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Abstract The accuracy of computer-aided diagnosis (CAD)
for early detection and classification of breast cancer in dynam-
ic contrast-enhanced magnetic resonance imaging (DCE-MRI)
is dependent upon the features used by the CAD classifier.
Here, we show that fast orthogonal search (FOS), which pro-
vides a more efficient iterative manner of computing stepwise
regression feature selection, can select features with predictive
value from a set of kinetic and texture candidate features
computed from dynamic contrast-enhanced magnetic reso-
nance images. FOS can in minutes search candidate feature
sets of millions of terms, which may include cross-products of
features up to second-, third- or fourth-order. This method is
tested on a set of 83 DCE-MRI images, of which 20 are for
cancerous and 63 for benign cases, using a leave-one-out trial.

The features selected by FOS were used in a FOS predictor and
nearest-neighbour predictor and had an area under the receiver
operating curve (AUC) of 0.889 and 0.791 respectively. The
FOS predictor AUC is significantly improved over the signal
enhancement ratio predictor with an AUC of 0.706 (p00.0035
for the difference in the AUCs). Moreover, using FOS-selected
features in a support vector machine increased the AUC over
that resulting when the features were manually selected.
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Introduction

Breast cancer is both the second leading cause of cancer deaths
and the most common cancer diagnosed in women today. An
improvement in the breast cancer survival rate has been attrib-
uted to earlier detection [1] and regular screening has been
identified as essential for improving survival rates [2].

Mammography is the standard screening modality but
recent prospective studies have shown that dynamic
contrast-enhanced magnetic resonance imaging (DCE-MRI)
has a superior sensitivity when compared to mammography
and ultrasound for the detection of breast cancer in women
with a >25% lifetime risk of breast cancer [3–5]. Furthermore,
in women with recently diagnosed breast cancer, MRI can
detect cancer in the contra-lateral breast that is missed by
mammography [6, 7]. As a result of these studies, the Amer-
ican Cancer Society (ACS) has recently recommended that
breast screening with MRI be used as an adjunct to mammog-
raphy in all women with a 20 % or greater lifetime risk of
breast cancer [8]. Sardanelli et al. [9] looked at data from five
prospective screening trials and calculated a pooled sensitivity
of 81% and a positive predictive value of 53% for DCE-MRI.
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This indicates that although MRI is the most sensitive screen-
ing modality, there are still a significant number of women
who undergo biopsy and are found to have a benign lesion.

Many groups have attempted to improve the accuracy of
diagnosis by developing computer-aided diagnosis (CAD)
systems for the classification of breast cancer from DCE-
MRI. These use kinetic, spatial and texture features
extracted from the images [10–14] as inputs into a classifi-
cation routine. Hundreds of features can be calculated from
DCE-MRI but the use of too many features with relatively
small data sets is known to lead to overtraining of the
classifier and poor performance with unseen data. Since
these features can be highly correlated to each other, some
combinations of features may add little predictive value to
the classifier. The goal of feature selection is to choose
features with the most predictive value from a large set of
potential features. In CAD of breast cancer, several
approaches have been used for feature selection including
a stepwise method [15], automatic relevance detection [14]
and genetic algorithms [16, 17]

One well-known feature selection technique is the step-
wise regression algorithm [18] in which candidate features
are used to create a functional expansion of a target vector.
The feature vectors are fitted in order of significance in the
reduction of the mean-squared error (mse) of the functional
expansion. When a QR decomposition is used, the feature
vectors are orthogonalized with respect to all the previously
fitted vectors so that highly correlated features are not se-
lected. Typically, implementation of this approach has not
recognized that orthogonal functions computed for terms
already in the model do not have to be recomputed after a
new term is added to the model, nor does it use a quick
method of measuring the benefit of adding a given
candidate.

The fast orthogonal search (FOS) algorithm [19] can
perform the same regression as the stepwise regression
without explicitly computing the orthogonal feature set,
yet still exploit advantages inherent in orthogonality. This
results in the FOS algorithm being much more efficient in
computation time and memory usage than the well-known
stepwisefit algorithm as is shown in this paper.

FOS has been shown to be highly effective in selecting
appropriate features to model biological applications [20,
21]. Shirdel et al. [21] used FOS to identify features that
predict which patients are at high risk for neutropenia based
on information collected in the first cycle of a six-cycle
chemotherapy treatment. Minz and Korenberg [20] used
FOS in the appropriate selection of motifs and interacting
groups of motifs involved in gene regulation.

In this paper, we will describe how the FOS algorithm
can be used in the automatic selection of features with
predictive value from a large set of candidate features
extracted from DCE-MRI images. The candidate feature

set consists of 106 features extracted from a set of 83
DCE-MRI exams as well as the point-by-point cross-
product of these features. The features selected by the FOS
routine are used in a nearest neighbour (NN), support vector
machine and FOS-based classifier to evaluate the predictive
value of the features selected by FOS.

Materials and Methods

Feature Selection

CAD systems for the classification of breast cancer from
DCE-MRI use a set of features computed from the series of
images. The purpose of the FOS method is to search a large
set of features (perhaps millions when cross-products are
included) derived from DCE-MRI images and find a small
set (two to six) of features that when used by a classifier
have good classification performance. This is done without
having a priori knowledge of which features would improve
the accuracy and without bias as to which features have
been used in previous studies.

The FOS algorithm is a modelling technique that deter-
mines the model terms of a functional expansion using an
arbitrary set of non-orthogonal candidate functions [22, 23].
FOS creates the functional expansion in order of signifi-
cance fitting the terms that reduce the mse the most first.
Manually testing all the combinations of features of even a
relatively small set of initial features may be computation-
ally demanding due to the huge number of such combina-
tions. FOS will automatically select the features or feature
set that have predictive value.

The FOS algorithm [19, 22, 23] models a target signal y(n)
as a functional expansion given by

yðnÞ ¼
XM
m¼0

ampmðnÞ þ eðnÞ ð1Þ

where pm(n) are the selected model terms, am are their weights
and e(n) is the residual error. The terms pm(n) in the model are
selected from a large set of candidate functions pc(n), c00, 1,
…, C−1 in the order that reduces the mse of the functional
expansion themost. An implicit orthogonalization carried out by
the FOS algorithm ensures features selected have little common
energy and thus additional terms added have additional energy
(and predictive value) compared to the model terms already fit.

FOS implicitly uses Gram–Schmidt orthogonalization
[19, 23] to determine orthogonal candidate functions which
can also be used to obtain a functional expansion given by:

yðnÞ ¼
XM
m¼0

gmwmðnÞ þ eðnÞ ð2Þ
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where gm are the weights of the orthogonal functional ex-
pansion and wm(n) are the corresponding orthogonal func-
tions. The details of the FOS algorithm are given in Refs.
[19, 22, 23].

One advantage of the FOS algorithm is that it does not
need to explicitly compute and store the orthogonal func-
tions wm(n) in Eq. 2. The well-known stepwise fit regression
(SWF) algorithm [18] explicitly computes the orthogonal
functions wm(n) in Eq. 2. Although the stepwise regression
algorithm is typically computed using QR matrix decompo-
sition, it can be iteratively computed in FOS. The MatLab
stepwisefit function [24] always fits a constant (DC term) as
its first term and normalizes the candidate features to be
zero-mean unit energy. In this work, we verified that the
FOS algorithm would fit the same features, in the same
order, and with the same weights as the stepwisefit function
in cases when FOS was forced to fit a DC term as the initial
term in the functional expansion (in the results presented
below, a DC initial term was not required in the FOS models
identified). However, FOS is much more efficient computa-
tionally and in memory usage than the stepwisefit algorithm
as the orthogonal functions wm(n) are not explicitly comput-
ed and stored. In addition, as the correlation values D(m, r)
are computed once and stored, FOS is not required to
recompute point-by-point correlations involving the wm(n).
Both the FOS and SWF algorithms are order MNC whereM
is the number of terms fitted, C is the number of candidate
terms and N is the record length. Typically, the number of
candidates C is very large and this term dominates the
computation time. When both algorithms are compiled, the
implicit orthogonalization in FOS makes it faster by avoid-
ing the need to carry out a full linear regression C times
whenever a new term is to be added to the model.

To use FOS for feature selection, the candidate functions
pc(n) are the set of features from which a concise subset of
features with predictive value are to be chosen. In some
applications, FOS may force fit a constant term as the first
term in the functional expansion but, instead, in the present
work a constant term was included in the candidate feature
set. The target function y(n) has the value of A for cancerous
lesions and B for benign exams, where the diagnosis has
been clinically determined, and A and B can be arbitrarily
set. The choice of A and B will affect the weighting of each
class in the calculation of the mse. The candidate feature set
{pc(n)} consists of kinetic features (based on the relative
signal intensities) and texture features (based on the distri-
bution of the intensities within the region of interest). These
features are described in the “Features” section.

In addition to the original features derived from the DCE-
MRI images, cross-products of the original features can be
used as candidate features. Cross-products of features may
have more predictive value than the original features and are
thus worth testing in a feature selection algorithm [20, 25].

Employing the cross-product terms as predictors of cancer or
benign status would probably not be obvious even to clinical
diagnosticians. But this highlights the utility of FOS in that it
is able to explore very large sets of candidate terms and within
minutes find concise models with unobvious terms that serve
as very good indicators of the status of a lesion.

The feature set described in the “Features” section is used
as the original candidate set. Exhaustively creating point-by-
point cross-product candidates from the initial candidate set
results in a huge number of combinations of cross-product
candidates. However, these cross-product candidate func-
tions can be created as they are being tested as the next term
in the FOS model and then discarded. There is no need to
simultaneously store all the cross-product candidates in
memory. This negates the need for a huge amount of mem-
ory to store the cross-product candidates. In addition, due to
the computational efficiency of FOS, it can exhaustively
search millions of candidate terms efficiently.

The cross-products are created using each possible com-
bination, with repetition, of the initial feature set excluding
constant (DC) terms. The Mth order cross-products are the
product of M factors pciðnÞ; i ¼ 1; . . . ;M belonging to the
initial feature set.

It has been noted that FOS can be biased when its
features have dissimilar energy. Thus all the features to be
described in the “Features” section will be normalized to
have zero mean and unit energy before the FOS functional
expansion is created. All initial features are normalized before
the cross-product terms are created. In addition the features are
normalized after removing the hold-out data in the leave-one-
out trial, thereby not using information from the test data exam
to normalize the rest of the training data set.

Assuming we have a feature p′(n), the feature normalized
to have zero-mean and unit energy is computed using

pðnÞ ¼ p0ðnÞ � μð Þ σ= ð3Þ

where μ is the sample mean and σ is the sample standard
deviation of the training set data once the hold-out data is
removed. Note that the normalized initial feature set com-
puted using Eq. 3 is used to compute the cross-product
features. These cross-product terms are not normalized
again. The hold-out data in the leave-one-out trials is nor-
malized to the same extent using the mean and standard
deviation computed within the training set using Eq. 3.

The initial feature set pc(n) and the maximum order X0 of
cross-terms to include in the feature set are inputs to the
FOS feature selection algorithm. The FOS algorithm will
compute the cross-product features as required, negating the
need to store all the cross-product features in memory at the
same time. The FOS feature selection algorithm will return
the selected features pm(n) and their weights am for the
functional expansion in Eq. 1.
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The features selected by FOS may be both initial features
as well as cross-product features. The features are selected
in order of significance, the first one fit, reduces the mse of
the model the most. Since the FOS algorithm implicitly
orthogonalizes the features with respect to the previously
selected features, features that are highly correlated to pre-
viously fitted features will not be selected by FOS as they
will not significantly decrease the mse of the functional
expansion or add predictive value in the feature selection
algorithm.

The features selected by FOS are then used by one of
three different predictors to assess the predictive value of
these features. The three predictors used are the NN predic-
tor, a FOS-based predictor and a support vector machine
classifier. Note that all the classifiers use the zero-mean unit
energy initial candidate functions as calculated in Eq. 3 and
also that these zero-mean unit energy initial candidate func-
tions are used in computing cross-product terms.

MRI Protocol and Patient Cohort

The data set of 83 DCE-MRI breast exams used in this study
was collected at the Sunnybrook Hospital as part of a
screening trial conducted by Warner et al. [26]. The follow-
ing research was approved by the Institutional Review
Board of the Sunnybrook Hospital and the patients gave
informed consent. Patients were between the ages of 25 and
65 and were at high risk of developing breast cancer
(BRCA1 and BRCA2 mutation carriers). Imaging was car-
ried out using a 1.5 T magnet (Signa, General Electric
Medical Systems, Milwaukee, WI). Simultaneous sagittal
imaging of both breasts using dual three-dimensional sagit-
tal TR-interleaved SPGR sequences (TR/TE/flip angle,
18.4 ms/4.3 ms/40° from 28 partitions per breast) was
performed both before and after a rapid intravenous injec-
tion of 0.1 mmol kg–1 of Gd-DTPA. Each volumetric bilat-
eral acquisition was obtained in 2 min 49 s. Slice thickness
was 2–3 mm, without a gap, using a matrix of 256×256 and
a field of view of 18–20 cm. Each study comprised a
baseline volume and four post-contrast volumes. Twenty
cases with a malignant lesion (confirmed on histology) and
63 showing a focal benign lesion (either confirmed on
histology or presumed benign after 2 years disease-free
follow-up) were used in this paper.

The data was motion corrected using a 3-D non-rigid
registration technique for breast images [27]. In addition to
the five acquired volumes (referred to as the raw image
Iraw(x, y, n)), enhanced images Ien(x, y, n) and difference
images Idif(x, y, n) were calculated. Equations for calculating
the enhanced and difference images are in the Appendix.
Note that enhanced image and difference images are con-
stant for n00 and thus these images were not used. Regions
of interest (ROI) outlining each lesion were defined

manually by thresholding the enhanced images. The exact
edges of each lesion were not delineated. A hyper-intense
subsection of the lesion was sampled to help ensure that the
data we collect from malignant samples are not accidentally
containing signals from healthy tissue immediately adjacent
to the cancers we are studying.

Features

Features were computed from the raw DCE-MRI images, from
enhanced images and from difference images. A set of 106
candidate features were computed from these three data sets.
These features were normalized according to Eq. 3 and form
the initial candidate set for the FOS feature selection algorithm.

It was noticed that some of the exams have a maximum
signal pixel intensity as low as 40 and others as high as
1,000. Thus, for the raw and difference images, the variation
in contrast between patients greatly affected the feature
values derived from these images. Thus several features
were divided by either the maximum pixel value in the
ROI at all times or the maximum pixel value in the entire
image at all times such that the features were invariant to the
raw intensity level of the images [28]. This normalization is
not required for the enhanced image set as it is already
normalized relative to the pixel intensity at time n00.

In Table 1, a summary of all features and which image set
they belong to are shown. Notice, some of the features were
computed for each time n00,…,4 or n01,…,4 depending if
they are defined at n00. Other features, such as the signal
enhancement ratio (SER), have only one value for all times.
The peak time of the time absorption curve (TAC) is another
example of a feature in the original feature set. The features
given in Table 1 were computed for a region of interest for
each patient and a vector of that feature for a given time was
used as a candidate function for FOS. A total of 106 features
formed the initial feature set. Equations for the computation of
the washout, derivative and SER are given in the Appendix.

Classifiers

The NN classifier [19] is a well-known technique to deter-
mine the class of a data sample given exemplar samples
known to belong to the classes of interest. In breast cancer
classification, the two classes are cancer and benign. For the
NN classifier, the correlation coefficient (equation given in
Appendix) between the test feature vector and the mean of
the training feature vectors of each class is computed. The
test data will be then classified as being in the same set as
the training vector for which the correlation coefficient is the
maximum. Using the mean of the training set vectors com-
pensates for different numbers of training exemplars in the
two classes; otherwise there is a tendency to favour the class
having the most training samples. The zero-mean unit
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energy normalized candidate functions described in Eq. 3
were used by the nearest-neighbour classifier because if any
feature is significantly larger than the others it will dominate
the correlation coefficient calculation in the NN algorithm.

The average SER value was used in a threshold detector to
classify the lesion. If SER≥1.1, the test data is classified as
cancerous, otherwise it is classified as benign. The threshold
of 1.1 was used by Hylton et al. [29] and Levman at al. [30].

In the feature selection process, cancerous lesions were
given a value of A and benign lesions were given a value of
B. Using the arrays of features extracted from the DCE-MRI
images, a FOSmodel was created to model this sequence. The
FOS algorithm returns the significant features pm(n) as well as
the weights am for the functional expansion in Eq. 1. For the
hold-out data, the significant features determined by FOS
were normalized using the mean and standard deviation com-
puted from the training set data and Eq. 3. Then, an output

value y(n) was computed using Eq. 1. This value y(n) was
used in a threshold detector, as shown in Fig. 1. If y(n) was
greater than or equal to zero then the test case was classified as
cancerous, otherwise it was classified as benign. Note that a
threshold other than zero may also be used in the detector.

The support vector machine (SVM) performs classification
by determining a hyper-surface that separates the data into two
categories [31]. This hyper-surface is determined by optimiz-
ing the distance between the two sets of data. A radial basis
kernel function is added to assist in the separation of data.

Feature Validation

A leave-one-out trial was conducted to ensure the classifiers
were not being trained and tested using the same data. In this
study there were 83 sets of patient data of which 82 were
used by the feature selection process and 1 was used as the
hold-out test. The leave-one-out trial cycles through all 83
DCE-MRI exams, leaving out a different exam each time as
the test exam. The features given in Table 1 were computed
for each patient and a vector of that feature for the “training”
patients was used as a candidate function for FOS. In addi-
tion to these initial candidates, FOS tested cross-product
candidates up to the maximum order of cross-terms param-
eter as passed into FOS. The target output y(n) for FOS is a
vector consisting of values of A for cancerous exams and B
for benign exams.

The FOS feature selection algorithm was run many times
varying the maximum cross-term order X0, the number of
terms to be added in the FOS model M, and the target
classifier vector (A, B) for cancerous and benign tumours.
The maximum order of cross-terms X0 was varied from 1 to
4. For 106 initial features, the number of features tested by
FOS depending on X0 is shown in Table 2. For X004, over
5.5 million features are tested by the FOS algorithm. For the

Fig. 1 When FOS is used as a classifier, the weights are multiplied
with the test data exam of the features selected to provide a value for y(n).
If the value of y(n) is greater than or equal to zero then the test case is
classified as cancerous, otherwise it is classified as benign

Table 1 The 106 initial features

Features Image sets

Raw Enhanced Difference

1. Constant (DC) 1

2. Mean pixel value within ROI 5 4 4

3. Maximum pixel value over
maximum pixel value in ROI at
all times

4 4 4

4. Maximum Intensity Pixel at
all times

1 1

5. Time of Maximum Intensity
Pixel at all times

1 1

6. Maximum pixel value over
maximum pixel value in entire
image at all times

5 4 4

7. Maximum of the mean pixel
intensity

1 1

8. Time of the Maximum of the
mean pixel intensity

1 1

9. Maximum washout 1 1

10. Mean washout 1 1

11. Maximum derivative 3 3

12. Mean derivative 3 3

13. Total Pixels in ROI 1

14. Percentage of Pixels that
peak at n04

1

15. Percentage of Pixels that
peak before n04

1

16. SER 1

17. Standard Deviation 5 4 4

18. Skewness 5 4 4

19. Kurtosis 5 4 4

TOTAL FEATURES 106

The values in the table indicate the number of features computed for
each image set. Note the empty entries indicate that the feature was not
computed for that image set
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MatLab stepwisefit algorithm, all the cross-term candidates are
computed and passed into the stepwisefit function. However, for
the FOS feature selection algorithm, the initial features are
passed in and the cross-product features are computed as they
are required, thus requiring only one more vector of 83 elements
to store the cross-product features. The memory required to store
the features is also shown in Table 2 for the stepwisefitMatLab©
function and the FOS feature selector. Note, that for X003, 4, the
stepwisefitMatLab function was not able to execute as there was
not enough memory (in a 2 GB system).

Our data set has 20 cancerous and 63 benign cases. Thus,
using a target value of (A, B) 0 (1, −1) results in the
cancerous and benign cases respectively having average
energies of 19/82 and 63/82 when a cancerous case is the
hold-out data and 20/82 and 62/82 respectively when a
benign case is the hold-out data As FOS minimizes the
overall mse of the functional expansion, FOS will select
features to model the benign cases over the cancerous cases
since the benign cases have more energy. To give the benign
and cancerous cases equal importance in minimizing the
mse, (A, B) were chosen such that the cancerous and benign
cases have the same average energy. This results in the

target vector being set to A;Bð Þ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
63 19=

p
;�1

� �
when

there are 63 benign and 19 cancerous lesions in the training

data and A;Bð Þ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
62 20=

p
;�1

� �
when there are 62 benign

and 20 cancerous lesions in the training data. Lastly, (A, B)
were chosen such that the sum of target outputs for the
cancerous and benign training cases were equal. This results
in A;Bð Þ ¼ 63 19= ;�1½ �or A;Bð Þ ¼ 62 20= ;�1½ � for the above
cases of benign and cancerous training data respectively.

In order to test the features selected by the FOS algo-
rithm, the NN and FOS predictor were run on the hold-out
data for all 83 iterations of the hold-one-out process. The
area under the curve (AUC) for the receiver operating char-
acteristic (ROC) curve was computed. For an ideal classifier,
there is a threshold where the probability of true positives is 1
and the probability of false positives is zero. Thus, for an ideal
classifier, the AUC is 1. For a random classifier the AUC is 0.5.
However, a classifier could falsely predict all of a test set to be

benign (and thus have a sensitivity of zero for predicting cancer)
or all of the test set to be cancerous (and thus have a specificity
of zero), yet still have an AUC01 over the test set. In a clinical
setting where novel cases are to be classified, a classifier that
exhibits zero sensitivity or zero specificity over these cases has
little value there, no matter how high its AUC. Thus, it is
important to note the sensitivity, specificity and the significance
level on Fisher’s exact test, as well as reporting the AUC.

The AUC was also found for the SER predictor and a
SVM predictor. The support vector machine employed a
radial basis function kernel and utilizes a single parameter,
γ, which controls the support vector radius. This parameter
has the effect of controlling the tightness of the support
vector machine generated classification function.

The SVM predictor was trained using the three features:

(a) The maximum signal intensity enhancement (as a per-
centage) from precontrast to any post-contrast image,

(b) Time of maximum enhancement in seconds and
(c) Maximum washout (as a percentage).

These are the features used in [30] and respectively corre-
spond to feature 4 (enhanced image), 5 (enhanced image) and
9 (enhanced image) in Table 1. Each of these three variables
were scaled from zero to one. For this SVM, γ00.22.

A second SVM predictor was computed using features

1. The cross-product of the kurtosis in difference image at
n02 and the skew in the raw image at n00

2. The cross-product of the time of the peak in the time
absorption curves in the difference images and the mean
pixel intensity in the enhanced images at n01, and

3. The cross-product of the mean of the derivative of the
enhanced image at n04 and the maximum of the aver-
age intensity in ROI in enhanced images.

These features were selected using the FOS feature se-
lector in a hold-one-out trial with only the initial feature set
and cross-products up to second order (i.e. X002), M03 and
(A, B)0(1, −1). The three features that were chosen the most
often in the FOS model (70 out of 83 times) were each
second-order cross-products, and were used to train this
second SVM. In this trial, the SVM that used the cross-
product features selected by FOS will be referred to as the
FOS-SVM predictor. For this SVM, γ00.136.

Results

Table 3 has the AUC for the NN and FOS predictor for the
maximum cross-term order X001, 2, 3, 4, terms fitted by
FOS, the number of model terms M03, 4, 5 and the target
values (A, B)0(1, −1) and (A, B) chosen such that the benign
and cancerous cases have equal energy and an equal sum in the
training set. The two-tailed p value of the difference in the AUC

Table 2 Memory requirements for the stepwisefit function and FOS
algorithm

X0 Number
candidates

Stepwise fit
memory

FOS memory
(kB)

1 106 68.1 kB 68.1

2 5,671 3735 kB 68.73

3 204,156 129.28 MB 68.73

4 5,563,251 3,525 MB 68.73

X0 order of cross-term candidates generated, stepwisefit Matlab function
in MatLab Statistics Toolbox
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[32] was computed using ROC-KIT [33, 34]. For the AUC
difference between the best FOS predictor (AUC00.889) and
the SER (AUC00.706) the p value was 0.0035. The p value of
the difference in the AUC for the best NN predictor (AUC0
0.791) and the SER predictor (AUC00.706) was 0.201.

The ROC for the best NN and FOS predictors in Table 3 is
shown in Fig. 2 with the SER predictor ROC also plotted for
comparison. Table 4 contains the sensitivity, specificity, pos-
itive predictive value and negative predictive value for the
predictors in Fig. 2. For the FOS predictor a threshold of 0 was
used and a threshold of 1.1 was used for the SER predictor.

The ROC for the SER, SVM and FOS-SVM predictors are
shown in Fig. 3. The AUC is 0.706, 0.673 and 0.910, respec-
tively. The p values of the differences in the AUC for the FOS-
SVM predictor (AUC00.910) and SVM predictor (AUC0
0.673), and the FOS-SVM predictor (AUC00.910) and the
SER predictor (AUC00.706), were 0.0060 and 0.0054 respec-
tively. Table 5 contains the sensitivity, specificity, positive
predictive value and negative predictive value for the predictors
in Fig. 3. A threshold of 1.1 was used for the SER predictor. For
the SVM, there is no typical threshold, so the sensitivity,
specificity, positive predictive value and negative predictive
value for the SVM and FOS-SVM predictors were computed
at the same specificity (82.5 %) as the SER predictor.

Table 6 lists the features selected by the FOS feature
selection algorithm and the number of times these features

Table 3 The AUC for the NN and FOS predictors

X0 M Nearest neighbour FOS predictor

(1, −1) [1.82, −1] [3.32, −1] (1, −1) [1.82, −1] [3.32, −1]
[1.76, −1] [3.1, −1] [1.76, −1] [3.1, −1]

1 3 0.699 0.699 0.773 0.694 0.702 0.752

4 0.754 0.754 0.773 0.737 0.747 0.610

5 0.757 0.757 0.754 0.591 0.598 0.640

2 3 0.616 0.423 0.739 0.602 0.660 0.889

4 0.710 0.542 0.791 0.698 0.698 0.817

5 0.694 0.612 0.783 0.615 0.699 0.772

3 3 0.562 0.638 0.710 0.438 0.653 0.646

4 0.566 0.649 0.680 0.479 0.701 0.742

5 0.608 0.690 0.75 0.514 0.706 0.660

4 3 0.319 0.493 0.533 0.272 0.398 0.621

X0 order of cross-term candidates generated

M maximum number of features selected

[1.82, −1], [1.76, −1] column benign and cancerous cases in the training data have equal energy

[3.32, −1], [3.1, −1] column benign and cancerous cases in the training data have equal sums

Table entries are the AUC for that classifier
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Fig. 2 The ROC curves with the highest area for the FOS and NN
predictors fromTable 3 are plottedwith theROC curve for the SERpredictor
for comparison. The AUC equals to 0.889, 0.791 and 0.706, respectively

Table 4 Hold-one-out Classifier Performance

Significance tests FOS NN SER

Correct cancer diagnosis 17 of 20 16 of 20 8 of 20

Correct benign diagnosis 45 of 63 44 of 63 52 of 63

Sensitivity 85.0 % 80.0 % 40.0 %

Specificity 71.4 % 69.8 % 82.5 %

Fisher’s exact two-tail test p 1.03×10−5 1.1×10−4 0.0634

Positive predictive value 48.6 % 45.7 % 42.1 %

Negative predictive value 93.8 % 91.7 % 81.3 %

Area under the ROC curve 0.889 0.791 0.706

FOS FOS classifier, NN nearest-neighbour classifier, SER signal en-
hancement ratio classifier
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were selected in the hold-one-out trial for X001 and M02, 3,
4. The features that resulted in the FOS predictor with the
highest AUC occur when X002,M03 and (A, B) is set so that
the sum of the target outputs for benign and cancerous cases
are equal. Table 7 lists the four most frequently selected
features and describes the initial features used to create the
cross-product features and the frequency these cross-product
terms are selected. Table 8 lists the cross-product features that
resulted in the NN predictor with the highest AUC.

Discussion

The individual features in Tables 7 and 8 that are selected
most often to create the cross-products all seem to be rea-
sonable choices. The moments of the image intensity values,
i.e. standard deviation, skew and kurtosis, all provide infor-
mation about the texture of the lesion, while the mean
enhancement and time to peak intensity provide information
about how much contrast arrives in the lesion and how
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Fig. 3 The ROC curve is presented for the FOS-SVM, SER and SVM
classifiers with the AUC equal to 0.910, 0.706 and 0.673, respectively

Table 5 SVM Classifier Performance

Significance tests SVM FOS-SVM SER

Correct cancer diagnosis 9 of 20 16 of 20 8 of 20

Correct benign diagnosis 52 of 63 52 of 63 52 of 63

Sensitivity 45.0 % 80.0 % 40.0 %

Specificity 82.5 % 82.5 % 82.5 %

Fisher’s exact two-tail test p 0.0177 6.15×10−7 0.0634

Positive predictive value 45.0 % 59.2 % 42.1 %

Negative predictive value 82.5 % 92.9 % 81.3 %

Area under the ROC curve 0.673 0.910 0.706

SVM: SVM classifier using manually selected features, FOS-SVM:
SVM classifier using features selected by FOS, SER: SER signal
enhancement ratio classifier

Table 6 Frequency that features are selected by FOS in leave-one-out
trial using 105 initial features only

M Feature (A, B)

(1, −1) [1.82, −1] [3.32, −1]
[1.76, −1] [3.1, −1]

3 DC 83 83 0

Mean pixel value at n01 in
enhanced image

80 80 80

Maximum pixel at n04 in
enhanced image divided by
maximum pixel in ROI

80 80 82

4 DC 83 83 0

Number of Pixels in ROI 80 80 83

Mean pixel value at n01 in
enhanced image

80 80 80

Maximum pixel at n04 in
enhanced image divided by
maximum pixel in ROI

82 82 82

Maximum pixel at n01 in
difference image

0 0 62

Kurtosis at n02 in raw image 0 0 11

5 DC 83 83 0

Number of pixels in ROI 83 83 83

Maximum pixel at n04 in
enhanced image divided by
maximum pixel in ROI

82 82 82

Mean pixel value at n01
in enhanced image

80 80 80

Maximum pixel at n01 in
difference image

62 62 66

Kurtosis at n02 in raw image 11 11 16

Kurtosis at n04 in enhanced
image

4 4 70

M maximum number of features selected, [1.82, −1], [1.76, −1]
column benign and cancerous cases in the training data have equal
energy, [3.32, −1], [3.1, −1] column benign and cancerous cases in the
training data have equal sums DC is a constant candidate term with pm
(n)=1 for n=0,..,N-1

Table 7 The second-order cross-product features selected by the FOS
in the hold-one-out trial for X002, M03 and the sum of (A, B) values
set to be equal in the training set

Feature 1 Feature 2 N

1 Kurtosis at n02 in
difference image

Skew in raw image at n00 83

2 Time of peak in TAC
in difference image

Mean pixel value at n01 in
enhanced image

71

3 Mean of the derivative
of the enhanced image
at n04

Maximum of the average intensity
in ROI in enhanced images

70

4 Standard deviation at
n04 in difference image

Maximum pixel in raw data at n01
divided by the maximum pixel in
the ROI at any time

10

N number of times selected in the 83 hold-one-out trials
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quickly it arrives. Many other studies have shown that these
features can provide useful information in discriminating
between malignant and benign lesions.

It can be seen in Table 3 that the highest AUC of 0.889
occurs for the FOS predictor for candidate sets involving up to
second-order cross-products (X002),M03 and (A, B) set such
that the sum of the desired outputs for cancerous and benign
cases equals zero. The FOS predictor had a sensitivity of 85%
for predicting cancer and a specificity of 71.43 % (p0
0.0000103 on Fisher’s exact two-tailed test). The highest
AUC for the NN predictor is 0.791 for X002, M04 and (A,
B) set such that the sum of the desired outputs for cancerous
and benign cases equals zero. This NN predictor had a sensi-
tivity of 80 % for predicting cancer and a specificity of
69.84 % (p00.00011 on Fisher’s exact two-tailed test). Note
that as the number of termsM in the model increases, the AUC
often decreases. This can be attributed to FOS over-fitting the
training set so that the hold-out-set predictions are actually
worse than before adding the additional feature(s).

From Fig. 3 and Table 5, it is clear that the FOS feature
selection chose features (using the entire data set) with pre-
dictive value for the FOS-SVM predictor as the AUC in-
creased from 0.673 for the original SVM to 0.910 for the
FOS-SVM. The latter predictor had a sensitivity of 80 % for
predicting cancer and a specificity of 82.5 % (p06.15�10-7)
on Fisher’s exact two-tailed test). Note that the FOS-SVM
predictor was tested using a fixed set of three selected cross-
product features in leave-one-out trials, instead of each time
reselecting the features without reference to the held-out case.
Thus direct comparison of the FOS-SVM predictor to the NN
and FOS predictors in this paper is not possible.

Note that the FOS predictor has an AUC of 0.889, which is
significantly improved over an AUC of 0.706 for the SER
predictor where feature selection has not been used. The p value
for the difference in the AUC for the FOS predictor and SER
predictor is 0.0035. In fact all three predictors using features

selected by the FOS feature selection algorithm (FOS, NN and
FOS-SVM) have higher AUC than the SER predictor.

Conclusion

Using sets of DCE-MRI images from 83 patients, it was
demonstrated that FOS was able to automatically select fea-
tures that contain information to aid in the accurate classifica-
tion of breast cancer. In addition to searching the 106 initial
features derived from the DCE-MRI images, FOS was able to
exhaustively search cross-products of these features up to the
fourth order, while the stepwise fit algorithm could not run as
there was not sufficient memory (2 GB). The FOS algorithm
was used to select three features with predictive value which
were then used to train the FOS-SVM predictor. The AUC for
the FOS-SVM predictor was 0.910 and the difference in AUC
between the FOS-SVM and SER predictors had a p value of
0.0054 which is highly significant.

In a second test, the FOS feature selection algorithm was
used in a hold-one-out trial and the features were used in a
FOS predictor and the NN predictor. The AUC for the FOS
predictor was 0.889 and the difference in AUC between the
FOS and SER predictors had a p value of 0.0035 which is
highly significant.

The FOS feature selection algorithm was able to test over
5.5 million features (including cross-term features) in a
leave-one-out test. FOS is able to explore very large sets
of candidate terms and within minutes find concise models
with unobvious terms that serve as very good indicators of
the status of a lesion.
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Table 8 The second-order cross-product features selected by FOS in the hold-one-out trial for X002, M04 and the sum of (A, B) values set to be
equal in the training set, which result in a NN classifier with a AUC of 0.791

Feature 1 Feature 2 N

1 Kurtosis at n02 in difference image Skew in raw image at n00 83

2 Time of peak in TAC in difference image Mean pixel value at n01 in enhanced image 71

3 Mean of the derivative of the enhanced
image at n04

Maximum of the average intensity in ROI in enhanced images 70

4 Skew at n03 in difference images Skew at n04 in enhanced images 61

5 Standard deviation at n02 in enhanced images Skew at n04 in enhanced images 15

6 Standard deviation at n04 in difference image Maximum pixel in raw data at n01 divided by the maximum pixel
in the ROI at any time

11

7 Mean of the derivative of the difference
image at n04

Mean pixel value at n03 in enhanced image 8

Feature 1 first feature in the cross-product term, Feature 2 second feature in the cross-product term, N number of times selected in the 83 hold-one-
out trials
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Appendix

The 5 acquired volumes are referred to as the raw image
(Iraw(x, y, n)) and given by.

Iraw x; y; nð Þ ¼ s x; y; nð Þ; n ¼ 0; 1; . . . ; 4 ð4Þ
The enhanced images Ien(x, y, n) and difference images

Idif(x, y, n) were respectively generated by:

Ien x; y; nð Þ ¼ s x; y; nð Þ
s x; y; 0ð Þ ; n ¼ 1; . . . ; 4 ð5Þ

and

Idif x; y; nð Þ ¼ s x; y; nð Þ � s x; y; 0ð Þ; n ¼ 1; . . . ; 4 ð6Þ
where s(x, y, n) represents the post-contrast image at time n,
for n01,…,4 and s(x, y, 0) is the precontrast image at
coordinates (x, y).

The washout measures how quickly the contrast agent
leaves the tissue and is computed on a pixel-by-pixel basis
as

W :O: ¼ 1� Ien x; y; 4ð Þ
max x;y;nð Þ Ien x; y; nð Þð Þ

� �
ð7Þ

For the derivative, the sample difference is given by

Δ x; y; nð Þ ¼ I x; y; nþ 1ð Þ � I x; y; nð Þ
tnþ1 � tn

� �
; n ¼ 1; 2; 3 ð8Þ

The maximum and mean W.O. and derivative in the
ROI are used as features. The signal enhancement ratio
(SER) was computed on a pixel-by-pixel basis given by
the equation

SER ¼ max x;yð Þ Iraw x; y; 1ð Þ �max x;yð Þ Iraw x; y; 0ð Þ
max x;yð Þ Iraw x; y; 4ð Þ �max x;yð Þ Iraw x; y; 0ð Þ ð9Þ

The correlation coefficient between vector x and y is
given by

rxy ¼ 1

P

XP
i¼1

xi � xð Þ y� yð Þ σxσy

� ð10Þ

where xi and yi are the i
th elements, x and y are the sample

means (of that vector’s elements), and σx and σy are the
sample standard deviations of x and y respectively.
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