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Abstract Automatic tools for detection and identification
of lung and lesion from high-resolution CT (HRCT) are
becoming increasingly important both for diagnosis and
for delivering high-precision radiation therapy. However,
development of robust and interpretable classifiers still
presents a challenge especially in case of non-small cell
lung carcinoma (NSCLC) patients. In this paper, we have
attempted to devise such a classifier by extracting fuzzy
rules from texture segmented regions from HRCT images
of NSCLC patients. A fuzzy inference system (FIS) has
been constructed starting from a feature extraction proce-
dure applied on overlapping regions from the same organs
and deriving simple if–then rules so that more linguistically
interpretable decisions can be implemented. The proposed
method has been tested on 138 regions extracted from CT
scan images acquired from patients with lung cancer. As-
suming two classes of tissues C1 (healthy tissues) and C2
(lesion) as negative and positive, respectively; preliminary
results report an AUC00.98 for lesions and AUC00.93 for
healthy tissue, with an optimal operating condition related to
sensitivity00.96, and specificity00.98 for lesions and sen-
sitivity 0.99, and specificity00.94 for healthy tissue. Finally,
the following results have been obtained: false-negative rate

(FNR)06 % (C1), FNR02 % (C2), false-positive rate
(FPR)04 % (C1), FPR03 % (C2), true-positive rate
(TPR)094 %, (C1) and TPR098 % (C2).
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Introduction

Clinical outcome of radiotherapy can potentially be improved
by increasing the precision of tumor localization and dose
delivery during the treatment. The size of the necessary mar-
gins, and hence the risk for complications, can be reduced if
the setup uncertainties and internal organ motion, such as
those caused by breathing motion, are minimized. For this to
happen, it is necessary to know the shape and the location of
the tumor and organs at risk (OAR) at the time of delivery. It
has been shown in the past that four-dimensional CT (4DCT)
offers the potential for online dynamic multileaf collimator-
based respiratory motion tracking; however, there is lack of
proper tools [1]. Four-dimensional treatment can be defined as
the explicit inclusion of the temporal changes in anatomy
during the planning, imaging, and delivery of radiotherapy
[2]. As the amount of images to be processed can vary in
hundreds, tools for automated detection and identification of
pathologic lung tissue patterns are an essential first step to-
wards high-precision image-guided radiation therapy (IGRT).
When the chest x-rays do not carry enough elements to
finalize the diagnosis, high-resolution computed tomography
(HRCT) is used to provide an accurate assessment of lung
tissue patterns [3]. Many methods have been developed and
tested on a wide range of applications for automated segmen-
tation and detection in medical imaging. Uncertainties in
radiation treatment have been mainly accounted for the delin-
eation of the target volume and physiological motion of the
organs for example due to patient breathing. Previous
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approaches to address these uncertainties are discussed below
and then a brief rationale for the current study is presented.

(a) Previous approaches for lesion delineation:
For a long time [4], the definition of target volumes

was recognized as one of the first uncertainties encoun-
tered in planning radiotherapy treatments. The defini-
tion of gross tumor volume (GTV) was neglected
somewhat as the general idea was that GTV can be
reasonably defined as compared to the clinical target
volume [4–6]. Incited by the data from Leunens [7], it
became clear that defining gross tumor volume is not
simple and there might be a risk of over reliance on the
physicians’ capabilities of estimating the tumor extent
from imaging modalities [8]. Due to a number of
uncertainties and tumor-related phenomenon, GTV
definition in thoracic radiotherapy could result in larger
variations of volumes and dimensions [6–9]. Many
attempts have been made since for comparing the GTV
as delineated by radiation oncologists, radiologists (with
varied experience and expertise) [10–12], and software-
based detection, delineation, and identification [13–15].
These methods have reported an accuracy of approxi-
mately 90%. Recent surveys [16, 17] with evaluations of
different methods yielded sensitivities between 70 and
90 % with a false positive of 0.5 to 15 per scan.

Most of these approaches, although beginning with a
semi-automatic or manual delineation of suspicious tis-
sue mass, succeed in representing abnormality. In our
previous approach [18], we have developed a fully auto-
mated delineation and recognition system based upon
texture properties of the tissues in lung CT.

We have introduced class redundancies for GTV (i.e.,
classes lesion innermost core (LEIN1), lesion inner pe-
riphery (LEIP), lesion outer periphery (LEOP) taken
together make the GTV) in order to track lung tumor
while the patient breathes freely. The approach reached
sensitivities of 0.895 with a simple support vector ma-
chine (SVM) classifier but at the cost of an high false
alarm rate (14.8 %).

(b) Previous approaches for lung tumor tracking:
Lung tumor tracking can be generally categorized as

direct tumor tracking, tracking via breathing surro-
gates, or tracking of implanted fiducial markers. Track-
ing based upon implanted fiducial markers have been
investigated by [19, 20] and is shown to be quite accu-
rate. Two significant drawbacks of implanted marker
tracking are risks of clinical complications such as pneu-
mothorax [21, 22] and appealing as well-chosen surro-
gate can be easily tracked; however, it has been shown
that correlation of surrogate motion with the tumor mo-
tion may vary with time and require periodic validation
[23, 24]. The problems relating to marker- and surrogate-
based tracking can be avoided by markerless tracking.
Accurate markerless tracking is much difficult to achieve
since tumors lack sufficient contrast or a clear border and
can be difficult to delineate. In addition, the clinician has
to define tumor positions in many images for model
making and training purposes.

The present study is made in order to reduce the false-
positive rate and to understand the underlying rules
governing automatic tumor recognition by designing
if–then-based fuzzy classifier. Such a classifier can be
used for (1) tracking in a 4DCT sequence for building
patient-specific breathing motion model (See Fig. 1) and
(2) as a second opinion for radiologists in the clinics for
detecting pulmonary nodules.

Despite these efforts, it remains a daunting task for the
system designer to decide which approach is suited for a
particular segmentation task. In addition, uncertainties are
widely present in the image data because of the noise in
acquisition and of the partial volume effects originating
from the low resolution of sensors. In particular, borders
between tissues are not exactly defined and memberships
in the boundary regions are intrinsically fuzzy. Several
artificial intelligence techniques including neural net-
works and fuzzy logic systems have been successfully
applied to a variety of decision-making process in medical
diagnosis [25]. Rule-based expert systems are often ap-
plied to classification problems in fault detection, biology,

Fig. 1 Components of tumor
tracking from image sequence
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medicine, etc. Fuzzy logic improves classification and
decision support systems by allowing the use of over-
lapping class definitions and improves the interpretability
of the results by providing more insight into the classifier
structure and decision-making process.

In order to improve the performance of the classifier
and in addition look for hidden rules relating the features
and decisions, in this paper, we look at fuzzy classification
approach in order to classify texture-based segmented
regions by using simple if–then fuzzy rules so that more
linguistically interpretable decisions can be implemented.
Due to texture delineation, our dataset is composed of
regions from the same organ or tissuemass. Consequently,
it would be more intuitive to use a fuzzy classifier for
better labeling of the regions as delineated by texture
segmentation [18]. The main advantage of fuzzy rule-
based systems is that they do not require large memory
storage, their inference speed is very high and users of the
system can carefully examine the rule base.

Materials

The CT scans were acquired from patients with lung cancer at
the Institute of Cancer Research, Oslo University Hospital,
Montebello, Norway. The CT scan images were acquired on a
four-slice CTscanner (GE) and a single slice CTscanner (GE)
equipped with fluoroscopy functionality. Some of the images
are acquired during fluoroscopy-guided biopsy, while others

are acquired as part of a diagnostic examination and some are
acquired during radio frequency ablation (RFA). For images
acquired from diagnostic examination, we have used a Light-
Speed QX/i4 slice CT scanner with pitch of 1.5, slice thick-
ness of 2.5 mm, in helical mode. For fluoroscopy-guided
biopsy and RFA, HiSpeed CT/i was used with slice thickness
3 mm, pitch 0, and helical mode. Images are stored in DICOM
(Digital Communication and Imaging in Medicine) format
512×512 pixels and with 12-bit gray level depth and the
images were anonymized and exported from PACS (Agfa).

The number of images analyzed was 41. Using the same
dataset considered in [18], 12 different kinds of tissues are
identified: left lung upper or inner part (LLUP), left lung
lower part (LLLO), left lung inner periphery (LLIP), left
lung outer periphery (LLOP), right lung upper or inner part
(RLUP), right lung lower part (RLLO), right lung inner
periphery (RLIP), right lung outer periphery (RLOP), lesion
innermost core (LEIN1), lesion outer periphery (LEOP1),
lesion inner periphery (LEIP1), and BACK (background
region). A graphical example is reported in Fig. 2. The
lesions were pre-marked by expert radiologists who manually
segmented the images. The 41 images have been also auto-
matically segmented following the procedure described in
[18], based on fuzzy C-means clustering initialized using
genetic algorithm. Then, starting from the automatically seg-
mented regions, a portion for each of the previous mentioned
classes is extracted. Given that in the presented study we do
not consider the background tissue that causes a dangerous
data unbalance, the 11 features described in [18] are then

Fig. 2 Examples of
automatically segmented lung
tissue
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computed on the 11 different portions of the lung, leading to a
total number of 393 features vectors. Among them, 138 vec-
tors are used for testing while the remaining 255 are used for
training the system. Specifically, Table 1 reports a de-
tailed description of the training set used in our work.

Considering the limited number of images and the
consequent increasing difficulty arising in developing a multi-
labels classification system, this preliminary study is only de-
voted to the study of the binary problem associated to the
classification of the lung portions into healthy (class C1 includ-
ing classes 1–8) and lesion tissue (C2 including classes 9–11).

The lesions were pre-marked by expert radiologists. The
lesions were of type non-small cell lung cancer
(adenocarcinomas) with 3–30.6 mm range including multi-
ple lung metastases. Malignancy has been proved by biopsy.
Subtlety of the lesions was not given and consequently this
information has not been used in this study. The location of
tumors was on the periphery of the chest wall as well as in the
lobular regions of the lung. The slice thickness of the CT scan
was 2.5 mm. Studies by Stevens et.al. [26] have shown that
respiratory-driven lung tumor motion is independent of tumor
size, location, and pulmonary function of the patient. We have
not conducted any studies as yet on this issue. The average age
of patients analyzed was 64 years (max086, min046, std0
11). However, it is not clear if age has any effect as the
variation in age between patients were quite substantial. This
aspect has not been taken into account in this study.

Background

IGRT has the potential for distributing continuous delivery
of radiation provided the tumor and OAR-like lung can be
tracked as the patient breathes freely. Tracking can further
be used for tumor motion modeling [18, 27].

For this to be feasible, as a prerequisite, we need tools that
can automatically detect and identify the tumor as the patient

breathes freely. Figure 1 represents the different steps involved
in tumor tracking which are used for model building [18].
First, images from patients with non-small cell lung carcinoma
are automatically segmented and a classifier is trained for
automatic identification of regions pertaining to lung and
lesion [28]. This classifier is then used upon a 4DCT image
sequence of a patient for tracking the tumor as the patient
breathes freely. Finally, a full breathing cycle of tracked tumor
image sequences are co-registered for determining the tumor
motion model parameters specific to the patient [18]. In case
the classifier is not robust, this can lead to miss the lesion
identification from the respiratory cycle thereby producing a
suboptimal model. Thus, in this paper, we have addressed the
important problem of lesions classification from HRCT
images of different patients. In a previous work [28], the
authors have attempted an unsupervised detection and classi-
fication system for lung and lesion. Although the automatic
detection system was good, it was observed that the recogni-
tion part often produced high false alarm. The false-positive
rate in paper quoted [18] was 14.8 %.

In this paper, we further improve upon the classifier
design by extracting fuzzy rules from texture segmented
regions. Our aim here is to determine the underlying rule-
based structure which increases the radiologist’s interpret-
ability of the results. Fuzzy logic was introduced by Zadeh
[29] in 1965 for handling uncertain and imprecise knowl-
edge in real-world applications. Since then, it has found
many applications in decision-making tasks and handling
of noisy data. The central notion to fuzzy systems is that a
variable belongs to a certain set with a membership degree on
the range [0; 1], thus relaxing the classic statement that the
membership of an element to a set is a binary number. The
way the system aggregates variables is then a rule-based infer-
ence mechanism very similar to the human language and rea-
soning. The rules are derived by expert knowledge or by large
populations data. Each rule is usually encoded in the form of
“IF–THEN” rules. The fuzzy inference system (FIS) we

Table 1 Number of portions extracted for the training and test sets

Training set (255 features vectors)

1
LLUP
30

2
LLLO
12

3
LLIP
33

4
LLOP
13

5
RLUP

30

6
RLLO
13

7
RLIP
23

8
RLOP

11

9
LEIN1

50

10
LEOP1

24

11
LEIP1

16

Test set (138 features vectors)

1
LLUP
18

2
LLLO

6

3
LLIP
20

4
LLOP

5

5
RLUP

17

6
RLLO

3

7
RLIP
14

8
RLOP

8

9
LEIN1

29

10
LEOP1

16

11
LEIP1

2
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consider is not developed according to classical fuzzy logic
theory, but starting from the FIS for medical diagnosis firstly
described in [30]. This kind of FIS has been already applied
in the automatic identification of breast masses [31], in the
malignancy assessment of clusters of calcifications [32] in
mammography, and in the development of a novel scor-
ing system for patients in intensive care units [33].

Method

The classification problem is usually modeled [30] by con-
sidering three fuzzy sets: patients’ set, diagnoses’ set, and
symptoms’ set. Since the considered segmentation problem
is solved within a classification framework, then the term
diagnoses will be substituted by classes in the following:

1. Patients’ set. In our work, the patient is represented by
each portion extracted in the CT lung image. In the
following, we will denote it with I.

2. Classes’set. In this context, classes are represented by the
12 different types of regions encountered in the segmen-
tation process, identified with LLUP, LLLO, LLIP, LLOP
(left lung parts), RLUP, RLLO, RLIP, RLOP (right lung
parts), LEIN1, LEOP1, LEIP1 (lesion inner and outer
parts), and BACK (background region), described in
Section 2. Let us identify generically the classes with Ci,
i01, … ,12. In particular, as already mentioned, in this
preliminary work, we will reduce the multiclass problem
into a binary classification problem, by merging classes
from 1 to 8 into class C1 and classes from 9 to 11 into class
C2. Class 12 represents regions which are not related to
lung and lesion and therefore have been excluded from
our analysis. Classes 1–8 refer to healthy tissues pertain-
ing to the left and right lung of the patient whereas classes
9–11 correspond to lesion. As we want to design a binary
classifier capable to differentiate between healthy lung tis-
sue and lesion, such a merging of classes is most intuitive.

3. Symptoms’ set. Symptoms in classification problem are
usually addressed as features. In this work, we will con-
sider quantitative features extracted from the digital
images through a dedicated processing system.

Referring to [30], we only emphasize that a FIS system
allows to consider also qualitative or compound features
(mixed qualitative and quantitative), expressing them by
linguistic terms. However, in this study, we will consider
only the 11 quantitative features also described in [18]
extracted on the segmented CT image and denoted with
eccentricity (F1), ratio (F2), complexity (F3), solidity (F4),
orientation (F5), number of holes (F6), mean (F7), variance
(F8), centroid X (F9), and Y (F10), area (F11). We will
identify the symptoms with Fk, k01, … ,11.

The assignment of a class to the considered portion I
consists of the evaluation of three distinct relations:

1. Relation image–features (I–F). This relationship
describes and quantifies the presence of a feature in
the portion of the image under test. The result of this
relation is a membership degree assigned as explained
in Section 4.1.

2. Relation feature–class (F–C). This relationship quantifies
the a priori significance of the feature for the specific
class. Still, in this step, the system offers several possibil-
ities to proceed. The operator may manually set the sig-
nificance of the parameter for a certain class based on the
experience of the physician, or the system can detect it
automatically from the training set. In this second case,
the system can calculate for example the area under the
receiving operating curve (ROC) associated with each
parameter for each class or it can calculate an alternative
significance that also takes account of the prevalence of
the class considered. This approach will be described in
detail in the following paragraphs. Having in mind that
from a medical perspective a symptom may be significant
for two or more diagnoses simultaneously, or, on the
contrary, not be significant for both of them, it could be
interesting to have an approach that establishes the signif-
icance of a feature for each class independently.

3. Relation image–class (I–C). This relationship assigns to
the selected portion the membership degree to each class,
according to the two previous relations.

Formally, denoting with Ci the ith class, with Ij the jth
portion, and with Fk the kth feature, then a possible rule is:

Note that this fuzzy inference rule emulates the physi-
cian’s diagnosis inference process in assigning a diagnosis
(class) to a patient (portion of the lung tissue) after observing

and measuring the patient’s symptoms (portion features) and
using his/her experience concerning the influence that a fea-
ture has on a certain diagnosis (features incidence level for a
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class extracted from the portion features computed on a train-
ing set). Let us describe in more detail how the proposed FIS
implements the two processes: portion characterization and
the feature incidence level computation.

Implementation of the Portion Characterization Procedure

The tissue portion characterization procedure assigns to
each feature Fk two fuzzy sets, denoted as LOW and HIGH
in the following, deriving two membership functions (MFs)
μLOW
Fk

and μHIGH
Fk

from the histogram of each feature for the

different classes. This procedure is usually referred as input
fuzzification. As already noted, this paper addresses a binary
problem in which the 11 classes are grouped into two
classes: healthy lung tissue (C1) which needs to be protected
from unnecessary irradiation and lesion (C2) where a lethal
dose is to be delivered with precision. This assumption
implies the construction of the histogram of Fk for two classes.
The histogram of a feature represents the distribution of the
feature values on a certain population and constitutes the
knowledge base for the algorithm. Figure 3 represents an
example of the MFs construction for feature F4.

We used manual contouring from expert radiologist for
the validation of the lesion segmentation (see [18]). As our
system is based upon fully automatic segmentation and
feature extraction, the only input to be provided to the
system is the CT image of the patient. The study takes into
account multiple lesions from the same patient including
metastasis. It treats, however, each finding as independent.
There is no relationship between multiple findings. Detailed
steps are summarized in the block diagram shown in Fig. 4 for
a generic feature Fk acquired on a certain population whose
members belong to the classC1 orC2. The flowchart describes
how to assign to a measured value Fk a membership degree
representing how much the feature is present in that image,

separately for the two classes. In fact, considering again Fig. 4,
the procedure can lead to four different cases according to the
feature distribution over the two classes:

& Case 1. Low values of Fk are related to class C1 and high
values to class C2;

& Case 2. Low values of Fk are related to class C2 and high
values to class C1;

& Case 3. Low values and high values of Fk are related to
class C1 while there are not significant values of Fk

related to class C2;
& Case 4. Low values and high values of Fk are related to

class C2 while there are not significant values of Fk

related to class C1.

Concerning the MFs expression, in this work, we assume
triangular-shapedMFs. As shown in Fig. 4, after the evaluation

of the extremal values of the feature Fk for both the classes,

min Fk
C1

� �
;max Fk

C1
� �

;min Fk
C2

� �
;max Fk

C2
� �

, a vector con-
taining the ordered extremal values is constructed. Denote with
a and b the second and third element of this vector. Then, we get

μHIGH
Fk

¼
0;

Fk � a
b� a
1;

8
><

>:
;

Fk � a
a < Fk < b
Fk � b

μLOW
Fk

¼
1;

b� Fk

b� a
0;

;
Fk � a

a < Fk < b
Fk � b

8
><

>:

Implementation of the Feature Influence Level Evaluation

The second antecedent of the fuzzy rule is strictly related to
the available knowledge about the influence of a feature on
each class. It is a non-standard procedure in fuzzy inference

)( 04
sHIGH

Fμ

)( 04
sLOW

Fμ

)(min 4
14

F
CF ∈

)(min 4
24

F
CF ∈

)(max 4
14

F
CF ∈

)(max 4
24

F
CF ∈

Fig. 3 Construction of the MFs
LOW and HIGH for feature
solidity
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system, but it strictly related to the FIS for medical
diagnosis proposed in [30]. In this context, we call this
quantity influence level and we denote it as ILCi

Fk
, i01,2.

It is similar to the evaluation of the significance of a
feature computing its area under the ROC (AUC) in a binary
pattern classification problem. Recall that, the AUC of a
feature is a numerical value representing the area under the
ROC of that feature for a certain class in a binary classification
process. It is in the range [0, 1] and quantifies how discrimi-
nant is that feature alone for the classification problem con-
sidered. In particular, considering a varying cut-off ranging
from the minimum to the maximum values of the feature, and
using this value as discriminated against for the two classes,
the ROC plots the true-positive rate (TPR) in respect of the
false-positive rate (FPR). Ideally, the AUC is equal to 1 when
there is a totally discriminant cut-off value for that feature that
separate members of the positive class from those of the
negative class.

This approach does not take account of the prevalence of
one class over another, and nor does the possibility that a
symptom is very significant for a class and nothing for the
other class.

There are important differences among the AUC evalua-
tion and the method presented in this paper. The influence of
a feature is evaluated separately on each class and there is
not any complementary between the two influence levels of

a feature on the two classes. Let us explain the method with
more details.

Considering again the flowchart in Fig. 4, there can
be two degenerate situations: in case 3, the incidence
level of feature Fk for class C2 is zero and in case 4,
the incidence level for class C1 is zero. From the
example, it can be noted that again the computation of
points a and b is crucial also in the evaluation of the
incidence level. Figure 5 reports an example of how to
evaluate the incidence level of feature F4.

The incidence level of the feature F4 for class C1 is
simply the percentage of values of the feature F4 smaller
than a with respect to the total number of members for the
class C1 in the training set. Analogously, the incidence level
of the feature F4 for class C2 is the percentage of values of
the feature F4 greater than b with respect to the total number
of members for the class C2.

This computation is performed keeping only the 99 %
percentile of the whole dataset for each class. Table 2 reports
a comparison between the incidence levels and the AUC of
each feature. As a consequence, we get that F3 (complexity)
is strongly significant for both the classes (and its AUC is
very high), while F7 (mean) is significant only for class C2

and not for class C1. This kind of analysis may suggest to
add features to improve the recognition capability of the
classifier only for a certain class.

{ }1C
kF { }2C

kF

( )1min C
kF ( )1max C

kF ( )2min C
kF ( )2max C

kF

( ) ( )2 1min minC C
k kF F<

( ) ( )2 1max maxC C
k kF F<

( ) ( )1 2min minC C
k kF F<

( ) ( )2 1max maxC C
k kF F<

( ) ( )2 1min minC C
k kF F<

( ) ( )1 2max maxC C
k kF F<

( ) ( )1 2min minC C
k kF F<

( ) ( )1 2max maxC C
k kF F<

2

k k

CHIGH
F F

MFμ =

2

k k

CLOW
F F

MFμ = 2

k k

CLOW
F F

MFμ =

2

k k

CHIGH
F F

MFμ =

1C
F

LOW
F kk

MF====
1C

F
HIGH
F kk

MF====

1C
F

LOW
F kk

MF====
1C

F
HIGH
F kk

MF====

Fig. 4 A flowchart representing the fuzzy inference system
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Rules Extraction and Aggregation

Once all the incidence levels have been evaluated and
the two MFs are built for each feature, then, the rules
are automatically written, simply eliminating the rules
with a zero incidence level and computing parameters a
and b for each feature. The set of rules extracted from
our training set is reported in Table 3 where column 4
contains the incidence level of the features Fk for the
class Ci considered in the corresponding rule, while
columns 5 and 6 contain the values of parameters a
and b for that parameter. Note that, 19 rules have been
generated of a total number of 22 rules available. The
rules eliminated are those in which the influence level is

zero. Denoting as μLOW HIGH=
Fk

Fk

� �
the numerical value

assigned to the first antecedent when computed on a

numerical value Fk and ILCi
Fk

the numerical value

assigned to the second antecedent, then the two ante-
cedents are combined using an AND operator mathe-
matically implemented by the product.

So, we get an antecedent value μFk
1 for each rule r, r01,

…. ,19 given by

μFk
1 ¼ μLOW HIGH=

Fk
Fk

� � � ILCi
Fk

Then, different rules are aggregated following the usual
human reasoning of choosing the final thesis on the basis of
the most true statement. The rules are logically combined
using an OR that is mathematically implemented using a
weighted average operator. This last operation is usually
addressed as defuzzification.

Given M rules, M1 having C1 as consequent and M2

having C2 as consequent, the outputs of the FIS classifier
are the membership degrees of the image I to the classes C1

and C2. Numerically, these two degrees, denoted as μci
1 , i0

1,2 are given by aggregating the corresponding M1 and M2

rules. Formally we get:

μCi
1 ¼

P
r2Miμ

Fk
1P

r2Mi IL
Ci
Fk

¼
P

r2Mi μ
LOW=HIGH

Fkð Þ
Fk

� ILCi
FkP

r2Mi IL
Ci
Fk

; i ¼ 1; 2

Note that the final membership degrees are normalized
according to the sum of the incidence levels of all the activated
rules for the corresponding class. The final membership
degrees are not complementary to each other, as in other types
of classifiers. This aspect can be solved by normalizing each
μci
1 to the sum of both the degrees. This can be questionable

because it could be interesting to note that on a large dataset,
there are critical images or critical regions of an image, in
which both the membership degrees are quite low.

Results and Comparisons

We have used the same dataset already used in the approach
described in [18]. The number of images analyzed was 41.
We have preliminarily considered the following 12 different
kinds of tissue: left lung upper or inner part (LLUP), left
lung lower part (LLLO), left lung inner periphery (LLIP),

Table 2 A comparison between AUC and incidence level of each
feature

Features AUC ILC1 ILC2

Eccentricity 0.7721 0.0227 0.2500

Ratio 0.7630 0.0227 0.2500

Complexity 0.9891 1.0000 0.9891

Solidity 0.8355 0.0682 0.3804

Orientation 0.5296 0.0227 0.1087

Number of holes 0.8583 0 0.5652

Mean 0.7564 0.0455 0.5109

Variance 0.7310 0 0.5543

Centroid X 0.4880 0.0909 0

Centroid Y 0.7544 0.4545 0.0978

Area 0.9891 1.0000 0.9891

Fig. 5 Computation of the
incidence levels for feature Fk
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left lung outer periphery (LLOP), right lung upper or inner
part (RLUP), right lung lower part (RLLO), right lung inner
periphery (RLIP), right lung outer periphery (RLOP), lesion
innermost core (LEIN1), lesion outer periphery (LEOP1),
lesion inner periphery (LEIP1), and BACK (background
region). The manual segmentation was performed by pre-
senting the expert medical radiologist 41 images from

different patients for marking. After marking, the same
images were overlapped with automatic segmentation for
comparison. Further details about the procedure and statis-
tical analysis of the results can be found in [18]. The
automatic segmentation was based on fuzzy C-means clus-
tering initialized using genetic algorithm. Then, starting
from the automatically segmented region, a portion for each

Table 3 Rules set extracted
from the available training set Antecedent 1 Antecedent 2 Consequent ILFk α β

(if F1 is low) (ILC1
F1
) C1 0.023 0.358 0.844

(if F1 is high) (ILC2
F1
) C2 0.250 0.358 0.844

(if F2 is low) (ILC2
F2
) C2 0.023 0.537 0.934

(if F2 is high) (ILC1
F2
) C1 0.250 0.537 0.934

(if F3 is low) (ILC1
F3
) C1 1.000 2110 9500

(if F3 is high) (ILC2
F3
) C2 0.989 2110 9500

(if F4 is low) (ILC2
F4
) C1 0.068 0.207 0.981

(if F4 is high) (ILC1
F4
) C1 0.380 0.207 0.981

(if F5 is low) (ILC1
F5
) C1 0.023 -87.30 84.80

(if F5 is high) (ILC2
F5
) C2 0.109 -87.30 84.80

(if F6 is high) (ILC2
F6
) C2 0.565 0.0 0.1

(if F7 is low) (ILC1
F7
) C1 0.046 0.393 0.612

(if F7 is high) (ILC2
F7
) C2 0.511 0.393 0.612

(if F8 is high) (ILC2
F8
) C2 0.554 8.73·10−6 8.10·10−4

(if F9 is low) (ILC1
F9
) C1 0.091 42.8 349.0

(if F10 is low) (ILC1
F10

) C1 0.455 106.0 226.0

(if F10 is high) (ILC2
F10

) C2 0.098 106.0 226.0

(if F11 is low) (ILC1
F11

) C1 0.1 661 977

(if F11 is high) (ILC2
F11

) C2 0.989 661 977

Table 4 A comparison of the results obtained using the multilabels SVM classifier (light rectangles) and the binary FIS classifier (dark rectangles)
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of the previous mentioned classes is extracted. Recall again
that in the presented study, we do not consider the back-
ground tissue that causes an unwanted data unbalance, the
11 features described in [18] are then computed on the
residual 11 different portions of the lung, leading to a total
number of 393 features vectors. Among them, 138 vectors
are used for testing while the remaining 255 are used for
training the system. Specifically, Table 1 reports a detailed
description of the training set used in our work. In the
previous work [18], the authors developed a multilabel
classifier based on support vector machine and one versus
all architecture. In [18], the authors addressed two important
problems: data unbalance and feature normalization. Data
unbalance was solved using a SMOTE technique for the
oversampling [34] of the minority class samples. Features
normalization is then applied for the training of the SVM
classifiers. In the presented study, we intend to address the
binary classification problem associated, while planning to
collect more data to train a multilabels classifier without
implementing oversampling to account for data unbalance.

The main results from the previous multilabels SVM clas-
sifier for lung and lesion regions resulted in average sensitivity
of 89.04 % obtained by averaging over the single sensitivities
obtained in the recognition of the 12 tissue classes described
above. In the present approach, we have implemented a binary
classification by combining redundant lesion classes into one

class C2 and healthy lung tissues in class C1. The sensitivity of
fuzzy classifier is 96% for lesion and 99% for healthy tissues.
The false-positive rate is 3 % as compared to our previous
approach of 14.8 %. In order to provide a more accurate
comparison with the previous multilabels approach, in Table 4
we summarize the distribution of the false positives assign-
ments in terms of the 11 tissue classes (class BACK has been
initially removed as already outlined) and we also report the
results obtained in [18] in terms of average detection rate.

The results obtained by the described FIS binary classi-
fier are also graphically reported in terms of ROC in Fig. 6:
the dark curve is related to the lesion and the light curve to
the healthy tissue. We obtain AUC00.98 for the lesions and
AUC00.93 for the healthy tissue. The markers locate the
two optimal operating points automatically extracted by the
program and corresponding to sensitivity00.96 and specif-
icity00.98 for the lesions, sensitivity00.99 and specificity0
0.94 for the healthy tissue. Table 5 also reports for each class
the number of correctly classified and misclassified cases in
the given test set. Finally, Table 6 reports the false-negative
rate (FNR), the FPR, and the TPR for each class.

From Table 4, we can observe that the FPs for the healthy
tissue are mostly located in classes LLUP and RLUP. Con-
versely, the errors related to the misclassification of lesion
tissue appear in classes LEIN1 and LEOP1. Further studies
on the introduction of additional parameters could reduce
the global error rate.

Discussion

Let us provide a critical review of the proposed method
and future directions for the research in this context.

Advantages

One of the most appealing aspect of the proposed FIS is related
to the fact that the radiologist can easily interfere with the
system according to his/her experience. For example, physi-
cians can add linguistic rules to the rules set, either suggesting
new features to evaluate or manually changing the incidence
level of a feature in order to emphasize a rule with respect to the
others. So, the CAD can learn from expert radiologists in a very
direct and easy way. The same possibility cannot be obtained
using black box approaches such as neural networks or LDA
classifiers, despite their classification capability.

Fig. 6 The ROC curves for the FIS. The dark curve is related to
lesions and the light curve to the healthy tissue. The markers locate
the optimal operating points automatically identified for the two curves

Table 5 Confusion matrix of the classification result

Actual C1 Actual C2

Assigned C1 44 2

Assigned C2 3 89

Table 6 Performance metrics for classification using FIS

FNR FPR TPR

C1 0.0638 0.0426 0.9362

C2 0.0220 0.0330 0.9780
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Secondly, the output membership degrees assigned by the
FIS to the considered portion or region of interest are not
complementary and depend on both the incidence levels of
the used features and on the features distribution on the
training population. This issue can be important in order to
guide a failure analysis that is the analysis of the circum-
stances under which an algorithm fails and the correction of
the failure causes. In particular, when both the membership
degrees are very low with respect to those assigned to other
images, this fact can be related to the image itself, to the
features evaluated on that image, to the characteristics of the
training population, or finally to the selection of the algo-
rithm parameters. This approach can be a guide to identify
the most critical cases or to look for an algorithm
improvement.

Regarding a comparative analysis, we have conducted
experiments with the same dataset by using a simple SVM
as described in [18]. Although the study was done by using
a multilabels classification, implemented using a one versus
all (1vsall) approach and random sampling methods for
balancing the dataset, it was found that classifier gave high
false alarm. One of the reasons for SVM classifier to per-
form not so good on this dataset can be that it considers all
training samples uniformly and is sensitive to outliers and
noise. However, fuzzy classifier (as proposed above) assigns
different degrees of membership to samples thus reducing
the effect of outliers and noise. This is particularly true in
our case as the tissues pertaining to lung and lesion as
delineated from HRCT scans and can be very prone to noise
and outliers. In conclusion, the fuzzy classifier is seen to
outperform the previous attempts of classifying this dataset
at the cost of reducing the multiclass problem to a two-class
problem.

Main Limitations

The limitation of this procedure is that it reduces the classi-
fication process from multilabels to binary. This methodol-
ogy implies that information related to the tracking of
different healthy tissues is not available. Thus, we can use
the classifier for optimal treatment planning of the tumor but
cannot take healthy tissue into consideration.

Future Directions

The present approach with a robust and easy way to inter-
pret classifier opens the possibility of automatically tracking
tumor motion in a 4DCT sequence without the need for
clinician to repeatedly redefine the tumor position/contour.
In the future, we will run the classifier on a 4DCT sequence
for obtaining accurate and updated 3D tumor trajectory of
the tumor at the time of radiation delivery. In addition, we
will extend the classifier to multiclasses for healthy tissue

recognition so that optimal treatment planning can be made,
by taking into consideration the location of healthy lung
tissues at the time of radiation delivery.

Additional features describing the orientation of the lung
portions will be investigated in order to improve the capa-
bility of the classifier to distinguish classes 3 and 7, 4 and 8,
1 and 5, and 2 and 6 for healthy tissue.
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