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Abstract The purpose of this study was to demonstrate the
robustness of our prior computerized texture analysis method
for breast cancer risk assessment, which was developed ini-
tially on a limited dataset of screen-film mammograms. This
current study investigated the robustness by (1) evaluating on
a large clinical dataset, (2) using full-field digital mammo-
grams (FFDM) as opposed to screen-film mammography, and
(3) incorporating analyses over two types of high-risk patient
sets, as well as patients at low risk for breast cancer. The
evaluation included the analyses on the parenchymal patterns
of women at high risk of developing of breast cancer, includ-
ing both BRCA1/2 gene mutation carriers and unilateral can-
cer patients, and of women at low risk of developing breast
cancer. A total of 456 cases, including 53 women with
BRCA1/2 gene mutations, 75 women with unilateral cancer,
and 328 low-risk women, were retrospectively collected under
an institutional review board approved protocol. Regions-of-
interest (ROIs), were manually selected from the central breast
region immediately behind the nipple. These ROIs were

subsequently used in computerized feature extraction to char-
acterize the mammographic parenchymal patterns in the
images. Receiver operating characteristic analysis was used
to assess the performance of the computerized texture features
in the task of distinguishing between high-risk and low-risk
subjects. In a round robin evaluation on the FFDM dataset
with Bayesian artificial neural network analysis, AUC values
of 0.82 (95% confidence interval [0.75, 0.88]) and 0.73 (95%
confidence interval [0.67, 0.78]) were obtained between
BRCA1/2 gene mutation carriers and low-risk women, and
between unilateral cancer and low-risk women, respectively.
These results from computerized texture analysis on digital
mammograms demonstrated that high-risk and low-risk
women have different mammographic parenchymal pat-
terns. On this large clinical dataset, we validated our meth-
ods for quantitative analyses of mammographic patterns on
FFDM, statistically demonstrating again that women at
high risk tend to have dense breasts with coarse and low-
contrast texture patterns.
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Introduction

Breast cancer is the most commonly diagnosed cancer among
women besides skin cancer, and about one in eight women
will develop invasive breast cancer over the course of her
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lifetime in the USA. An estimated 39,520 breast cancer deaths
were expected in 2011 [1]. Currently, mammography is still
the best available imaging modality for breast cancer detec-
tion, and it can detect breast cancer at an early stage. The
combination of early detection through screening, improve-
ments in treatment, and increased awareness resulted in de-
creased breast mortality among women since 1990 [1].

Radiographic density or mammographic breast density
(percentage density) refers to the amount of fibroglandular
area relative to the whole breast area on a mammographic
image. This reflects the breast composition and relative
amount of fibroglandular tissue, connective tissue, and fat.
BI-RADS classifies a mammogram into one of four catego-
ries based on its percentage breast density [2].

Mammographic parenchymal patterns have been studied
extensively to demonstrate the relationship between breast
density and the risk of developing of breast cancer [3–8].
Numerous studies have shown that increased mammograph-
ic breast density may yield as high as a four- to sixfold
increase in risk of developing breast cancer [9–11]. Exten-
sive mammographic density is strongly associated with the
risk of breast cancer detected by screening or between
screening tests, and a substantial fraction of breast cancers
can be attributed to this risk factor [12].

Computerized texture analysis has been applied on mam-
mographic images to characterize mammographic parenchy-
ma and estimate breast density in order to assess the risk of
developing breast cancer. Byng et al. calculated skewnesss
extracted from the image histogram and a fractal texture
measure in the classification of mammographic parenchy-
ma, and the relationship to breast cancer risk [13]. Manduca
et al. performed texture analysis on a case–control study on
screen-film mammograms. The texture features showed a
similar predicting power for breast cancer risk assessment
(area under curve(AUC)00.58–0.60) as that obtained with
just breast percent density (AUC00.58) [14]. Wei et al. also
performed a case–control study with computer-extracted
texture features on screen-film mammograms; the AUC of
0.74 was obtained by using combined texture features as the
decision variable for differentiating case subjects from con-
trol subjects in their study [15].

We also have developed computerized image analysis
methods with which to characterize breast parenchyma for
breast cancer risk assessment using digitized screen-film
mammograms (SFM) [16–20]. Our results showed that
women at high risk of developing breast cancer tended to
have dense breasts and their mammographic parenchymal
patterns were coarse and low in contrast. An AUC value of
0.91 was obtained in the task of differentiating between
BRCA1/2 gene mutation carriers and low-risk women using
a dataset of 172 screen-film mammograms, in which 30
subjects were gene mutation carriers and 142 subjects were
women at low risk [17].

The purpose of our current study was to demonstrate the
robustness of our prior computerized texture analysis method
for breast cancer risk assessment, which was developed ini-
tially on a limited dataset of screen-film mammograms. This
current study investigated the robustness by (1) evaluating on
a large clinical dataset, (2) using full-field digital mammo-
grams (FFDM) as opposed to screen-film mammography,
and (3) incorporating analyses over two types of high-risk
patient sets, as well as patients at low risk for breast cancer.

In this study, quantitative image analysis was performed
on a region of interest (ROI) on FFDM. A series of features
(mathematical descriptors) was extracted from each ROI to
characterize the mammographic parenchymal patterns of the
image. The evaluation comprised women at high risk of
developing breast cancer, including both BRCA1 and
BRCA2 gene mutation carriers and unilateral cancer
patients, and women at low risk of developing breast cancer.
Receiver operating characteristic (ROC) analysis [21, 22]
was used to assess the performance of computer-extracted
features in the task of differentiating the high-risk women
from the low-risk women.

Materials and Methods

Database

Two high-risk datasets were included in this study: FFDM
images from BRCA1 or BRCA2 gene mutation carriers and
FFDM images from women with unilateral breast cancer.

FFDM images were obtained from BRCA1/2 gene muta-
tion carriers who had been recruited from the cancer risk clinic
at the University of ChicagoMedical Center, yielding a total of
53 gene mutation carriers. These gene mutation carriers were
tested at a Clinical Laboratory Improvement Amendments-
approved laboratory under an Institution Review Board (IRB)
approved protocol. Their ages ranged from 21 to 72 years,
with an average age of 40.2 years, a median of 40, and a
standard deviation of 11.8 years. The FFDM images were
reviewed by an expert mammographer and used only if no
detectable malignant or benign abnormalities were observed.

The other high-risk dataset included FFDM images from
women with unilateral breast cancer. A total of 75 unilateral
cancer cases were included in this study. Ages ranged from
25 to 89 years, with a mean age of 55.8 years, a median of
55 years, and a standard deviation of 15.0 years. Only the
mammograms at the cancer diagnosis date were used in this
study, and the contralateral mammograms from these uni-
lateral cancer patients were used for the computerized image
analysis. These mammograms were also reviewed by an
expert mammographer and were included in the study only
if no detectable abnormalities were observed in the contra-
lateral image.
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The low-risk dataset included FFDM images from wom-
en who had undergone screening mammography in the
Department of Radiology at the University of Chicago
Medical Center between 2006 and 2008. These low-risk
women had no family history of breast or ovarian cancer,
had no prior history of breast cancer or breast benign disease,
never had a benign breast biopsy, and had a lifetime risk of
developing breast cancer of less that 10% based on the Gail
breast cancer risk assessment model [23]. Under these con-
ditions, FFDM images from 328 women were included in
this study as the low-risk group. Ages ranged from 32 to
89 years, with a mean age of 58.4 years, a median age of
58 years, and a standard deviation of 11.9 years.

Since age is a very important breast cancer risk factor,
an age-matched subset analysis was also performed in
order to minimize the possible bias due to the difference
in age distribution. Age matching was performed using a
1:4 ratio to include as many patients in the study as possi-
ble, i.e., one high-risk subject was age-matched with four
low-risk subjects at 5-year intervals for the study. Using
this age-matching criterion, 136 low-risk cases were ran-
domly selected and age-matched with 34 BRCA1/BRCA2
gene mutation carriers. In addition, 268 low-risk cases
were randomly selected and age-matched with 67 unilateral
cancer cases. These two age-matched data subsets were
used for the age-matching study.

The full-field digital mammograms used in this study
were retrospectively collected at the University of Chicago
Medical Center under an IRB approved protocol. All
images were obtained with a GE (Waukesha, WI, USA)
Senographe 2000D FFDM system. The FFDM images
were acquired at 12-bit quantization with a pixel size of
100×100 μm. ROIs of 256×256 pixels were manually
selected from the central breast region behind the nipple
in the craniocaudal projection of mammographic images.
The details of the ROI extraction have been described
elsewhere [24].

Computerized Feature Extraction

Computerized feature extraction was performed on each
ROI to assess the mammographic parenchymal patterns.
These computer-extracted texture features were based on
(a) local composition (density-related measures), (b) gray-
level histogram analysis, (c) spatial relationship among
gray-levels, (d) fractal analysis, including DBC (fractal
dimension based on box-counting method) and DM (fractal
dimension based on Minkowski method), (e) edge fre-
quency analysis, and (f) Fourier analysis, including RMS
variation, first moment of the power spectrum, and power
law β from power spectral analysis. Detailed descriptions
of these characteristic features can be found elsewhere
[16–20, 24, 25].

Linear stepwise feature selection was performed using
the Wilks Lambda criterion [26, 27] to select a subset of
features for the classification task. A Bayesian artificial
neural network [28] (BANN) was then used to merge these
selected features in an iterated leave-one-case-out analysis.

Performance Evaluation

ROC analysis [21, 22, 29] was used to determine the
performance of each individual texture feature and the
merged classifier output in the task of distinguishing be-
tween mammographic parenchymal patterns of high-risk
patients and parenchymal patterns of subjects in the low-
risk group. Here, the area under the fitted ROC curve
(AUC value) was used as a figure of merit to assess the
potential usefulness of these computer-extracted texture
features in characterizing parenchymal patterns and breast
cancer risk. Statistical Z tests were performed to assess the
statistical significance of the difference between the esti-
mated AUC value of each individual feature and an AUC
of 0.5 (equivalent to random guessing). The level of sta-
tistical significance for the difference of two AUC values
was calculated using the ROCKIT computer program [29].
The Holm t test was applied for multiple comparison cor-
rections [30]. The overall computerized analysis scheme is
shown in Fig. 1.

Results

BRCA1/BRCA2 Gene Mutation Carriers Versus Low-Risk
Group

Using the database of 53 BRCA1/2 gene mutation carriers
and 328 low-risk women, a total of 45 features were
extracted from each individual ROI. The AUC performance
of the individual features in the task of distinguishing mam-
mographic parenchymal patterns of BRCA1/BRCA2 gene
mutation carriers from those of the low-risk women in terms
of AUC values was found to be between 0.52 and 0.76.

Figure 2 shows the distribution between skewness and
coarseness for BRCA1/BRCA2 gene mutation carriers and
low-risk women. The skewness measure is related to the
mammographic density in the breast, and a dense ROI would
have a small value of the skewness measure. The coarseness
feature was calculated based on a Neighborhood Gray-Tone
Difference Matrix (NGTDM) and represents the coarseness
measure of the mammographic image. It considers the dif-
ference between the gray levels of all pixels in the region and
a particular gray level in the region, and also the mean gray
level of the surrounding neighbors. In a coarse texture, the
gray level values of neighboring pixels tend to be similar, so
the difference between the gray level of the pixels and the
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mean gray level of the neighborhood is small. Larger coarse-
ness values correspond to coarser mammographic parenchy-
mal patterns within the image. AUC values of 0.66 and 0.75
were obtained in the task of distinguishing between gene
mutation carriers and the low-risk group with skewness and
coarseness features as decision variables, respectively.

Figure 3 shows the distribution of first moment of power
(FMP) spectrum and contrast for the two groups. The FMP
and contrast yielded AUC values of 0.70 and 0.75 in the task
of distinguishing between the two groups. The FMP was
calculated from the two-dimensional Fourier transform of
the ROI and was used to characterize the mammographic
parenchymal pattern’s spatial frequency content. Like coarse-
ness, FMP represents the coarseness measure of the mammo-
graphic image. A small FMP value indicates a dominance of
lower spatial frequency content and coarser texture.

The distribution of the gene mutation carriers and the
low-risk women in terms of two fractal features is shown in
Fig. 4. These two fractal dimensions were computed using
different algorithms. DBC is based on a box-counting meth-
od by calculating surface areas using different ruler sizes
(image resolutions). DM is based on a Minkowski algo-
rithm by calculating volumes at different scales through
performing morphological operations. Gene mutation car-
riers (high-risk group) exhibited lower fractal dimension
values on both fractal features than individuals at low-risk.
AUC values of 0.76 and 0.67 were obtained in the task of
distinguishing between the two groups using the box-
counting and Minkowski fractal features as decision vari-
ables, respectively.

By applying leave-one-case-out (round-robin) stepwise
feature selection [31], six texture features were selected as

ROIs from central breast regions

Computer-extracted texture features

High risk vs. low risk

ROC analysis

Full-field digital mammograms 0.1 mm pixel

12-bit quantization

Selected ROI
256 by 256 pixels

Fig. 1 Computerized texture
analysis method for breast
cancer risk assessment on
FFDM

Fig. 2 The distribution of skewness versus coarseness between
BRCA1/BRCA2 gene mutation carriers and the low-risk women

Fig. 3 The distribution of first moment of power spectrum versus
contrast between BRCA1/BRCA2 gene mutation carriers and the
low-risk women
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a subset of features for the classification task. The selected
features characterized the coarseness, homogeneity, ran-
domness, and nonlinearity of the mammographic texture
patterns of the images. A BANN was used as a classifier to
merge these six features using a leave-one-case-out analysis.
An AUC value of 0.82 (SE00.03; 95% CI [0.75, 0.88]) was
obtained using the output of the BANN as the decision
variable in the task of distinguishing between gene mutation
carriers and the low-risk group.

As mentioned earlier, age matching was performed with a
1:4 ratio and a 5-year interval, yielding 34 gene mutation
carriers age-matched with 136 low-risk women. AUC values
between 0.51 and 0.71 were obtained when using individual
features as decision variables in the task of distinguishing
between the two groups using the age-matched dataset. An
AUC value of 0.81 (SE00.04; 95% CI [0.71, 0.89]) was
obtained when using BANN output as the decision variable
for the merged feature from ROC analysis.

Unilateral Cancer Women Versus Low-Risk Group

For the unilateral cancer patients, only the normal, i.e.,
lesion-free, mammograms from the contralateral breast were
included in the analysis. The individual texture feature per-
formances in the task of distinguishing between unilateral
cancer patients and the low-risk group were evaluated using
ROC analysis. AUC values of 0.51 to 0.68 were obtained by
using individual texture features as decision variables in the
task of distinguishing between the two groups.

Figure 5 shows the distribution of skewness versus
coarseness texture features between the contralateral breasts
of unilateral cancer patients and the low-risk group. Again,
the smaller skewness and higher coarseness values were
observed for the unilateral cancer patients (high-risk group).

AUC values of 0.60 and 0.66 were obtained when using
skewness and coarseness as decision variables in the task of
distinguishing the two groups, respectively.

Figure 6 shows the distribution of the FMP versus con-
trast measures between the two groups. Lower contrast and
smaller FMP values were observed for the unilateral cancer
patients of the high-risk group. The mammographic images
of the unilateral cancer patients had coarser textures than
those of the low-risk group, and their mammographic
images tended to be lower in contrast. The FMP and contrast
features yielded AUC values of 0.68 and 0.67 in the task of
distinguishing between the two groups, respectively.

Figure 7 shows the distribution of two fractal features
between the unilateral cancer patients and the low-risk
group. For both fractal features, smaller fractal dimension
measures were observed in the unilateral cancer high-risk
group. This indicates that the mammographic patterns are
coarser for high-risk women. For the task of distinguishing
between the two groups, the box-counting dimension DBC

and the Minkowski dimension DM yielded AUC values of
0.65 and 0.67, respectively.

The BANN classifier was applied to merge the texture
features selected from the linear stepwise feature selection
method with a leave-one-case-out analysis. The output gen-
erated from the BANN was used as a decision variable for
ROC analysis. An AUC value of 0.73 (SE00.03; 95% CI
[0.67, 0.78]) was obtained in the task of distinguishing the
two groups using merged features.

An age-matched analysis was also performed on the
task of differentiating the unilateral cancer patients from
the low-risk group. Sixty-seven unilateral cancer patients
were randomly age-matched with 268 low-risk women to
form the age-matched dataset. AUC values of 0.51 to 0.69

Fig. 4 The distribution of DBC versus DM between BRCA1/BRCA2
gene mutation carriers and the low-risk women

Fig. 5 The distribution of skewness versus coarseness between uni-
lateral cancer patients and the low-risk women
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were obtained in terms of individual feature performance
in the task of differentiating between the two groups in
the age-matched dataset. An AUC value of 0.70 (SE0
0.04; 95% CI [0.63, 0.77]) was obtained when using
merged features from the BANN classifier in a leave-one-
case-out analysis.

Combined High-Risk Women Versus Low-Risk Group

ROC analysis was also performed after combining both
BRCA1/2 gene mutation carriers and unilateral cancer
patients into one high-risk group. AUC values of 0.53
to 0.71 were obtained by using individual texture features
as decision variables in the task of distinguishing between
the high-risk group and the low-risk group. Using the

BANN to merge the features using a leave-one-case-out
analysis, an AUC value of 0.75 (SE00.03; 95% CI [0.69,
0.79]) was obtained.

The ROC analysis results are summarized in Table 1.
Figure 8 shows the ROC curves for the tasks of distinguish-
ing between BRCA1/2 gene mutation carriers and low-risk
women, unilateral cancer patients and low-risk women, and
the combined high-risk women dataset and low-risk women.

Discussion and Conclusion

In this study, we used computerized texture analysis on
FFDM to obtain numerical descriptors of breast parenchy-
mal patterns. Our study on FFDM showed that high-risk
women, i.e., either BRCA1/2 gene mutation carriers or
unilateral cancer patients, and low-risk women have differ-
ent mammographic parenchymal patterns. Women at high
risk for breast cancer tend to have dense breasts, and their
mammographic parenchymal patterns are coarse and low in
contrast, which agrees with findings from our previous
parenchymal analysis studies on screen-film mammography.

It should be noted that the feature sets selected during
iterations of the stepwise feature selection process were
generally stable, yielding six or seven features for the
different classification tasks. While the selected features
(i.e., mathematical descriptors) differed for different classi-
fication tasks, similar parenchymal characteristics were
chosen.

For the features investigated in this paper, for instance,
although FMP and coarseness both measured the “coarse-
ness” of the images, they were calculated from different
methods: one was based on a Fourier transformation, and
the other one was based on the NGTDM method. They
measured a similar (but not exactly the same) physical char-
acteristic of the images. Of the two fractal features, one was
calculated based on a box-counting method, and the other one
was based on morphological operations. Both features agreed
that high-risk women have lower fractal dimensions, and thus
coarse texture. This, again, reflects the robustness of our
computerized texture analysis methods.

We also noticed that the classification performance in
terms of AUC value in the task of distinguishing between
BRCA1/2 gene mutation carriers and low-risk women
(AUC00.82) was statistically higher (p value00.0374)
than the AUC (AUC00.73) for distinguishing between
unilateral cancer patients and low-risk women (95% CI
for the AUC difference [0.0054, 0.1784]). Since we did
not have BRCA1/2 mutation testing information in the
unilateral cancer patients, the reasons for the classification
performance difference were not fully understood. Addi-
tional investigations are required to confirm and/or explain
this result.

Fig. 6 The distribution of first moment of power spectrum versus
contrast between unilateral cancer patients and the low-risk women

Fig. 7 The distribution of DBC versus DM between unilateral cancer
patients and the low-risk women
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The classification performance in terms of AUC value in
the task of differentiating between BRCA1/2 mutation car-
riers and the low-risk women was lower in this study on
FFDM (AUC00.82; 95% CI [0.75, 0.88] than in our previ-
ous studies with SFM (AUC00.91; 95% CI [0.85, 0.97]. We
believe that several factors may contribute to this perfor-
mance difference, including (1) different patient population,
ideally we would like to have same subjects with both SFM
and FFDM; (2) different dataset, 172 SFM cases versus 381
FFDM cases; and (3) different mammographic acquisition
technology, SFM versus FFDM. The further study is needed
to fully understand this difference.

In this study, we evaluated the robustness of our image-
based risk assessment methods by (1) evaluating with a
large clinical dataset, (2) using FFDM as opposed to
screen-film mammography, and (3) incorporating analyses
over two types of high-risk patient sets (BRCA1 and
BRCA2 gene mutation carriers and patients with unilateral

cancer). Our results demonstrate that our method, initially
developed on digitized screen-film mammography, shows
similar findings on the parenchymal patterns of women at
high and low risk as presented on FFDM. We believe that
the computer-extracted image markers may potentially be
used alone or together with clinical measures, as well as
biomarkers, for use in identifying women at high risk for
breast cancer, and those women would benefit from more
aggressive screening.
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