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Abstract Boundary extraction of carpal bone images is a
critical operation of the automatic bone age assessment
system, since the contrast between the bony structure and
soft tissue are very poor. In this paper, we present an edge
following technique for boundary extraction in carpal bone
images and apply it to assess bone age in young children.
Our proposed technique can detect the boundaries of carpal
bones in X-ray images by using the information from the
vector image model and the edge map. Feature analysis of
the carpal bones can reveal the important information for
bone age assessment. Five features for bone age assessment
are calculated from the boundary extraction result of each
carpal bone. All features are taken as input into the support
vector regression (SVR) that assesses the bone age. We
compare the SVR with the neural network regression
(NNR). We use 180 images of carpal bone from a digital
hand atlas to assess the bone age of young children from
0 to 6 years old. Leave-one-out cross validation is used
for testing the efficiency of the techniques. The opinions
of the skilled radiologists provided in the atlas are used
as the ground truth in bone age assessment. The SVR is

able to provide more accurate bone age assessment
results than the NNR. The experimental results from
SVR are very close to the bone age assessment by skilled
radiologists.
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Introduction

Bone age assessment is used widely in pediatrics to
determine any discrepancy between a bone age and a
chronological age. A difference between a bone age and a
chronological age may suggest abnormalities in skeletal
development [1, 2]. Bone age assessment is helpful in the
monitoring of growth hormone therapy and diagnosis of
endocrine disorders [3]. Previous works on bone age
assessment methods have been developed based on
features extracted from phalangeal regions which can
assess bone age of children from ages 6 to 18 accurately
[4–7]. However, it fails to extract the features correctly in
the case of ages below 6 years old. Several bone age
assessment methods have been developed from region of
interest of bone images [8–10]. However, the complexity
of the bony structures in carpal bones makes it very
difficult to realize an automatic segmentation of the carpal
bones images.

Drawing the boundaries around objects is essential tool
before performing high-level tasks such as pattern recogni-
tion and understanding process. Boundary extraction in
medical images is challenging due to poor image contrast
and high noises. If the edges in an image can be identified
accurately, all of the objects can be located and basic
properties such as area, length and shape parameters can be
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measured. The most commonly used segmentation techniques
are edge-based and region-based approaches [11–14]. The
strategy of edge-based approaches is to detect the boundaries
of object by using an edge detection operator and then
extract the boundaries by using the edge information.
Region-based approaches are based on similarity of regional
image data.

Many researchers tried to solve the problem of segmenting
the correct boundary of objects such as active contour model
(ACM) [15, 16], geodesic active contours (GAC) [17, 18],
and gradient vector flow (GVF) [19, 20]. They have become
popular especially in boundary detection where the problem
is more challenging due to the poor quality of the images.
However, they fail to extract the correct boundaries of
object in noisy images. Moreover, the ACM, GAC, and
GVF can converge to a wrong boundary if the initial
position is not close enough to the desired boundary.
Finding the initial position is still difficult and time
consuming. Though many other algorithms for boundary
detection have been developed to achieve good performance
in field of image processing [21–25], most algorithms for
finding the optimal edges have difficulties in medical
images.

The ultimate goal of this work is to extract boundaries of
carpal bones and apply the results to bone age assessment
in young children. From medical study, the carpal bones
were proven to be very reliable for bone age assessment in
young children from 0 to 6 years old before the carpal
bones start to overlap [2, 26]. Therefore, we focus on age
group from 0 to 6 years old for male and 0 to 5 years old
for female. For segmentation, we used our proposed edge
following technique for segmenting the objects of carpal
bone images. The original proposed method, which could
detect only one object in an image, was successfully
applied to segmentation problem in magnetic resonance
images of left ventricles [27]. The basic idea is to detect
the boundaries of carpal bone by using information from
the vector image model and the edge map. The proposed
vector image model is derived by averaging edge vector
fields in which both direction and magnitude are taken
into account. The proposed edge map is derived from
texture features and Canny edge detection. The features of
carpal bones can be calculated from the results of
boundary detection of each carpal bone. All features are
inputted into the support vector regression (SVR) [28–30]
to assess the bone age.

Methods

In this work, we used a digital hand atlas by Gilsanz and
Ratib [31] as a guideline for bone age assessment.
Usually, bone age is assessed from an atlas by Greulich

and Pyle [3] which contains a reference set of normal
standard images. They were derived from the population
of Caucasian children from USA during the years 1931
to 1942. The atlas remains unchanged. In recent years,
many doctors used digital hand atlas in bone age
assessment of children. The new atlas is a collection of
left hand radiographs of normally developed children of
four races for male and female, i.e., Caucasian, African
American, Hispanic, and Asian [32, 33]. The atlas is
needed in order to more accurately assess today’s children
bone age.

The carpal bones in Fig. 1. (box at the bottom) are a part
of the information source of bone age assessment in
pediatric radiology.

The process of the proposed technique is shown in
Fig. 2. Firstly, we enhance the carpal bone images by
histogram equalization [14] and automatically select the
region of interest, i.e., select only carpal bone area from the
entire hand wrist X-ray image. Secondly, the boundaries of
carpal bones are extracted by using the edge following
technique. Thirdly, the features of carpal bones from the
results of boundary extraction are extracted. All features of
carpal bones are inputted into the SVR for bone age
assessment.

Region of Interest Selection

The region containing carpal bones are automatically
selected from each hand wrist X-ray image. The first step
is to crop only the lower half of the image. This half
generally contains the carpal bones. Then the projections on
both horizontal and vertical axes are performed. Each
projection is then smoothed by using an averaging window
with the size of 7 and normalized by its maximum value.
The vertical projection is used to set the lower and upper
bounds of the interesting columns, i.e., the columns with

Fig. 1 Carpal bone X-ray image
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the projection values above 0.8 are considered as part of the
region of interest. Similarly, the horizontal projection is
used to set the lower and upper bounds of the interesting
rows, i.e., the lower bound is the row with the minimum
value of projection and the upper bound is the first row on
the left of the lower bound with the projection value of 0.4.
An example of the method is shown in Fig. 3.

Boundary Extraction of Carpal Bones

Boundary extraction of carpal bones is a critical
operation of the automatic bone age assessment. In the
first step, an input image is enhanced by using histogram
equalization. Then the average edge vector field model is
calculated from the edge vector field. The edge map is
calculated from Laws’ texture and Canny edge detection.
In the next step, the initial edge point is determined.
Finally, the edge following completes the boundary
extraction.

Average Edge Vector Field Model

Given an image f(x,y), the edge vector field [34] is
calculated according to the following equations:

~e i; jð Þ ¼ 1

k
Mx i; jð Þ~iþMy i; jð Þ~j� �

; ð1Þ

where

k ¼ max i; j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M x i; jð Þ2 þM y i; jð Þ2

q� �
: ð2Þ

Where Mx(i,j) and My(i,j) are the edge vectors in x- and
y-axes, respectively. They can be achieved by convolving
the image and the corresponding Gaussian kernels. Edge
vectors of an image form a vector stream flowing around an
object. In a noisy image, the vectors may distribute
randomly in magnitude and direction. We apply a local
averaging operation to the magnitude and direction of edge
vectors, i.e.,

M i; jð Þ ¼ 1

M r

X
i; jð Þ2N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M x i; jð Þ2 þM y i; jð Þ2

q
; ð3Þ

D i; jð Þ ¼ 1

M r

X
i; jð Þ2N

tan�1 M y i; jð Þ
M x i; jð Þ

� �
; ð4Þ

where Mr is the total number of pixels in the neighborhood N.
Fig. 4b, c show the results of edge vector field and

average edge vector field of the carpal bone image in
Fig. 4a. The results show that the proposed average edge
vector field yields more descriptive vectors along the carpal
bone edge than that of the original edge vector field.

Fig. 2 Summary of the proposed method

Fig. 3 Example of automatic region of interest selection: (a) input image, (b) projections and corresponding bounds, and (c) selected carpal bone region
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Edge Map

Edge map is the edge of an image derived from texture feature
of Laws [35] and Canny edge detection [36]. It provides
important information from images, which is exploited in
our edge following technique. Because Laws’ texture and
Canny edge detection are well-known and widely available
in literature, we only provide their brief information here.

Laws’ Texture The texture feature images are computed
by convolving an input image with each of the masks.
The 5×5 mask l(i,j) used in our technique is derived from

l i; jð Þ ¼

1
4
6
4
1

2
66664

3
77775 1 4 6 4 1½ � ¼

1 4 6 4 1
4 16 24 16 4
6 24 36 24 6
4 16 24 16 4
1 4 6 4 1

2
66664

3
77775;

ð5Þ

where L5=[1,4,6,4,1] is the one-dimensional local aver-
aging filter. We can obtain the output image by calculating

the cross correlation between the input image and the
mask, i.e.,

t i; jð Þ ¼
Xm¼2

m¼�2

Xn¼2

n¼�2

l m; nð Þ f iþ m; jþ nð Þ: ð6Þ

Canny Edge Detection The first step of Canny edge
detection is to convolve the texture image obtained from
aforementioned Laws’ texture t(i,j) with a Gaussian filter.
The next step is to calculate the magnitude and direction of
the gradient. Then the broad ridges in the magnitude must
be thinned so that only the magnitudes at the points of
greatest local change remain. The final step is the thresh-
olding to detect and link edges. We used the double
threshold algorithm to detect and link edges [36].

Edge map gives important information of edge and is very
useful in the extraction of correct boundaries of carpal bones in
images. An example of the edge map derived from the Laws’
texture and the Canny edge detection is shown in Fig. 5.

Fig. 4 a Carpal bone image, b edge vector field and zoomed-in
image, and c average edge vector field and zoomed-in image

Fig. 5 a Carpal bone image and b edge map derived from Laws’
texture (L5L5) and Canny edge detection
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Initial Position of Edge Following Technique

In this part, we present a technique of finding the good
initial position of the edge following technique. The
process can automatically indicate the initial positions of
multiple carpal bones in X-ray images.

Edge Length Magnitude and Density The magnitude and
density of edge length in an image can be derived from the
edge vector field and the edge map described in the
previous section. The magnitude is derived from average
magnitude M(i,j) using Eq. 4. The basic idea of determining
the initial position is that the large magnitude will indicate
the strong edges in the image. The edge length density is
derived from the edge map. The idea of the density
calculation is to obtain measurements of the edge lengths.
The edge length density L(i,j) at each pixel can be
calculated from

L i; jð Þ ¼ C i; jð Þ
Max C i; jð Þð Þ ; ð7Þ

where C(i,j) is the number of connected pixels on the edge
that the pixel belongs to. An example of counting the
number of connected pixels is shown in Fig. 6b. The edge
length density is shown in Fig. 6c.

Initial Position Map and Initial Position Reduction The
initial position map P(i,j)) can be calculated from the
summation of the average magnitude and the density of
edge length, i.e.,

P i; jð Þ ¼ 1

2
M i; jð Þð Þ þ L i; jð Þð Þ: ð8Þ

An example of the initial position map is shown in
Fig. 7.

We have to threshold the initial position map in order to
detect the initial position for edge following. If P(i,j)>Tmax,
then (i,j) is the initial positions. Tmax is a thresholding
value. In this work, Tmax is set to be 30% of the maximum
value of P(i,j) for the whole image. All objects touching
the image borders are discarded. Finally the number of
initial positions is reduced by finding the maximum value
of each carpal bone by using important information from
the edge map. Only the maximum value of P(i,j) of each
carpal bone in the edge map is kept to represent the initial
position of the corresponding carpal bone. An example of the
initial positions derived from the proposed method is shown
in Fig. 8.

The asterisks in the initial position map are the positions
of initial positions for our edge following technique. After
determining suitable initial positions, the next procedure is

Fig. 6 a Edge map, b result
of counting the connected pixels
(C(i,j)), and c edge length
density (L(i,j))
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to find the boundary of each carpal bone by using the edge
following technique.

Edge Following Technique

The original edge following method could detect only one
object in an image. We proposed and successfully applied it
to segmentation problem in magnetic resonance images of

left ventricles [27]. Its ability is extended here to be able to
segment several objects in an image. The technique is based
on the aforementioned vector image model and edge map
which gives more information for searching the boundaries
of carpal bones in an image. From the average edge vector
field, the vectors flow around objects in images. They allow
the edge following technique to decide the correct
boundaries of the carpal bones. At the position (i,j) of an

Fig. 7 a Input image, b selected
carpal bone image, c average
magnitude (M(i,j)), d edge
length density ((L(i,j)), and
e initial position map (P(i,j))
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image, the successive positions of the edges are then
calculated by

Lij ¼ aMij þ bDij þ "Eij; ð9Þ

where α, β, and ε are the weight parameters that control
the edge to flow around an object. The weight parameters
α, β, and ε correspond to the three features, i.e., the
average edge vector field, average direction of edge vector
field and edge map, respectively. The first two features can
be considered as the edge due to the intensity difference.
The last feature can be considered as the edge due to the
texture difference. If we would like to emphasize the edge
affected by one of the three features, we can set the
corresponding parameter to the larger value. The total
value of all weight parameters is set to 1. The larger value

of an element in Lij indicates the stronger edge in the
corresponding direction. The 3×3 matrices Mi,j, Di,j and
Eij are calculated from

Mi; j r; cð Þ ¼ M iþ r� 1; jþ c� 1ð Þ
maxM i; jð Þ ; 0 � r; c � 2; ð10Þ

Di; j r; cð Þ ¼ 1� D i; jð Þ�D iþ r� 1; jþ c� 1ð Þj j
p ; 0 � r; c � 2;

ð11Þ

Ei;jðr; cÞ ¼ Eðiþ r � 1; jþ c� 1Þ; 0 � r; c � 2; ð12Þ

where M(i,j) is the average magnitude of edge vector field
as shown in Eq. 3, D(i,j) is the average direction of edge
vector field as shown in Eq. 4, and E(i,j) is the edge map

Fig. 8 The initial positions of
edge following: left, initial
points and right, final positions
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from Laws’ texture and Canny edge detection. It should be
noted that the value of each element in the matrices Mi,j,
Di,j, and Ei,j is ranged between 0 and 1. We normalize each
of them so that they can be added up. The weighted sum in
Eq. 9 indicates the confidence that a pixel belongs to an
edge. This confidence value is also ranged between 0 and 1
because we constrain that the sum of all three weight
parameters α, β, and ε is set to 1.

Finally, the next direction of the edge following
technique is selected from the maximum value of the
product of Li,j and Ck. The next direction can be calculated
by

Di;j; opt ¼ arg max
k

X2
r¼0

X2
c¼0

Li;j r; cð ÞCk r; cð Þ; ð13Þ

where k=1,2, …,8, denotes the eight directions as
indicated by the arrows at the center of each mask shown
in Fig. 9. The 3×3 masks Ck are a constraint of edge
following to the next direction in an object’s boundary.
The constraint mask is selected by considering the
direction of the vector model at a position (i,j). The mask
which has a similarity in the vector direction is selected to
suit the chosen constraint of the edge following. The value
of each element in each mask dictates the corresponding
direction.

The edge following starts from one of the initial
positions (one of the carpal bones). The edge is followed
using Eq. 13 until the closed-loop contour is found. This
causes a limitation of the technique in that the boundary of
each object of interest has to be a closed-loop contour. The
process is repeated until it finishes performing on the last
initial position (the last carpal bone).

Feature Extraction of Carpal Bones

Feature analysis of carpal bones can reveal the important
information for bone age assessment. The features are
extracted from the segmented carpal bones. The carpal

bones in Fig. 10 show the location and their identifications.
In the development order of appearance, the usual sequence
is capitate, hamate, triquetral, lunate, trapezium, trapezoid,
and scaphoid.

After the boundaries of carpal bones are obtained, the
number of carpal bones and their relative locations are used
to label each of them. Then five features are extracted as
follows:

Feature 1: Number of the carpal bones (F1).
Feature 2: The ratio of the total area of all carpal bones to

the total area of the capitate (F2).
Feature 3: The ratio of the total area of all carpal bones to

the total area of the hamate (F3).
Feature 4: F4 is calculated by

F4 ¼ PCapitate

D12
; ð14Þ

where PCapitate is the perimeter of the capitate, and

D12 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x1 � x2ð Þ2 þ y1 � y2ð Þ2

q
; ð15Þ

where (x1, y1) is the coordinate of the centroid of the
capitate, and (x2, y2) is the coordinate of the centroid of the
hamate.

Feature 5: F5 is calculated by

F5 ¼ The total area of all carpal bones

D12ð Þ2 : ð16Þ

All features are scaled to cover the range of [0,1] prior to
the regression process. These normalized features are used
to form an input vector into the SVR.

Fig. 10 Location and identification of the carpal bonesFig. 9 Edge masks (the normal direction constraint)
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Bone Age Assessment of Carpal Bones Using Support
Vector Regression

In this research, the support vector regression is used for
bone age assessment in carpal bone images. Consider a
regression problem with the training set

x1; y1ð Þ . . . xi; yið Þ . . . xl; ylð Þf g xi 2 Rn; yi 2 R; ð17Þ

where xi is the input data, yi is the output data and l is the
total number of training samples. The goal of the support
vector regression is to find a regression function f(x) by the
principle of risk minimization [28–30]. The support vector
regression can find the optimal regression function y= f(x)
by using ε-insensitive loss function and the kernel function
K(x,xi).

The ε-insensitive loss function is given by

L"ðyÞ ¼ 0 for f ðxÞ � yj j < "
f ðxÞ � yj j � " otherwise

�
: ð18Þ

The loss function is zero, when the difference between
the prediction value and real value is lower than ε. The
kernel function K(x,xi) maps a non-linear learning problem
into a linear one in a high-dimensional feature space. In this
research, we use the radial basis function (RBF)

K x; xið Þ ¼ exp
� x� xik k2

� 	
2s2

0
@

1
A; ð19Þ

where xi is a support vector.

We can assess the bone age by a regression equation f(x)
which is given by

f ðxÞ ¼
X1
i¼1

ai � a
»

i

� 	
K x; xið Þ þ b; ð20Þ

where f(x) is the estimation of bone age, x is the vector for
training (input vector containing the five features), l is the
number of training vectors, xi is a support vector, αi and αi

*

are Lagrange multipliers, b is a bias term. Since the solution
satisfies the Karush–Kuhn–Tucker conditions, the support
vectors are points where one of the Lagrange multipliers is
greater than zero.

Bone Age Assessment of Carpal Bones Using Neural
Network Regression

In this research, we compare the performance of the support
vector regression for bone age assessment in carpal bone
images to that of the neural network regression. Artificial
neural networks are well-described in literature [37], we
will only briefly describe them in this paper. Neural
network regression can be considered a universal approx-
imator. The typical structure of a feed forward neural
network for regression is shown in Fig. 11.

Given the training set in Eq. 17, the goal is to find the
best set of weights (w) so that the output oi is as close to
the desired output yi as possible for a given input sample
xj,i, j=1, …, n and i=1, …, l where n is the number of
input features and l is the number of training samples. In
this research, there are five features (n=5) and the output
oi is the estimation of bone age of the ith training image.

Fig. 11 Feed forward neural
network for regression
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The most popular training method to achieve the weights w
is the backpropagation algorithm.

Experimental Results and Discussion

This section presents the results of the edge following
method to detect the boundaries of carpal bones as well as
the results of the bone age assessment using SVR.

Experimental Results from Boundary Extraction of Carpal
Bones

Boundary extraction of carpal bones was proven to be very
reliable for young children from 0 to 6 years old before the
carpal bones start to overlap. We tested the efficiency of

boundary detection method on carpal bone X-ray images by
comparing our results with the boundaries delineated by
two skilled doctors. To further evaluate the efficiency of the
proposed method in addition to the visual inspection, we
evaluate our boundary extraction method using the proba-
bility of error in image segmentation (PE) [38] and the
Hausdorff distance [39]. The ground truth images were
given by both doctors. We tried to vary several parameter
settings for the proposed edge following method (weight
parameters α, β, and ε in Eq. 9). The best segmentation
results were achieved when α=0.5, β=0.3, and ε=0.2.
Hence, we used this setting for all images.

Examples of segmentation results on images containing
two, three, and four carpal bones are shown in Fig. 12. It
shows that the proposed technique can detect boundaries of
multiple carpal bones automatically. Figure 13 shows the

Fig. 12 Carpal bone X-ray
images and results of the
proposed boundary detection
method
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boundary detection results of the proposed technique along
with the delineations performed by one of the skilled
doctors on an image containing 7 carpal bones. As we
know that manually delineating is a very tedious task, we
asked each of the skilled doctors to delineate 100 pieces of
carpal bones, 50 of them for each gender. The segmentation
results of the proposed technique, evaluated in terms of the
probability of segmentation error and the Hausdorff
distance, using the skilled doctors’ delineations as the
ground truth are summarized in Table 1. The PE and the
Hausdorff distance using the first doctor’s delineations as
the ground truth are 6.50% and 3.98 pixels, respectively.
The values based on the second doctor’s delineations are
8.03% and 4.31 pixels, respectively. We also investigate the
disagreement between the two doctors’ delineations in
terms of the PE and Hausdorff distance. The PE and

Hausdorff distance between their delineations are 7.01%
and 3.86 pixels, respectively. The disagreement between the
proposed technique and each of the doctors is very close to
the disagreement between the two doctors.

Experimental Results from Bone Age Assessment in Young
Children

We tested the efficiency of bone age assessment by using
the SVR and the carpal bone features mentioned in the
previous section. To evaluate the performance of the SVR,
we compared it with the neural network regression (NNR).
For the NNR, we used three-layer backpropagation neural
network with one hidden layer consisting of two neurons.
For the SVM, the kernel parameter σ=0.8, the regulariza-
tion parameter C=100, and ε=0.1 were chosen.

Fig. 13 a Carpal bone X-ray
images, b results of the
proposed boundary detection
method, and c delineations
by skilled doctor
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In the experiments, we used 180 X-ray images of carpal
bones from the data collection in the digital hand atlas [32, 33]
at the Image Processing and Informatics Lab, University of
Southern California. The database was collected from
Children Hospital Los Angeles and made available to public
via the website for research and education purpose. All
images were interpreted by radiologists. Their estimation was
based on the matching method from the digital hand atlas.
Each image was assessed by a radiologist twice. Based on the

second readings by the radiologists, the distribution of data for
various stages of development is as follows: there are 24, 40,
26, 27, 40, 21, and 2 images for the bone age ranges of 0.1–1,
1.1–2, 2.1–3, 3.1–4, 4.1–5, 5.1–6, and 6.1–7 years, respec-
tively. The experimental results for the bone age assessment
are shown in Tables 2 and 3. The numbers in brackets
represent the number of X-ray images in each category. The
results are shown in terms of the mean absolute error (MAE)
and the mean absolute percentage error (MAPE) defined as

MAE ¼ 1

n

Xn
i¼1

Expert0s opinion of data i� Algorithm0s output of data ij j; ð21Þ

MAPE ¼ 1

n

Xn
i¼1

Expert0s opinion of data i� Algorithm0s output of data ij j
Expert0s opinion of data i

ð22Þ

where n is the total number of data of interest. As shown in
Tables 2 and 3, Result 1 denotes that the ground truth from
the first reading is used for training the SVR and the NNR,
Result 2 denotes that the ground truth from the second

reading is used for training the SVR and the NNR, and
Result 3 denotes that the ground truth from both readings is
used for training the SVR and the NNR. Leave-one-out
cross validation (LOOCV) is used for testing the efficiency

Table 1 Average results of the proposed boundary detection technique on all images by mean of probability of error in image segmentation (PE)
and Hausdorff distance using two skilled doctors’ delineations as the ground truth

Male Female Average

Doctor 1 Doctor 2 Doctor 1 Doctor 2 Doctor 1 Doctor 2

Probability of error inimage segmentation (%) 6.20 7.82 6.79 8.23 6.50 8.03

Hausdorff distance (pixels) 3.94 4.27 4.01 4.35 3.98 4.31

Table 2 Bone age assessment results by support vector regression and neural network regression in term of mean absolute error (MAE)

Race Neural network regression Support vector regression

Result 1
(years (months))

Result 2
(years (months))

Result 3
(years (months))

Result 1
(years (months))

Result 2
(years (months))

Result 3
(years (months))

Asian

Male (22) 0.62 (7.47) 0.85 (10.29) 0.49 (5.99) 0.52 (6.24) 0.37 (4.40) 0.26 (3.18)

Female (20) 0.61 (7.33) 0.61 (7.33) 0.54 (6.50) 0.76 (9.14) 0.50 (6.06) 0.23 (2.87)

Caucasian

Male (20) 0.95 (11.42) 1.42 (17.08) 0.57 (6.89) 1.03 (12.37) 1.00 (12.00) 0.33 (4.07)

Female (18) 0.56 (6.77) 0.77 (9.35) 0.55 (6.60) 0.67 (8.13) 0.85 (10.23) 0.15 (1.89)

African American

Male (29) 1.19 (14.32) 0.90 (10.83) 0.80 (9.63) 1.28 (15.46) 1.18 (14.18) 0.73 (8.75)

Female (21) 1.22 (14.70) 0.76 (9.14) 0.65 (7.89) 1.20 (14.47) 0.95 (11.47) 0.33 (3.98)

Hispanic

Male (28) 0.96 (11.58) 1.03 (12.39) 0.69 (8.31) 1.04 (12.52) 0.84 (10.17) 0.38 (4.57)

Female (22) 0.76 (9.20) 0.66 (8.03) 0.41 (4.99) 0.65 (7.91) 0.76 (9.13) 0.308 (3.70)
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of the SVR and the NNR for bone age assessment in young
children from 0 to 6 years old. Cross validation is a
standard testing method when a data set is not divided into
the training and test sets. The basic idea of the LOOCV is
as follows. Firstly, a sample (image) is kept as a validation
data while the remaining samples are used in the training
process to produce a regression model. The regression
model is then tested on the validation data. We keep doing
this until each of the samples is used as the validation data.
That means each of the test data is not used in the training
process at all.

We see that if the results of only one reading are used for
training, the results will not be so good. For the NNR, the
average MAEs using the first and second readings as the
training sets are 10.34 and 10.55 months, respectively. For
the SVR, the average MAEs using the first and second
readings as the training sets are 10.78 and 9.70 months,
respectively. When both readings are used, the average
MAEs are improved to 7.10 and 4.12 months for the NNR
and SVR, respectively. Considering the MAPE, the NNR
using the first and second readings as the training sets yield
the average MAPEs of 0.41 and 0.82, respectively. For the
SVR, the average MAPEs using the first and second
readings as the training sets are 0.35 and 0.34, respectively.
When both readings are used, the average MAPEs are also
improved to 0.33 and 0.14 for the NNR and SVR,
respectively.

To also investigate the variation within a skilled
radiologist’s opinion on bone age assessment, we compared
the results of bone age assessment from two readings of
each radiologist. The variations within an expert in terms of
the MAE and MAPE are shown in Table 4. The average
MAE and MAPE of two readings within each expert are
3.18 months and 0.11, respectively. The errors among
different experts will certainly be more than these.

If we use the ground truth from both readings for
training, it can assess the bone age very efficiently. The
SVR is able to provide more accurate bone age assessment
results than the NNR. We can see that the experimental
results from SVR are very close to the opinions of the
skilled radiologists. The proposed SVR-based fully auto-
matic method should be a useful tool to assist radiologists
in assessing the bone age.

Conclusions

We have designed an edge following technique for
boundary extraction in carpal bone X-ray images. We also

Race Neural network regression Support vector regression

Result 1 Result 2 Result 3 Result 1 Result 2 Result 3

Asian

Male (22) 0.40 1.30 0.55 0.36 0.11 0.10

Female (20) 0.21 2.13 0.19 0.23 0.14 0.08

Caucasian

Male (20) 0.31 0.85 0.25 0.35 0.46 0.14

Female (18) 0.32 0.49 0.36 0.31 0.50 0.07

African American

Male (29) 0.57 0.64 0.46 0.49 0.50 0.30

Female (21) 0.49 0.33 0.31 0.45 0.39 0.17

Hispanic

Male (28) 0.45 0.51 0.30 0.33 0.32 0.12

Female (22) 0.57 0.34 0.22 0.26 0.32 0.16

Table 3 Bone age assessment
results by support vector
regression and neural network
regression in term of mean
absolute percentage error
(MAPE)

Table 4 Mean absolute error (MAE) and mean absolute percentage
error (MAPE) in bone age assessment within each skilled radiologist
in two readings

Race MAE between
the first and
second readings

MAPE between
the first and
second readings

Asian

Male (22) 0.27 (3.25) 0.11

Female (20) 0.21 (2.59) 0.07

Caucasian

Male (20) 0.34 (4.06) 0.12

Female (18) 0.16 (2.00) 0.08

African American

Male (29) 0.30 (3.67) 0.11

Female (21) 0.31 (3.78) 0.13

Hispanic

Male (28) 0.28 (3.46) 0.09

Female (22) 0.21 (2.62) 0.15
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applied the boundary detection results to assess bone age in
young children from 0 to 6 years old. The proposed bone
age assessment is based on the support vector regression.
We tested the efficiency of boundary extraction and bone
age assessment. The boundary extraction of carpal bones
was evaluated by comparing the results of boundary
extraction from the proposed technique and that from two
skilled doctors. We used the manual delineations of the
doctors as the ground truth and evaluated the error by using
the probability of error in image segmentation and the
Hausdorff distance. The results of boundary extraction in
carpal bone images showed that the edge following
technique could extract the boundaries of carpal bones in
X-ray images efficiently. After the boundaries of carpal
bones were detected, five features were extracted and used
for training and testing the support vector regression and
the neural network regression for bone age assessment. The
results of bone age assessment showed that the support
vector regression had better efficiency than the neural
network regression and yielded the results close to that of
the skilled radiologists. We have successfully applied all
processes to bone age assessment. The proposed technique
is very useful in assisting radiologists to accomplish the
task of segmenting the boundary of objects and assessing
the bone age in carpal bone images.
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