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Abstract 3D imaging systems are used to construct high-
resolution meshes of patient’s heads that can be analyzed
by computer algorithms. Our work starts with such 3D head
meshes and produces both global and local descriptors of
3D shape. Since these descriptors are numeric feature vectors,
they can be used in both classification and quantification of
various different abnormalities. In this paper, we define these
descriptors, describe our methodology for constructing them
from 3D headmeshes, and show through a set of classification
experiments involving cases and controls for a genetic
disorder called 22q11.2 deletion syndrome that they are
suitable for use in craniofacial research studies. The main
contributions of this work include: automatic generation of
novel global and local data representations, robust automatic
placement of anthropometric landmarks, generation of local
descriptors for nasal and oral facial features from landmarks,
use of local descriptors for predicting various local facial

features, and use of global features for 22q11.2DS classifica-
tion, showing their potential use as descriptors in craniofacial
research.
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Introduction

Many genetic conditions are associated with characteristic
facial features. A number of medical studies have sought
both to quantify the facial features that are affected in these
conditions and to help clinicians and researchers to better
understand specific shape deformations. Examples of such
conditions include: craniosynostosis, a condition caused by
the premature fusion of cranial sutures due to biome-
chanical, environmental, hormonal or genetic factors [1, 2];
22q11.2 deletion syndrome, a genetically caused condition
with its widely variable and often subtle facial feature
dysmorphology [3]; and cleft lip and/or palate, a condition
that causes abnormal facial development and is the subject of
a large NIH-funded research effort called the FaceBase
Consortium [4]. This article presents computational
methodologies to aid craniofacial research by developing
automated and objective measurements of craniofacial
dysmorphologies.

From a craniofacial research standpoint, such methods
are needed for several reasons. Primarily, computational
methodologies can be used to better understand the
relationship between different features through associations.
For example, the link between facial dysmorphology and
brain problems has been shown in [5, 6]. Relationships
between facial dysmorphology and cognitive disorders are
also being studied [7]. Further, as a specialist's training may
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lead to subjective detection and grading of a specific
feature, an objective mechanism to assess dysmorphology
becomes necessary.

Imaging technology has reached a state in which large
studies of thousands of individuals can be carried out. After
this data is collected, each 3D digital image must be
analyzed to produce features that can be used to describe its
craniofacial shape. Manual landmarking, the most common
form of feature extraction in the craniofacial research
community, becomes extremely burdensome or even
impossible for the highly trained specialists who would
perform this task. Furthermore, a small number of cranio-
facial landmarks do not fully capture the dysmorphologies
being studied. An automatic approach can alleviate this
burden and the objective measures used can be leveraged to
subdivide the population into feature specific subgroups for
further study. Finally, using automatic and objective
quantification of craniofacial features in combination with
other symptoms, may 1 day aid in the diagnosis of difficult
or uncommon syndromes.

In this article we present methods for quantifying 3D
facial shape for any condition where the dysmorphology of
the craniofacial features is of interest. The craniofacial data
used in our studies are 3D meshes from the 3dMD imaging
system, which obtains full head meshes using a 12-camera
stereo vision data acquisition system. Our methodology
includes image acquisition, image cleaning, pose normali-
zation (so that all heads are in a neutral forward-facing
position), extraction of descriptors, and representation as
feature vectors for use in quantification and classification of
the dysmorphologies being studied.

The literature related to 3D craniofacial analysis spans
two different communities: computer vision and craniofa-
cial research. In the area of computer vision, 3D facial data
is defined as a wire mesh of the head that includes the face.
It is of note that there are methods that use texture
information for facial analysis [8, 9], but there will be little
focus on them here as the data used in this research is
textureless, due to human subjects requirements (IRB).
Morphable model approaches [10–12] leverage databases
of already enrolled 3D head meshes (often hand labeled
with landmarks or features) for new image intake and
recognition. To reduce the computational requirements,
new data representation schemes have been used. Canonical
face depth maps [13] create a smaller representation for 3D
face data, while work like symbolic surface curvatures [14]
concentrated on exactly describing a specific local facial
feature. There is also a significant body of work on 3D
landmarks and features ranging from landmark detection to
appropriate analysis of facial features [15–18]. In each of
these cases, landmarks are either hand-labeled or induced
from previously labeled faces. Lastly, hybrid 2D–3D
methods, where information from one-dimensional space

is used to add detail to another dimensional space, are used
in an effort to improve facial recognition results [19–22].

Our studies have focused on patients afflicted with
22q11.2 deletion syndrome. Studies investigating the
craniofacial phenotype in 22q11.2DS have relied on clinical
description and/or anthropometric measurements. Automated
methods for 22q11.2DS analysis are limited to just two.
Boehringer et al. [23] applied a Gabor wavelet transformation
to ten different syndromes associated with facial dysmor-
phology. The generated data sets were then transformed
using principal component analysis (PCA) and classified
using linear discriminant analysis (LDA), support vector
machines, and k-nearest neighbors. The best prediction
accuracy for 22q11.2DS was found to be 96% using LDA,
dropping to 77% when using a completely automated
landmark-placement system.

The second automated method is the dense surface
model approach [24], which aligns training samples
according to point correspondences and is thus able to
produce an “average” face for each population being
studied. Once the average is computed, PCA is used to
represent each face by a vector of coefficients. Multiple
classifiers were tested, and the best sensitivity and
specificity results for 22q11.2DS (0.83 and 0.92,
respectively) were obtained using support vector
machines [25]. Studying discrimination abilities of local
features (face, eyes, nose, mouth) achieved a correct
22q11.2DS classification rate of 89% [26].

The results presented by Boehringer or the dense surface
model approach cannot be repeated, as we have neither
access to their data nor to the code used to calculate the
specific craniofacial descriptors developed in the studies.
Both methods require hand-placement of landmarks,
exemplifying the lack of automation that makes cranio-
facial research of large populations so prohibitive. Our
landmark-free methodology was designed to remove these
limitations and provide both global and local shape descrip-
tors that can advance the state of craniofacial research.

Methods

The methods used in our research are designed to be widely
applicable to studying any craniofacial condition. In our
work, we have focused on analyzing the shape features of
3D head meshes collected by the Craniofacial Center of
Seattle Children's Hospital using the 3dMDcranial™
imaging system. The work was motivated by an ongoing
research study of 22q11.2 deletion syndrome, a genetic
disorder that affects facial appearance. The Seattle Children's
Institutional Review Board approved the study procedures.

The 3dMD imaging system (see http://www.3dmd.com/)
constructs 3D meshes from multiple-camera stereo. Our
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system has 12 cameras, three on each of four stands.
The system takes 12 color images of the patient's head
from multiple directions, all within a few milliseconds.
3D data is obtained by a technique called active stereo
photogrammetry, which projects a unique light pattern on
the subject while the images are taken. Using this light
pattern, the system is able to identify the same unique
point on the head from multiple images in which it
appears. Since the cameras are pre-calibrated, the corre-
spondences can then be used by a triangulation algorithm
that produces a 3D point for each of the 2D point
correspondences. From these 3D points, a 3D mesh is
constructed in which each point is a vertex and neigh-
boring points are connected by edges. The 3D mesh is the
input to our algorithms.

An automated system to align the pose of each mesh to a
forward-facing neutral position was developed and is
described in [27]. In brief, the original 3D double precision
mesh was interpolated to a 2.5D ordered grid. Symmetry
was used to align the yaw and roll angles. The depth
differential between the chin and forehead was used to align
the pitch angle.

Global Data Representations

Since operations on 3D meshes can be computationally
expensive, and 3D meshes do not provide any inherent
ordering of the data, we chose to simplify the data through
extraction of alternate representations. Three global repre-
sentations were chosen based on desired face information:
(1) frontal and side snapshots of the 3D meshes, (2) 2.5D
depth images, and (3) 1D curved line segments. 2D
snapshots of the 3D mesh images were used as a starting
point, while interpolation to a 2.5D depth image was used
as a means of retaining the 3D aspect of the original mesh
while simplifying the representation. The 1D curved line
segments were used to determine if there was any affected
signal in the subsampled face profile. In each data
representation, the information was normalized to the same
width, while height and depth were scaled to maintain the
original image aspect ratio.

2D Snapshots

The motivation for using 2D snapshots of textureless 3D
meshes came from the eigenfaces [28] approach in
computer vision. After neutral pose alignment, a set of
frontal photographs of the 3D meshes was generated
(Fig. 1a) using the visualization library VTK [29].
Additionally, as these images are most like standard
photographs, our automated results could be compared to
those of humans in other published papers, or to ratings
from dysmorphology experts.

2.5D Depth Images

2.5D images are represented as pixels (Fig. 1b), where the
original mesh data is rasterized to an integer-precision
structured grid with the highest Z value (the tip of the nose)
placed at high illumination. The final width and height of
each face is given by the X- and Y-axes, with final depth of
the face given by Z. For the X-axis normalization, the face
of each individual was scaled to be exactly 200 units wide;
the Y- and Z-axes information were scaled to maintain the
aspect ratio of the original image. To avoid depth of the
face noise, all faces were cut off at the tragus landmarks,
from now on referred to as earcut.

Curved Lines

As using full images of participants is always fraught with
privacy concerns, we considered the possibility that a less
identifiable subset of the data may be sufficient for
detecting facial dysmorphology. Using the 2.5D images,
curved lines can be extracted that can be used to describe
faces. For example, a facial profile, which is a vertical line
down the middle of the face (Fig. 1c), becomes a waveform
(depth as a function of height) that can be analyzed.

Four versions for both vertical and horizontal lines were
selected for signal testing. Odd numbers of lines were used
to maintain symmetry in the data. Finally, a combination of
the horizontal and vertical lines was used to create grids of
sizes 1×1, 3×3, 5×5, and 7×7.

PCA Representations

2D snapshots, 2.5D depth images and curved line
representations were converted using PCA. PCA is
mathematically defined as an orthogonal linear transfor-
mation that transforms the data to a new coordinate
system such that the greatest variance by any projection
of the data comes to lie on the first coordinate (called

Fig. 1 Examples of data representations used in experiments. (A) is
an example of a frontal snapshot of a 3D facial mesh, (B) is the same
individual represented as a 2.5D depth image, and (C) is a 1D curved
line segment through the midline of the face
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the first principal component), the second greatest
variance on the second coordinate, and so on [30].

Although the genetic defect in a group of individuals
may be the same, the expression of a specific clinical
feature may be quite varied. For example, palatal abnor-
malities in 22q11.2DS can vary from dysfunction of an
otherwise normal-appearing palate to an overt cleft of the
palate [31]. In order to understand this range of feature
phenotypes, we choose to develop local facial feature
descriptors as described below.

Local Data Representation

Local facial features were developed based on the 2.5D
depth images. The nose and mouth areas, with arguably the
strongest signals for 22q11.2DS based on literature, were
chosen as the first of local features to examine. As
anthropometric studies are the current standard in craniofa-
cial research, and since the positions of the nose and mouth
were needed for shape-based analysis, an automatic
landmark detection algorithm was developed.

A set of craniofacial anthropometric landmarks and inter-
landmark distances to characterize the craniofacial features
frequently affected in 22q11.2DS were initially selected [32].
Thirty-three of these measurements were identified based on
demonstrated high inter- and intra-rater reliability, as well as
high inter-method reliability when comparing measurements
taken directly with calipers and those taken indirectly on the
3dMD imaging system [33]. Twelve of these landmarks were
amenable to automatic detection, and were used to calculate
ten inter-landmark distances (see Table 1) for subsequent
inter-method comparisons between hand-labeled and auto-
matically detected landmarks. The landmark detection was
described with mathematical detail in [34].

The nasal landmarks used are the sellion(S), pronasale
(PRN), subnasale (SN), and left and right alae (AL).

Additionally, a helper landmark MF′ was used that is similar
to the maxillofrontale (MF): a landmark that is located by
palpation of the anterior lacrimal crest of the maxilla at the
frontomaxillary suture (Fig. 2a). The oral landmarks of
interest are the labiale superius (LS), stomion (STO), labiale
inferius (LI) and left and right cheilion(CH) (Fig. 2b).
Automatic detection of nasal landmarks was performed
using methods described in [34], while oral landmarks were
detected using new methods described below.

Using Besl-Jain peak curvature information, the promi-
nent parts of the upper and lower lip area are found [35].
The labiale superius (LS) location is found where the lower
edge of the upper lip area intersects with midline; while the
labiale inferius (li) is found where the upper edge of the
lower lip area intersects with midline, see Fig. 3. To detect
the stomion (STO) the local z value minimum between LS

and LI is used.
The left and right cheilion (right CH and left CH) are

detected using a combination of two methods. The first
method builds on the local minimum search by detecting a
mouth line as the trough between the upper and lower lip,
ending once the trough disappears as the lips meet (Fig. 3c).
Specifically, using STO as the starting point, the line is
extended to the left by selecting the minimum of the closest
three neighbor points. This process stops when no local
minima can be found. The approach is then repeated for
extending themouth line to the right. The one drawback to this
method is that it may fail to stop at the appropriate point.

The second approach used is based on the peak
curvature values. As the corners of the mouth are natural
peaks, this method searches along the horizontal for the two
nearest peak areas (or dots) to STO, shown in light gray in
Fig. 3a. Once each mouth corner dot is found, a bounding
box is defined. The geometrical center of each bounding
box is calculated, yielding the location of CH (Fig. 3d). The
drawback of this method is that due to face shape the peak
image may not contain the mouth corner dots or the dots
may extended downward to the bottom of the chin. When
the mouth line and dot approaches are used together, the
drawbacks of each method are minimized.

We have found that anthropometric landmark distances
are not very good predictors of 22q11.2DS. Therefore, we

Table 1 Landmark distances obtained using automatically detected
landmarks. Note that the landmark placement of ac is approximated to
be in the same location as the landmark al

Symbol Description Landmarks involved

LA1 Nose width right AL, left AL

LA2 Nose tip protrusion SN, PRN

LA3 Mouth width right CH, left CH

LA4 Upper lip height SN, STO

LA5 Upper lip vermillion height LS, STO

LA6 Vermillion height of lower lip STO, LI

LA7 Right alar base length right AC, SN

LA8 Right alar stretch length right AC, PRN

LA9 Left alar base length left AC, SN

LA10 Left alar stretch length left AC, PRN Fig. 2 Landmarks of interest, where (A) shows nasal landmarks,
while (B) shows oral landmarks
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have developed landmark-based features that are better
predictors. Landmark-based features go beyond the
traditional anthropometric landmarks by providing nor-
malized landmark distances and angles that allow us to
compare diverse ages of individuals. Combinations of
landmark measurements can be used to better describe
the shape of a particular facial feature than standard
anthropometric alone. Eight such descriptors were
developed for the nose and six for the mouth.

The landmark-based descriptors for the nose and their
symbolic representations are given in Table 2. Normalized
nose depth landmark-based nasal descriptor (LN)1 is the
ratio of nose depth to face depth. The normalized nose
width LN2 is the ratio of the width of the nose to the width
of the face. The normalized nasal root width LN3 is the
ratio of the nasal root width to face width. The normalized
nasal root depth LN4 is the ratio of the nasal root depth to
face depth. Average nostril inclination LN5 is the average
of the left and right angles created by the lines outlining the
side of the nose and the base of the nose. Nasal tip angle
LN6 is the angle on the midline M between the sellion and
subnasale. Alar-slope angle LN7 is the 3D angle between
the left and right alae passing through the pronasale.
Finally, the nasal root-slope angle LN8 is calculated as
the 3D angle through the sellion, stopping at the left and
right MF′.

The landmark-based oral descriptors and their symbolic
representations are listed in Table 3. The normalized mouth
length landmark-based oral descriptor (LO)1 is the ratio of
the mouth width to face width. LO2 is the ratio of the
height of the vermilion (red pigmented portion of the lips)
part of the upper lip to full mouth height. LO3 is calculated
similarly to LO2, but for the vermilion portion of the lower
lip. The inclination of the labial fissure LO4 calculates the
angle between the line given by the location of the left and
right cheilion and the horizontal line through the right
cheilion. The upper vermilion angle LO5 is the angle
between the corners of the mouth and the top of the
vermilion part of the upper lip. The lower vermilion angle
LO6 is calculated similarly to LO5, but for the vermilion
portion of the lower lip.

Results

The data set used contained 53 affected individuals, who all
had a genetic laboratory-confirmed 22q11.2 deletion, and
136 control individuals. The study participants were
between the ages of 0.8 and 39 years (median 4.75 years),
and 51% were female. As the facial features of 22q11.2DS
affected individuals can be very subtle compared to the
effects of race, gender, or age [27] and because we had very
few non-Caucasian cases, we chose to restrict our dataset to
a homogonous population of Caucasian only and matchedTable 2 List of nasal landmark-based descriptors

Symbol Description

LN1 Normalized nose depth

LN2 Normalized nose width

LN3 Normalized nasal root width

LN4 Normalized nasal root depth

LN5 Average nostril inclination anglea

LN6 Nasal tip anglea

LN7 Alar-slope anglea

LN8 Nasal root-slope anglea

a Denotes a standard anthropometric distance measure not included in
[33] subset

Fig. 3 Detecting landmarks of
the mouth. (A) lips and corners
of mouth show in dark and light
gray. (B) ls and li landmarks
shown in light gray. (C) mouth
line shown in dark gray. (D) ch
landmarks detected shown in
light gray as ends of mouth line

Table 3 List of oral landmark-based descriptors

Symbol Description

LO1 Normalized mouth length

LO2 Normalized vermilion height of upper lip

LO3 Normalized vermilion height of lower lip

LO4 Inclination of labial fissurea

LO5 Upper vermilion anglea

LO6 Lower vermilion anglea

a Denotes a standard anthropometric distance measure not included in
[33] subset
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controls and cases in age and gender when possible. This
resulted in a subset with even distribution of 43 affected
and 43 control individuals; this data set will be called W86.
For participant privacy reasons, the data used in this
research was restricted to 3D meshes without facial color
and texture maps.

To develop ground truth for the local facial features, three
dysmorphology experts were asked to predict 22q11.2DS
status and to rate commonly known 22q11.2DS facial features
as none, mild, or severe on the W86 dataset. When predicting
disease status, the sensitivity of these experts was 0.76, 0.91,
and 0.97, respectively, with specificity at 0.73, 0.64, and 0.84,
and percent correct 74%, 71%, and 90%. We must note that
expert 3 had previously met each participant in the study,
which may have unconsciously biased her results. When
assessing facial feature severity, the experts agreed with each
other in 48.5% of the cases. Simplification of the ground truth
to represent just the absence or presence of a specific feature
only improved the expert agreement to 53%. Therefore, the
ground truth was further simplified to represent a median
agreement; if two experts agreed as to the presence of a facial
feature in an individual, the ground truth was set to reflect this
consensus. In this simplified case, the experts agreed with
each other 82% on the presence or absence of a facial feature.

As mentioned earlier, global data representations were
transformed using PCA. The attributes were assessed as to
their ability to distinguish between affected and control
individuals. Since 22q11.2DS is associated with a subtle
facial appearance and the data is varied in age and sex, the
simple solution of examining only the top ten principle
components fails. This can be illustrated by using
correlation-based feature selection [36] to find the attributes
that best predict age, sex and affected in data set W86.
Attributes used to best predict affected span the entire
principle component list.

The WEKA suite of classifiers [37] was used for all
classification experiments. Tenfold cross validation was
used for all classifiers, an approach that subdivides the
dataset into a 90% training set, and 10% testing set. This is

done ten times (folds), each time with a different 90/10 split
of the data. Each fold of this system is independently run,
and then the results of all tenfolds are averaged. Of all
classifiers used, the Naive Bayes classifier (henceforth
referred to as Naive Bayes) was found to perform equally
well or better than more complex classifiers, most likely
due to the small data set and relatively large number of
descriptors per individual [38].

The measures used to evaluate success in this research
are sensitivity, specificity and percent correct. Sensitivity
measures the proportion of actual affected that are correctly
labeled as affected. Specificity measures the proportion of
actual unaffected individuals correctly labeled as unaffect-
ed. Finally, percent correct (also known as accuracy)
measures the portion of all decisions that were correct
decisions. For all the measures listed here the results range
from 0 to 1, with a score of 1 being the best.

Global Classification Experiments

Snapshots Versus 2.5D

The purpose of this experiment was to determine how much
data loss would happen by moving from a 3D Snapshot
representation to the 2.5D representation of the data. Addi-
tionally, since ears are known as a signal carrier for 22q11.2DS
and the 2.5D data format is without ears, it was also necessary
to test how much data was potentially lost by using the ear
cutoff threshold. All images were 250×380 in size.

As seen in Table 4, the 2.5D data format was found to
be better than the original 2D snapshot and earcut 2D
snapshot at classifying 22q11.2DS disease status. This
2.5D will be used as a baseline for the following
experiments.

Table 4 Checking for data loss between data representations

Data Set 2D snapshot
of 3D head

2D snapshot of 3D
head earcut

2.5D earcut

Specificity 0.89 0.86 0.87

Sensitivity 0.63 0.60a 0.72

% Correct 76.13 72.93 79.90

All data shown here is from the W86 dataset classified using Naive
Bayes

earcut refers to head data which was trimmed to show the face only
from the tragus to the pronasale
a Statistically significant degradation as compared to 2.5D is marked

Table 5 Classification of vertical curved lines using Naive Bayes on
the W86 data set compared to 2.5D depth image

Data Set 2.5D 1 line 3 line 5 lines 7 lines

Specificity 0.87 0.84 0.88 0.85 0.85

Sensitivity 0.72 0.66 0.69 0.72 0.65

% Correct 79.90 74.89 78.74 78.21 74.85

Table 6 Predicting expert-marked nasal features using landmark-
based nasal descriptor (LN) dataset

Data set Bulbous
nasal tip

Prominent
nasal root

Tubular
appearance

Small nasal alae

Specificity 0.42 0.38 0.22 0.46

Sensitivity 0.65 0.69 0.76 0.71

% Correct 55.71 58.74 59.32 59.72
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Curved Lines

The purpose of this experiment was to discover if subsets of
the data, such as curved lines, contain 22q11.2DS signal.
The three and five vertical curved line representations
performed the best (Table 5). Generally, horizontal lines
performed poorly. Based on known 22q11.2DS signals such
as a hooded appearance of the eyes, prominent forehead
profile, relatively flat midface or general hypotonic facial
appearance, there is promise in using sparse vertical lines to
describe one or more of these anthropometric features.

Landmark-Based Descriptor Experiments

Landmark-Based Nasal Descriptor Similarity to Expert
Scores

The purpose of this experiment was to assess the ability of
the LN to match the experts' median scores for these
features. As seen in Table 6, the ability of LN to match the
experts' median response for any nasal facial feature is
relatively weak. While sensitivity is reasonable, specificity
is low, and overall accuracy is, at best, about 60%.

Landmark-Based Oral Descriptor Similarity to Expert
Scores

The purpose of this experiment was to assess the ability of
the LO to match the experts' median scores for oral facial
features. As seen in Table 7, Open Mouth is well predicted,
most likely due to LO2 and LO3, which are ratios of the
upper and lower lips to the entire mouth height, and LO5
and LO6, whose angles would become steeper as the mouth

is opened. In most cases, both sensitivity and specificity are
higher for the oral descriptors than for the nasal descriptors.

Landmark-Based Descriptor Classification of 22q11.2DS

The prediction of 22q11.2DS performance for the nasal,
oral and combined landmark-based descriptors is compared
to the 2.5D global approach. Although using the combina-
tion of both the nasal and oral landmark-based descriptors
provides an improvement over using just one type of
landmark-based descriptor, none of these outperform the
2.5D global descriptor (Table 8), whose performance is
significantly higher.

When the landmark-based local descriptors and the 2.5D
approach were all used to predict 22q11.2DS, the
performance was similar to that of using 2.5D alone.
Since the number of descriptors in the 2.5D representation
exceeded those of landmark-based and symmetry descriptors
by more than a multiple of two an equally weighted
combination of descriptors was defined. This was done by
using the individual predictions from each of the three
descriptor-sets and then using these values as features for a
new classification. This weighted approach did not yield
further improvement.

Discussion

The main contributions of this work are twofold. First there
is automated generation of global data representations,
including human-readable representations such as snap-
shots of 3D data and curved lines, and a computational
representation that preserves 3D information: the 2.5D
depth image. Second, a robust automated detection of
landmarks was developed and used for the automated
generation of local data descriptors for the nose and mouth.
For each facial feature, landmark-based descriptors were
developed. These global and local descriptors were then
tested by performing experiments on classification of
22q11.2 deletion syndrome on clinical data. Although the
most successful classification algorithm results are pre-
sented here (Naive Bayes), 12 other classifiers and boosting
methods of variable complexity were explored.

Table 7 Predicting expert-marked oral features using landmark-based
oral descriptor (LO) dataset

Data set Open mouth Small mouth Downturned corners
of the mouth

Specificity 0.66 0.52 0.38

Sensitivity 0.90 0.68 0.86

% Correct 86.38 63.46 68.18

Table 8 Comparing the prediction of 22q11.2DS using 2.5D, landmark-based descriptors and a combination of all descriptor data

Data set 2.5D Landmark-based
nasal descriptors

Landmark-based
oral descriptors

All landmark-based
descriptors

2.5D and all landmark-based
descriptors

Specificity 0.87 0.60a 0.73 0.68 0.86

Sensitivity 0.72 0.54 0.41a 0.54 0.73

% Accuracy 79.90 56.63a 57.29a 61.17a 79.22

a Statistically significant degradation as compared to 2.5D
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The local descriptors were also used for shape quantifica-
tion of nasal and oral facial features. Each landmark-based
descriptor method was compared to the median of the experts'
scores. The mismatches to the expert scores in both the nasal
and oral features are not necessarily incorrect predictions, as
selective screening of mismatches has suggested mislabeling
of the facial feature by experts. Examples of such
mislabeling include marking the presence of a bulbous nasal
tip, when the small size of the nasal alae is the actual feature or
marking the presence of a prominent nasal root, when the nose
is tubular in appearance. This further substantiates the need for
automated computer algorithms.

Although the focus of this work was on individuals with
22q11.2 deletion syndrome, the methods developed for this
phenotype should be widely applicable to the shape-based
quantification of any other craniofacial dysmorphology or
towards biometric uses. The general methodology is
applicable to other medical imaging domains, but the
current algorithms are specifically designed to look for the
face and its local features. In order to use the methodology
to describe other biological shapes, such as feet or hands,
the initial processing steps would need to be defined for the
particular shape and the shape aspect of interest. Our
methodology is not suitable for internal organs, because all
our representations rely on there being an important part of
the shape (i.e., the face) that can be reduced from 3D to our
2D and 1D representations that allow for very efficient
computations compared to the full 3D mesh. Finally, the
methodology can be applied to other imaging modalities,
such as CT and MRI, as long as the original voxel image
can be converted to a 3D mesh.

Conclusions

We have presented a successful methodology using a set of
labeled 3D training meshes for discriminating between the
craniofacial characteristics of individuals with 22q11.2DS
and controls. The main contributions of this work include:
an automated methodology for pose alignment, automatic
generation of global and local data representations, robust
automatic placement of landmarks, generation of local
descriptors for nasal and oral facial features, and
22q11.2DS classification that has high correlation with
clinical expert ratings.

Due to this promising classification performance, the
best-performing descriptors are expected to be useful in
craniofacial research studies that attempt to correlate both
local and global facial shape with such factors as treatment
outcomes, genetic conditions, and cognitive testing. To
further prove the effectiveness of these contributions,
studies with larger numbers of participants and with
different racial and genetic makeup should be conducted.

Ratings from a larger number of craniofacial experts should
also be used to elucidate a more accurate ground truth for
local facial features.
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