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Abstract The importance of medical imaging for clinical
decision making has been steadily increasing over the last
four decades. Recently, there has also been an emphasis on
medical imaging for preclinical decision making, i.e., for use
in pharamaceutical and medical device development. There is
also a drive towards quantification of imaging findings by
using quantitative imaging biomarkers, which can improve
sensitivity, specificity, accuracy and reproducibility of imaged
characteristics used for diagnostic and therapeutic decisions.
An important component of the discovery, characterization,
validation and application of quantitative imaging biomarkers
is the extraction of information and meaning from images
through image processing and subsequent analysis. However,
many advanced image processing and analysis methods are
not applied directly to questions of clinical interest, i.e., for
diagnostic and therapeutic decision making, which is a con-
sideration that should be closely linked to the development of
such algorithms. This article is meant to address these con-
cerns. First, quantitative imaging biomarkers are introduced
by providing definitions and concepts. Then, potential appli-
cations of advanced image processing and analysis to areas of
quantitative imaging biomarker research are described; spe-
cifically, research into osteoarthritis (OA), Alzheimer's disease
(AD) and cancer is presented. Then, challenges in quantitative
imaging biomarker research are discussed. Finally, a concep-
tual framework for integrating clinical and preclinical consid-
erations into the development of quantitative imaging
biomarkers and their computer-assisted methods of extraction
is presented.
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Introduction

The overwhelming success of medical science and industry in
the 20th century in delivering innovative discoveries to patients
has recently given way to a relative stagnation of advancement
in the 21st century. This has occurred mainly as a result of
challenges in the translation of benchside basic science discov-
eries to bedside diagnostics and therapeutics. In fact, since
1995, the US Food and Drug Administration (FDA) has ob-
served a decrease in drug and biologic product submissions for
regulatory approval [1]. For example, the number of new
molecular entities that have been submitted to the FDA for
approval has declined from 45 in 1996 to just 23 in 2010 [2].
This unexpected decrease in the number of innovative medical
diagnostics and therapeutics reaching patients has been termed
the pipeline problem. This problem is a result of the increas-
ingly challenging, inefficient and costly path of medical prod-
uct development. For example, the time required to bring a new
drug to market can be up to 12 years at a cost of hundreds of
millions of dollars. The FDA has identified the main cause of
the difficulties in the path to medical device marketing approval
to be the failure of the applied sciences which are necessary for
medical product development in keeping pace with the advan-
ces in the basic sciences. In response, multiple government
agencies including the FDA, the National Institutes of Health
(NIH) and the National Cancer Institute (NCI), along with other
public and private partners, have developed an array of initia-
tives and consortiums with the ostensible goal of tackling this
pipeline problem (Table 1) [1, 3–8].

A common theme among all these efforts is the impor-
tance of imaging for the future advancement of medicine.
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Medical imaging provides the ability to detect and lo-
calize many changes that are important to determine
whether a disease is present or a therapy is effective,
by depicting alterations in anatomic, physiologic, bio-
chemical or molecular processes [9]. Quantitative imag-
ing biomarkers are sensitive, specific, accurate and
reproducible imaging measures of these changes which
can be used in disease diagnosis, treatment planning and
medical product development. The use of computer-
assisted image processing and analysis is extremely im-
portant for the discovery, characterization, validation and
application of these quantitative imaging biomarkers.
In particular, the application of advanced image proces-
sing and analysis procedures (e.g., semi-automated or
automated segmentation and registration) provide for
more robust and efficient incorporation of quantitative
imaging biomarkers into clinical and preclinical decision
making.

The objectives of this article are to: (1) introduce
concepts of quantitative imaging biomarkers; (2) discuss
important considerations in the validation of quantitative
imaging biomarkers; (3) describe the use of advanced
image processing and analysis for quantitative imaging
biomarker discovery and characterization, with an em-
phasis on opportunities for their utilization in osteoarthri-
tis (OA), Alzheimer's disease (AD) and cancer; (4)
discuss current challenges in quantitative imaging bio-
marker research and (5) present a conceptual framework
to use when utilizing image processing and analysis in
the development of quantitative imaging biomarkers,
which can help to meet some of the research challenges.
Overall, this article is meant to promote a common
understanding of quantitative imaging biomarkers bet-
ween image processing and analysis researchers and
clinicians or basic scientists and provide suggestions to
help advance research in quantitative imaging biomarkers
and address the challenges of medicine in the new
century.

Review

Quantitative Imaging Biomarkers

A biological marker, or biomarker, is a characteristic that
is objectively measured and evaluated as an indicator of
normal biological processes, pathogenic processes or a
response to a therapeutic intervention [10]. Biomarkers
can be used for diagnosis, prognosis, staging or prediction
and monitoring of the clinical response of a disease to a
therapeutic intervention. For the case of predicting or
monitoring the clinical response to therapy, a biomarker
must be associated with a clinical endpoint. A clinical
endpoint is “a characteristic or variable that reflects how a
patient feels, functions, or survives” [10]. Clinical end-
points generally fall under the clinical terms morbidity (an
incidence of ill health such as stroke or recurrence of
cancer) and mortality (death). Three difficulties with us-
ing a traditional clinical endpoint in clinical studies are
that: (1) it may be difficult to standardize or quantify, (2)
it may take a long time to manifest and (3) it may be very
costly, particularly when a long-term endpoint, such as
mortality, is used. In order to expedite the process of
clinical analysis, the identification and application of so-
called surrogate endpoints is highly desired. A surrogate
endpoint is “a biomarker that is intended to substitute for
a clinical endpoint. A surrogate endpoint is expected to
predict clinical benefit (or harm or lack of benefit or
harm) based on epidemiologic, therapeutic, pathophysio-
logic, or other scientific evidence” [10]. The utility of
surrogate endpoints is a result of their ability to be measured
earlier, more conveniently or more frequently than traditional
clinical endpoints [11]. Although a surrogate endpoint is one
type of biomarker, not all biomarkers are surrogate endpoints;
in fact, the large majority of biomarkers are not surrogate
endpoints. For example, the World Health Organization
(WHO) and Response Evaluation Criteria in Solid Tumors
(RECIST) criteria are the only quantitative imaging

Table 1 Examples of US government initiatives created to address challenges in delivery of innovative medical discoveries

Project name Purpose statement Website

Critical Path Initiative (CPI) “FDA's national strategy to drive innovation in the
scientific processes through which medical products
are developed, evaluated, and manufactured”

http://www.fda.gov/ScienceResearch/
SpecialTopics/CriticalPathInitiative/
default.htm

Roadmap “The NIH Roadmap is an integrated vision to deepen our
understanding of biology, stimulate interdisciplinary
research teams, and reshape clinical research to accelerate
medical discovery and improve people's health”

http://nihroadmap.nih.gov/

Clinical Trials Transformation
Initiative (CTTI)

“To identify practices that through broad adoption will
increase the quality and efficiency of clinical trials”

https://www.trialstransformation.org/
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biomarkers that are accepted as surrogate endpoints in phase
III trials of chemotherapy or radiotherapy of solid tumors.
There are no other quantitative imaging biomarkers of solid
tumors, such as measurements based on dynamic contrast
enhanced (DCE)-MRI or PET imaging, which may be used
as substitutes for clinical endpoints [12].

Extending the definition of a biomarker from above,
a quantitative imaging biomarker can be defined as an
imaged characteristic that is objectively measured and
evaluated as an indicator of normal biological processes,
pathogenic processes or a response to a therapeutic
intervention. Therefore, modalities such as magnetic res-
onance imaging (MRI), computed tomography (CT), X-
ray, ultrasound, positron emission tomography (PET),
single photon emission computed tomography (SPECT),
optical imaging and light microscopy, among others, can
be employed for identification of quantitative imaging
biomarkers. Imaging biomarkers can also be semiquantita-
tive, e.g., using a scoring scale based on expert-selected
atlases representative of disease severity such as the use of
Kellgren–Lawrence (KL) grade for OA [13].

The push towards analysis of medical images for identi-
fying quantitative imaging biomarkers of disease has led to
the formation of several projects which mean to develop and
disseminate image collections for use in research towards
the discovery of quantitative imaging biomarkers. Descrip-
tions of some of these projects are presented in Table 2.

Validation of Quantitative Imaging Biomarkers

Quantitative imaging biomarkers are validated by demon-
strating an association between the measured biomarker

value and a physiologic, pathophysiologic or therapeutic
response. These responses can be manifested by anatomic,
physiologic, biochemical or molecular changes. Associa-
tions between these changes and disease state can be ana-
lyzed using statistical models or classifiers.

There are two criteria that need to be met in order to
validate a quantitative imaging biomarker [9]:

1) The presence of the quantitative imaging biomarker is
closely coupled or linked to the presence of the target
disease or condition.

2) The detection and quantitative measurement of the
quantitative imaging biomarker are accurate, reproduc-
ible and feasible over time.

The most stringent validation is required when a quanti-
tative imaging biomarker is being assessed for use as a
surrogate endpoint. Weir and Walley have stated the chal-
lenge in validating a biomarker as a surrogate endpoint in
the following way: “It is insufficient in the validation of a
biomarker as a surrogate endpoint to show that it correlates
well with the clinical endpoint … What is required is that
effect of treatment on the biomarker correlates well with
treatment effect on the final endpoint, so that a valid surro-
gate endpoint allows correct inference to be drawn regarding
the effect of an intervention on the true clinical endpoint of
interest” [14]. This is effectively an additional criterion for
the validation of a quantitative imaging biomarker for use as
a surrogate endpoint.

A well-known example of the peril of adoption of an
insufficiently validated biomarker for use as a surrogate
endpoint occurred in the Cardiac Arrhythmia Suppression
Trial [15]. The hypothesis of the trial was that the sup<

Table 2 Examples of image collections for use in quantitative imaging biomarker discovery and software analysis

Project name Purpose statement Website

Lung Image Database
Consortium (LIDC)

“…Sharing of lung images, especially low-dose
helical CT scans of adults screened for lung
cancer, and related technical and clinical data
for development and testing of computer-aided
cancer screening and diagnosis technology”

http://imaging.cancer.gov/programsand
resources/InformationSystems/LIDC

Reference Image Database
to Evaluate Response
(RIDER)

“…A resource for developing and testing computer-
aided design software to analyze tumor change at
multiple time points as the patient responds to
therapy or the disease progresses”

http://www.nibib.nih.gov/Research/
Resources/ImageClinData#RIDER

Alzheimer's Disease
Neuroimaging Initiative
(ADNI)

“…To define the rate of progress of mild cognitive
impairment and Alzheimer's disease, to develop
improved methods for clinical trials in this area,
and to provide a large database which will improve
design of treatment trials”

http://www.adni-info.org/

Osteoarthritis Initiative (OAI) “… To develop a public domain research resource to
facilitate the scientific evaluation of biomarkers for
osteoarthritis as potential surrogate endpoints for
disease onset and progression”

http://oai.epi-ucsf.org/datarelease/
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pression of ventricular arrhythmia after myocardial infarc-
tion (MI) would reduce the incidence of sudden death.
Participating patients were randomly assigned into two
groups—those who received an antiarrhythmia drug and
those who received a placebo. The suppression of cardiac
arrhythmias on an electrocardiogram (ECG) was taken to be
a surrogate for the clinical endpoint of reduced mortality
after MI. However, it was found that patients who took
antiarrhythmia drugs had an increased risk of mortality
compared to patients who received placebo. Therefore, the
belief that arrhythmias on ECG could serve as a surrogate
endpoint for post-MI mortality proved to be false.

Improving Quantitative Imaging Biomarkers through the
Application of Advanced Image Processing and Analysis

The National Institutes of Standards and Technology (NIST)
has identified three primary sources of uncertainty in the use
of quantitative imaging biomarkers: (1) the biological vari-
ability, (2) the variability associated with clinicians inter-
preting the images and (3) the physical measurement
variability associated with image data collection and analy-
sis across the same or different imaging platforms [16].
Work towards a solution to the biological variability
requires the identification of confounding variables within
the patient population which may be accounted for before,
during or after acquisition and is not particularly amenable
to solutions through the application of advanced image
processing and analysis. The variability due to clinicians
interpreting the images and those associated with image data
collection and analysis across the same or different imaging
platforms, however, may be decreased by the application of
advanced image processing and analysis.

In many cases, image processing and analysis is used to
increase accuracy, reproducibility or efficiency of manual
analysis. In these cases, an automated processing method
may be used to, say, segment a structure of interest. The
result of automated segmentation must be compared to those
of manual readers as one step in the validation of the process
to the application of quantitative imaging biomarker calcu-
lation. There are many methods of comparing segmenta-
tions, for example, the Dice similarity coefficient (DSC),
relative overlap or mean distance [17]. The choice of simi-
larity measure has important implications for the evaluation
of calculations derived from a segmentation or analysis as
potential quantitative imaging biomarkers. For example,
DSC may be used to validate an automated or semiauto-
mated method of segmentation with respect to a manual
reader, but if the quantitative imaging biomarker values
which are to be calculated from the segmentation are
dependent on the surface area of the volume or contour,
the use of an overlap-dependent similarity metric such
as DSC may not give an accurate measurement and the

resultant quantitative imaging biomarker calculations
will be inappropriate.

Applications of Advanced Image Processing and Analysis
Towards Quantitative Imaging Biomarker Research

Image processing is fundamentally concerned with the ex-
traction of information from an image. The resultant infor-
mation is then used to derive meaning from the image, a task
known as image analysis. The image processing and analy-
sis tasks of enhancement, registration, segmentation and
classification play important roles in the consistent and
accurate evaluation of quantitative imaging biomarkers.

The possible applications of quantitative imaging bio-
markers are broad, but the FDA has defined several diseases
in which research into quantitative imaging biomarkers may
offer the most benefit in the near future [4, 18, 19]. Three of
those diseases are presented in this section: OA, AD and
cancer.

In the following subsections, overviews of the use of
advanced image processing and analysis for the discovery
and characterization of quantitative imaging biomarkers for
particular diseases are discussed. Though not intended to be
comprehensive, in each subsection, a brief description of the
disease, the use of imaging and the anatomical focus of most
analyses are provided. In OA, the focus is cartilage mor-
phology; in AD, the focus is hippocampus/medial temporal
lobe morphology; and in cancer, the focus is solid tumor
morphology and vascularity. Due to the breadth of image
processing and analysis methods, in these examples, the
methods discussed are focused on the task of segmentation.
In addition, due to the substantial amount of different im-
aging modalities, the modality focused on in the following
subsections is MRI. Table 3 provides an analysis of ad-
vanced image processing and analysis methods which in-
corporated quantitative imaging biomarkers for OA and AD.

The literature search for the review of each topic was
undertaken through a PubMed search using the keywords
“quantitative imaging biomarkers,” “imaging biomarkers”
and “computer-assisted diagnosis.” Articles that were in-
cluded in the review were in two major categories: (1)
reviews of imaging biomarkers, especially in the areas of
AD, OA and cancer and (2) use of advanced image process-
ing and analysis techniques (e.g., automated segmentation)
for the discovery, characterization, validation and applica-
tion of quantitative imaging biomarkers.

Osteoarthritis (OA)

OA is a disease that causes degeneration of the cartilage in
the joints [20]. It is the most common form of arthritis,
affecting approximately 21 million American adults [21].
Clinical onset and progression is generally specified using
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semiquantitative grading schemes of OA severity based on
radiographs; these grading schemes are also accepted for
regulatory approval of drugs meant to treat OA [13, 22, 23].
The challenge with using radiographs for assessing the
entire joint is the poor soft-tissue contrast. Radiographic
measurements used for OA grading, such as joint space
width, do not provide adequate information about the state
of all joint components (e.g., cartilage, bone, muscle, me-
niscus, etc.). Therefore, newer imaging modalities, such as
MRI, are being used more frequently for research into OA.
The improvement in MRI technology, including the in-
creased clinical use of high strength magnets, has allowed
for the development of image acquisition protocols which
can highlight particular joint components [22, 24]. Other
factors that have moved research forward in arthritis have
been the development of a standard nomenclature for defin-
ing joint compartments in the knee, in order to promote
consistent research into morphological measurements of
cartilage [25], and methods of improving the reproducibility
of cartilage thickness measurements [26]. In the case of
cartilage, these developments have led to several validated
morphological measures—such as volume and thickness—
which can be used to assess OA onset and progression
(Fig. 1) [27]. In addition, research initiatives, such as the
Osteoarthritis Initiative (OAI), have developed a set of stan-
dardized protocols which have been used on a large patient
population, which allows for the consistent postacquisition
analysis of images of patients with OA [28]. Currently, the
majority of imaging research into OA is focused on the

cartilage, but increasingly, there is more interest in a
whole-joint approach to the understanding of OA.

There have been several attempts at the automated seg-
mentation of the articular cartilage. Many of these techni-
ques had limitations that prevented analysis of underlying
pathology and, therefore, did not extend to an analysis of
potential quantitative imaging biomarkers of OA [29–31]. In
contrast, some studies have incorporated an assessment of
differences between normal and pathologic (i.e., OA) knees,
and these studies can be taken as working towards develop-
ing quantitative imaging biomarkers for OA onset and pro-
gression [32, 33]. Table 3 presents descriptions of these
methods.

Alzheimer's Disease (AD)

AD is a type of cortical, neurodegenerative dementia [34]. It
accounts for approximately 70% of all cases of dementia in
the elderly, is estimated to occur in up to 30% of adults older
than 85 years of age and currently affects nearly 5 million
people in the US [34]. Established primary clinical trial
endpoints used for AD research are based on symptoms
such as functional or cognitive impairment. However, there
have been some imaging measures based on structural MRI
which have been used as secondary clinical trial endpoints,
but none of these imaging biomarkers has been sufficiently
validated for use as a surrogate endpoint. Currently, it is
thought that the use of neuroimaging in screening at-risk
populations (e.g., those over 60 years old) for risk of

Fig. 1 Validated methods for
quantifying cartilage volume,
joint morphology and cartilage
thickness from three-
dimensional datasets have been
reported [27]
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cognitive decline may be feasible over a time frame of 3–
4 years [35]. One goal of the Alzheimer's Disease Neuro-
imaging Initiative (ADNI) is to characterize morphological
changes in the brain of patients with AD [36]. The protocol
developed by the ADNI for MR imaging was specifically
developed to work with major image analysis methods used
in neuroimaging [37].

MR-based morphological measures have been shown to
be sensitive in the detection of AD early in the disease
course and for the tracking of disease progression. In fact,
structural MRI has been shown to be accurate for the detec-
tion of disease prior to the onset of symptoms [37]. The
medial temporal lobe, specifically the hippocampus, is an
area of the brain responsible for episodic memory function
in which early AD neurofibrillary pathology is manifested
through atrophy (i.e., neuron and tissue lost) [38]. The most
common MRI-derived morphological measure in the analy-
sis of AD is hippocampus volume [36]. Recently, however,
calculations based on the morphological and intensity char-
acteristics of brain regions in patients with AD have re-
ceived an increased amount of attention (Fig. 2) [39–45].
Table 3 describes these methods in detail.

Cancer

The types of cancer amenable to structural or functional
image processing and analysis are generally solid tumors;
however, there are many different types of solid malignant
neoplasms. Although beyond the scope of this article, there
are some general similarities in the processing and analysis
of images of different types of solid tumors. The FDA has
stated that the most valuable role for quantitative imaging
biomarkers in cancers is in the use as a clinical diagnostic,
rather than as a surrogate endpoint [36]. O'Connor et al.
provide a thorough review of the state of biomarkers in the
development of cancer therapeutics [12].

In general, morphological measurements, such as length,
area and volume, are the most recognized and accepted
quantitative imaging biomarkers used in cancer studies.
For instance, uni- or bidimensional linear measurements,

such as RECIST or WHO criteria, are the standard for
assessing tumor burden and response to therapeutic inter-
vention in certain studies [46, 47]. However, there have
been attempts to employ advanced morphometry, such as
contour analysis, in the detection of malignant lung nodules
[47, 48]. In fact, the use of computer-assisted diagnosis/de-
tection (CAD) for lung nodules has been one of the most
active areas of quantitative imaging biomarker research; how-
ever, in the case of CAD, the older term “image feature,” in
many cases, may be used as a synonym for quantitative
imaging biomarker (although not necessarily always synony-
mous) [49]. Currently, however, RECIST measurements are
the only validated surrogate endpoint in lung cancer [47].

There are a significant number of structural imaging
studies analyzing the use of advanced image analysis meas-
urements for the classification of tumors as benign or ma-
lignant, for example, the detection of microcalcifications in
breast mammograms [50–52] or the quantification of tumor
vascularity in a physiologically meaningful way using DCE-
MRI through the use of kinetic modeling [53–56] and multi-
scale modeling [57]. However, there are new quantitative
imaging biomarkers such as the disappearance of intratu-
moral arterial enhancement, which are being assessed for
tracking treatment response [58, 59]. In the future, molecu-
lar imaging methods also promise to be an important tool in
the analysis of cancer [48].

Discussion

The path of quantitative imaging biomarker discovery, char-
acterization, validation and, ultimately, application is chal-
lenging. However, whereas the criteria required for the
validation of a quantitative imaging biomarker (“Validation
of Quantitative Imaging Biomarkers”) are stringent, they are
not intractable. An important component in the development
of any method for extracting and measuring a quantitative
imaging biomarker is the early and consistent incorporation of
preclinical or clinical information. The developed methods are
then required to be consistent and accurate in the calculation

Fig. 2 Two templates and their
difference image from analysis
of a 30-patient subset of the
OASIS dementia dataset dem-
onstrating differences between
patients with dementia and
healthy controls [43]
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of the quantitative imaging biomarkers that are employed for
subsequent preclinical or clinical decision making. The fulfil-
ment of these requirements can be greatly assisted through the
use of advanced image processing and analysis techniques,
which can reduce the variability associated with different
researchers or clinicians interpreting the images and the phys-
ical measurement variability associated with image data col-
lection and analysis across the same or different imaging
platforms. In this way, advanced image processing and anal-
ysis techniques can be leveraged to assist in the resolution of
the pipeline problem described by the FDA.

There are several challenges in the incorporation of ad-
vanced image processing and analysis into quantitative imaging
biomarker research. In Table 3, examples of quantitative imag-
ing biomarkers are presented. The final column of the table lists
weaknesses with the validation of the methods in the extraction
and calculation of the quantitative imaging biomarkers. In
addition to the weaknesses presented, there are general weak-
nesses within advanced image processing and analysis research
when applied to medical images. Following is a list of weak-
nesses and considerations which can help to address them.

1) No healthy vs. disease comparison of algorithm perfor-
mance: While there are situations where an algorithm
may only be required to function on normal or disease
images from a single patient (e.g., tracking a tumor's size
through time), these situations are in the minority when it
comes to possible applications of quantitative imaging
biomarkers. Most applications require a comparison of
an individual vs. a population, in some way. The most
obvious is whether an individual has characteristics of a
disease, and those characteristics are based on similar
individuals with or without the disease. Fundamentally,
medicine works best with dichotomies—healthy or dis-
ease? Responding or not responding? Etc. Diagnosis,
prognosis and treatment may be based on a continuum,
but even these continuums, in general, consist of thresh-
olds and identifiable yes/no questions. Advanced image
processing and analysis performed on medical images
should take into account where these important dichoto-
mies exist in any current application and perform experi-
ments to validate the algorithm accordingly.

2) No adjustment for confounders in statistical analysis:
When advanced image processing and analysis research-
ers seek to define a quantitative imaging biomarker, it is
important to include knowledge of the current literature
about the disease in question to the statistical validation of
the biomarker. For example, it is important to adjust for
known confounders of the disease. In the case of OA,
known confounders include patient characteristics such
as sex, age and BMI, among others. In the case of the
analysis by Folkesson et al. [32], the application of their
cartilage segmentation algorithm to the classification of

normal vs. OA knees is weakened by the failure to adjust
for these known confounders in their analysis.

3) No longitudinal data in analyses: An important compo-
nent of any disease state is time; it is an especially
important component in chronic diseases such as OA
and AD. While a cross-sectional study may be the only
type of study feasible given time, patient or monetary
constraints, it is nonetheless important to develop a plan
or method to expand any analysis to include longitudi-
nal data. The OAI and ADNI provide longitudinal data
for OA and AD, respectively. They offer examples of
imaging protocols which were developed and imple-
mented with a specific goal of accurate and reproduc-
ible acquisition over time.

4) Use of inappropriate imaging protocol for structure being
processed and analyzed: In some cases, advanced image
processing and analysis is part of the discovery phase of
research into quantitative imaging biomarkers. Therefore,
it may not yet be known what, if any, descriptive meas-
ures of disease can be extracted from the given images.
However, it is often known which sequence can best
delineate (visually, at least) the boundary between a re-
gion of interest and “everything else.” By incorporating
segmentation and registration together, the performance
of both the algorithm for extraction of a structure and the
calculation of a quantitative imaging biomarker can be
improved. For example, incorporation of “segmentation”
imaging protocols (e.g., anatomical sequences) which are
quick but accurate with structural delineation may be
necessary for consistent and robust application of ad-
vanced image processing and analysis techniques. Then,
registration of a different set of images which were ac-
quired using a more appropriate protocol for the structure
being analyzed can be performed, with the segmentations
from the anatomical protocol registered using the calcu-
lated transformation. This is, of course, the thought be-
hind the development of registration algorithms, such as
maximization of mutual information, and acquisition
methods, such as PET/CT. However, there is still room
for advancement in the application of these methods to
quantitative imaging biomarker research.

With these challenges in mind, it is important to consider
a general structure for the incorporation of advanced image
processing and analysis methods into the development of
quantitative imaging biomarkers for use in clinical and
preclinical decision making. The stages of development for
quantitative imaging biomarkers are well represented by the
five-phase model for cancer screening biomarkers presented
in Ref. [60]. In Table 4, the application of that model to
quantitative imaging biomarker development is presented.
An important thought from this conceptual model is that when
considering the application of quantitative imaging
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biomarkers to questions of preclinical or clinical interest, it
may be useful to think of the development of a quantitative
imaging assay using advanced image processing and analysis.

Summary

The advancement of medical imaging technology, including
an increase in the use of functional and molecular imaging,

provides a wealth of new information to be used in preclin-
ical and clinical decision making. Quantitative imaging
biomarkers extracted from the available imaging modalities
have become increasingly important in medical product
development, disease diagnosis and treatment planning.
The forecast is that the role of quantitative imaging bio-
markers will only continue to increase. Methods of ad-
vanced image processing and analysis can provide
powerful tools for the discovery and characterization of

Table 4 The incorporation of quantitative imaging biomarkers and advanced image processing and analysis into a five-phase model for the
development of biomarkers for cancer screening. Adapted from Ref. [60]

Phase Name Description Aims Incorporation of quantitative
imaging biomarkers

I Preclinical
exploratory
studies

Exploratory studies to identify
characteristics unique to
tumor tissue that might lead
to ideas for clinical tests for
detecting cancer (i.e., comparing
tumor with non-tumor tissue).

To identify and prioritize
potentially useful biomarkers.

Image acquisition, manual
or automated image
processing and analysis.
In general, measurements
of potential quantitative
imaging biomarkers would
be based on structures of
interest delineated by an
expert. Features that have
strong associations with
disease state could be labeled
as potential quantitative
imaging biomarkers.

II Clinical assay
development
for clinical
disease

Development of a clinical assay
which can distinguish between
subjects with cancer and subjects
without cancer (e.g., an immune
response to a protein uniquely
expressed by the tumor and
measured with serum antibodies).

To estimate performance of
clinical biomarker assay
(e.g., true positive rate,
false positive rate, etc.)
and assess its ability to
distinguish subjects with
cancer from subjects
without cancer.

Development of accurate and
efficient methods of calculating
possible quantitative imaging
biomarkers. This could include
automated processing and analysis
of the images. The automated
methods would need to be
validated not only for accuracy
and reproducibility against a
manual reader, but also for
accuracy and reproducibility
of calculations of the quantitative
imaging biomarkers produced
from the automated processes.

III Retrospective
longitudinal
repository
studies

Compare biomarker
measurements from clinical
specimens collected from
cancer case subjects acquired
before their cancer diagnosis
with biomarker measurements
from control subjects (i.e., those
who did not develop cancer).

To evaluate the capacity
of the biomarker to detect
preclinical disease and to
define criteria for a positive
screening test in preparation
for Phase IV.

Validation of quantitative imaging
biomarker and method of calculation
for use in detection of preclinical
disease. Incorporation of more
data into testing of accuracy and
reproducibility of advanced image
processing and analysis methods
used for extraction of quantitative
imaging biomarkers.

IV Prospective
screening
studies

The screening biomarker is applied
prospectively to individuals and
definitive diagnostic procedures
are applied to those screening
positive.

To determine the operating
characteristics of the biomarker-
based screening test in a relevant
population by determining the
detection rate and the false
referral rate.

Incorporation of more data
into testing of accuracy and
reproducibility of advanced
image processing and analysis
methods used for extraction of
quantitative imaging biomarkers.

V Cancer
control
studies

Addresses whether the screening
reduces the burden of cancer
in the population.

To estimate the reductions in
cancer mortality afforded by
the screening test.

Analyze whether quantitative
imaging biomarker and method
of extraction reduces the burden
of cancer in the population.
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quantitative imaging biomarkers. Future advancements in
medical science and industry are likely to benefit signifi-
cantly from the increased availability of quantitative imag-
ing biomarkers as well as theoretical and software tools for
the processing and analysis of the images from which the
biomarkers are being extracted.
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