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Abstract In a computer-aided diagnosis (CADx) scheme
for evaluating the likelihood of malignancy of clustered
microcalcifications on mammograms, it iS necessary to
segment individual calcifications correctly. The purpose of
this study was to develop a computerized segmentation
method for individual calcifications with various sizes
while maintaining their shapes in the CADx schemes. Our
database consisted of 96 magnification mammograms with
96 clustered microcalcifications. In our proposed method, a
mammogram image was decomposed into horizontal sub-
images, vertical subimages, and diagonal subimages for a
second difference at scales 1 to 4 by using a filter bank. The
enhanced subimages for nodular components (NCs) and the
enhanced subimages for both nodular and linear compo-
nents (NLCs) were obtained from analysis of a Hessian
matrix composed of the pixel values in those subimages for
the second difference at each scale. At each pixel, eight
objective features were given by pixel values in the
subimages for NCs at scales 1 to 4 and the subimages for
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NLCs at scales 1 to 4. An artificial neural network with the
eight objective features was employed to enhance calcifi-
cations on magnification mammograms. Calcifications were
finally segmented by applying a gray-level thresholding
technique to the enhanced image for calcifications. With the
proposed method, a sensitivity of calcifications within
clustered microcalcifications and the number of false
positives per image were 96.5% (603/625) and 1.69,
respectively. The average shape accuracy for segmented
calcifications was also 91.4%. The proposed method with
high sensitivity of calcifications while maintaining their
shapes would be useful in the CADx schemes.

Keywords Computerized segmentation - Calcification -
Magnification mammogram - Multiresolution analysis -
Artificial neural network

Introduction

Clustered microcalcifications are present in 30% to 50% of
all cancers found in a mammography examination. [1, 2]
However, it is very difficult for radiologists to correctly
distinguish between benign and malignant clustered micro-
calcifications because they are often small and subtle. In the
USA, the positive predictive value of mammography, i.e.,
the ratio of the number of found breast cancers to the
number of lesions diagnosed as malignant case on mammo-
grams, is typically between 15% and 30%. [3, 4] Therefore,
many investigators have developed computer-aided diagnosis
(CADx) schemes [5] which present radiologists objective
indices for a diagnostic aid by computer analysis in order to
improve the positive predictive value of the mammography.

@ Springer



378

J Digit Imaging (2012) 25:377-386

[6-13] As a CADx scheme, Jiang et al. [6] developed a
computerized method for estimating the likelihood of
malignancy of clustered microcalcifications by using an
artificial neural network (ANN) with eight image features on
mammograms. Chan et al. [7, 8] proposed a classification
method for analyzing malignant and benign calcifications by
using various feature classifiers with morphologic and
texture features. Nakayama et al. [9-11] developed a
computerized scheme for identifying histological classifica-
tions of clustered microcalcifications based on the differ-
ences in both the image features and the growth speeds
among histological classifications. Muramatsu et al. [12, 13]
developed a computerized method for providing images of
lesions of a known disease that have a similar appearance to
lesions of an unknown disease. In most of the CADx
schemes, objective features were extracted from segmented
calcifications to analyze clustered microcalcifications. There-
fore, it is important to segment all calcifications accurately
within the clustered microcalcifications on mammograms. It
is also necessary to segment individual calcifications while
maintaining their shapes because the information on their
shapes is an important finding in distinguishing between
benign and malignant clustered microcalcifications. [14]
Previously, some studies have demonstrated a computerized
segmentation method for calcifications while maintaining
their shapes. [15, 16] However, it would be difficult for these
methods to extract the shapes of calcifications with subtle
edge accurately because these methods used the edge
information of individual calcifications.

Calcifications on mammograms have various sizes and
shapes. To accurately segment individual calcifications
within clustered microcalcifications, therefore, it is neces-
sary in the segmentation method to analyze both size
information and shape information. Nakayama et al. [17]
developed a new filter bank for analyzing not only the size
information but also the shape information. In their study,
the degree of nodular structures which were contained in a
region of interest (ROI) was quantified as nodular features
(N features). The degree of both nodular structures and
linear structures which were contained in the ROI was also
quantified as nodular and linear features (NL features).
From this filter bank at different scales, they obtained the N
features and the NL features for structures with size
corresponding to the filter size at the scale. Although those
N features and NL features were shown to be useful in
distinguishing between an abnormal ROI with calcifications
and a normal ROI without calcifications, the method could
not segment individual calcifications while maintaining
their shapes within clustered microcalcifications.

In order to extract accurate shapes of calcifications with
various sizes, each pixel instead of ROI on magnification
mammograms was evaluated whether it belongs to a
calcification or not by use of the objective features obtained
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from the filter bank at different scales in our study. We
evaluated the sensitivity and the shape accuracies for the
segmented calcifications within clustered microcalcifications
by applying the proposed method to 625 calcifications.

Related Work

There have been many studies for region extraction. [15, 16,
18-25] A region-growing technique [15, 18] is one of the
region extraction methods which have been widely used for
medical images. In the region-growing technique, a pixel on a
target region is first set as an initial seed point. This technique
then determines whether the neighboring pixels should be
added to the same region as the initial seed point by use of
predefined criteria such as the range of pixel values. This
procedure is repeated while there is an added pixel. Although
a region-growing technique is a simple and powerful tool for
region extraction, the selection of the criteria is very difficult
for indistinct calcifications. A Snakes is also one of the region
extraction methods which are used for medical images. [19—
25] The Snakes is a deformable spline controlled by the
evaluation functions based on constraint condition with
several parameters. The border line for the Snakes continues
to shrink or extend actively and dynamically until the energy
functional which consisted of the internal strain energy and
the image energy is minimized. The region wrapped by the
border line is then determined as the extracted region when
the energy functional is minimum. It would be difficult for
the Snakes to extract the edges of calcifications with fine
irregular shape in detail because the border line is given by an
approximated curve based on a spline curve.

Materials and Methods
Materials

In clinical practice, magnification mammograms are fre-
quently used for evaluating clustered microcalcifications in
detail after radiologists detect them on standard mammo-
grams. [14] Magnification mammograms were also used in
some CADx schemes. [9-11] Therefore, our database
consisted of 96 magnification mammograms with 70
malignant clustered microcalcifications and 26 benign
clustered microcalcifications at the Breastopia Namba
Hospital, Miyazaki, Japan. It included a total of 1,563
calcifications. The magnification mammograms were ac-
quired with a Kodak MinR-2000/MinR-2000 screen/film
system. The magnification factor was 1.8. All mammo-
grams were digitized to a 512x512 matrix size with a
0.0275-mm pixel size and 12-bit gray scale by use of an
EPSON ES-8000 digitizer (optical resolution 800 x
1,600 dpi, optical density range 0.0 to 3.3 D). The locations
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and the shapes of individual calcifications were determined
by an experienced radiologist. In order to train and evaluate
the proposed method, we divided our database randomly
into a training set and a test set. Each set included 48
mammograms. The number of calcifications in the training
set and that in the test set were 938 and 625, respectively.

Methods
Overall Scheme for Segmentation of Calcifications

Figure 1 shows a schematic diagram of the proposed
method for the segmentation of individual calcifications
within clustered microcalcifications on magnification mam-
mograms. The mammogram image was first decomposed
into horizontal subimages, vertical subimages, and diagonal
subimages for a second difference at scales 1 to 4 by the
filter bank [17] because the average pixel size of maximum
chords of calcifications included in our database was
smaller than the filter size at scale 4. The enhanced
subimages for nodular components (NCs) and the enhanced
subimages for both nodular and linear components (NLCs)
at scales 1 to 4 were obtained from an analysis of a Hessian
matrix composed of the pixel values in those subimages for
the second difference at the corresponding scale. At each
pixel, the pixel values in the enhanced subimages for NCs
at scales 1 to 4 were defined as the N features at scales 1 to
4, respectively. Note that pixel values in the enhanced
subimages for NCs were used instead of the degree of
nodular structures which were contained in a ROI in
Nakayama’s study. [17] The pixel values in the enhanced
subimages for NLCs at scales 1 to 4 were also defined as
the NL features at scales 1 to 4, respectively. An artificial
neural network [26] with the N features and the NL features
at scales 1 to 4 was employed to evaluate the likelihood that
the pixel belongs to a calcification. Calcifications were
segmented by applying a gray-level thresholding technique

[ Magnification Mammogram ]
i

Decomposition of original image with filter bank

]

Extraction of eight objective features at pixel

¥

Enhancement of calcifications with ANN

]

Segmentation of calcifications

i

[ Segmented image for calcifications ]

Fig. 1 Schematic diagram of the proposed method for the segmen-
tation of individual calcifications within clustered microcalcifications
on magnification mammograms

[27] to the enhanced image for calcifications defined by the
output values of the ANN.

Filter Bank

Calcifications on magnification mammograms present
nodular structures and have various sizes. Therefore, we
used a filter bank [17] for analyzing both the size
information and the shape information, as shown in
Fig. 2. Here, z 7 represented the delay of j sampling period
in a digital filter. The first derivative on the digital image
corresponds to the first difference. Hy(2'), Fy(Z) were the
filters for the first difference at scale j, which were given as

Hy(2) = 5 (2 — =), (1)
Fiu(d) =5 (-7 +27). 2)

Therefore, Hy(Z)Fy(7)was the filter for the second
difference, which was

Hy () () = 3 (- +2-=7). (3)

Hy(Z)F.(Z) was also the filter for the smoothing operator,
which was given as

HLE)FLE) =7 (4 2+27) @

Sof (x,y) was an original image. The smoothed subimage
Sif(x,y) at scale j was obtained by applying the sequential
applications of the horizontal smoothing operator and the
vertical smoothing operator toS;_f(x,y). The horizontal
subimage WjH 'f(x,y) at scale j was obtained by applying the
second difference filter in the vertical direction to S;_;f(x,y),
whereas the vertical subimage Wij (x,y) at scale j was
obtained by applying the second difference filter in the
horizontal direction to S;_if(x,y). The diagonal subimage
W/.D f(x,y) at scale j was also obtained by applying the first
difference in the vertical direction followed by the first
difference in the horizontal direction to S;_if (x,y). Figure 3
shows the subimages obtained from the analysis bank of the
filter bank at scales 1 to 4. The pixel values in these
subimages W/'f(x,y), W/f(x,y), and WPf(x,y) corre-
spond to the elements of a Hessian matrix A which was
defined as

P 5
b [af axé;l N {W,Vf(x,y) WPS (x,)

>*f o Pf D H
xdy 0 VV/ f(xvy) VVJ f(x,y)

Here, f(x, y) presents a continuous function. The smallest
value and the largest value of the second derivatives in all
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directions at a pixel were able to be calculated approxi-
mately by small eigenvalue ljs.ma"and large eigenvalue
A€ of the Hessian matrix H. The following formulas
indicated the conditions that the two eigenvalues /1;."“*‘” and
A% must satisfy for a nodular structure and a linear

j
structure, respectively. [17]

for a nodular structure : 2™ & plarge )

(6)

for a linear structure : A < 0, plge ~ ¢

(7)
The enhanced subimage for nodular structures at scale j

was defined by ﬂ;arge the sign of which was inverted. The
enhanced subimage for both nodular and linear structures at

Fig. 3 Subimages obtained
from the analysis bank of the
filter bank at scales 1 to 4

Original image
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scale j was also defined by 25" the sign of which was
inverted. Figures 4 and 5 show the enhanced subimages for
NCs and the enhanced subimages for NLCs at scales 1 to 4,
which were obtained from an abnormal ROI with clustered
microcalcifications and a normal ROI with blood vessels.
The pixels on the nodular structures such as calcifica-
tions in the original image appeared to have high pixel
values in the enhanced subimages for NCs, whereas the
pixels on the nodular structures or the linear structures
such as blood vessels appeared to have high pixel
values in the enhanced subimages for NLCs. The pixels
on the large structures in the original image also tended
to have high pixel values at higher scales. Therefore, it
would be possible to evaluate whether a pixel belongs
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Fig. 4 Example of enhanced
subimages for NCs and for
NLCs at scales 1 to 4, which
were obtained from a ROI with

clustered microcalcifications for NCs

Original image

Enhanced subimages

for NLCs

to calcifications with various sizes by using the pixel
values in these enhanced subimages.

Segmentation of Calcifications

An ANN [26] which was a three-layered, feed-forward
network with a back propagation algorithm was employed
to evaluate the likelihood that each pixel belongs to a
calcification on magnification mammogram. The parame-
ters for the ANN (the coefficient of the momentum term,
0.2; the learning rate, 0.2; the slant of the sigmoid function,
1.0; the number of the hidden layer neurons, 9; and the
number of the training iterations, 280) were determined by
taking into account the greatest areas under free-response
receiver operating characteristic (FROC) curves [28] with
various combinations of the parameters. Here, the coeffi-
cient of the momentum term and the learning rate were
varied from 0.1 to 1.0, whereas the slant of the sigmoid
function was varied from 0.5 to 3.0. The number of the
hidden layer neurons was varied from 4 to 10. The ANN
was also trained up to 1,000 iterations. For the input of the
ANN at each pixel, we used eight objective features (N
features and NL features at scales 1 to 4) given by the pixel
values in the enhanced subimages for nodular structures
and the enhanced subimages for both nodular and linear
structures at scales 1 to 4. The ANN was trained by using
30,498 abnormal pixels of interest (POIs) on 938 calcifica-
tions and 30,000 normal POIs on normal tissues in the
training set. Abnormal POIs were all pixels on calcifica-
tions included in the training set, whereas normal POls

Fig. 5 Example of enhanced
subimages for NCs and for
NLCs at scales 1 to 4, which
were obtained from a ROI with

blood vessels for NCs

Original image

Enhanced subimages

for NLCs

Enhanced subimages

Enhanced subimages

scale 2 scale 3 scale 4

scale 1

were selected randomly on normal breast tissues. Here, a
supervised signal for calcifications and that for normal
tissues were given as 0.95 and 0.05, respectively. The
output value of the ANN would be higher when the pixel
was on calcifications in the original image. The enhanced
image for calcifications was then defined by the output
value of the ANN at each pixel. Figure 6 shows an example
of an enhanced image for calcifications. Calcifications were
finally segmented by applying a gray-level thresholding
technique [27] to the enhanced image.

Evaluation of Detection Performance and Shape Accuracy

A FROC curve [28] was usually used to summarize
quantitatively the detection performance of the computerized
scheme. The FROC curve shows the relationship between
true-positive fraction (sensitivity) and the average number of
false positives (FPs) per image when varying the threshold
value continuously in a computerized scheme. In this study,
the threshold value was varied in the segmentation of
calcifications. When a segmented candidate for calcification
overlapped with a true calcification region determined by an
experienced radiologist, this candidate was considered to have
been “truly” detected. When a candidate did not overlap with
a true calcification region, this candidate was considered a
false positive. The shape accuracy for a segmented calcifica-
tion was also defined as

area(4 N B)

Shape accuracy = — =
P ey area(4 U B)

(8)

scale 2 scale 3 scale 4

scale |
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Fig. 6 Example of an enhanced image for calcifications. a Original
image, b enhanced image

Here, A was the calcification region segmented by the
proposed method, whereas B was the true calcification
region determined by an experienced radiologist. The change
in the average shape accuracies was also evaluated by
varying the threshold value in the segmentation of the
candidates for calcifications.

Results

Figure 7 shows the relationships between the N features
and the NL features at scales 1 to 4. These objective

features were obtained from 100 abnormal POIs and 100
normal POIs. These abnormal POIs were selected randomly
on calcifications in the training set, whereas these normal
POIs were selected randomly on normal breast tissues in
the training set. Both of the N features and the NL features
for calcifications at all scales tended to be larger than those
for normal tissues. Most of the normal POIs which had as
high NL features as the abnormal POIs were selected from
blood vessels. The difference in the N features and the NL
features at scale 2 between calcifications and normal tissues
appeared large. This would imply that the number of
calcifications with the size corresponding to the filter size at
scale 2 was large in our database. Table 1 shows the result
of test for univariate equality of group means. This test was
evaluated by using the objective features in Fig. 7. The
Wilk’s lambdas [29] for the NL features at scale 2 were
smaller than those for the other objective features. The F
value [29] for the NL features at scale 2 was also larger
than those for any other features. This result would indicate
that the NL features at scale 2 made a larger contribution to
evaluate whether a pixel belongs to a calcification or
normal tissue. On the other hand, the N features at scale 4
had the largest Wilk’s lambda and the smallest F' value. We
considered that most of calcifications contained in our
database were smaller than filter size at scale 4. However,

Fig. 7 Relationship between N a b
60 60
features and NL features a at
scale 1, b at scale 2, ¢ at scale 3, 50 L 50 F .
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— 40} «~ 40 .
2L ) . * .
g 30t g 30f o teLt
® w® e s i
8 20t 2 20F " st
2 5 ... B ga%
& 10t S 10¢ ,:mw
E ok E 0r *‘: )
10 ® Calcification 10 ® Calcification
i + Normal tissue 0T + Normal tissue
20 L L L L L L -20 L L L L L L !
-20 -10 0 10 20 30 40 50 60 -20 -10 0 10 20 30 40 50 60
N features at scale 1 N features at scale 2
C o d o
50 + 50
e 40+ * <+ 40 F
© o o 2L
g 30} g 30t s e
5 ¢ 5
g 20 g 20 ..
E E o )
8 10t S 10 o fiERe
Z 2 8
0f of o7
® Calcification ® Calcification
-10 - + Normal tissue -10 | + Normal tissue
20 L L L L L L 220 ! L L 1 L L !
-20 -10 0 10 20 30 40 50 60 -20 -10 0 10 20 30 40 50 60

N features at scale 3

@ Springer

N features at scale 4



J Digit Imaging (2012) 25:377-386 383
o . 100
Table 1 Tests for univariate equality of group means. /___/0’_‘
90
Wilk’s lamda F value p value 80 & //K—//—‘——‘
N features at scale 1 0.611 125.8 <0.001 < 0r
=3
N features at scale 2 0.585 140.2 <0.001 .y 60
N features at scale 3 0.629 116.7 <0.001 :E 50 1
N features at scale 4 0.765 60.7 <0.001 @ 40
Q
NL features at scale 1 0.483 211.6 <0.001 “ 30} -e Proposed Method with 4 N features and 4 NL features
NL features at scale 2 0.467 226.3 <0.001 20 - - Computerized method with 4N features
NL features at scale 3 0.584 141.2 <0.001 10 =& Computerized method with 4NL features
NL features at scale 4 0.677 94.6 <0.001 0 . . . . .
0.0 0.5 1.0 1.5 2.0 25 3.0

the p value for the N features at scale 4 reached the level of
statistical significance (p<0.001). Thus, these eight objec-
tive features were statistically useful for evaluating the
likelihood that a pixel belongs to a calcification. With the
proposed method using a threshold value of 0.5 in applying
the gray-level thresholding technique to the enhanced
images for calcifications, the sensitivity and the number of
false positives per image were 96.5% (603/625) and 1.69,
respectively. The average shape accuracy for the proposed
method also was 91.4%.

Discussion

In many previous studies for detecting calcifications,
computerized methods have been developed by the use of
only the features related to the nodular structure. In order to
investigate the usefulness of the combination of the N
features and the NL features in terms of the sensitivity, we
evaluated not only the detection performance with the
proposed method but also that with a computerized method
using only four N features at scales 1 to 4 and that with a
computerized method using only four NL features at scales
1 to 4. Figure 8 shows the FROC curves obtained by
applying the three different computerized methods to 48
magnification mammograms in the test set. The detection
performance with the proposed method was much higher
than that with the computerized method with four N
features or with four NL features. Although calcifications
with irregular structure tended not to be detected by the
computerized method based on only the features related to
the nodular structure, most of them were detected correctly
by the combination of the features related to the nodular
structure and the linear structure in the proposed method.
Figure 9 shows the average shape accuracy for segmented
calcifications when threshold value for a gray-level thresh-
olding technique varied from 0.1 to 0.9. The average shape
accuracies did not change rapidly within the range of
appropriate threshold values. This result would indicate that
proposed method had high robustness. With a threshold

Number of false positives per image

Fig. 8 FROC curves obtained by three different computerized
methods with N features and NL features, N features, and NL features
at scales 1 to 4

value of 0.3, the sensitivity was relatively high (98.71%),
although the average shape accuracy and the number of false
positives per image were low and large (89.29% and 9.54).
With a threshold value of 0.9 though the sensitivity and
shape accuracy were low and low (84.93%, 88.47%).
Therefore, we considered that a threshold value between
0.35 and 0.85 would be appropriate in CADx schemes.
Figure 10 shows an example of a segmented image by use of
the proposed method with a threshold value of 0.5 (the
average shape accuracy, 91.4%).

We also investigated the change in the sensitivity, the
shape accuracy, and the false positive for the proposed
method when each of the ANN parameters was varied as
mentioned in the section of the segmentation of calcifica-
tions. With a threshold value of 0.5 in the segmentation of
calcifications, the average sensitivity, the average shape
accuracy, and the average false positive per image were
94.57%, 91.05%, and 2.13, respectively. The standard
deviation of the sensitivities, that of the shape accuracies,

100

90 —
80 f
70 f
60
50 f
40+
30+
20
10 -

Average shape accuracy |%]

0 L 1 L L L L 1 L 1
00 01 02 03 04 05 06 07 08 09 10
Threshold value of pixels in the enhanced image

Fig. 9 Change in the average shape accuracies for segmented
calcifications by the proposed method
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Fig. 10 Example of a segment-
ed image for calcifications. a
Original image, b true calcifica-
tion regions determined by

an experienced radiologist,

¢ segmented calcifications by
the proposed method

and that of the false positives per image were also 3.99,
3.29, and 3.44, respectively. These results would imply the
performance of the proposed method was not influenced
substantially by the parameters for the ANN.

In order to investigate the adequacy of scales used for
the filter bank, we compared the performances of the
computerized methods with six objective features at scales
1 to 3, eight objective features at scales 1 to 4 (the proposed
method), and ten objective features at scales 1 to 5.
Figure 11 shows the FROC curves obtained by applying
the three computerized methods to 48 magnification
mammograms in the test set. Figure 12 also shows the
average shape accuracies for segmented calcifications
obtained by the three computerized methods. Here, the
ANN parameters for each of the three computerized
methods were determined by taking into account the
greatest areas under the FROC curves. Although the highest
shape accuracy for the proposed method with scales 1 to 4
was slightly higher than that for the other computerized
methods, the sensitivity and the average FPs for the
proposed method were comparable to those for the other
computerized methods.

The pixel size of magnification mammograms used in
this study was 0.0275 mm. The filter sizes at scales 1, 2, 3, 4,
and 5 which were showed to be useful for the segmentation of

100

90 f fﬁf

80 |

70 |
60 |
50 |-
40

Sensitivity [%]

30 | = Computerized method with N features and NL features at scales from 1 to 3
20 | =@ Proposed method with N features and NL features at scales from 1 to 4

10 | =+ Computerized method with N features and NL features at scales from 1to 5

0 1 1 1 1 1 1 1 1 1
00 05 10 15 20 25 30 35 40 45 50

Number of false positives per image

Fig. 11 FROC curves obtained by three different computerized
methods with the N features and the NL features at scales 1-3, scales
14, and scales 1-5
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calcifications were 0.1375, 0.2475, 0.3575, 0.4675, and
0.5775 mm, respectively. If a standard mammogram with a
pixel size of 0.05 mm is used, scales 4 and 5 might be not
useful since the filter sizes at scales 1, 2, 3, 4, and 5 are 0.25,
0.45, 0.65, 0.85, and 1.05 mm, respectively. Therefore, it
would be necessary to change the scales of the filter bank by
taking into account the pixel size of the image. However, we
believe that it would not be necessary to adjust the parameters
for the ANN substantially in images with different resolution
because the sensitivities and the shape accuracies hardly
changed in this study even when the parameters were varied.

To investigate the usefulness of evaluating the possibility
for belonging to a calcification at each pixel in terms of the
shape accuracy, the proposed method was compared with the
Snakes. An initial border line for the Snakes was given by a
circle area with a diameter larger than any calcifications
included in our database. In the Snakes, the initial border line
was first set at the center of each calcification in the
magnification mammograms. Sixty different combinations
of parameters were used for the energy function in the Snakes.
The average shape accuracy for extracted calcifications was
79.3% when it was the highest in the 60 combinations. The
average shape accuracy for the Snakes was lower than that
91.4% of the proposed method. The Snakes is a method that is
influenced strongly by edge strength. Therefore, when a

100
90
80
70
60
50
40
30 [ =»=Computerized method with N features and NL features at scales from 1 to 3

20 [ =e=Proposed method with N features and NL features at scales from 1 to 4

Average shape accuracy [%]

10 |=+=Computerized method with N features and NL features at scales from 1 to 5

0 1 1 1 1 1 1 1 1
00 01 02 03 04 05 06 07 08 09 1.0

Threshold value of pixels in the enhanced image

Fig. 12 Change in the average shape accuracies for segmented
calcifications obtained by three different computerized methods
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calcification with low contrast and a calcification with high
contrast exist near each other, the border line of the
calcification with low contrast did not shrink or extend
appropriately due to the information of the edge of the
calcification with higher contrast. On the other hand, the
proposed method of evaluating each pixel is not influenced by
the surrounding information. Although we evaluated the
shape accuracy for extracted calcifications by use of the 60
different combinations of parameters for the Snakes, it may be
improved by using more optimal combination of the
parameters. However, it would be very difficult to find.

There are some limitations in this study. One limitation is
that we used magnification mammograms instead of standard
mammograms as materials and proposed a computerized
segmentation method for them. Radiologists frequently use
magnification mammograms in distinguishing between be-
nign and malignant clustered microcalcifications after they
detect clustered microcalcifications in standard mammo-
grams. On the other hand, there are radiologists and
researchers who promote the diagnosis of clustered micro-
calcifications in standard mammograms in order to reduce the
cost and the time of taking magnification mammograms. In a
future study, it will be necessary to modify the proposed
method in order to deal with standard mammograms by
changing the scales in the filter bank and relearning the ANN.
Another limitation is that we could not check whether
calcifications in our database have all possible shapes.
However, we believe that our database included most of
possible shapes because it included many malignant calcifi-
cations which tend to have various irregular shapes.

Conclusion

In this study, we developed a computerized segmentation
method for individual calcifications while maintaining their
shapes within clustered microcalcifications on magnifica-
tion mammograms. We showed the usefulness of the N
features and the NL features for evaluating the likelihood
that a pixel belongs to a calcification. The proposed method
was shown to have high sensitivity with high shape
accuracy for segmented calcifications, and would be useful
in a CADx scheme for a diagnostic aid.
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