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This paper describes the development of a patient-
specific spine model through use of active contour
segmentation and registration of intraoperative imaging
of porcine vertebra augmentedwith kinematic constraints.
The geometric active contours are fully automated
and lead to a discrete representation of the image
segmentation results. After determining errors within
the segmentations, application of reliability theory
allows the selection of active contour parameters to
obtain best-fit segmentations from a stack of 2D
images. The segmented images are then used in
conjunction with C-arm fluoroscope images to simu-
late the result of intraoperative patient-specific model
registration including patient and/or structure motion
between preoperative and intraoperative scans. The
results are validated through comparison of the error
within the patient-specific model generated through
use of the C-arm images with a model acquired
directly from MRI images of the spine after motion.
The results are applicable to the development of a
wide variety of patient-specific geometric and biome-
chanical models.
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INTRODUCTION

S egmentation and registration of magnetic
resonance-derived images is of vital impor-

tance to the development of patient-specific com-
putational models for visualization techniques.
Generating an automatic method for segmenta-
tion and registration is expected to reduce
surgical planning time and decrease the number
of misdiagnoses. It also serves as an important
first step toward providing surgical resident
training simulators and has a potential application

that includes integrating haptic or simulated
force, feedback into surgical robots. It has the
potential to vastly improve the current clinical
visualization and feedback systems, which are
presently provided by only a single C-arm
fluoroscope image and cameras mounted on
endoscopic tools1. Automated segmentation and
registration of images from multiple imaging
modalities can also lead to a direct measure of
structure morphology and enable one to distinguish
automatically between anatomical structures.
Differences from patient-to-patient exist and can

affect surgical procedures. It is currently tedious
and time-consuming for a manual observer to
obtain patient-specific models from medical
images. In addition, the resultant geometries are
highly dependent on the expertise of the person
selecting the edges and can vary significantly
between two different observers2–6. Thus, a cali-
brated, predictable, and automated method of
segmenting images is important because it can save
time and provide a consistent segmentation result.
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A standard process must be applied to generate
patient-specific models. Active contours, or
snakes, have been used extensively to develop
curve evolutions via energy minimization tech-
niques for segmentation and classification of
images7–11. The active contour methods are pro-
cessor intensive. Registration of an initial model
with a partial model, individual segmented image,
or key anatomical points provides for an updated
model with much less computer processing time.
In previous methods of automatic segmentation
and registration, the mathematical derivations and
corresponding segmented images were said to be
correct if they resulted in contours that appeared to
a human observer to be close to the image object
but did not provide objective measures of the error
(see7,11–15). While some previous methods for
registration provided error metrics, they were lacking
either a consistent method to select the parameters or
a numerical result for error calculation between the
manually defined ‘truth’ contour and the automati-
cally segmented contour16–18. Though it was unclear
how exactly the segmentation and registration
parameters were selected, a former method measured
the distance between the expected and registered
locations of anatomical points to provide a very
thorough understanding of the error19.
This paper seeks to provide an objective

measure and document the performance of a novel
registration algorithm that includes kinematic con-
straints. The registration process has been designed
to expand on previous works20–24 by combining
the processes and applying them to develop a
patient-specific model. The method handles ana-
tomical damage and data abnormalities. This
method will provide a reference to which future
algorithms developed may be compared. Active
contour methods as they relate to the fully
automated segmentation and classification of the
spinal porcine vertebrae imaged through standard
magnetic resonance imaging (MRI) are compared
and contrasted.
A segmentation and registration process was

defined in an effort to provide clinicians with a
three-dimensional model of the real-time surgical
environment. Those model parameters to which
the segmentation was most sensitive were identi-
fied and adjusted through iterative coordinate
descent. Finally, kinematic constraint limitations
were used to restrict the spinal motion and provide
local reconstruction intraoperatively.

METHODS

The parametric active contour segmentation
model10,25,26 provides a basis to develop and
discuss why the level-set active contour segmenta-
tion model7,25–27 is appropriate for the segmenta-
tion applications applied herein. Validation is
performed by applying an error metric, Hamming
distance28, to identify the most sensitive parame-
ters through Cotter statistical screening design29,
and Latin hypercube sampling30. Next, iterative
coordinate descent optimization31 selects the spe-
cific parameter values that are used to build the
initial model and validation model. Registration is
performed between the initial model and intraoper-
ative C-arm fluoroscope images through use of
anatomical landmarks and knowledge of kinematic
constraints.
The images for the work described herein were

all obtained through 3D Fast Spoiled Gradient-
Recalled-Echo (3D FSPGR) MRI. The resultant
images were 512 pixels with a scanning resolution
of 1.0 mm in both the x- and y-directions. After
data acquisition, the data was converted to .tif
images and were treated as signal intensities
throughout the parameterization, segmentation,
and registration processes.
The complete process applied in the develop-

ment of the patient-specific spine model is depicted
by the flowchart shown in Figure 1. After the images
were obtained and converted to .tif, a region of
interest was determined and basic contrast stretching,
or two-level threshholding, was performed. This was
followed by the parameterization process, which
consisted of four primary parts. A human observer
first selected the spine from the images. The object
selected by the human observer was assigned to be
the correct shape for the following three parameter-
ization steps. The next three parameterization steps,
described in “Model Parameterization” section,
consisted of Cotter statistical screening, Latin hyper-
cube sampling, and iterative coordinate descent,
respectively. The parameters obtained through the
parameterization process were used as inputs to the
segmentation process, developed in “Parametric
Active Contour Model” and “Level-Set Active
Contours” sections and accomplished through
Eq. 27. At the termination of the segmentation
process, the template geometry was constructed.
The porcine vertebra samples were manipulated
and secured into place so that they would not move
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between the intraoperative C-arm fluoroscope
images and full MRI scans taken for validation
purposes. A nurse selected anatomical points
from the fluoroscope images that were observ-
able on both the initial model and the fluoro-
scope images. These points were registered and
used to independently reposition each vertebra
with kinematic constraint limitations. The pro-
cess, described in “Incorporation of Kinematic
Constraints in Registration” section, led to the
final registered model. Finally, the physical
distance between each landmark location on the
registered model was compared to the corre-
sponding landmark location on the validation
model.
The complete process was performed on six

independent three-vertebra porcine samples to
provide a basis for the reproducibility of the
methods described herein. For simplicity, the data
used to describe the development of the methods
are from a single sample, but the average error

across the entire six sample (18 vertebra) data set
is also presented in “Performance Assessment” as
part of the overall performance assessment.

Parametric Active Contour Model

A snake model is based on a parameterized
contour v(s) defined by (x, y) coordinates in ℝ2

such that

~v :¼ vðsÞ ¼ xðsÞ
yðsÞ

� �
: ð1Þ

The contour defined in Eq. 1 is said to possess an
energy, Esnake, defined as the sum of the internal
energy, Eint, and the external energy, Eext, accord-
ing to

Esnakeð~vÞ ¼ Eintð~vÞ þEextð~vÞ
¼ Eelð~vÞ þ Ebendð~vÞ

zfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflffl{ þ Eextð~vÞ;
ð2Þ

Fig 1. The steps required to obtain a patient-specific geometric spine model include parameterization, segmentation, template
geometry construction, spine manipulation, fluoroscope imaging, and registration with kinematic constraints. For validation purposes, a
second model was made after spine manipulation that was segmented and constructed in a model directly. Comparison of the two
models provides validation of the kinematic constraint registration process.
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where the internal energy, Eint, is comprised of
an elastic and a bending term8. The first internal
energy term, Eel, allows the parametric curve to
be treated as a string with elastic potential
energy. To control bending and to decrease the
likelihood of stretching, it introduces a tension
such that

Eelð~vÞ ¼ 1

2

Z
surface

aðsÞ v0ðsÞj j2ds; ð3Þ

where the weight α(s) provides control of the
elastic energy along different parts of the contour
and the curve v′(s) is simply the first order
derivative of the initial parametric curve.
The second internal energy term, Ebend, is

dependent on the second derivative of the para-
metric curve v(s) and a constant β(s) such that

Ebendð~vÞ ¼ 1

2

Z
surface

bðsÞ v00ðsÞ2�� ��ds; ð4Þ

where v″(s) is the second order derivative of the
initial parametric curve.
The external energy, Eext, is the other term

critical to defining the overall snake progression.
Eext serves to pull the contour toward the image
edges and is defined to be

Eextð~vÞ ¼
Z
surface

Eimg ~vð Þds; ð5Þ

where Eimg is a scalar potential function defined on
the image plane32.
In the work described herein, Eimg is assumed to

be dependent on the gradient of the intensity,
rI ðx; yÞ, of the initial gray scale image. Many
different combinations for Eimg have been inves-
tigated in previous literature (see10,25,26), but the
work described herein primarily applies an Eimg

defined over the whole image that is dependent on
the (x, y) location and has been adapted from7 such
that

Eimgðx; yÞ ¼ rðG�ðx; yÞ∗Iðx; yÞÞj j2; ð6Þ

where I(x, y) is the initial gray-scale image, Gσ is a
Gaussian smoothing filter characterized with size
hsize and standard deviation σ. The ∇ symbol
represents the gradient operator.

The quantity Eimg is approximately one when
there is no edge present and approximately zero
when there is an edge present. The local minima of
Eimg thus attracts the snake. This attraction means
that the selection of Eimg is crucial to defining the
final curve that results from the active contour
evolution. Note that an increase in the value of σ
will lead to a more blurry resultant boundary.
However, the selection of large σ values is often
necessary in order to increase the capture range of
the active contour7.
The final energy functional curve will result

when Esnake is (locally) minimized. The global
energy minimization is based on how the initial
contour is specified, how edges are defined, how
Eint and Eext are defined, and the process by which
the minimum of Esnake is found. The important
considerations in the minimization of Esnake are
that the result is accurate (resulting in edges close
to the true boundary), precise (repeatable), and
efficient so that it requires low amounts of operator
interaction33.
In order to minimize Esnake, the Euler–Lagrange

equation must be satisfied34. This requires

aðsÞv00ðsÞ � bðsÞv0000ðsÞ � @Eimg

@~v
¼ 0: ð7Þ

Note that the function v(s) in Eq. 7 is treated
as v(s, τ) where τ represents the ‘level’ of the
snake and will be described in “Level-Set Active
Contours” section. This allows the equation to
be treated dynamically. The dependence on τ
will vanish once the solution to v(s) stabilizes.
Subsequently, the partial derivative of v(s, τ)
with respect to τ is set equal to the left-hand side
of Eq. 7 such that

vtðs; tÞ ¼ aðsÞv00ðsÞ � bðsÞv0000ðsÞ � @Eimg

@vðsÞ ; ð8Þ

where the solution of Eq. 8 evolves to the desired
segmented image. Recall that v′(s) and v′′(s) were
given earlier in this section to be the first and
second derivatives, respectively, of v(s). Likewise,
v′″(s)and v″″(s) are taken to be the third and fourth
derivatives, respectively, of v(s).
The solution to Eq. 8 is nontrivial because the

sampling rules and initial conditions affect the
final segmentation result. Error can be introduced
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as a result of the discretization of the higher-order
derivatives. In addition, concave regions can lead to
poor convergence because the external energy
described by Eq. 5 leads to opposing forces. The
result is that the contour is not pulled down into the
concave region7. Also, as the value of σ in Eq. 6 is
increased, the effects of sharp boundaries will be
maintained for points further away, but the boundary
becomes blurry and less accurate. The level-set
method described in “Level-Set Active Contours”
section adds an additional dimension to the problem,
which both aids in the numerical implementation and
overcomes the aforementioned difficulties32.

Level-Set Active Contours

In the level-set model, the contour v(s) from
Eq. 1 is defined as the level set of an implicit
function�ðx; y; CÞ 2 ℝ3 � ½0;T Þ !v(s) 2 ℝ2. The
third dimension, τ, represents the ‘level’ of the
function v(s).
This notation has been adopted because it is

parameter free and intrinsic. The notation also
covers topological discontinuities because different
topologies of the zero-level set do not imply
different topologies of f since topology changes
are connected via the fourth dimension. This
means that the model covers the special case of
joining and separating contour lines in ℝ2 as the
model iterates through different contours on its
way to the final shape.
The question of minimizing Eq. 2 now becomes

an issue of minimizing f(x, y, τ) because v(s) is
incorporated within the f(x, y, τ) contour. The
values of v(s) can be obtained at any time from the
f function by simply taking the intersection of f
and a given ‘level’ of τ.
First consider the general case of curve prop-

agation such that

vðsÞ ¼ lFðkÞ~N ; ð9Þ

where κ is the curvature of the zero set at a
particular (x, y) location, λ is a scalar value that
limits the curve length, F(κ) represents a function
of the curvature of the propagating set, ℕ is the
normal vector to the propagating curve, and the
level set v(s) represents a 2D surface mapped from
a 3D implicit contour f(x, y, τ) as

fðx; y; tÞ 2 R3 � ½0; TÞ ! vðsÞ 2 R2: ð10Þ

Here, v(s) is derived from the initial contour f
(x, y, τ) according to the condition

vðsÞ 2 R3 : f vðsÞ; tð Þ ¼ 0
� �

: ð11Þ

Note that f in Eq. 11 is taken to be positive if
the point (x, y) is outside the zero-level contour
given by f(τ=0). Conversely, the negative sign is
chosen if the point (x, y) is inside the initial zero-
level contour given by f(τ=0)27.
Consider the derivative of the curve f(x, y, τ)

with respect to τ. The flow function that leads
to the largest gradient change is then given to
be35

@f
@t

¼ < rfj jj jFðkÞ þ rf�r<; ð12Þ

where, Ψ is a function that will be small near the
edge and will force the evolution to stop.
Now the goal is to determine how f(x, y, τ)

should progress so that the evolving surface v(s)
will be maintained as the zero-level set within
f(x, y, τ).
Differentiating f(x, y, τ) with respect to τ yields

rf�vt þ ft ¼ 0: ð13Þ

Likewise, taking the directional derivative of f
in Eq. 11 yields36

fs ¼ 0 ¼ fxxs þ fyys: ð14Þ

Note that taking the directional derivative of f
as was done in Eq. 14 gives the arc length of the
final segmented curve and will result in no
change because the gradient will be zero on the
boundary.
The relationships given in Eqs. 13 and 14 can

now be used in conjunction with the definition of
an orthonormal curve to show that ∇f is ortho-
normal to v(s) when z is constant and the normal
vector is given by36

~ℕ ¼ � rf
rfj j : ð15Þ

In Eq. 15, the left-hand side is related to the
surface v(s), while the right-hand term is based off
the terms of the surface f(x, y, z, τ).
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Now the relationship given by Eq. 15 can be
rearranged to yield

rf ¼ � rfj j~ℕ; ð16Þ

and then substituted into Eq. 13 to yield

� rfj j~ℕ�vt þ ft ¼ 0: ð17Þ

Combination of the information provided by
Eqs. 9 and 17 gives

ft ¼ lFðkÞ rfj j: ð18Þ

The surface properties that allow the transition
from Eqs. 17 to 18 need to be clarified via
differential geometry. Specifically, at a particular
point on the surface, the properties such as
orthogonality that remain invariant are given by
the curvature37, where curvature is defined as the
divergence of the normal from Eq. 159. This
means that the function of the curvature of the
propagating set, F(κ) from Eq. 18 can be
rewritten as

FðkÞ ¼ div
rf
rfj j

� 	
: ð19Þ

Finally, substitution of Eq. 19 into Eq. 18 yields

ft ¼ ldiv
rf
rfj j

� 	
rfj j; ð20Þ

where Eq. 20 indicates how the implicit embed-
ding function ϕ should deform for a given
embedded level set evolution v(s).
Solving the geodesic curve evolution problem

is now equivalent to searching for the steady
state solution @�

@�¼0


 �
that corresponds to the

greatest gradient change26. The flow function
that leads to the largest gradient change is9,35

@f
@t

¼ l rfj jdiv �
rf
rfj j

� 	
: ð21Þ

In the mapping �ðx; y; CÞ 2 ℝ3 � ½0;T Þ !
vðsÞ 2 ℝ2, there exists near T=0 an inverse mapping

function f defined by T ¼ �ðx; yÞ. The curvature
function F(κ) that holds for Eq. 19 is36

FðkÞ ¼ fxxf
2
y � 2fxyfxfy þ fyyf

2
x

f2x þ f2y


 �3=2

0
B@

1
CA: ð22Þ

In Eq. 22, F(κ) represents a function of the
curvature of the propagating set. The function f
refers to the implicit function that contains the
level set function v(s) as discussed throughout
“Level-Set Active Contours” section. The terms fx
and fy refer to the partial derivatives of f with
respect to the x or y dimension. Likewise, a term fij
refers to a second derivative of f with respect to
the i and j dimensions.
Now using the product rule for divergence,

Eq. 21 can be rewritten as

@f
@t

¼ l< rfj jdiv rf
rfj j

� 	
þ l rf�r<ð Þ; ð23Þ

where, Ψ is a function that will be small near the
edge and will force the evolution to stop. Several
possibilities exist for the selection of Ψ (see7,25,26),
but the function is applied as in10 such that

< :¼ <ðx; yÞ :¼ 1

1þ Eimgðx; yÞ ; ð24Þ

where Eimg was given in Eq. 6.
One would expect that the evolution given by

Eq. 12 would lead to the desired edge contour.
However, to actually achieve the goal of attracting
the contour to the bottom of the potential well, a
constant inflation term, v, needs to be added26.
Then Eq. 12 becomes

@<

@t
¼ l< rfj j div

rf
rfj j

� 	
þ n

� �
þ l rf�r<ð Þ:

ð25Þ

Equation 25 acts on level sets of the image,
treating each level as an individual surface under
evolution of its own constraints. The term
div r�

r�j j

 �

is the sum of the two principle curvatures
of the level sets of f. The variable Ψ represents a
scalar field function defined over the range of the
model that represents the edges within the images.
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The final term in Eq. 25 corresponds to a stopping
force for a particular image feature. In the event of an
edge, this term will be close to zero.
In Eq. 25, the level set function f can develop

sharp and/or flat shapes during the active contour
evolution. This makes further computation
extremely inaccurate. Thus, it is important to
maintain the evolving level set function as an
approximate signed distance function, especially in
the neighborhood of the zero-level set. Many
previous schemes have approached this issue by
performing a relatively ad hoc reinitialization
process to periodically redefine the level set
function as a signed distance function during the
evolution7–9.
A recent study has integrated the reinitialization

into the level set formulation so that the signed
distance function is maintained38. The right-hand
side of Eq. 25 is maintained in the neighborhood
of the zero level set by multiplying it by a
univariate Dirac function δ(f) such that

dðfÞ ¼ 0; if jfj9"
1
2" 1þ cos pf

"

� � �
; if jfj � "

�
ð26Þ

An additional term was also added to penalize the
deviation of f from a signed distance function such
that, after applying the product rule for divergence,
Eq. 25 can be rewritten as

@f
@t ¼ ldðfÞdiv < rf

rfj j

 �

þ n<dðfÞ
þ r2f� div rf

rfj j

 �h i

;
ð27Þ

where Eq. 27 is the final level set formulation
without reinitialization that is implemented for the
work described herein.
Note that there are six parameters included in

Eq. 14 that will need to be adjusted for the active
contour. The first two parameters, σ and hsize, are
related to the Gaussian filter used to find the edge-
indicator function (Ψ). The value of σ is the
standard deviation of the filter. The value of hsize
represents the number of rows and columns in the
filter. The next parameter, τ, is the level-set step
size. The fourth and fifth parameters, λ and v,
provide a limit to the curve length and elasticity,
respectively. The final parameter, ε, gives the
width of the Dirac function as was indicated in
Eq. 26.

Incorporation of Kinematic Constraints
in Registration

The origin of the coordinate system used for
kinematic constraint application is set at the
vertebral body centroid. As shown in Figure 2,
the x-axis is defined to originate at the origin and
point in the anterior direction. The y-axis is
directed superiorly from the origin at the centroid
along the line connecting the superior and inferior
endplates of the vertebral body. The z-axis extends
laterally from the centroid.
To find the z-axis shown in Figure 2, a

preliminary z-axis, �zpre , is defined to be parallel
to the line connecting the anatomical landmarks of
the left and right pedicles. Then the x-axis, which
points anteriorly, is calculated according to

x ¼ y� zpre : ð28Þ

The z-axis can now be found such that

z ¼ x� y; ð29Þ

where use of Eqs. 28 and 29 to find the z-axis ensures
that the three coordinate axes are perpendicular.
It is important to note how anatomical movements

are shown in this coordinate system. The x-axis
represents lateral bending and anterior–posterior
translation. Lateral bending to the right corresponds
to positive rotation about the x-axis, while lateral

Fig 2. The vertebral coordinate system has been defined to
ensure an orthogonal basis for landmarks47. Points 1–4 on this
image identify the anatomical points used to validate the
transformed registration model, as described in “Anatomical
Landmark Location Measurement” section.
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bending to the left corresponds to negative rotation
about the x-axis. The y-axis represents distraction–
compression translation and axial rotation. Clock-
wise axial twisting corresponds to a negative rotation
about the y-axis, while counterclockwise axial twist-
ing corresponds to positive rotation about the y-axis.
Medial–lateral translation and flexion/extension
rotation occur along and around the z-axis.
Flexion, or bending the body forward, is negative
rotation about the z-axis. Similarly, extension, or
bending the body backward, is positive rotation
about the z-axis.
The transformation of the position and orienta-

tion of a collection of points in the local xyz frame
can be expressed in terms of the fixed (global) XYZ
frame through a rotation about the origin, O
followed by a translation. The transformation
matrix, [T] gives this conversion through a
modified affine transformation where39

T½ � ¼
1 0 0 0
Sx cosXx cosXy cosXz
Sy cosYx cosYy cosYz
Sz cosZx cosZy cosZz

2
664

3
775: ð30Þ

In Eq. 30, the variables Sx Sy and Sz represent
the position of the point in the xyz frame that is to
be transformed to the origin, O. The cosIj indicates
the cosine of an angle between the I-th axis in the
global XYZ frame and the j-th axis in the local xyz
frame. The transformation matrix [T] is used to
convert the local vector r A to the global frame
vector RA according to

1
R
T
A

� �
¼ T½ �� 1

rTA

� �
: ð31Þ

For the specific application described herein, the
transformation given in Eq. 31 must be defined on
external anatomical landmarks that are identifiable
on C-arm fluoroscope images. In order to register
each of the vertebra within a three vertebra
column, the relationship provided by Eq. 31 had
to be applied three times. The requirement that the
relationship was applied once for each vertebra
was necessary because the individual segments
were registered as successive independent units
with a defined relationship to adjacent vertebral
segments. A human observer identified three
landmarks per vertebra common to both the initial

model and the C-arm fluoroscope images based on
landmarks identified previously39. The spinal
motion must also not exceed kinematics con-
straints. For this work, the transformation between
initial spinal position (preoperative) and final
spinal (intraoperative) position was first deter-
mined. Next, the system confirmed that kinematics
constraints were satisfied. In the event that the
kinematics constraints were exceeded, the motion
was redefined so that it followed the previously
defined maximum motion between lumbar verte-
bra39,40. The limits that were applied for the work
described herein were obtained from a previous
study. For completeness, the vertebra-to-vertebra
limits of the human lumbar region obtained from
the previous study are provided in Table 140. The
cosines in Eq. 30 refer to the cosines of the values
provided in Table 1.

Validation

Hamming Distance

The Hamming distance28 was originally defined
as the number of bits that were different between
two bit vectors. Extending this concept to the two-
dimensional case indicates

H ¼
X
i

X
j

Mði; jÞ � Aði; jÞ; ð32Þ

where H is the Hamming distance28. The symbol
� represents a logical exclusive or function
indicating that a given point within the union of
the contours is deemed inside either the manually
defined contour or the automatically segmented

Table 1. Kinematics Limits to Lumbar Spine Range of Motion40

Segment Flexion Extension Axial twist Lateral bending

L1/L2 3.99° 5.70° 1.31° 6.20°
L2/L3 3.97° 5.60° 0.96° 5.02°
L3/L4 4.02° 5.08° 0.73° 4.40°
L4/L5 4.07° 4.57° 0.73° 4.29°

Motion about the positive x-axis shown in Figure 1 corresponds
to the lateral bending values presented in this table. Distraction–
compression translation and clockwise axial rotation value
correspond to negative rotation about the y-axis. Extension, or
bending the body backward, corresponds to positive z-axis
motion as depicted in Figure 1. Likewise, flexion, or bending the
body forward, is indicated by negative z-axis motion
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contour but not both. For the application of
Hamming distance to the parameterization process,
the image A(i, j) is a logical mask taking on values
of 1 inside the automatically defined contour and 0
outside the automatically segmented contour. Like-
wise, the image M(i, j) is a logical mask taking on
values of 1 inside the manually defined contour
and 0 outside the manually defined ‘truth’ contour.
In the work presented herein, the truth contour was
determined by having a human observer select
all the points along the bone edges. However,
for the comparison between the transformed
registration model after registration and the
validation model obtained directly, A(i, j, k)
was the transformed registration model after
registration while the ’truth’ image M(i, j, k)
was taken to be the validation model, where k
was the image layer and the summation was
performed over i, j, and k.

Anatomical Landmark Location Measurement

In order to validate that the registration
worked properly, a validation model was
obtained by directly segmenting the MRI data
of the simulated intraoperative spinal position-
ing. The comparison of key anatomical land-
marks on the final transformed registration
model (intraoperative spinal position) and the
validation model provided knowledge of the
transformed registration model accuracy. The
registration model was generated by first obtain-
ing an MRI of the natural spinal positioning and
then transforming it using the points that were
selected on the C-arm fluoroscope images. The
four anatomical landmarks identified in Figure 2
were found on both the transformed registration
model and validation model. This was done
while keeping in mind that the MRI scanning
resolution was 1.0 mm. For each point, the
distance between the respective landmark on the
transformed registration model and the validated
model were calculated.

Model Parameterization

Cotter Statistical Screening Design

The Cotter statistical screening design identifies
the parameters with the greatest impact on error by

estimating the combined effects of a parameter
p for p ¼ 1; � � � ; k as29

xðpÞ ¼ zoðpÞjj þ zeðpÞjj ; ð33Þ

where

zoðpÞ ¼ ð0:25Þ ðH2kþ1 � HkþpÞ þ ðHp �H0Þ
� �

;

ð34Þ

and

zeðpÞ ¼ ð0:25Þ ðH2kþ1 � HkþpÞ � ðHp �H0Þ
� �

:

ð35Þ

In Eqs. 33, 34, and 35, H is the Hamming
distance discussed in “Hamming Distance” section
and H0 is the baseline case when all parameters are
set at their minimum allowable values. In total,
2k+2 trials had to be run in order to obtain all the
Hamming distance values required to determine
the Cotter statistical sensitivity levels for the k total
parameters under investigation.
An observation of the correlation, rp1p2, between

any two pairs of parameters for a design k≥4
indicates that41

rp1p2 ¼
2k � 6

2k þ 2
: ð36Þ

Notice that the correlation approaches 1 as
k→∞. This means that the Cotter statistical design
can identify the significant parameters, but it
cannot specify the extent to which each parameter
is independently significant because interactions
among various parameters can generate an arbi-
trarily large significance value for a given parameter.
Thus, Cotter statistical design was primarily used to
identify the most significant parameters. These
parameters were then evaluated using the Latin
hypercube sampling method and measured via the
sensitivity indicator discussed in “Latin Hypercube
Sampling and Sensitivity Indicator” section.

Latin Hypercube Sampling and Sensitivity
Indicator

The statistical method of Latin hypercube
sampling was developed as a variance reduction
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technique designed to generate a distribution of the
possible collections of parameter values from a
multidimensional distribution30. It was viewed as a
screening technique in which sample values were
highly controlled but still allowed to vary. The
Latin hypercube sampling technique has been
widely used in engineering for deterministic
simulation and risk analysis because it leads to an
unbiased sample set with a variance less than that
obtained through simple sampling30,42,43.
The Latin hypercube sampling defines a Latin

square grid in an arbitrary number of dimensions
where each sample is the lone sample in each axis-
aligned hyperplane containing the sample30. A
square grid containing sample positions is a Latin
square if and only if a single isolated sample exists
in each row and each column44. The Latin hyper-
cube sampling generalizes this rule to an arbitrary
number of dimensions where each sample is the
lone sample in each axis-aligned hyperplane
containing the sample30. The vector of input
variables can be represented as

V ¼ v1; v2; � � � ; vkð Þ; ð37Þ

and a given output variable can be modeled as

F ¼ H Vð Þ; ð38Þ

where H(V) is a deterministic but unknown
function (i.e., Hamming distance) that is a function
of the input parameters vp for p ¼ 1; � � � ; k are the
parameters that define the active contour (i.e.,
bending, elasticity, and damping). To sample N
vectors of input variables, the range of each input
variable can be divided into N intervals with one
observation on each input variable selected at
random in each interval. This means that there
are N observations on each of the k input variables.
One of the observations on v1 is randomly selected
and paired with a randomly selected observation
on v2. This process is repeated for all possible vi
through vk and results in the first vector of input
variables. Next, one of the remaining observations
of v1 is matched randomly with one of the
remaining observations on v2 and so on until the
second vector of input variables is obtained. This
procedure is repeated until all of the input
variables and observations are used and N Latin
hypercube samples are defined.

Once the test bins are defined based on Latin
hypercube sampling, a standard metric must be
calculated to express the sensitivity of a given
parameter. In this case, a standard economic
principle applied to each bin measures the normal-
ized activity level with respect to changes in the
parameter45,46. The sensitivity indicator S for the
Pth parameter from bin b is then given as

Spb ¼ Hc � H0

ðvc � v0Þ=R
����

����; ð39Þ

where Hc is the Hamming distance for the test
case, H0 is the Hamming distance for the baseline
case for bin b, vc is the parameter value for the test
case, v0 is the parameter value for the baseline case
of bin b, and R is the range of possible values for
the parameter. In the work described herein, the
value for vc in a given bin was v0 plus 5% of the
range for the parameter being tested. Once the
sensitivity indicator was determined for each
variable in each of the N bins, the average
sensitivity across all bins was calculated for each
of the variables according to

Sp ¼ 1

N

XN
b¼1

Spb: ð40Þ

Note that this method requires N(k+1) total
trials because the baseline error needs to be
established for a particular bin when no parameters
have been adjusted.

Iterative Coordinate Descent Optimization

Iterative coordinate descent, or cyclic coordinate
descent, is a parameterization process used in
practice to minimize a cost function31. In this
work, Hamming distance was the cost function
minimized through the approach. Iterative coordi-
nate descent cycles through the k parameters using
each in turn as a search direction. For example, at
the first iteration, fixing all variables except for the
variable with the largest sensitivity indicator as
given in Eq. 40 allows the selection of that variable
that minimizes the Hamming distance given by
Eq. 32. On the next iteration, the process was
repeated by fixing all variables except for the
second most sensitive parameter and once again
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minimized the Hamming distance. This process
was continued until all parameters were adjusted.

RESULTS

Parameter Sensitivity Assessment

The Cotter statistical design that was described
in “Cotter Statistical Screening Design” section
requires all variable parameters to be defined in
order to determine the significance of modifying
any given parameter29. The method requires each
parameter to be set to its respective maximum and
minimum values for the sensitivity analysis. The
parameters, their meaning, initial settings, and
minimum and maximum values are shown in
Table 2. The results of running the Cotter
statistical design are presented in Table 3.
The normalized sensitivity, S(p), was greatest

for the v, τ, and ε parameters, as indicated by
Table 3. Thus, v, τ, and ε were the most sensitive
parameters and modifying one of these three
parameters would lead to the largest effect on the
overall segmentation error. However, a high
correlation between any pair of variables means
that the results from the Cotter design could not
indicate which of the three variables would
generate the most impact independently.
The Latin hypercube method previously

described in “Latin Hypercube Sampling and
Sensitivity Indicator” section resolved the ambi-
guity between any two pairs of parameters. As
seen in Table 4, the Latin hypercube method
demonstrated that the Dirac function width, ε,
had an independent significance of more than 1.5

times that of the curve elasticity coefficient, v, which
was the next most important parameter. The curve
elasticity parameter was just slightly more important
than the Gaussian filter standard deviation, σ. The
independent significance of τ was the next most
independently significant parameter, though it was
only four-fifths the significance of the leading three
parameters. The independent significance of the ε, v,
σ, and τ parameters were more than twice that of the
remaining two parameters.
From the data presented in Tables 3 and 4, the

iterative coordinate descent parameterization order
previously described in “Model Parameterization”
section was identified. In all cases, the parameter
selections were made by first adjusting ε followed
by v, σ, and τ, respectively. In all cases, this
adjustment order was followed to perform param-
eter selections. The initial settings for v, σ, and ε
were always 1.5. The initial settings for τ and λ
were always 5. The initial setting for hsize was
always 15 for the MRI.

Table 2. Level Set Active Contour Parameters to Select

Symbol Parameter meaning Initial value Parameter range Min Max

σ Filter STD 1.5 0, ∞ 0.25 20
hsize Filter size 15 1, 50 1 50
τ Step size 5 0, ∞ 1 100
λ Curve length 5 0, 50 1 50
v Elasticity 1.5 0, 20 0.25 20
ε Dirac width 1.5 0, ∞ 0.25 20

As defined in Eq. 27, σ and hsize were the Gaussian filter
standard deviation and size, respectively, used to find the image
edge indicator function. The level-set step size was given by τ
The curve length and elasticity were limited by λ and v,
respectively. Finally, ε defined the width of the Dirac function
identified in Eq. 26

Table 3. Cotter Statistical Design Results

p Param. ζo(p) ζe(p) ξ(p) S(p) Sensitivity

1 σ 0.00 0.00 0.00 0.00 None
2 hsize 0.13 −0.06 0.19 0.019 Low
3 τ 1.30 −1.29 2.59 0.261 Medium
4 λ 0.66 0.37 1.03 0.105 Low
5 v 1.23 −1.22 2.47 0.249 Medium
6 ε −1.78 −1.85 3.63 0.367 High

The odd and even parameter impacts, ζo(p)and ζe(p), respec-
tively, combine to provide the total parameter impact, ξ(p)
according to Eq. 33. The parameter impacts have been combined
into a normalized sensitivity, S(p)for ease of comparison

Table 4. Latin Hypercube Results

P Parameter Spb Sp Sensitivity

1 σ 45.30 0.206 Medium
2 hsize 9.39 0.042 Low
3 τ 36.11 0.164 Medium-Low
4 λ 16.21 0.073 Low
5 v 45.86 0.208 Medium
6 ε 67.32 0.306 High

The sensitivity parameter for the pth parameter from bin b is
given by Spb according to Eq. 39. The average sensitivity for a
given parameter, Sp was calculated through use of Eq. 40. As
defined in Eq. 27, σ and hsize were the Gaussian filter standard
deviation and size, respectively, used to find the image edge
indicator function. The level-set step size was given by τ. The
curve length and elasticity were limited by λ and v, respectively.
Finally, ε defined the width of the Dirac function identified in
Eq. 26
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Five images from the set of spinal MRIs were
parameterized. A sample image indicating the
manually defined contour and the automatically
segmented contour is shown in Figure 3. The
minimum and maximum values as well as the
mean and standard deviation of each best-fit
variable are presented in Table 5. Note that all

parameterizations were only taken to two decimal
places. Note also that all cases resulted in a final
value for τ of 5.00. This outcome, which
provided for a standard deviation of zero,
indicated that the τ parameter is not as significant
as initially indicated and could potentially be
removed from future parameterizations for com-
plex morphological structures by simply using τ
set at 5. The remaining images from the complete
data set were segmented using the mean value for
each of the six parameters. Note that the mean
value of hsize was rounded to the nearest integer
value of 12.

Model Generation

The mean parameter values given in Table 5
were used to generate the initial three-dimensional
rendering of the spinal model shown in Figure 4
and the validation model shown in Figure 6.
Recall that the validation model was generated
directly from MRI images acquired after the
spinal motion. The C-arm fluoroscope points of
interest and the final transformed intraoperative
patient-specific model after simulated patient
motion generated through use of the initial
model and C-arm fluoroscope image registration
is shown in Figure 5.
The model shown in Figure 5 was generated

through application of the registration methods
described in “Incorporation of Kinematic Constraints
in Registration” section, which required the initial
model shown in Figure 4. It takes less than 5 min
to register the initial patient model with the C-

Fig 3. The method described in “Level-Set Active Contours”
section was used to automatically segment the porcine cervical
spine from the initial baseline MRI. The image at left shows the
manual contour selected by the human observer in green and the
automatic segmentation in red overlaid on the original image.
For clarity, the image at right shows only the manual contour in
green and the automatic segmentation in red. The hamming
distance for this image was 434 pixels, which corresponds to an
error of 5.34% between the structure identified by the human and
the structure identified by the automatic segmentation process.
This hamming distance error information was used in finding the
independent sensitivities of the active contour parameters through
themethods discussed in “Cotter Statistical Screening Design” and
“Latin Hypercube Sampling and Sensitivity Indicator” sections.

Table 5. Level Set Parameter Value Ranges from Training Data

Parameter values Parameter range

Parameter Mean ± STD Min, max

ε 1.80±0.45 1, 2
v 1.33±0.39 1, 2
σ 0.99±0.36 0.7, 1.5
τ 5.00±0.00 5, 5
λ 6.60±2.30 5, 10
hsize 12.20±2.74 10, 15

As defined in Eq. 27, σ and hsize were the Gaussian filter
standard deviation and size, respectively, used to find the image
edge indicator function. The level-set step size was given by τ.
The curve length and elasticity were limited by λ and v,
respectively. Finally, ε defined the width of the Dirac function
identified in Eq. 26
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arm images obtained after motion (intraoperative
scans). The five-minute estimate includes both
the time necessary to have a nurse select points of
interest and the time required to generate the
registered model.
The validation model shown in Figure 6 was

generated through the same manner as the initial
spine model shown in Figure 4. This model was
generated directly from MRI data of the spine after
motion. This model was generated only for
purposes of validating the transformed registration
model through error measurements.

Performance Assessment

The Hamming distance associated with each of
the three vertebra shown were calculated to be
7.68%, 8.44%, and 9.66%, for the structures of the
top, middle, and bottom vertebra, respectively. As
stated in the discussion on Hamming distance from
“Hamming Distance” section, these numbers
were calculated by assigning A(i, j) as the
transformed registration model after registration

while the ’truth’ image M(i, j) was taken to be
the validation model with the percent error based
on the union of the two surfaces.
Of particular note, the top vertebra in the

spinal structure shown in Figure 4 had a
fractured inferior articular process. When the
registration was performed without application
of the kinematic constraints, the observed error
within the registration for that vertebra rose
threefold to 24.2%. The initial porcine cervical
spine model shown in Figure 4 was generated by
segmenting the baseline MRI through the methods
described in “Level-Set Active Contours” section.
This model takes approximately 8 h to generate,
which was a primary motivator for performing
the much faster registration method described
herein.
Final locations of the anatomical landmarks

identified in Figure 2 were measured. The physical
distance (or Hausdorff distance19) between the
locations of the anatomical landmarks on the

Fig 4. Initial spine model. The method described in “Level-Set
Active Contours” section was used to automatically segment
the porcine cervical spine from the initial baseline MRI. This
model takes approximately 8 h to generate. This image was
used in the registration method described in “Incorporation of
Kinematic Constraints in Registration” section to generate the
model shown in Figure 4. The three vertebra shown in this
image were processed as independent entities. The model could
be smoothed through standard filtering techniques if desired for
clinical applications. The camera angle used for this image is
(X, Y) rotation (128◦, 184◦) with a z-translation zoom of 680.

Fig 5. Transformed Intraoperative Spine Model with Kine-
matics Constraints. The method described in “Incorporation of
Kinematic Constraints in Registration” section was used to
register the initial model shown in Figure 3 to the C-arm
fluoroscope images. This image is the final transformed registra-
tion model that would be generated to represent the patient-
specific intraoperative positioning after application of kinematic
constraints. This model can be generated in real-time when the
operator selects the anatomical landmarks for a total generation
time of only a few minutes. The three vertebra shown in this
image were processed as independent entities. The model could
be smoothed through standard filtering techniques if desired for
clinical applications. The camera angle used for the image on the
right is the same as in Figure 3 (equal to (X, Y) rotation (128◦,
184◦) with a z-translation zoom of 680).
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transformed registration model and the validation
model are given in Table 6. The average distance
between the anatomical landmarks was 2.42 mm
for the model shown in Figure 2. Four landmarks
were identified and measured on each of three
vertebra from six total spine samples processed as
part of the study described herein. For the 72 total
landmarks measured, the average Hausdorff
distance was 2.45 mm.

DISCUSSION

Active contours have been used extensively to
develop curve evolutions because MRI-derived
geometries are of vital importance to the develop-
ment of patient-specific computational models for
visualization techniques. Generation of such mod-
els leads to a reduction in surgical planning time,
direct measurement of joint morphology, better
mechanical modeling, and estimation of blast
injuries. It could also provide an important
component in development of haptic-feedback for
surgical robot-assisted interventions. A standard

process was applied to select the parameters
required in the generation of a consistent model
for determining differences in morphology from
patient to patient. Hamming distance-based error
calculations, statistical analysis of parameter
importance, iterative coordinate descent, and affine
transformations were combined to develop a novel
registration procedure augmented with kinematic
constraints against which future registration algo-
rithms may be compared.
The parameterization process selected appropri-

ate parameters that were subsequently used to
build a three-vertebra porcine geometric template
model from MRI images. Afterward, registration
of the model with automatically segmented C-arm
fluoroscope images simulated fully automated
segmentation and registration of preoperative MR
scans with intraoperative images obtained from the
fluoroscope. This step was accomplished through
use of kinematic constraints that indicated restric-
tions to spinal motion. The kinematic constraints
accounted for anatomical damage and data abnor-
malities by using intraoperative images to update
the initial patient-specific models. The results were
validated through comparison of the patient-spe-
cific model generated through the initial MRI scan
in conjunction with the C-arm images and a model
developed from directly acquired MRI images of
the spine after motion.
The initial goal was to generate the same

resultant model through the C-arm fluoroscope
method (Fig. 5) as would be obtained directly
through MRI segmentations (Fig. 6) while saving
overall processing time during an operation. It
takes approximately 8 h to produce the models

Fig 6. Validation spine model. The method described in
“Level-Set Active Contours” section was used to automatically
segment the MRI images that were obtained directly from the
spine after motion. This model was generated for purposes of
validating the registered model but would not be obtained
intraoperatively because it takes approximately 8 h to generate.
The three vertebras shown in this image were processed as
independent entities. The model could be smoothed through
standard filtering techniques if desired for clinical applications.
The camera angle used for this image is the same as in Figures 3
and 4 (equal to (X, Y) rotation (128◦, 184◦) with a z-translation
zoom of 680).

Table 6. Distance between the Anatomical Landmarks Identified
in Figure 1 on the Transformed Model and the Validation Model

Vertebra Landmark Distance (mm)

Top 1 2.02
Top 2 2.63
Top 3 1.74
Top 4 2.38
Middle 1 2.57
Middle 2 2.69
Middle 3 2.01
Middle 4 2.55
Bottom 1 2.61
Bottom 2 2.67
Bottom 3 2.25
Bottom 4 2.91
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directly from the MRI images. This time may be
decreased significantly by processing the collec-
tion of 2D images via parallel processing
techniques. In the final model described herein,
it takes less than 5 min to register an initial
patient scan with the C-arm images obtained
after motion (intraoperative scans). The five-
minute estimate includes both the time necessary
to have a nurse select points of interest and the
time required to generate the registered model. It
should be noted that all points were selected by
a single nurse for the results described herein.
Variances between observing nurses should be
investigated in a future study in order to identify
the learning curve that will be present in training
observers while maintaining consistent and
reproducible results.
The particular sensitivity levels of each param-

eter may be different for different imaging modal-
ities or different morphological structures. For
instance, if one were to obtain the images with
computed tomography (CT) or micro-CT rather
than through an MRI, or with an MRI data
acquisition sequence other than the 3D FSPGR
utilized herein, differences in the noise levels within
the images could affect the importance of the Dirac
function width. Second, the anatomical shape of the
object being segmented may also influence the
importance of the stiffness parameters and level step
size. Before using the software in clinical applica-
tions, it will be important to repeat this work with
multiple spines and the spinal column regions of
interest (i.e., cervical, thoracic, lumbar), including
mechanical measurement of surgical fiducial place-
ment, to validate the accuracy and reproducibility of
the model generation.
The method defined and applied in the work

described herein is significant for four reasons.
First, the method of kinematics constraint-limited
motion registration handles differences in patient
position between preoperative and intraoperative
scans. Second, intraoperative scans account for
changes in patient condition between preoperative
and intraoperative scans (i.e., repositioning of
individual vertebra as a result of worsening of
bulging disks). Third, this method requires only an
initial MRI scan and a C-arm fluoroscope. The
MRI scans are common for disease diagnosis and
surgical planning. The C-arm fluoroscopes are
typically readily available in an operating room
and often used in spinal surgeries to ensure proper

tool placement. The models could be used to
enhance the speed with which surgeons can
ultimately perform interventions through haptic
interfaces without adding any additional cost to the
surgery. Finally, the additional preparation time to
generate a better visualization method for the
surgeon is minimal. This is important to minimize
the amount of time the patient must spend under
anesthesia.

CONCLUSIONS

The work described herein enhances previous
medical image segmentation and registration
techniques by combining reliability theory, seg-
mentation error calculations, application of kine-
matic constraints, and validation with objective
error measurements through a model obtained
directly from MRI segmentation. It provides
intraoperative local registration through applica-
tion of kinematic constraints and handles anatom-
ical damage and data abnormalities. This work
applies all of these techniques in a combined
package with a graphical user interface that
provides an environment to easily identify the set
of anatomical landmarks that will be used for
registration purposes.
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