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Abstract Aortoiliac and lower extremity arterial athero-
sclerotic plaque burden is a risk factor for the development
of visceral and peripheral ischemic and aneurismal vascular
disease. While prior research allows automated quantifica-
tion of calcified plaque in these body regions using CT
angiograms, no automated method exists to quantify soft
plaque. We developed an automatic algorithm that defines
the outer wall contour and wall thickness of vessels to
quantify non-calcified plaque in CT angiograms of the
chest, abdomen, pelvis, and lower extremities. The algo-
rithm encodes the search space as a constrained graph and
calculates the outer wall contour by deriving a minimum
cost path through the graph, following the visible outer wall
contour while minimizing path tortuosity. Our algorithm
was statistically equivalent to a reference standard made by
two reviewers. Absolute error was 1.9±2.3% compared to
the inter-observer variability of 3.9±3.6%. Wall thickness
in vessels with atherosclerosis was 3.4±1.6 mm compared
to 1.2±0.4 mm in normal vessels. The algorithm shows
promise as a tool for quantification of non-calcified plaque in
CT angiography. When combined with previous research, our
method has the potential to quantify both non-calcified and
calcified plaque in all clinically significant systemic arteries,
from the thoracic aorta to the arteries of the calf, over a wide
range of diameters. This algorithm has the potential to enable
risk stratification of patients and facilitate investigations into
the relationships between asymptomatic atherosclerosis and a
variety of behavioral, physiologic, pathologic, and genotypic
conditions.
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Background

Aortoiliac and lower extremity arterial atherosclerosis is a
risk factor for the development of visceral and peripheral
ischemic and aneurismal vascular disease [1–5]. CT angio-
grams are the standard for noninvasive evaluation of
systemic atherosclerotic disease [6–8].

The speed and coverage of multi-detector row CT
(MDCT) allows the imaging of the aortoiliac system in a
single scan, presenting a unique opportunity to quantify the
atherosclerotic burden subdivided into calcified and non-
calcified components. Overall atherosclerotic plaque burden
is an independent risk factor for the development and
severity of coronary artery disease [9]. In contrast, risk
factors such as hyperlipidemia and obesity do not accurately
predict coronary plaque burden, and these same risk factors
are only variably associated with systemic atherosclerotic
burden [10]. Coronary CT angiography (CTA) is not
currently recommended as a screening test and a special
protocol must be used for image acquisition, whereas
contrast-enhanced MDCT of the chest and/or of the abdomen
and pelvis is conducted for a variety of different indications.
Determining the quantity and distribution of plaque in the
arterial system in these scans potentially allows risk
stratification of patients for both coronary and extra-
coronary vascular disease to be performed. Furthermore,
determining the quantity and distribution of plaque through-
out the arterial system would facilitate investigations into the
relationships between asymptomatic atherosclerosis and a
variety of behavioral, physiologic, pathologic, and genotypic
conditions.
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Previous methods of automated quantification of the
severity and distribution of atherosclerosis have detected
and quantified mural calcification as a marker for athero-
sclerotic plaque [11]. While calcium is highly correlated
with atherosclerotic burden [12], the quantification of all
plaque, both calcified and non-calcified, may yield a more
accurate measure.

Because non-calcified plaque has a density similar to
soft tissue, it is difficult to quantify. Non-calcified plaque
quantification using CT has been reported in the coronary
arteries [13–16]. Since the majority of the coronary arteries
course within a layer of fat, a consistent contrast difference
between vessel wall and surrounding fat exists in many
regions and makes it easier to quantify and characterize
coronary plaques. However, in extra-coronary arteries, the
outer contour is harder to delineate. In some regions, there
is adequate contrast between the outer vessel wall (which
measures 0–50 HU) and its surroundings (e.g., fat (measuring
less than −20 HU) or aerated lung). However, in many other
regions, the vessel wall is closely opposed to other soft tissue
structures such as muscle, bowel wall, etc., with a very thin
layer of fat interposed. Due to volume averaging, this thin
layer of fat can have artifactually higher HU values, further
reducing the available contrast. In the retroperitoneum, the
vessel wall may be adjacent to other structures, such as the
inferior vena cava, with no apparent intervening fat. Similarly,
in the lower extremities, close opposition between the outer
wall of the artery and muscle or soft tissue reduces contrast. In
these and other regions, there may be no density difference or
gradient that can be used to identify and follow the outer
contour of the vessel. Manual methods of tracing the outer
contour are time-consuming and imprecise.

Our purpose was to develop an algorithm that defines the
outer contour of the wall of systemic arteries to allow
quantification of non-calcified plaque burden and to
evaluate its use in CTA scans of the chest, abdomen,
pelvis, and lower extremities.

Material and Methods

Our algorithm requires the user to first select a point in the
aortic lumen near the superior extent of the scan and at the
end of each artery of interest. A previously developed
algorithm [17, 18] is then applied to derive a 3D branched
median centerline between the point in the aortic lumen and
all defined endpoints. From the median centerline, cross-
sections perpendicular to the aortic lumen are obtained at
1-mm intervals. Then, for each perpendicular cross-section,
three steps are performed: (1) The inner wall contour is
calculated, (2) a search space for the outer contour is
defined, and (3) the space is encoded as a graph with nodes
and edge weights and the final outer contour is derived by

calculating the minimum cost path through the graph. Each
of these steps is discussed in detail below.

Inner Wall Contour

From the centerlines, we define the volume occupied by the
arterial lumen while excluding other vessels and surround-
ing soft tissue. To accomplish this, a list of centerline points
is obtained by sampling the median centerlines at sub-voxel
intervals. The perpendicular luminal cross-section through
each of these points is then segmented using the point as a
seed for region growing based upon an adaptive threshold
computed from the voxel intensity statistics near the seed
point. The average size and shape of the previous five
segmentations are used to constrain the subsequent segmen-
tation from extending into adjacent veins or arterial branches.
The circumference of each segmented cross-section is stored
as the inner (luminal) contour, and the collection of all such
cross-sections defines the luminal volume.

Search Space

The search space is defined on each cross-section as a 10-mm-
wide strip parallel to the inner wall contour. This search space
is assumed to contain the outer wall contour and was chosen
because it was unlikely that the vessel wall would be thicker
than 10 mm, except in regions with aneurismal atherosclerotic
disease. Since the algorithm was not intended to quantify wall
thickness in the presence of thrombus lining the lumina of
aneurysms, it was felt that limiting the search space to 10 mm
was reasonable.

We define a set of nodes within this search space using a
polar coordinate system with respect to the center of the
vessel. Accordingly, each node is assigned two values, r
and θ, where r represents the distance of the node from the
center of the vessel and θ represents the angular position of
the node with respect to the up direction of the perpendicular
cross-section. These nodes were defined such that each node
was separated by 1° in the circumferential direction and
0.5 mm in the radial direction (Fig. 1).

Graph Encoding

The algorithm then encodes the search space as a graph
with directional edges connecting the nodes. Edges are only
defined between voxels whose difference in θ is +1°. This
creates a graph whose edges are constrained to extend
circumferentially around the vessel. Edge weights (EW) are
calculated from two terms, an intensity weight (IW) and a
distance weight (DW). The intensity weight is calculated
such that the lowest cost is associated with voxels at the
periphery of the outer wall of the vessel, which are typically
around 0 HU in intensity since they contain both fat and
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soft tissues. To favor these voxels, the transfer function is
defined in the following manner.

Each voxel is assigned an IW of between 0 and 1. Voxels
that have an intensity of <0 HU (water intensity) are
assigned an IW of 0. The noise in the scan is calculated
using the root mean squared error, hereby referred to as σ.
Voxels with HU intensities above 2*σ are assigned an IW
of 1. The IW assigned to each voxel between 0 HU and 2*σ
HU is based on the following equation:

IW ¼ cosðHU=ð2»sÞÞ
The DW is used to favor paths that are shorter or less

tortuous and is defined as the Euclidean distance between
nodes in millimeters.

The final transfer function is then expressed as:

EW ¼ IWþ a � DW;

where ! encodes the relative importance of the distance
weight. Given the above graph encoding, a standard shortest
path algorithm (Bellman–Ford) is then used to calculate the
minimum cost path through the graph from θ=0° to θ=359°

Optimization of !

To determine an optimal value for α, we retrospectively
obtained five consecutive CTAs of the chest, abdomen,
pelvis, and lower extremity from patients (four men, one
woman; age, 36–79 years) with a clinical history of
vascular disease but no evidence of aneurismal vascular
disease (abdominal aortic diameter <3 cm or thoracic aortic
diameter <4 cm) and five consecutive CTAs from patients
(three women, two men; age, 19–86 years) without clinical
history of vascular disease who underwent CTA for other
clinical indications. These ten scans were acquired at
120 kV, 350–440 mA, 0.6- to 0.8-mm reconstruction
interval, and 1- to 1.25-mm slice thickness and were
obtained under our institution’s IRB for retrospective

studies and de-identified before processing in compliance
with HIPAA requirements. Five vascular regions were
defined: (a) thoracic aorta, (b) abdominal aorta, (c) common
iliac artery, (d) external iliac/common femoral arteries, and
(e) superficial femoral/popliteal/anterior tibial arteries. For
each region, ten sections perpendicular to the course of the
artery were randomly chosen in each patient, for a total of
500 sections. The reference standard for the outer wall
locations were outlined on all selected sections by one of
the authors.

Over all slices, the value of α was varied between 1 and
2,000, with intervals of 10, and the mean error in
millimeters between the computed outer wall and the
reference standard outer wall was recorded. The value of
α that yielded the lowest error across all scans was chosen
as the optimized value. Subsequently, sensitivity analysis
was carried out for the variable α as follows. For the ten
scans, the values for α that were optimal for each scan were
collected. The 10th percentile optimal value for α and the
90th percentile optimal value for α for this set of ten scans
were identified. These two values were used to compute
two sets of outer wall contours for each of the ten scans.
The errors for these two values of alpha were compared to
quantify the dependence of outer wall contour computation
on !.

Validation

To evaluate the algorithm, we retrospectively obtained,
starting from 28 January 2008, 20 consecutive CTA scans
from patients (12 of the chest, abdomen, and pelvis
(average dose, 14.4 mSv) and 8 of the abdomen, pelvis,
and lower extremities (average dose, 15.1 mSv); 12 men,
8 women; age, 26–87 years) with no evidence of aneurismal
vascular disease (abdominal aortic diameter <3 cm or thoracic
aortic diameter <4 cm). The scans were obtained without
regard to history of other vascular disease. Scans were
acquired at 120 kV, 380–517 mA, 0.6- to 0.8-mm reconstruc-
tion interval, and 1- to 1.25-mm slice thickness and were
obtained under our institution’s IRB for retrospective studies
and de-identified before processing in compliance with
HIPAA requirements. Between 80- and 120-mL Isovue (300
or 370) iodinated contrast was used for vessel enhancement
(Bracco Diagnositcs Inc. Princeton, NJ). This produced a
luminal enhancement of 130–300 HU in the test scans. All
scans were distinct from those used to optimize α.

Cross-sections perpendicular to the lumen of the arteries
in the five vascular regions previously described were
obtained. Images were categorized by vascular region and
by whether they had or had no atherosclerotic plaque (ten
categories). Of the images in each category, eight were
randomly selected to yield a total of 80 images. Two
experienced 3D technologists (reviewers) then traced the

Fig. 1 CT section of the abdominal aorta showing inner wall (black)
and search area (light white). Crosshairs represent the location of the
median centerline
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outer wall on all images. The outer wall traces were then
quantized using polar coordinates with one radius value per
degree. The traces were then averaged to generate a
reference standard. To calculate inter-observer variability,
the absolute difference of the radius value was calculated
for each degree between the two reviewers’ traces. These
absolute values were averaged to calculate the average
absolute error for the two reviewers’ traces being compared.
The absolute error between the automated trace and the
reference standard was calculated in a similar way. The
inter-observer variability was then compared to the error
between the automated method and the reference standard
contours. Results were analyzed over all vascular regions
and for each vascular region separately.

The maximum measured arterial wall thickness mea-
sured in each image was calculated. The maximum wall
thickness in the 40 images without atherosclerotic plaque
was compared to the maximum measured arterial wall
thickness in the 40 images with atherosclerotic plaques to
evaluate whether our algorithm was able to show an
increase in wall thickness in the presence of atherosclerotic
plaque.

The time to create the reference standards was compared
to the algorithm’s run time. Operator time required to define
a start and end points for the algorithm was only a few
seconds and therefore was not considered in the statistics.

Statistics

Schuirmann’s paired two one-sided equivalence tests [19]
were used to test the null hypothesis that the radii of the
reference standard were different from those produced by
the algorithm and the null hypothesis that the radii of one
reviewer were different from the other reviewer. Concordance
correlations between the reference standard and the algorithm
were also obtained, as well as correlations between the two
reviewers. The above tests were also calculated for each
vascular region separately. The maximum wall thickness in
images without atherosclerotic plaque was compared to the
maximum wall thickness in images with atherosclerotic
plaques using an unpaired t test. Time to create reference
standards was compared to the algorithm’s run time using a
paired t test.

Results

Optimization of !

Table 1 reports the optimal values of α, radial errors
obtained at the overall optimal, and the 10th and 90th
percentile values for α for each of the ten scans that were
obtained solely for this purpose. The mean optimal value

for α was 554±184 (SD). When this value was used for α,
radii measured using the automated algorithm had an error
(mean ± SD) of 1.7±1.1% compared to the reference
standard. The 10th and 90th percentile values for α were
394 and 723, respectively. When the 10th percentile value
for α (394) was used, radii measured using the automated
algorithm had an error (mean ± SD) of 2.1±2.2% compared
to the reference standard. When the 90th percentile value
for α (723) was used, radii measured using the automated
algorithm had an error (mean ± SD) of 2.4±2.5% when
compared to the reference standard. In this sensitivity
analysis, a change in α of 60% from the optimal value of
550 resulted in a mean increase in the error over all ten
scans of 0.7% (maximum of 2.4±1.3% increase in error in
each scan).

Comparison to Reviewers

For the 80 cross-sectional images obtained from the 20
scans, our method was able to produce outer wall
boundaries in all images. Figure 2 shows examples of the
outer wall boundaries calculated by the automated method
in each vascular region. Outer wall radii derived from the
boundaries ranged from 2.0 to 29.0 mm. Table 2 shows the
measured error, the inter-observer variability, the results of
Schuirmann’s test, the result of the concordance correlation
between the algorithm and the reviewers, and the result of
the concordance correlation between reviewers for each
region separately. Compared to the reference standard, radii
measured using the automated algorithm had an error
(mean ± SD) of 1.9±2.3%. In comparison, the difference
between reviewers was 3.9±3.6%. There was no statisti-
cally significant difference between the radii measured
using the algorithm versus those of the reference standard
(Schuirmann’s paired two one-sided equivalence test, p<
0.05). The overall concordance correlation between the
algorithm and the reviewers was 0.99. The overall concor-
dance correlation between reviewers was 0.99. Although not
statistically significant, an upward trend is noted in absolute
error and in inter-observer variability in smaller arteries
compared to the manually drawn standard. This trend was
not noted with concordance correlations and the algorithm
was statistically equivalent to manually drawn standards in all
regions (Schuirmann’s paired two one-sided equivalence
tests, p<0.05).

Comparison Between Images
with and Without Atherosclerotic Plaques

The measured maximal wall thickness in images without
and with atherosclerotic plaques was 1.2±0.4 and 3.4±
1.6 mm, respectively. These were significantly different
(unpaired t test, p<0.01).
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Time

Reviewers required 66±42 s (SD) per image to define the
outer and inner contours, while the algorithm required 0.04±
0.02 s (SD) per image. These were significantly different
(paired t test, p<0.01).

Discussion

Althoughmeasurement of calcification using CT is commonly
used as a measure of atherosclerosis, non-calcified plaque
quantification has been mainly limited to ultrasound and MRI

because of the higher contrast resolution allowing better
visualization of soft tissue [20–47]. However, the carotid and
coronary arteries are smaller vascular beds, whereas quanti-
fication of systemic atherosclerosis requires a much larger
scan range, especially if the lower extremities are included,
to assess risk for peripheral artery disease. Ultrasound is
necessarily a local imaging tool, and a whole body MRI may
not give sufficient resolution for effective quantification
within a reasonable scan time. Calcification is also better
visualized and quantified on CT. Although detection of non-
calcified plaque has been explored using computed tomog-
raphy [6, 13, 16], no automated quantitative method has yet
been developed for this modality. One method proposed by

A B C

D E

Fig. 2 CT sections, from different patients, of the thoracic aorta (a),
abdominal aorta (b), common iliac artery (c), external iliac artery (d),
and popliteal artery (e), perpendicular to the median luminal

centerline, showing inner wall (black line) and final calculated outer
wall (white line). Crosshairs represent the location of the median
centerline

Scan Optimal
alpha

Error (%),
α=554

Error (%), α=394
(10th percentile)

Error (%), α=723
(90th percentile)

Maximum increase
in error (%)

1 240 3.9 0.3 6.5 3.6

2 410 2.2 0.2 6.1 3.9

3 420 1.1 0.5 1.2 0.6

4 430 1.7 0.3 5.3 3.5

5 500 0.4 1.0 1.0 0.6

6 600 1.6 2.0 1.8 0.4

7 690 0.2 1.3 0.9 1.1

8 700 2.1 5.2 0.4 3.1

9 710 1.0 4.4 0.4 3.4

10 840 2.8 5.8 0.4 3.1

Mean 1.7±1.1 2.1±2.2 2.4±2.5 2.4±1.3

Table 1 Error with respect to
gold standard using various
alpha constants
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Shum et al. [48] quantifies wall thickness in the presence of
thrombus in abdominal aortic aneurysms. This method relies
on a median filter edge detector and extensive manual
interaction to set thresholds for the detection of the outer
wall. The paper is mainly concerned with the detection of the
inner wall, which is obscured by intraluminal thrombus. The

algorithm applies only to abdominal aortic aneurysms with
intraluminal thrombus, whereas our algorithm is designed to
calculate wall thickness in all clinically significant arteries in
patients without severe vascular disease. When combined
with previous research [11], our method has the potential to
quantify both non-calcified and calcified plaques in all

Table 2 Measured error and inter-observer variability in each vascular region

Region
(average radius, mm)

Measured error,
mm (%)

Inter-observer
variability, mm (%)

Schuirmann’s test
of equivalence
(p value)

Concordance
correlation, algorithm
versus reviewers

Concordance
correlation,
between reviewers

Thoracic aorta (14.8±0.71) 0.24±0.17 (1.65±1.17) 0.51±0.40 (3.45±2.72) <0.05 0.912 0.658

Abdominal aorta (14.8±0.93) 0.22±0.16 (1.52±1.10) 0.41±0.33 (2.81±2.3) <0.05 0.993 0.985

Common iliac artery
(7.00±0.54)

0.15±0.15 (2.11±2.22) 0.28±0.23 (3.93±3.02) <0.05 0.928 0.798

External iliac and common
femoral arteries (5.52±0.68)

0.16±0.11 (2.91±2.19) 0.24±0.19 (4.43±3.65) <0.05 0.960 0.906

Superficial femoral, popliteal,
anterior tibial arteries
(3.94±0.47)

0.12±0.11 (3.12±3.4) 0.18±0.18 (4.74±5.35) <0.05 0.944 0.848

Overall 0.15±0.15 (1.89±2.27) 0.32±0.30 (3.88±3.63) <0.05 0.998 0.995

BA

DC

Fig. 3 Oblique reformats perpendicular to the course of the artery
showing examples of algorithm performance when the outer wall
border is obscured by adjacent soft tissues. The white outline
represents the outer wall contour calculated by the algorithm.
Crosshairs represent the location of the median centerline. a
Abdominal aorta just distal to celiac axis origin. Crura of the
diaphragm obscures outer wall of aorta anterolaterally (asterisk). b
Distal descending thoracic aorta. The crus of the diaphragm adjacent
to the aorta obscures most of outer wall of the aorta anteriorly
(asterisk). Adjacent bone obscures the outer wall posteriorly. An

adjacent lumbar artery (arrow) could be mistaken for a mural
calcification on this image, but the algorithm correctly excludes it. c
Right external iliac artery. Psoas muscle obscures the outer wall
anteriorly (asterisk), and the bifurcation of the common iliac vein
obscures the outer wall posteriorly (two asterisks). d Left superficial
femoral artery. Calculated outer wall contour correctly includes focal
mural atherosclerotic calcification (asterisk). Superficial femoral vein
obscures outer wall laterally (two asterisks), vastus medialis obscures
outer wall anteriorly (circumflex), and semimembranosus muscle
obscures outer wall posteriorly (two circumflex symbols)
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clinically significant systemic arteries, from the thoracic
aorta to the arteries of the calf, over a wide range of
diameters.

Automated and semi-automated in vivo methods of
quantifying aortic wall thickness have been studied before
using both MRI and transdermal and intravascular ultrasound
[20, 21, 23, 24, 26, 28, 38, 42, 45]. More detailed
characterization of individual plaques by MRI has also been
validated against pathological specimens [24]. However,
characterization by both MRI and ultrasound has been
largely limited to individual plaques or smaller vascular
beds such as the carotid or the coronary arteries, and there is
no existing literature describing a method for global
characterization of systemic plaque burden that includes the
lower extremity arteries. One prior method reported by
Adame et al. [20] relied heavily on detecting periaortic fat
using axial MRI slices and an ellipse fitting procedure to
calculate the outer wall contour. Although the method has
excellent correlation with manual measurement, this method
does not take into account artery orientation, which is
important in smaller arteries and older patients with more
tortuous large arteries. The method also requires an MRI
sequence that is not currently in clinical practice, assumes that
the wall is almost circular, and assumes that the outer wall is
largely parallel to the inner wall. Our method is independent
of artery orientation and uses a standard CT angiography
protocol that is routinely used for other indications.

Adjacent soft tissue or vascular structures that abut the
outer wall of a blood vessel pose the greatest challenge for
vascular segmentation, even for experienced human
reviewers. Common adjacent structures include the dia-
phragmatic crura, bowel, bone, musculature, and other
arteries and veins. Our algorithm, by its nature, follows the
unobscured wall closely and uses a tuned weighting factor
to follow the obscured outer wall with accuracy similar to
human observers in a variety of vascular beds and adjacent
soft tissue structures, as exemplified in Fig. 3.

The precision of our algorithm could be affected by
differences in user selection of the arterial points. While we
did not assess this directly, these user inputs only affect the
location of the centerline used to create orthogonal cross-
sections. In a previous study [49], it was shown that the
centerline algorithm that we use was highly insensitive to
these inputs, and so we expect our results to be similarly
precise.

The results of the sensitivity analysis (Table 1) indicate
that errors in thickness measurement are insensitive to
choice of the distance weight, α, over a large range of α.
This indicates that a single optimal value of α can be
calculated from a representative set of scans. Also, since
our algorithm is deterministic, the outer wall contour that is
calculated is guaranteed to be the one that conforms to the
global minimum cost.

Our algorithm was designed to reduce user interaction
time to a few seconds and achieves an average time of
0.04 s per image, enabling quantification of a scan of the
whole body in about 1 min, which makes automated
quantification clinically viable. One important factor reducing
processing time is that edges of the graph are constrained to a
course around the circumference of the vessel. Thereby, the
number of possible paths is reduced.

While there is no imaging gold standard with which to
assess accuracy, our method gives results that are within the
range of human precision. Validation with manual determina-
tion on 20 CT angiograms showed that the measured error of
the automated algorithm was comparable to the inter-observer
variability. Although the error does increase (though not
significantly) with smaller arteries, it is still within the range of
human variation. The measured maximum wall thickness in
images with atherosclerotic plaque is significantly greater than
the maximumwall thickness in images without atherosclerotic
plaques, indicating that the algorithm has potential to be used
for detecting and quantifying atherosclerotic regions of the
arterial wall.

Conclusion

Our algorithm allows the outer contour of the vessel to be
calculated precisely with accuracy that is not significantly
different compared to manual methods, allowing calculation
of vessel wall thickness as a measure of non-calcified plaque
burden.
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