get an overcomplete
basis. This overcomplete basis is used to construct
the final image by weighting the basis elements in
a proper way.
The state-of-the-art results obtained by the SA-

DCT methods in 2D as well as their efficiency
makes them attractive for denoising of 3D scalar

valued images and 3D matrix valued images. In
this paper, we extend the framework of SA-DCT
to both 3D scalar valued and 3D matrix valued
images.

METHODS

Shape-adaptive Discrete Cosine Transform

Let � � RN be a closed spatial domain of
dimension N and I : � ! R denote the noisy data
set, which is discretized on a uniform grid. In the
rest of this, paper we restrict the attention to 2D
and 3D data sets, i.e. N 2 2; 3f g. We refer to the
resulting denoised data set as I −. Presently, we
treat the standard deviation σ of the noise of I as an
input parameter.
A main ingredient of the SA-DCT method is the

adaptive neighborhood Ωx surrounding each voxel
x∈Ω. The idea is that this neighborhood should
contain voxels that in some way are “similar”, or
homogeneous. A neighboring point y∈Ω can either
have an intensity I(y), which is close to the intensity
I(x), or the intensities can differ substantially. In the
case where I(y)≈I(x), we want to include the point y
in the adaptive neighborhood of x, i.e., y∈Ωx. To
decide which voxels should belong to the adaptive
neighborhood of a given point, we use local
polynomial approximations (LPA) and the intersec-
tion of confidence intervals (ICI) rule.19

To construct the adaptive neighborhood, we
consider a set of directions �i 2 RN such that each
component of θi is either −1, 0 or 1, but never all
equal to zero. It follows that there must be 3N −1
such directions in an N-dimensional data set. In
2D,18 there are eight such directions: the four
cardinal and the four intermediate compass direc-
tions. In 3D, there are 26 unique directions
following a similar pattern.
We span a star-shaped skeleton �*x around each

point x in the image domain by tracing the voxels
along straight lines in the directions of θi. The length
di corresponding to the straight line in the direction
of θi in the skeleton is determined by the ICI
algorithm. We close the skeleton such that it
becomes a polygonal hull by joining neighboring
endpoints of the vertices in the skeleton by line
segments (in 2D) or triangles (in 3D). We denote the
domain inside this closed polygonal hull by Ωx. For
each voxel in the image domain, such an adaptive
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neighborhood is constructed. The pseudocode for
our SA-DCT denoising is given in Algorithm 1.

In the following section, we explain how we can
use the LPA-ICI method to compute the length di
of each branch in the star �*x .

LPA-ICI

To span the region �*x , we calculate the support
of each branch in the star, i.e., number of voxels
that should be included along each direction vector
θi, i=1,...,3

N − 1. The idea is that the voxels in �*x
should have intensity values that are close to the
intensity value of the center voxel x. Variations in
the included data should be caused by the noise
level and small local variations, and not by edges
in the image.
To achieve this, we filter each direction with

LPA kernels g hð Þ� �
h2H

of varying length (scale)
h∈H={h1,...,hj}, where h1Gh2G...GhJ. The genera-
tion of these filter kernels are described in Foi
2005.16 For each kernel g(h) containing weights
g hð Þ
i , where i=1,..., h, we have the property that the

center voxel x has the highest weight g hð Þ
i . In

addition, the weights sum to 1 and decrease with
the length of the filter.
We can consider this filtering as a convolution

of the data with a filter kernel of varying length.
When the kernel g hð Þ

i is applied to the voxels in
direction θi, we get the filtered value

� hð Þ ¼
Xh
j¼1

g hð Þ
j I xþ j� 1ð Þ�ið Þ: ð3Þ

The standard deviation of the noise in μ(h) is
given through the relation

�� hð Þ ¼ � k g hð Þ k : ð4Þ
For each direction, we then get the confidence

intervals

Dh ¼ � hð Þ � ��� hð Þ ; � hð Þ þ ��� hð Þ

h i
; ð5Þ

where Γ 9 0 is a global parameter of the algorithm.
A large Γ results in a large noise tolerance, and
more voxels will be included in the regions, and
vice versa.
The ICI rule states that along the direction

vector θi we should choose the largest distance
di∈H where we have intersection of all the
confidence intervals; see Figure 1. More precisely,

di ¼ max
h2H

h : D1 \ D2 \ � � � \ Dhð Þ 6¼ ;f g: ð6Þ

Having determined the length of each branch in
the star- shaped domain �*x , we define the

Fig 1. An example of the LPA-ICI algorithm where H=
{h1,...,h4}. The area between the dashed lines shows the
intersection of all previous confidence intervals. When the
intersection is empty (here at h4) the algorithm is terminated.
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neighborhood Ωx as all voxels inside the polygonal
hull closing �*x with branches diθi, where i=1,
...,3N − 1. By construction, the intensities in this
region should not contain large changes caused by
edges in the image. The noise in this region can
now easily be removed by thresholding small
coefficients in the frequency domain. We use the
discrete cosine transform for this purpose as
described in the next subsection. In the upper left
panel of Figure 2, we have visualized an 2D
example of the output of the LPA-ICI algorithm.
The arrows centered around voxel x indicate each
of the eight directions θi employed by the
algorithm and the length of each arrow indicates
the distance di. The set of all voxels covered by
an arrow in the figure is �*x and all voxels inside
the dashed polygonal hull spanned by the arrows
is Ωx.
Note that since we only perform a LPA-ICI

estimation on the voxels that coincide with the
skeletonized domain �*x , we do not have direct
control over the intensity values in the set �xn�*x .
It has been shown that for scalar images, this

approach is a good compromise between efficien-
cy and accuracy.17

Before the region Ωx is denoised in the
frequency domain, the mean of the region is
estimated and subtracted from each intensity in
Ωx. This process is referred to as DC separation,
and it has been shown to improve certain patho-
logical issues associated with the shape-adaptive
DCT described in the next section.17 After the
DCT denoising is complete and the coefficients
have been transformed back to the spatial domain,
the precomputed mean is added to shift the mean
of the intensities back to the same level as before
the DCT. Although this shift of intensities is not
entirely justified from the approximation stand-
point (since the precomputed mean also will
contain noise), it has been shown to visually
provide superior results with few adverse effects.17

The DCT Algorithm

The discrete cosine transform (DCT) is used
extensively in signal and image processing. The

Fig 2. Illustration of how coefficients are collected in one corner by Sikora’s algorithm (see the text for a description).
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one-dimensional DCT of a signal {Z0,...,ZM−1} of
length M is defined as

bzk ¼ ck
XM�1

m¼0

zm cos
�

M
mþ 1

2

� �
k

� �
; ð7Þ

for k=0,..., M − 1, where c0 ¼
ffiffiffiffi
1
M

q
and ck ¼ffiffiffiffi

2
M

q
; k > 0. Note that this transform can be

expressed as a matrix–vector product

bz ¼ Az: ð8Þ
When ck is defined as above, then the A matrix

is orthogonal. This implies that the inverse DCT
can be expressed as

z ¼ ATbz: ð9Þ
Two- and three-dimensional DCT are usually

achieved by successively applying the one-dimensional
DCT along the coordinate axes (i.e., separability).
However, note that Ωx will in general not be
rectangular. Sikora has developed an algorithm for
discrete cosine transform on nonrectangular
domains.26 In this paper, we employ this algorithm.
However, we still use the orthogonal transform
(Eq. 7) and not the one originally presented in Sikora
1995.26

In the following, we let �0
x denote the quadratic

(in 2D) or cubic (in 3D) null-extension of Ωx. Null-
extension in this context means a padding of the
region with a particular value, “null”. This value
will only be used as a “place-holder”, and not in
any direct calculations. Accordingly, it is never
considered a coefficient in the discussion below.
The purpose of the null-extension is to extend the
size of the region into a more manageable form, as
later described.
Note that when examining Ωx along the coordi-

nate axes, it may be noncontiguous. One approach
to alleviate this problem could be by zero-padding
the region instead. However, this causes problems
when applying the traditional DCT algorithm as
many components of the DCT domain will be
needed to represent these high jumps in intensities
introduced by zero-padding. Sikora’s approach
avoids this problem by first shifting all nonnull
values of �0

x along the first coordinate axis so that
they become consecutive in �0

x . A one-dimensional
DCT, where the length of the signal M is equal to
the number of nonnull values, is then applied to the
shifted data. The same procedure is then applied to

each dimension in turn, by first shifting the data and
then applying the 1D DCT. When applying the
inverse DCT, we need to invert these shifts, so a
record of the rearrangements must be maintained.
In Figure 2 we display a 2D example of how the

null-padded voxels are shifted to produce consec-
utive values. The upper right panel shows the null-
padded region, where black is used to indicate voxel
intensities (and later DCT coefficients) and white is
used to show null values. The lower left panel shows
the intensities shifted in the x direction towards the
origin in the lower left corner. A 1D DCT is then
applied to the nonnull elements of each row
containing nonnull values; first to row 2 containing
M=1 intensities, then to row 3 containing M=4
consecutive intensities, and so forth. The lower
right panel shows the results after the row-wise
DCT, shifted along the y axis. Again a 1D DCT is
applied, this time to each nonnull element of each
column. When the data is 3D, this procedure has to
be repeated again in the z-direction. The final
configuration is a set of shifted DCT coefficients
in the origin corner of the cube.

Thresholding in the DCT Domain

Let b�x denote the domain transformed from Ωx

using the DCT algorithm described in the previous
section and let bz denote a given coefficient in b�x .
In addition, let b�x




 


 denote the number of
coefficients in the neighborhood b�x . The cutoff
threshold f is given as19

f ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 log jb�xj

� �
þ 1

r
; ð10Þ

and the hard thresholded coefficients bz� are given
as

bz� ¼ bz; if bzj j � f
0; if bzj j < f


ð11Þ

for all bz 2 b�x .
The thresholded region is then transformed and

shifted back into the spatial domain by the inverse
DCT giving ��

x in the spatial domain.

Estimation from Overcomplete Basis

Notice that since we calculate a region Ωx for
every voxel in the image, we have extensive region
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overlap, i.e., we have an overcomplete basis. To
reconstruct an image from this information, we
weight the data together. We assign a weight to
every region and use the information in over-
lapping regions to estimate the denoised image. It
is a standard approach to use weights that are
inversely proportional to the mean variance of the
region. However, for adaptive regions this leads to
oversmoothing.17 To compensate for this, we can
divide the weights by the square of the size of the
region.
The mean variance of the region ��

x is given by

�2
��

x
¼ �2

1þ b��
x




 



b�x




 


 ; ð12Þ

where b��
x




 


 is the number of nonzero coefficients

in b��
x




 


. This gives the following weights for the
regions

wx ¼ 1

1þ b��
x




 


� � b�x




 


 : ð13Þ

The regions can now be weighted together,
giving the final recovered estimate I� : � ! R
using the relation

I� pð Þ ¼
P
x
wx�

�
x pð ÞP

x
wx

; ð14Þ

for all p∈Ω and where the sum is taken over all
voxels x such that ��

x contains p.

Generalization to DTI

In the previous section, we extended the SA-
DCT methods from 2D to 3D images. This code
can be used directly for denoising of 3D MRI
images. In this section, we will show how the code
also can be applied for matrix-valued DTI images.
In a previous work, two of the authors have

investigated total variation (TV) regularization of
tensor-valued data,11 where the estimated tensor is
regularized. To ensure positive definiteness of the
regularized tensor, it is represented implicitly by
Cholesky factorization as D=LLT, where L is a
lower triangular matrix. In the present work, we
have adopted this approach when regularizing
tensor-valued data by SA-DCT methods. Thus,

we apply the 3D algorithm to each of the elements
of L.
We are aware that there are other ways to apply

the 3D code on matrix-valued DTI images, e.g.,
we could denoise directly on the Si images.
However, the advantage of the presented method
is that we are able to guarantee positive eigenval-
ues. In addition, we have conducted numerical
tests that indicate that the performance is similar
for both methods.

EXPERIMENTAL RESULTS

In this section, we show qualitative numerical
results achieved by the method proposed in this
paper. We process both synthetically produced
images and real diffusion tensor images of a
healthy human volunteer.

3D Scalar-valued Data

We have in this paper generalized the SA-DCT
methods from 2D to 3D images. In the first
example, we want to show the difference between
the 2D SA-DCT algorithm applied slice by slice in
a 3D data set, referred to as quasi-3D, and
application of our genuine 3D algorithm. We use
3D data from the BrainWeb, a database of freely
available semirealistic simulated MR images.28

The true data set has a range from 0 to 1 and a
mean of 0.26. The added noise is normal distrib-
uted with zero mean and a variance of 0.07.
In Figure 3 we show a coronal slice of the image

comparing the performance of the quasi-3D SA-
DCT algorithm and the genuine 3D version. Line
artifacts between neighboring slices can be ob-
served, since the 2D algorithm ignores information
in the z-direction. An additional problem with the
2D approach, dealing with isotropic voxels, is
determining which axis to slice across. We have
arbitrarily chosen the z-direction, but a choice of x
or y would in this example yield different
suboptimal results. As we observe from Figure 3,
the result from the full 3D algorithm proposed in
this paper yields results in which the noise
reduction is performed in a consistent manner
across all three dimensions. In Figure 4 we show a
zoom-in of a small portion of the result from
Figure 3.
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We define the error as the Euclidean 2-norm of
the difference between the noise-free image and
the denoised image. The error between the noisy
image and the noise-free image was 140.13. The
image denoised using the quasi-3D algorithm gave
47.60, and using the full 3D algorithm reduced the
error to 41.92.

3D Tensor-valued Synthetic Data

The main motivation behind this paper is
denoising of tensor-valued images, in particular

diffusion tensor MR images. First, we denoise a
synthetic DTI data set where the object is a
simulated torus. The DTI torus has been generated
using the software Teem, written by Gordon
Kindlmann.29 For visualization of the color-coded
fractional anisotropy (FA) images, derived from the
estimated tensor images, we have used DtiStudio
developed by Susumu Mori and coworkers.30

Our DTI phantom consists of a doughnut-shaped
object with cigar-shaped diffusion in the direction of
the main circumference. The baseline image S0 is
constant equal to 1 and the six direction sensitive

Fig 3. The difference between application of the 2D SA-DCT along coronal slices of a 3D image, and application of the genuine 3D
SA-DCT algorithm. Upper left panel: the original true image. Upper right panel: the noisy image (zero mean, σ2=0.07). Lower right panel:
result after application of the quasi-3D algorithm along the z-direction. Lower left panel: result after application of the full 3D algorithm
proposed in this paper. See also detail in Figure 4.

Fig 4. Zoomed-in detail from Figure 3. Left panel: result after application of the genuine 3D algorithm. Right panel: result after
application of the quasi-3D algorithm. Notice the slightly improved distinction between white matter, gray matter, and CSF, when the
genuine 3D algorithm is applied.
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measurements S1,...,S6 have the range 0 to 0.80. We
added normal distributed noise with zero mean and
a variance of 0.01 to S0 and variance of 0.04 to
S1,...,S6. The six gradient directions g1,...,g6 used
are given by the columns of the matrix

1ffiffiffi
2

p
1 �1 0 0 1 �1
0 0 1 1 1 1
1 1 1 �1 0 0

0
@

1
A

The diffusion tensors computed from the clean
DTI data is used as a reference and the denoised
tensors are compared against this ground truth. We
define the error as the sum of squared element-
wise tensor differencesffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

p2�

X3
i¼1

X3
j¼1

Dtrue
ij pð Þ � Ddenoised

ij pð Þ
� �2

vuut ; ð15Þ

where Dij(p) denotes the tensor element in position
(i,j) at voxel p. The global error in the noisy data
was found to be 95.86.

When first computing the diffusion tensors from
the noisy DTI data and then apply the 3D SA-DCT
algorithm to each of the six elements of the voxel-
wise lower triangular L decomposition of the
tensor, the global error was 18.03. The results of
this denoising procedure are shown in Figure 5.

3D Tensor-valued Real Brain Data

Finally, we tested SA-DCT denoising on real
diffusion tensor images from a healthy human
brain. The human subject data were acquired using
a 3.0-T scanner (Magnetom Trio, Siemens Medical
Solutions, Erlangen, Germany) with a eight-element
head coil array and a gradient subsystem with the
maximum gradient strength of 40 mT m−1 and
maximum slew rate of 200 mT m−1 ms−1. The
DTI data were based on spin-echo single-shot Echo
Planar Imaging (EPI) acquired utilizing generalized
auto calibrating partially parallel acquisitions
(GRAPPA) technique with acceleration factor of
2, and 64 reference lines. The DTI acquisition

Fig 5. Results from application of the proposed 3D SA-DCT algorithm to a synthetically produced diffusion tensor dataset where the
object is a torus. Upper left panel: the true (noise-free) data. Upper right panel: the noisy data. Lower left panel: the denoised data. Lower
right panel: 3D view of the torus. All figures are color-coded FA plots derived from the tensor.
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consisted of one baseline EPI, S0, and six diffusion
weighted images S1,...S6 (b-factor of 1,000 s
mm−2) along the same gradient directions as in the
previous example. Each acquisition had the follow-
ing parameters: TE/TR/averages was 91 ms/
10,000 ms/2, field of view (FOV) was 256×
256 mm, slice thickness/gap was 2 mm/0 mm,
acquisition matrix was 192×192 pixels and partial
Fourier encoding was 75%.
As we are working with real data, we do not

have access to an exact solution of the denoising
problem. Instead, we used a higher quality refer-
ence data set for comparison. This data set was
obtained by registering and averaging 18 such
acquisitions. The noisy input to the denoising
algorithm was a data set with four averaged
acquisitions consuming about 20% of the acquisi-
tion time, compared to the higher-quality one.

For better evaluation of our denoising algorithm,
we have compared our 3D SA-DCT results with
those obtained using the total variation PDE-based
method reported in (cf. Fig. 6).11 This PDE model
is essentially a generalization of the well-known
Rudin Osher Fatemi (ROF) model and the
Blomgren Chan model.31,32 The solution here is
the minimizer u of an energy functional on the
form

E uð Þ ¼ R uð Þ þ �F u; fð Þ; ð16Þ

where R(u) is a regularization functional which
measures the smoothness of u, and F(u,f ) is a
fidelity functional that measures the distance from
the noisy data f and the solution u. The solution is
a compromise between a completely smooth

Fig 6. Color-coded FA plot of a slice from the DTI dataset recorded in a healthy volunteer. Upper left panel: high quality scan using 18
averages. Upper right panel: the 4 averaged dataset that was input to the 3D SA-DCT denoising algorithm. Lower left panel: the output of
the SA-DCT algorithm. Lower right panel: a comparison image calculated using the PDE technique described in 11.
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solution (λ=0) and a solution that is close to the
input data (λ≫0).
We calculated the error in the tensor in the same

way as in the previous example. Using this
measurement, we found the global error of the
noisy image (four averages compared to 18
averages) to be 96.61. Denoising with the 3D
SA-DCT algorithm was able to reduce the error to
77.07. The PDE denoising algorithm produced a
solution with a global error of 76.19.

CONCLUSIONS

In this paper, we have generalized the SA-DCT
methods from 2D scalar-valued images via 3D
scalar-valued images to 3D tensor-valued images.
We have shown numerical experiments on both
3D scalar-valued images and 3D tensor-valued
images. The numerical studies indicate that the
SA-DCT framework can successfully be applied as
an alternative method for denoising in both the
scalar-valued setting and the tensor-valued setting.
We have demonstrated that a substantial im-

provement of results can be achieved by employ-
ing the genuine 3D denoising algorithm, as
opposed to 2D SA-DCT denoising applied slice-
by-slice.
In addition, we have shown that our numerical

results are comparable to those obtained with 3-
dimensional PDE-based techniques of the kind
reported in Christiansen et al.11 That PDE ap-
proach represents a class of total variation denois-
ing algorithms that has up to now been considered
state-of-the-art. The fact that the 3D SA-DCT
approach, representing a mathematically simpler
idea, can provide results that are of the same
quality is remarkable. Moreover, an important
advantage of the SA-DCT is that the method is
local in nature. Thus, it is easy to parallelize the
algorithm and speed up the calculations. This is a
topic for further studies.
We also believe it would be beneficial to extend

the method to work directly on the matrix structure
instead of its elements; however, this is not a
trivial task. The key idea behind the method is to
work on homogeneous areas, and how to extend
this to matrices is not know. Thus, we have left
this as topic for further studies.
We are aware of the sparse data being used for

evaluation of our numerical experiments. A natural

next step will be to evaluate the performance on a
large number of DTI data sets, comparing FA
values within specific regions of interest, and also
comparing fiber tracking results obtained after
PDE-denoising and after SA-DCT denoising of
the tensors.
From our preliminary results, we conclude that

SA-DCT denoising methods are both well
performing and comparable to other methods with
respect to computational cost. A parallel imple-
mentation of the methodology might as well have
a potential in clinical examinations and in biomed-
ical research where DTI data are recorded.
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