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Abstract While previous research has determined the con-
trast detection threshold in medical images, it has focused
on uniform backgrounds, has not used calibrated monitors,
or has involved a low number of readers. With complex
clinical images, how the Grayscale Standard Display Func-
tion (GSDF) affects the detection threshold and whether the
median background intensity shift has been minimized by
GSDF remains unknown. We set out to determine if the
median background affected the detection of a low-contrast
object in a clustered lumpy background, which simulated a
mammography image, and to define the contrast detection
threshold for these complex images. Clustered lumpy

background images were created of different median inten-
sities and disks of varying contrasts were inserted. A reader
study was performed with 17 readers of varying skill level
who scored with a five-point confidence scale whether a
disk was present. The results were analyzed using reader
operating characteristic (ROC) methodology. Contingency
tables were used to determine the contrast detection thresh-
old. No statistically significant difference was seen in the
area under the ROC curve across all of the backgrounds.
Contrast detection fell below 50 % between +3 and +2 gray
levels. Our work supports the conclusion that Digital Imag-
ing and Communications in Medicine GSDF calibrated
monitors do perceptually linearize detection performance
across shifts in median background intensity. The contrast
detection threshold was determined to be +3 gray levels
above the background for an object of 1° visual angle.

Keywords Image perception . ROC-based analysis . Digital
display . Contrast threshold . GSDF

Introduction

With the widespread use of digital imaging in radiography, it
is easy to overlook the important role that the display of the
image plays in interpretation. Object contrast is one of the
key aspects that affect image interpretation. Since January
1998, with the release of Digital Imaging and Communica-
tions in Medicine (DICOM) standard’s part 14 on Grayscale
Standard Display Function [1], diagnostic display devices
have been adjusted to make the display of grayscale medical
images perceptually equivalent on different display devices.
Perceptually linearizing the display reduces the affect of
image brightness on object contrast. The methodology
described by DICOM has become the monitor calibration
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method recommended by organizations such as the
American Association of Physicists in Medicine [2], the
American College of Radiology [3], and Integrating the
Healthcare Enterprise [4].

The DICOM standard is based on Barten’s [5] model of
the human visual system. By using Barten’s model, a mon-
itor can be calibrated so that the display of the gray levels in
an image is closely tied to just noticeable differences (JND)
in luminance changes. Each step along the calibrated gray-
scale changes the display’s luminance by approximately the
same number of JNDs, making the gray levels perceptually
linear. It is also documented that the human visual system
adapts to the average luminance of an image and that the
JND thresholds vary with the average luminance level [5].
Barten’s model assumes that the eye has adapted to the
average luminance. There is also a general variation in the
JND threshold between individuals. The DICOM standard
uses a simplified Barten model that defines a standard
observer as a person with good vision between the ages of
20 and 30 years, detecting a standard object. When visual-
izing objects in an image, the amount of contrast between
the object and its background, the object shape and size, and
the level of anatomical information all affect detection [6].

Testing by Barten and others [7–10] used a sinusoidal
grating pattern on a uniform background to cover the
luminance range of the visual system. While a uniform
background is necessary for model development, it does
not represent clinical images. These papers also used a
two-alternative forced-choice signal known exactly (SKE)
experimental methodology, removing search from the task
even though radiologists use search when interpreting
clinical images. Important papers on contrast such as those
by Burgess et al. [11, 12] and Peli [13, 14] either used an
early form of Barten’s work to perceptually linearize the
monitors or used uncalibrated monitors. In these experi-
ments, search was also eliminated. Wang et al. [15] inves-
tigated the effect of object shape, comparing a disk to a
mass-like sphere, and used search, but only considered a
uniform background. Now that DICOM-calibrated moni-
tors are the norm for diagnostic imaging interpretation, we
wanted to determine whether adaptation to a median back-
ground luminance affects the detection threshold when
looking at complex images where search is involved. This
research aimed to substantially increase the number of
observers used in the study over the published literature
average of three.

This study had one hypothesis and one goal. The hypoth-
esis was that shifts in the median background intensity
would affect object contrast detection threshold in complex
images when the object luminance is relatively close to the
median luminance. The goal was to determine the detection
threshold level with a complex background typical of a
screening mammogram.

Materials and Methods

Thirty synthetic clustered lumpy background images, 512×
512 pixel in size, were created using the method developed
by Bochud et al. [16] using IDL 7.0 (IIT Visual Solution,
Boulder, CO, USA) software. All of the clustered lumpy
backgrounds were generated to have an approximate range
of pixel values of ±60 gray levels from the median of the
image. The range of the pixel values was designed to min-
imize the effect of local image adaptation yet give the
images an appearance reasonably reminiscent of breast pa-
renchyma on a mammogram. Figure 1 shows one of the
images used in this study. Table 1 displays the metrics of the
initial 30 images used in this study. An attempt was made to
minimize the effects of the image brightness range while
still maintaining a clinically realistic image. Using Barten’s
correction factor for surrounding illumination [17], we cal-
culated a maximum correction factor of 1.066, which repre-
sents a 6.6 % change in contrast sensitivity for contrast
disks. This small error was deemed acceptable for this study.
In addition, synthetic images were selected over true clinical
images for two reasons. The first reason was to control the
gray level range of the image, and the second reason was
to reduce any possible memory effect by eliminating
any incidental anatomical markers that would assist in
recognition [18].

The 30 initial background images were modified to create
five images with different median levels for each of the
initial backgrounds. This produced a total of 150 images.
To vary the median background intensity, an offset was
either subtracted or added to the base background to pro-
duce the different median levels (Table 2). Table 2 also
includes the estimated median luminance of the background

Fig. 1 A sample clustered lumpy background image showing the
highest contrast disk that was added to the backgrounds. The left lower
edge of the disk is marked with a white arrow. As intended, the
background variation remains visible through the disk
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images for each of the five median gray level values. All
images were created at eight bits for 256 shades of gray. The

dataset was split into two parts. Fifty images were left as
created and were used as the normal cases for the reader
operating characteristic (ROC) analysis (10 images at five
different median intensities). One hundred images had a
single contrast disk inserted into the image. The 100 images
with the contrast disks were comprised of five disk contrast
levels × five median intensities × four replicates. The
inserted contrast disk had a fixed radius of 20 pixels and
was randomly placed in the image, by adding the desired
contrast value, ranging from +1 to +5 gray levels, to the
background pixel value at the location of insertion. This was
done to maintain the overall background variation and still
maintain a specific contrast delta as seen in Figs. 1 and 2. The
size of the disk was selected to be approximately 1° of
visual angle when viewed at 65 cm on our test monitors.

Table 1 Image parameters
Image number Mean Std dev Skewness Kurtosis Median Min value Max value

1 87.450 12.329 −0.761 0.408 90 36 120

2 89.424 14.334 −0.105 −0.218 90 34 133

3 87.784 14.275 −0.336 −0.091 90 26 130

4 88.216 13.110 −0.653 0.381 90 36 122

5 89.091 14.276 −0.331 −0.107 90 36 127

6 87.859 13.881 −0.402 −0.395 90 37 121

7 89.043 12.970 −0.608 0.491 90 33 128

8 88.038 14.276 −0.481 −0.410 90 36 124

9 89.213 13.646 −0.209 −0.170 90 41 130

10 87.443 14.104 −0.498 −0.201 90 36 124

11 88.783 13.356 −0.584 0.633 90 32 127

12 88.203 14.064 −0.543 −0.435 90 43 121

13 88.588 13.504 −0.355 −0.207 90 40 126

14 89.714 13.989 −0.190 −0.255 90 39 133

15 87.979 12.865 −0.630 0.468 90 33 124

16 87.815 13.170 −0.620 0.001 90 40 118

17 87.294 12.722 −0.815 0.376 90 37 117

18 87.774 13.674 −0.445 −0.192 90 37 126

19 88.517 13.935 −0.296 0.017 90 38 131

20 88.693 12.732 −0.764 0.931 90 29 121

21 87.728 13.900 −0.520 0.021 90 36 124

22 88.356 13.900 −0.389 0.103 90 41 133

23 88.761 13.584 −0.496 0.167 90 38 126

24 89.843 13.809 −0.346 0.462 90 35 133

25 88.870 13.393 −0.538 0.374 90 32 124

26 88.102 13.077 −0.646 0.552 90 36 124

27 87.887 13.942 −0.440 −0.071 90 36 133

28 90.067 13.629 −0.030 −0.527 90 41 135

29 89.165 13.722 −0.316 −0.106 90 41 131

30 89.497 13.333 −0.151 0.136 90 45 135

Averages 88.507 13.583 −0.450 0.071 90 36.7 126.7

Minimum 87.294 12.329 −0.815 −0.527 90 26 117

Maximum 90.067 14.334 −0.030 0.931 90 45 135

Table 2 Image parameters

Median
backgrounda

Estimated median
luminance (cd/m2)

Contrast disk
(gray levels)

65 5.2 +1

100 10.6 +2

135 19.2 +3

175 35.0 +4

205 53.2 +5

a The median background is the median gray level value for the entire
image (without the disk) which has a total range of 0–255
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While it is known that contrast detection is affected by
object size [5, 9], it was not practical to have observers
run the full range of object sizes needed to get full contrast
detail curves. By using moderate-size objects, extrapolation
to objects with other sizes could be reasonably made. This
experiment is an SKE test because the reader knew the size
and the shape but not the location of the object and had to
search for the object in the image.

To perform the reader study and to facilitate as many
readers as possible, we used eight standard personal com-
puters (PCs) with liquid crystal display (LCD) monitors at
three different geographical locations in Sydney, Australia;
Houston, Texas; and Boston, Massachusetts. To compensate
for the variations existing between monitors in terms of
luminance output and grayscale rendition, all of the mon-
itors were calibrated to be compliant with DICOM part 14
using a single VeriLum calibration meter and software
(Image Smiths, Bethesda, MD, USA). This resulted in the
monitors typically having a calibration maximum luminance
of around 100 cd/m2 and a minimum luminance of around
0.7 cd/m2. This allows for approximately 1.6 JND steps for
each of the gray levels, making each of the possible shades
of gray presented in this study perceivable on a uniform
background, even with small variations in the calibration
from monitor to monitor. The ambient lighting conditions
were controlled to be below 20 lux using indirect lighting.
An ROC reader study was run using the ViewDEX 1.0
software [19] (Sahlgrenska University Hospital, Göteborg,
Sweden) both to display the images and to record user
ratings. Readers were given unlimited time to review each
image before rendering their decisions in the ViewDex
software. Images were displayed in a different random order
for each reader to reduce possible reading order bias caused
by a regular ordering pattern of background brightness.
Window/level and pan/zoom functions in the ViewDEX
software were disabled and the images were displayed at a
fixed window width of 256 and a level of 127. The resolu-
tion of the monitors was 1,280×1,024 and a black surround
was used to fill the unused display area, allowing for 1:1

image display. To score the ROC study, a five-point confi-
dence scale was used, which can be seen in Table 3.

A total of 17 readers from three institutions were
recruited to participate with varying levels of clinical expe-
rience from engineers with no experience reading clinical
images to attending radiologists. Seven of the readers were
practicing radiologists with an average of 13.2 years of
experience postresidency (range of 3–35 years). The
remaining readers were medical physicists (n04), radiology
technologist lecturers (n02), engineers (n02), and senior
radiology technologist students (n02). Readers ranged in
age from their early 20s to their early 60s, with nine women
and eight men participating. Readers were given the oppor-
tunity to take breaks to prevent fatigue, but none chose to
take a break. Readers completed the study in an average of
45 min with a range of 30–60 min.

All readers ran a training set of four images before start-
ing the reading to become familiar with the ViewDex soft-
ware and the general appearance of the clustered lumpy
backgrounds and the contrast disks. The training and read-
ing were done in one session. Readers were made aware that
contrast disks were randomly located in the image on ap-
proximately 66 % of the images. To identify a difference in
detection performance based on different median back-
ground intensities, the reader data were analyzed using the
Trapezoidal/Wilcoxon method in DBM-MRMC [20–26] 2.2
software (University of Chicago, Kurt Rossmann Laborato-
ries for Radiologic Image Research, Chicago, IL, USA), by
comparing the area under the ROC curve (AUC). Using
JMP®, Version 9 statistical software (SAS Institute Inc.,
Cary, NC, USA), contingency tables were generated and
used to determine the contrast threshold over all median
backgrounds and to perform comparisons of reader scores
at each background level. Additionally, JMP was used to
perform the test for correlation between the median back-
ground and the AUC scores with Hoeffding’s D method.
Hoeffding’s D method was chosen for its more generalized
test for independence over the more common Spearman’s
Rho. Power estimates were calculated using SAS 9.1.3 SP4
(SAS Institute Inc.) with scripts developed at, and down-
loaded from, the Medical Image Perception Laboratory at
the University of Iowa [23, 27], using a power of 0.8
and an alpha of 0.05.

Table 3 ROC confidence scale used

Confidence scale Scores

Very confident object present 5

Confident object present 4

Somewhat confident object present 3

Confident object not present 2

Very confident object not present 1100
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160

0 100 200 300 400 500
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Fig. 2 The plot shows a horizontal line profile of the image shown in
Fig. 1 through the center of the contrast disk. The left and the right
edges of the disk are shown by the black arrows. The background
variation remains independent of the disk and is seen as an offset
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Results

The results of the ROC analysis are shown in Fig. 3. Figure 3
is a composite of all of the areas under the ROC curve for each
reader and median background level with box–whisker plots
used to highlight the distribution of the scores. The ANOVA
analysis results from the DBM-MRMC software for random
cases and random readers, testing for a difference in disk
detection between median background levels demonstrated
no significance (p value 0.2729). In the test for correlation
between median background level and AUC scores, Hoeffd-
ing’s D showed no statistical significance with a p value of
0.62. Based on the retrospective power calculations (alpha of
0.8) in this study, a difference in AUC value of 0.095 can be
detected across the median background levels.

Figure 4 shows a mosaic plot which is a graphical repre-
sentation of a contingency table of the scores for all readers
and all median background levels. In Fig. 5, the reader
scores are grouped into “Yes” when the reader scored a disk
as being present in the image with a score of 3–5, or “No”
for a score of 1 or 2. This allowed better visualization of the
contrast detection threshold. In Fig. 6, the mosaic plot is
broken down to show how the readers’ scores varied around
different median background levels for each of the disk
contrast levels.

All of the mosaic plots are in the same format. There are
two parts of the mosaic plot, the main graph on the left and a
summary bar on the right. The summary bar on the right
represents the distribution of scores across all columns in the
main section. The numbers next to this summary show the
reader score and its relation to the color. White represents a
score of 5, and black represents a score of 1. As the distri-
bution changes, the different colors are used to determine
the scores in each column. The contrast label along the
bottom, in the main section of the graph, is the contrast of
the disk as compared with the median background of the
image. Images with no disk are in the right-most column.
The y-axis label on the left is the cumulative percent scale;

from this scale, the percentage of each score at each contrast
level can be determined. The height of each column repre-
sents the proportion of the dataset for each of the contrast
settings. For example, in Fig. 4 in the +3 column, the dark
gray, second from the bottom, represents the percent of
score of 2 “Confident Object Not Present.” This represents
approximately 26 % of the total scores received for this
contrast level. Scores of 5 or “very confident” that a disk
is present are represented by the white section at the top of
the column. This is approximately 45 % of the total scores.
If we look at the “No Disk” column and analyze the white,
light gray, and medium gray areas, for scores 3–5, we see
that these total approximately 25 % of the scores. This
means that 25 % of the time a reader scored an image as
having a disk when none was present in the image. These
are false-positive marks. There were 150 images in the
dataset and 50 images were “No Disk,” so the width of the
right-most column represents one third of the total.
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Fig. 3 The graph shows the area under the curve (AUC) for each
reader, as a gray dot, with a box–whiskers plot to show the distribution
of the sores at each median background level. The horizontal line is the
mean of all AUC scores
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Fig. 4 Mosaic plot showing the proportion of all reader confidence
score as the contrast in the disk changed for all background levels. The
scores relate to the confidence scale listed in Table 3. White indicates a
score of 5 (very confident that an object is present) and black a score of
1 (very confident that an object is not present). The y-axis on the left is
the percent distribution of the score. The right axis label is the score
number
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Fig. 5 Mosaic plot showing the proportion of readers who scored a
disk as either absent (score of 3–5, dark gray) or present (score of 1–2,
white) as the contrast in the disk changed. The y-axis on the left is the
percent distribution of the score. The right axis is the detection label.
As contrast increased, readers were more likely to score correctly those
images actually containing disks
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Even though no correlation was found between AUC and
median background level, there was a possibility that a
pattern would be present in the actual scores across median
background level for each disk contrast level. As these were
in the contingency tables, Pearson tests were used to check
that the distribution of scores was statistically the same for
the background levels at each contrast level. The tests for
each contrast level produced p values of 0.90, 0.65, 0.01,
0.26, 0.20, 0.26, starting from +1 to +5 and finally “No
Disk”, respectively. These correspond to the mosaic plots
in Fig. 6.

Discussion

With a p value of 0.27, no statistically significant difference
in contrast detection across the different median background

levels was detected for the population of readers and cases.
This study was able to detect changes in AUC down to
0.095. Within the 0.095 difference, the DICOM standard
does make monitors perceptually linear and means that,
whatever the average luminance of the background, our
ability to detect differences in contrast remains the same.
This assumes that the illumination in the reading room is
optimized.

The contrast detection threshold was found to occur at +3
gray levels (Fig. 5) using a threshold of 50 % to define the
cutoff. This contrast level is specific to the objects which are
1° of visual angle in size on complex backgrounds similar to
that of a mammogram. Since the JND steps for the 8-bit
images was 1.6, on a uniform background, the contrast
threshold would be expected to be one as shown by Wang
et al. [15] The difference of 3 gray levels or 4.9 JND
steps can be attributed to the anatomical type noise in the
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Fig. 6 Mosaic plot showing the
reader confidence score as the
median background changed
for each of the five disk
contrasts and for images with
no disk. The scores relate to the
confidence scale listed in
Table 3. White indicates a score
of 5 (very confident that an
object is present) and black a
score of 1 (very confident that
an object is not present). The
y-axis on the left is the percent
distribution of the score. The
right axis label is the score
number
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background image. It is interesting to note that Wang et
al. [15] obtained the same contrast threshold when using a
disk that was nodule-like, having a taper to the edges on a
uniform background as our simple disk on a complex
background.

It is important to note that, for the +1 and No Disk
columns, the “Yes” percents are statistically equal. Based
on the work of Starr et al. [28], the majority of detections of
the +1 contrast disk can be attributed to incorrect localiza-
tion. This occurred when a disk was truly present and
undetected, yet the reader scored a disk as present based
on false identification of some part of the background as a
disk. Some similar false-positives or incorrect localizations,
could occur at all of the other contrast levels as well, but it is
reasonable to suppose that these incorrect localizations
would become less prevalent as contrast increases because
the true disks would become more and more obvious. Since
it is not practical to determine the false-positive rates for the
other contrasts, as a worst case scenario, we applied the
same level of assumed false-positives to the +2 and +3
contrast levels as to the +1 contrast level. True positives
were estimated to be actually close to 8 and 40 % for the +2
and +3 contrast levels, respectively, by subtracting 25 %
from the yes scores. Even with this correction, the correct
scores at +3 are still overall more numerous than the “No”
scores (34.12 %), further supporting our determination of +3
being the contrast detection threshold.

As can be seen in Fig. 3, the variation for readers by
median background was high. One of the largest differences
was for reader 9, whose AUC scores ranged from 0.5 to 0.9
across the different median backgrounds. Since all readers’
AUC scores varied randomly across the different median
backgrounds, no experimental bias was found. Effort was
made to analyze the cause for the high variance and, while a
conclusive cause was not identified, it does appear that the
false-positive detection rate in the images with no disk (see
Fig. 4) may have an effect. The variance also highlights the
need to employ a large number of readers in studies of this
nature, if power is to be at a reasonably acceptable level. In
addition, the high variance calls into question the power
achieved in the previous detection threshold work where
Burgess [11, 12] and Wang et al. [15] used only three and
six readers, respectively. These results may also raise the
question as to whether the experience of the reader needs to
be standardized, evenwith tasks that do not require medical, or
specifically radiological, expertise. This requires further study.

The data shows that for images without contrast disks, 13
readers scored images as “Confident” or “Very Confident”
that a disk was present, with reader 1 scoring 22 out of 50
images as a disk present. A review of reader 1’s AUC scores
did not show any systematic difference to the other readers.
Adding the rating “Somewhat Confident Object Present”, all
of the readers thought that a disk was present when none

was present at least occasionally. The range was from two to
37 images out of 50 without disks. This was a surprising
result. This study was designed to create a mammography
background pattern that would be different from the disk so
that the readers would not detect objects that were not
present. Since the high false-positive level may be the cause
of the large variance, the scores were broken down by
median background level to see if the distributions of scores
were statistically equal for all readers (Fig. 6). No statistical
differences were seen. During the testing of the score dis-
tributions, only the +3 contrast was statistically significantly
different across all median background levels with a p value
of 0.01 using a Pearson test. This result is understandable in
that this was the contrast level where detection changed. As
can been seen in the +3 graph of Fig. 6, there is no pattern to
the change between median background levels.

An additional method to test the performance of the Gray-
scale Standard Display Function would have been a test of
equivalence. Since this study was primarily focused on the
impact of differing median backgrounds on contrast detection
with calibrated monitors, there was no control (noncalibrated
monitors) to benchmark performance change and this coupled
with the high variance, did not facilitate an effective test of
equivalence. This issue is currently being addressed.

Conclusions

Comparing the detection threshold between the five median
background levels when the disk of +1 to +5 gray levels was
within ±60 gray levels of the median, did not result in any
statistically significant difference. Within the detection capa-
bility of a difference of 0.095 in AUC value, the DICOMGray
Scale Display Function does minimize the effects of median
background level on contrast detection for LCDmonitors. The
detection threshold was identified as being close to +3 gray
levels for an object size that is 1° in visual angle and for the 8-
bit images included in this study. The high rate of false-
positives leads the researchers to the conclusion that a
location-based methodology (where the location of the lesion
is identified) might be best used for contrast detection thresh-
old experiments. Future work will look at the effect of known
location on the contrast detection threshold.
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