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Abstract The use of the endovascular prostheses in
abdominal aortic aneurysm has proven to be an effective
technique to reduce the pressure and rupture risk of
aneurysm. Nevertheless, in a long-term perspective, com-
plications such as leaks inside the aneurysm sac (endoleaks)
could appear causing a pressure elevation and increasing
the danger of rupture consequently. At present, computed
tomographic angiography (CTA) is the most common
examination for medical surveillance. However, endoleak
complications cannot always be detected by visual inspec-
tion on CTA scans. The investigation on new techniques to
detect endoleaks and analyse their effects on treatment
evolution is of great importance for endovascular aneurysm
repair (EVAR) technique. The purpose of this work was to

evaluate the capability of texture features obtained from the
aneurysmatic thrombus CT images to discriminate different
types of evolutions caused by endoleaks. The regions of
interest (ROIs) from patients with different post-EVAR
evolution were extracted by experienced radiologists. Three
techniques were applied to each ROI to obtain texture
parameters, namely the grey level co-occurrence matrix
(GLCM), the grey level run length matrix (GLRLM) and
the grey level difference method (GLDM). The results
showed that GLCM, GLRLM and GLDM features pre-
sented a good discrimination ability to differentiate
between favourable or unfavourable evolutions. GLCM
was the most efficient in terms of classification accuracy
(93.41%±0.024) followed by GLRLM (90.17%±0.077)
and finally by GLDM (81.98%±0.045). According to the
results, we can consider texture analysis as complementary
information to classified abdominal aneurysm evolution
after EVAR.

Keywords Aneurysm . EVAR . Texture features . Neural
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Introduction

The endovascular prostheses in abdominal aortic aneurysm
have proven to be an effective technique to reduce the
pressure and rupture risk of aneurysm, offering shorter post-
operation recovery than open surgical repair. The endovas-
cular aneurysm repair (EVAR) treatment is a percutaneous
image-guided endovascular procedure in which a stent graft
is inserted into the aneurysm cavity. Once the stent is
placed, the blood clots around the metallic mesh forcing the
blood flux through the stent and thus reducing the pressure
on the aneurysm walls.
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Nevertheless, in a long-term perspective, different
complications such as prostheses displacement or leaks
inside the aneurysm sac (endoleaks) could appear provoking a
pressure elevation and increasing the danger of rupture
consequently.

Due to this, periodic follow-up scans of the prosthesis
behaviour are necessary. At present, contrast-enhanced
computed tomographic angiography (CTA) is the most
commonly used examination for imaging surveillance [1].
On the other hand, the post-operation analysis is quite crude
as it involves manually measuring different physical
parameters of the aneurysm cavity [2]. According to these
measurements, the evolution of the aneurysm can be split
up into two main categories:

– Favourable evolution. A reduction of the diameter of the
aneurysm sac can be observed. This means that the
aneurysm has been correctly excluded from the circulation.

– Unfavourable evolution. A growth of the aneurysm
diameter in the presence of endoleaks is observed.
Endoleaks can be detected thanks to contrast in the CT
images.

The time series of CTA images of two patients who
underwent EVAR treatment and experimented favourable or
unfavourable evolution are shown in Fig. 1.

We could also distinguish a subcategory inside the
unfavourable evolution cases. There are patients in which
abdominal aneurysm does not increase or reduce signifi-
cantly its volume and endoleaks are not visually detected
(endotensión). Even today the cause for this behaviour
remains a source of controversy [3].

Initially, the study has been focused on the former main
categories, favourable and unfavourable. The principal hy-
pothesis behind the study is that texture thrombus in favourable
shrinking aneurysms might differ from unfavourable expand-
ing ones so texture parameters could be used as complemen-
tary information. If the hypothesis is confirmed, we consider
the extension of the analysis to endotension cases in posterior
studies. Finally, we envision a decision support system based
on texture features which might provide clinicians with
complementary information for correctly classifying EVAR
evolution. This is clinically important because amore complete
assessment of EVAR progression would be useful in re-
defining management pathways for patients, particularly when
new treatment options are available [4].

Texture Analysis

In recent years, many efforts have been put into the
developing of Computer-Aided Diagnosis (CAD) systems

Fig. 1 CTA images of two patients treated with EVAR. Top row
favourable evolution—a 1 year after treatment, b 2 years after
treatment, and c 3 years after treatment. Bottom row unfavourable

evolution—d 1 year after treatment, e 2 years after treatment, and f
3 years after treatment. White arrow points aneurysm sac in all of the
scans
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based on image processing methods. The principal motiva-
tion for the research on this kind of systems has been to
assist the clinicians on the analysis of medical images [5,
6]. In many occasions, this analysis implies the detection or
measurement of subtle differences, usually difficult to
appreciate by visual inspection even for experienced
radiologist.

CAD systems have been successfully utilized in a wide
range of medical applications, mainly on the cancer
detection and diagnosis field [7–9] but also in areas as
diagnosis of osteoporosis [10], neuroimaging to detect
lesions and abnormalities [11], or the detection of intracra-
nial aneurysms [12].

A particular field inside the image processing methods is
the so-named texture-based analysis. This analysis studies
not only the variation of the pixel intensity values along the
image, but also the possible spatial arrangement of them
and the more or less periodic repetition of such arrangement
(primitives). From this point of view, texture analysis can
help on the functional characterization of different kind of
organs, tissues, etc. at the evolution of disease. The texture
features obtained from the analysis can be fed as inputs for
a deterministic or probabilistic classifier, which assign each
sample with its specific class.

Texture analysis methods can generally be classified into
three categories: statistical methods, model-based methods,
and structural methods [13]. In our approach we have
focused on the application of statistical texture methods,
specifically, on spatial domain statistical techniques as the
grey level co-occurrence matrix (GLCM) [14], the grey
level run length matrix (GLRLM) [15, 16], and the grey
level difference method (GLDM) [17, 18]. These three very
extended methods can capture second or higher order
statistics on the relation between grey values in pixel pairs
or groups of pixels in order to estimate their probability-
density functions. Their validity has been proved in many
studies. Mir et al. [19] utilized spatial grey level depen-
dence matrix (SGLDM), GLRLM, and GLDM to detect
abnormalities in CT images. Chen et al. [20] used GLCM
texture features as inputs for a probabilistic neural network
for the classification of hepatic tissue. In [21], Kim et al.
analysed the use of SGLDM, GLRLM, and GLDM for the
detection of microcalcifications in digitized mammograms.
Vince et al. [22] compared five texture analysis techniques
(first-order statistics, Haralick’s method, Laws’ texture
energy method, the neighbourhood grey-tone difference
matrix method, and texture spectrum features) in character-
ization of coronary plaques on intravascular ultrasound
images and found that the GLCM method established the
most accurate results. Gibbs et al. [23] reported significant
differences in the GLCM texture of benign and malignant
lesions in the breast MRI. In Valavanis et al. [24], SGLDM
and GLDM were used for obtaining texture features from

hepatic tissue non-enhanced CT images and applied to a
backpropagation neural network which classified them in
four categories.

Our purpose in this study is to investigate the GLCM,
GLRLM, and GLDM capacity for the discrimination
between favourable and unfavourable evolutions of patients
after abdominal EVAR treatment. For obtaining this
objective, a semi-automated segmentation process to
facilitate the extraction of samples has been developed.
Once the samples from patients with different post-EVAR
evolution have been obtained, the texture features from the
three methods are calculated and fed into a feed-forward
neural network classifier for automatic classification.

The paper is organised as follows: the “Materials and
Methods” section provides information about the acquisition
of CTA images, the description of the segmentation process,
the theoretical background on the texture analysis methods,
and the definition of neural network structure. The method-
ology and results obtained from the performance evaluation
of the classifier are presented in the “Results” section. Finally,
some conclusions are given in the “Conclusion” section.

Materials and Methods

Dataset

The CTA image scans used in this work were obtained by a
group of three experienced radiologists from the Vascular
Surgery Unit and Interventional Radiology Department of
the Donostia Hospital. These CTA images belong to the
scan studies of 70 patients with ages ranging from 70 to
93 years, conducted over a maximum of 5 years in fixed
periods of 6–12 months.

The total patient set was selected by each one of the
radiologist, unaware of each others’ results. The criteria for
unfavourable evolution cases were based on the detection
of contrast medium within the aneurysm sac or on a regular
increase in aneurysm diameter. For each data point, the
changes in diameter were determined by subtracting follow-
up measurements from preoperative measurements. Anteri-
or–posterior aneurysm diameter measurements were
obtained from CT slices orthogonal to the aortic axis and
only diameter changes ≥2 mm were considered significant.
For favourable cases, the criteria were based on the absence
of contrast and on a stable reduction of aneurysm diameter
during the entire follow-up. In order to generate ground-
truth data sets, only cases with complete agreement on
classification among all radiologists were selected. Bal-
anced sample sets for training and testing the classifier
system were obtained. A total of 35 CTA studies belonged
to the “favourable evolution” class and 35 to the “unfav-
ourable” one. All the studies were taken from the
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abdominal area with a spatial resolution of 512×512 pixels
and 12-bit grey level at the WW400 and WL40 window
and 5 mm in thickness in DICOM format. For each patient,
a maximum of three regions of interest (ROIs) (15×15
pixels) from aneurysm thrombus were manually extracted
from different slices by radiologists, resulting in a total of
210 ROIs. Half of them corresponded to the “favourable
evolution” group and the rest to the “unfavourable” one.

Segmentation Process

In order to facilitate the extraction of samples by radiol-
ogists, a semi-automated segmenting process of the
aneurysm has been implemented. We used ITK [25] and
VTK [26] open-source software toolkits as a base for the
implementation of the process. Initially, meta-images were
created from computerized tomography slices in DICOM
format. During the process, the resolution and the spacing
of the original images were preserved. The files obtained
were used as inputs for the following 3D processing
pipeline. First, a segmentation process of anatomical
structures (spinal canal, lumen, and thrombus) is carried
out. We have used a User-Guided Level Set Segmentation
(UGLSS) [27] based on the 3D active contour segmentation
method called region competition to get the segmented
image of the spinal canal, lumen, and thrombus. It is a
semi-automatic method that suits well in cases where the
boundaries of the structure of interest are not well defined
due to similar grey level values of surrounding tissues. The
UGLSS algorithm proceeds as follows: First, the image is
resampled into a volume with isotropic spacing (1,1,1).
Then, the regions of interest which contains a structure to
segment are selected sequentially. The spinal canal in the
first case, the lumen (stent graft) in the second case, and
finally the thrombus are selected. During the preprocessing,
the probability maps are computed by applying a smooth
lower and upper threshold. The algorithm includes confi-
dence connected voxels that lie in an interval of the current
segmented region in an iterative process [28]. Finally, we
place a spherical seed to initialize an evolving contour and
we establish the parameters that control the propagation and
curvature velocity. The evolving contour is a closed surface
C(t,u,v) parameterized by variables u, v, and by the time
variable t [29]. The contour evolves according to the
following partial differential equation:

@

@t
C t; u; vð Þ ¼ F N

! ð1Þ

Where F is an external force incorporating information
from the image being segmented and acting on the
contour in the normal direction N. We compute the
external force F by estimating the probability that a voxel
belongs to the structure of interest (Pobj) and the

probability that it belongs to the background (Pbg) at each
voxel in the input image:

F ¼ aðPobj � PbgÞ þ bK ð2Þ
Where K is the mean curvature of the contour, and α and

β are weights that modulate the relative contribution of the
two components of F [30]. As the method is semi-automatic,
we stop the execution of the algorithm when we consider
that the contour is corresponding to the structure we are
interested in. Manual erosion was necessary on some
occasions to remove imperfections during the thrombus
segmentation process. The segmented volume is resliced
along the axial plane facilitating the extraction of thrombus
aneurysm samples by specialists. An example of the 3D
processing pipeline result is shown in Fig. 2.

Texture Analysis—Feature Extraction

Grey Level Co-ocurrence Matrix

The GLCM [14] is an estimation of a second order joint
conditional probability-density function f(i,j/d,θ). This
function characterizes the spatial interrelationships of the
grey values in an image. The values of the co-occurrence
matrix elements represent the probability of going from
grey level i to grey level j given that they are separated by
the distance d and the direction is given by the angle θ
(usually θ=0°, 45°, 90°, and 135°). For computing this
probability, the image is scanned in direction θ and the co-
occurrences accumulated in the GLCM. GLCM features are
extracted for ‘n×n’ primitive template matrix in the
directions 0°, 45°, 90°, and 135°, and in some cases,
averaging is done to make them direction invariant.

Fig. 2 3D view of a segmented aneurysm (light colour) and aorta
volume (dark colour)
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In the present application, GLCM features have been
calculated at distance 1 due to the reduced size of the
aneurysm samples. Initially, the assumption of an isotropic
texture distribution inside the aneurysm sac was considered,
consequently averaging over the four angular directions
was computed. To reduce the influence of random noise on
texture features, the number of grey levels was reduced to
16 prior to the accumulation of the matrix.

From GLCM matrix, a set of features are obtained to
classify the kind of texture analysed. In this study, 13 features
have been evaluated: energy, correlation, inertia, entropy,
inverse difference moment, sum average, sum variance, sum
entropy, difference average, difference variance, difference
entropy, and two information measures of correlation.

The Grey Level Run Length Matrix

The GLRLM [15] is a way of extracting higher order
statistical texture information. For a given image, a run
length matrix is a two-dimensional matrix in which each
element p(i,j/θ) represents the total number of runs with
pixels of grey value i and run length j in a certain direction
θ. The number of grey levels in the image is usually
reduced by re-quantization before the accumulation of the
matrix. Averaging over the four angular directions was
computed and the number of grey levels has been kept in
16, equal than in the GLCM method in order to make both
methods comparable.

Various texture features can then be extracted from the
run length matrix. In our case the following 11 features has
been calculated: short run emphasis, long run emphasis,
grey level nonuniformity, run length nonuniformity, run
percentage, low grey level run emphasis, high grey level
run emphasis, short run low grey level emphasis, short run
high grey level emphasis, long run low grey level emphasis,
and long run high grey level emphasis.

Grey Level Difference Method

The GLDM [17] is a way of obtaining first-order
statistics of local property values. The GLDM is based
on the occurrence of two pixels which have a given
absolute difference in grey level and which are separated
by a specific displacement δ. Let g(x,y) represent the
digital picture function. For any given displacement
vector δ=(Δx, Δy), where x and y are integers, let
gd x; yð Þ ¼ g Δx; Δyð Þ � g xþ Δx; yþ Δyð Þj j and D(i/δ)
be the estimated probability-density function defined by
the expression:

D i=dð Þ ¼ P gd x; yð Þ ¼ ið Þ ð3Þ
In this analysis, four possible forms of the vector δ will

be considered: (0, d), (−d, d), (d, 0), and (d, −d) where d is

the intersample spacing distance. Due to the reduced size of
the aneurysm samples, d distance was considered equal to
1. Five textural features are measured from D(i/δ): contrast,
angular second moment, entropy, mean, and inverse
difference moment [18]. As with the GLCM method, the
assumption of an isotropic texture distribution inside the
aneurysm sac was considered, consequently averaging over
the four angular directions was computed.

Classification

The type of classifier employed in this research was a three-
layer backpropagation neural network [31, 32]. The
structure for this neural network consisted of an input layer
with a number of input neurons equal to the number of
features of the used set, one hidden layer with a variable
number of neurons, and an output layer with one neuron. A
nonlinear sigmoid function with zero and one saturation
values is used as the activation function for each neuron,
both the hidden layer and the output layer. The network is
trained to provide a 0.9 output value for a favourable
evolution sample and a 0.1 output value for an unfavour-
able evolution one. Figure 3 shows a schematic of the
artificial neural network used as a classifier in this work.

Three neural networks with different number of input
nodes were implemented. A neural network with 13 input
nodes for GLCM, another with 11 input nodes for GLRLM,

Fig. 3 Schematic of the artificial neural network (ANN) used as a
classifier

Table 1 The average classification accuracy (in %) for training and
testing sets of the neural network is given for the GLCM, GLDM, and
GLRLM features

Texture method Accuracy (%)—training Accuracy (%)—testing

Mean SD Mean SD

GLCM 94.46 0.003 93.41 0.024

GLDM 91.41 0.007 90.17 0.077

GLRLM 82.05 0.047 81.98 0.045
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and another one with 5 input nodes for GLDM. All the
textural features were normalized by the sample mean and
standard deviation of the data set before being fed to the
neural network. The backpropagation algorithm with
adaptive learning rate and momentum [31] was used for
neural networks training. In order to find the appropriate
number of hidden neurons, and the values of learning rate
and momentum for each neural network, a trial-and-error
process was applied. Finally a hidden layer of 20 neurons
was found appropriate for all neural networks.

To evaluate the network performance during the training
and testing process, the criterion was the mean square error
given in Eq. (4)

MSE ¼ 1

N

XN

i¼1

oi � tið Þ2 ð4Þ

where oi and ti are the output value and the target value for
the ith input pattern, respectively, and N is the total number

of training patterns. The training process is stopped when
the MSE error no decreases for a significant number of
iterations or when it starts increasing.

Results

In order to evaluate the potential of texture analysis to
discriminate between the two types of aneurysm evolution,
the development and validation of the neural network have
been based on the tenfold cross validation method [32]. The
210 texture feature data sets were randomised and divided
into 10 sets of 21 samples each. The neural networks were
trained and tested with each one of the ten sets. Each time,
nine of the sets were used for training the net and the
remaining one was used for testing. To improve the
evaluation of performance of the feature sets, the tenfold
cross validation was repeated six times averaging the
results.

The average of total percent of correctly classified cases
(accuracy) for all the trials was used as an estimate of the
performance of each classifier and consequently of the
discrimination ability of textures features for differentiate
between favourable or unfavourable cases. Table 1 shows
the accuracy values (mean±standard deviation) estimated
by the 10-fold cross validation of the training and testing
sets of each texture analysis method.

From the Table 1, it is shown that all texture analysis
methods supplied the neural network with enough discrim-
inative information to differentiate between aneurysm

Table 2 The AUC values (mean±standard deviation) calculated for
feature training and testing sets using the tenfold cross validation

Texture method AUC_mean—training AUC_mean—testing

Mean SD Mean SD

GLCM 0.981 0.003 0.977 0.023

GLDM 0.976 0.003 0.960 0.022

GLRLM 0.868 0.004 0.851 0.028

Fig. 4 Averaged ROC curves for training (left) and testing (right) sets from GLCM (line), GLDM (asterisk), and RLGM (multiplication sign)
features fed into neural network inputs
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evolutions. The best performing features set in terms of
correctly classified cases corresponds to the GLCM method
(93.41%±0.024) but the other two methods, GLDM
(90.17%±0.077) and GLRLM (81.98%±0.045), could also
be considered as significant.

The area under the ROC curve (AUC) was also used as a
measure of the classification performance. Table 2 presents
the AUC values (mean±standard deviation) calculated for
feature training and testing sets using the tenfold cross
validation.

The obtained values show again that the biggest area
under the ROC curve, and consequently the best perfor-
mance of the classifier is obtained with the set of features
extracted with the GLCM method (AUC=0.977±0.023),
followed by the GLDM (AUC=0.960±0.022), and the
GLRLM methods (AUC=0.851±0.028). Figure 4 depicts
the average ROC curves obtained using the tenfold cross
validation testing sets for each texture method.

Although the GLCM method scores the highest AUC
value, the GLDM method follows it very closely. The
GLRLM method performance is the worst of the three but it
can still be considered as indicative. These ROC curves
confirm the previous accuracy results and reinforce the
hypothesis of using texture analysis as discriminative
information.

According to the classification accuracy and area under
ROC curve results for the three methods, we could affirm
that texture analysis might offer complementary informa-
tion to support radiologist on classifying aneurysm evolu-
tion after EVAR.

Conclusions

In the present study, we have analysed the discriminative
capacity of textures features for classifying the evolution
experimented by aorta aneurysm treated by EVAR. For this
purpose, texture parameters have been extracted by three
different methods, GLCM, GRLM, and GLDM. The
texture feature set obtained by each method was separately
fed to an artificial neural network classifier. The classifica-
tion performance of the three texture analysis methods were
evaluated by percent of correctly classified cases and area
under the ROC curve values estimated by the tenfold cross
validation.

The results obtained by each texture analysis method
permit to assert that the two main aortic thrombus aneurysm
evolutions, namely favourable or unfavourable, correspond
to different textures parameters. Consequently, we can
conclude that texture analysis could be utilized by
physicians as complementary information to classify the
post-operative evolution in patients who underwent EVAR
treatment.

The results can be considered as promising, taking into
account the limited number of patients. A bigger patient
dataset would be needed in order to generalise the findings
to different clinical situations. The study can also be
regarded as a first step to more specific studies, particularly
for the unfavourable endotension cases. In these cases a
better knowledge of the specific reasons that provokes the
leakage from prosthesis to the aneurysmatic sac could be
precious at the time to decide the treatment to follow.
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