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Abstract Wireless capsule endoscopy (WCE) is a novel
technology aiming for investigating the diseases and abnor-
malities in small intestine. The major drawback of WCE
examination is that it takes a long time to examine the whole
WCE video. In this paper, we present a new reduction scheme
for WCE video to reduce the examination time. To achieve
this task, a WCE video motion model is proposed. Under this
motion model, the WCE imaging motion is estimated in two
stages (the coarse level and the fine level). In the coarse level,
the WCE camera motion is estimated with a combination of
Bee Algorithm and Mutual Information. In the fine level, the
local gastrointestinal tract motion is estimated with SIFT flow.

Based on the result of WCE imaging motion estimation, the
reduction scheme preserves key images in WCE video with
scene changes. From experimental results, we notice that the
proposed motion model is suitable for the motion estimation
in successive WCE images. Through the comparison with
APRS and FCM-NMF scheme, our scheme can produce an
acceptable reduction sequence for browsing and examination.
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Introduction

Wireless capsule endoscopy (WCE) is a microelectrome-
chanical system (MEMS), which consists of a miniature
camera, white light-emitting diodes (LEDs), a battery, and
a radio frequency emitter. The WCE, which is swallowed by
the patient and propelled by gastrointestinal peristalsis [1], is
mainly used for investigating the whole small intestine with
a noninvasive manner. In gastrointestinal tract, WCE cap-
tures images of inner tract and wirelessly transmits these
images to a receiver worn by the patient. WCE images can
then be downloaded to a workstation for visualization,
which helps clinicians to diagnose whether there are dis-
eases and abnormalities or not in the small intestine.

In general, WCE captures images at a typical rate of two
frames per second while moving forward along the digestive
tract. For a complete examination, WCE takes about 6–8 h
to traverse through the entire digestive tract and captures
approximately 50,000 images of gastrointestinal wall [2, 3].
Currently, the major weakness of WCE examination is that a
WCE clinician usually takes about 2–3 h to examine the
whole WCE video. Even for an experienced physician, the
work still needs about 1–2 h. Therefore, it is essential to
reduce the examination time, and this study was motivated
by attempts to devise a method for solving the problem.
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In fact, WCE video has at least 10,000 frame images that
carry useless clinical information. Moreover, clinical obser-
vations have revealed that only 20,000–30,000 frames about
small intestine in a WCE video are concerned for a clinician.
Although WCE captures two images per-second, a lot of
images in WCE video have similar scenes, as shown in
Fig. 1. By analyzing the redundant information, the number
of images in a WCE video can be significantly reduced.

Although some methods have been proposed for WCE
video processing, these methods mainly focus on computer
aided diagnosis, such as the detection of obscure bleeding,
polyp, ulcers, and tumor [4–8]. All of these are still in the
experimental stage and have not been used in the clinic yet.
Recently, some researchers begin to pay attention to the
problem of summarizing the WCE video. The goal is to
develop a useful approach that can reduce the number of
images in a WCE video.

An image mining approach that applies a computationally
intensive clustering scheme (FCM-NMF) to summarizing the
WCE video was proposed to reduce the time for the visual
inspection [9, 10]. The method is time consuming and quite
complicated. This clustering scheme can lead some images,
which are not time-related grouped into the same cluster and
produce a wrong representative frame. In [11], Li et al. pro-
posed a WCE video reduction scheme, which reduces a WCE
video sequence using motion features. In that paper, they use
two typical motion analysis methods: adaptive rood pattern
search block matching (ARPS) [11] and Bayesian multiscale
differential optical flow (BMSD). In fact, ARPS assumes that
the camera movements are in horizontal and vertical direc-
tions and needs the predicted motion vector (MV) for initial-
izing the size of ARPS. If there is not a predicted MV, the
ARPS cannot estimate motion accurately. Although BMSD
takes a coarse-to-fine estimation scheme to estimate optical
flow vector, it is difficult to estimate a larger displacement of
WCE camera motion. Therefore, the motion models of ARPS

and BMSD are not suitable for WCE imaging motion estima-
tion. Olympus Ltd has announced a new feature of the im-
proved Endo Capsule Software that can condense the entire
examination into a maximum of 2,000 still images [12].
However, the method is similar to the ARPS, which compares
images with explicit changes to pervious image. In other
words, the method just detects the sudden changes in WCE
image sequence. Since some small scale of diseases cannot
make a significant scene changes, this method may ignore
important information in WCE image sequence and lead to a
wrong-decision result for medical diagnosis. A registration
methodology was presented to reduce the amount of frames
in [13, 14]. This method utilizes a segmentation scheme and a
graph method to register similar regions in two adjacent WCE
video frames. However, it difficult to produce an effective
segmentation to register similar regions because the similar
scene in intestine region may produce various WCE images
due to illumination and local nonrigid deformation.

In this paper, we present a new reduction scheme consisting
of three stages for WCE video. In the first stage, we estimate
motion features in WCE video. In the second stage, we use
motion features to measure the scene changes between two
WCE images. In the third stage, we preserve those images,
which have obvious scene changes. In order to estimate the
WCE motion between two successive WCE images more
accurately, we also propose a novel motion model for WCE
video. In this model, the motion estimation of WCE video is
divided into two levels, the coarse level and the fine level. In
the coarse level, the WCE camera motion as the global rigid
motion is estimated and viewed as the large displacement
motion estimation. In the fine level, the gastrointestinal tract
deformation as the local nonrigid motion is estimated based on
the motion estimation of WCE camera, and the nonrigid
motion is viewed as local motion estimation.

The rest of this paper is organized as follows. In “The
Proposed Method,” we will present the reduction scheme of
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Fig. 1 Many images in the WCE video have similar scenes
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WCE video in details. In “Results and Discussions,” experi-
mental results are comprehensively illustrated and evaluated.
The last section summarizes the conclusions of our study.

The Proposed Method

Overview of the Method

To achieve the reduction task, we assume that two succes-
sive frames have overlapping area (movement of WCE
camera is continuous) and intrinsic parameters of WCE
camera are constant in the entire examination procedure.
We divide our scheme into three steps. First, the motion
between successive WCE images is estimated based on a
novel WCE video motion model. Then, the scene changes
are measured with the motion estimation. Finally, images
with obvious scene changes are preserved. The framework
of our reduction scheme is presented in Fig. 2.

The Motion Estimation of WCE Video

In our scheme, the motion estimation is used to capture
scene changes between successive WCE images. However,
this is a difficult task because the WCE takes two images per
second unlike a general video where it has more consecutive
motion features. Therefore, we need a suitable motion mod-
el to describe the motion between successive WCE images.
In this paper, we propose a novel WCE video motion model.
In this model, the motion of WCE video includes two parts:
One part is rigid motion, and the other is nonrigid motion.

The Motion Model of WCE Video

As shown in Fig. 3, when WCE works in the gastrointestinal
tract, WCE is propelled by gastrointestinal tract peristalsis.
If we just consider the WCE camera movement, then two
successive WCE images in which the relationship can be
described with homogeneous coordinates:

ð1Þ

where subscript i is an image index in the WCE video. Yi
and Yi−1 are 2D points in the source image i, and a

neighborhood image i−1 of the source image. Operator ×
is a matrix multiplication. M is a 2D rigid transformation,
which includes translation T, rotations R, scaling s, and
perspective p parameters. These parameters describe the
motion of WCE camera (global rigid motion) between two
successive WCE images.

In fact, the motion between successive WCE images
depends not only on the movement of WCE camera but
also on nonrigid deformation (local nonrigid motion) of
gastrointestinal tract due to its peristalsis. Therefore, both
the movement of WCE camera and gastrointestinal tract
need be considered simultaneously when we estimate the
motion between successive WCE images. Then, Eq. (1) can
be modified as follows:

Yi�1 ¼ M � YT
i þ "i ð2Þ

where εi is a local gastrointestinal tract displacement vector
caused by local gastrointestinal tract nonrigid movement.
We can integrate the rigid and nonrigid transformation as a
universal form.

T ð3Þ

According to this motion model, WCE image motion can
be estimated in two stages. In the first stage of the coarse
level estimation, the motion of WCE camera, which can be
regarded as a large displacement of WCE image scene, is

…
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Fig. 2 The framework of our
WCE video reduction scheme,
which is divided into three steps
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Fig. 3 The graph demonstrates the motion of WCE in gastrointestinal
tract
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estimated. In the second stage of the fine level estimation,
the local gastrointestinal tract deformation based on the
result of the first stage estimation is estimated. Actually,
the first stage also can be thought of an approximate align-
ment between two successive WCE images, and the second
stage is an image alignment of WCE images in the local
detail. Once we have chosen a suitable motion model to
describe the alignment between a pair of WCE images, we
need to devise a method to estimate its motion parameters.

The Motion Estimation of WCE Camera

WCE is propelled by gastrointestinal peristalsis. In fact, the
gastrointestinal wall is very close toWCE camera, which causes
less projective deformation of WCE images and WCE camera
motion can be described as 2D rigid deformation. Therefore, we
can just focus on rigid motion and ignored projective p and local
gastrointestinal tract nonrigid displacement ε parameters, when
we estimate the motion of WCE camera.

A usual approach for this estimation is to extract distinctive
features from each image and match features to establish a
global correspondence, then to estimate transformation be-
tween the images (feature-based methods). In reality, this is
very difficult to extract robust, stable and distinctive features
between successive WCE images and establish a matching. A
major reason is due to the low resolution, poor structural
information of WCE image. In this paper, we use the Bee
Algorithm (BA) [15] to search the best solution of the WCE
camera motion parameters (BAME). BA is a new population-
based search algorithm for many complex multiobjective
optimization problems that cannot be solved exactly within
the polynomial bounded computation times. As opposed to
the feature-based methods, this method is often called direct

(pixel-based) alignment methods. BAME can be described as
seeking a minimal error:

T* ¼ argmin errornðIi�1; TnðIiÞÞ : 1 � n � m; ði;mÞ 2 Z ð4Þ
where Ii−1 and Ii are a neighborhood image and a source
image in WCE video, Tn is nth transformation with deforma-
tion parameters being searched for in the solution space, and
errorn(Ii−1,Tn(Ii)) is an error metric between the neighborhood
image and source image. In our method, we use Mutual
Information (MI) [16, 17] as error measure. MI is widely used
in the medical image registration. In this paper, we use the
gray-scale information to calculate MI because WCE images
have similar intensity, color and hue. A pseudocode of the
BAME is shown in Fig. 4.

The Motion Estimation of Local Gastrointestinal Tract

As mentioned earlier, gastrointestinal tract movement can be
modeled as a nonrigid deformation, which is caused by
gastrointestinal tract peristalsis. In this paper, we use the
SIFT-flow [18] to predict the motion of the local gastroin-
testinal tract. The algorithm assumes that SIFT descriptors is
able to establish the dense correspondences between a
neighborhood image and a source image. SIFT descriptors
have an excellent performance that is invariant in the local
image illumination and encode local image structure. These
properties make the matching more robust. SIFT flow can
be formulated as an optimization problem on the correspon-
dence search with the cost function:

Eð"Þ ¼
X

p
si�1ðpÞ � siðpþ "ðpÞÞk k1 þ

1

σ2
X

p
u2xðpÞ þ u2yðpÞ þ Rðp; qÞ

ð5Þ

01. Input: target image and source image {Ii-1, Ii}

02.  Initialize population of bees m∈Z

03.  Search solution randomly TS={Tn=random(s, R, T): 1≤ n ≤ m, n∈Z}

04. Evaluate the error of each solution ES={errorn (Ii-1,Tn(Ii)): 1 ≤ n ≤ m}

05. While (stopping criterion not met)

06.    Select the best solutions eTS={Tn ∈ TS: errorn ≤ threshold, n ≤ p }

07.   for i1=1 to p

08.     Recruiting new bees for optimal solution in each neighborhood. eTS = update (eTS) 

09.     eES={ errorn (eTS) }

10. end

11.    Assign remaining bees to search randomly rTS={Tn=random(s, R, T):p < n ≤ m}

12.    Evaluate the error rES={ errorn (Ii-1,Tn(Ii)): p ≤ n ≤ m }

13.   TS=eTS∪rTS, ES=eES∪rES

14. End

15. Output: T*={ Tn ∈TS: errorn=argmin(ES)}

Fig. 4 The pseudocode of the
BAME algorithm. We modified
the standard Bee Algorithm to
select the best optimal WCE
camera motion parameters
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Rðp; qÞ ¼
X

ðp;qÞ2N min a uxðpÞ � uxðqÞj j; d þmin a uyðpÞ � uyðqÞ
�� ��; d

ð6Þ
where ε(p)0(ux(p),uy(p)) is a flow vector at pixel location
p0(x,y), si−1(p) and si(p) is the SIFT descriptor extracted at
location p in the neighborhood image i−1 and source image
i in a WCE video, and N is the spatial neighborhood of a
pixel. Here, the source image is a transformed image using
the result of the motion estimation of WCE camera. R(p,q)
constrains the flow vector which is consistent with adjacent
pixels. The flow vector ε(p) is regarded as local nonrigid
motion component. Finally, motion estimation between two
successive WCE images can be described as follows:

Zi�1 ¼ M � YT
i þ "Ti ð7Þ

The right-hand side of the equation contains two terms.
The first term is global rigid motion estimated by BAME
and the matrixM is a transformation matrix of WCE camera.
The second term is local nonrigid motion estimate by SIFT
flow and ε is a local flow vector, the best local match can be
found along with the flow vector between two successive
WCE images. Zi−1 is an approximation of the neighborhood
image points corresponding to Yi−1.. The Eq. (7) can also be
described as a universal form:

ð8Þ

Measuring Scene Changes in WCE Images

In WCE video, a scene change means that two successive
WCE images have more dissimilar context. For a robust
measurement of scene changes between successive WCE
images, we define a concept of the invalid region. An
invalid region is a region in a WCE image (source image)

that contains the scene of gastrointestinal wall that we
cannot found it in neighborhood images (or key images).
Here, key images are some images that should be preserved
in the reduction process. As shown in Fig. 5, we take two
steps to achieve the invalid region estimation. The first step
is backward estimation. We estimate the scene deformation
from image i to i−1 using Eq. (7), and seek for points of
image i that not lie in image i−1 according to scene defor-
mation. Those points are recorded as a set OB0{Yi: {M×Yi}
∉ Yi−1}. The second step is forward estimation. We record
points as a set OF0{Yi: {M×Yi}∉ Yi+1} between image i and
image i+1. Finally, an invalid region of current frame is a
set:

IR ¼ OF \ OB ð9Þ
The area of invalid region can reflect the scene change

between two successive WCE images. Figure 6 demon-
strates an invalid region of image i. Even if the number of
the points in the invalid region is large, it may still not
indicate the large displacement. Because the invalid region
of a WCE image is often distributed at the margin and is
usually narrow. Actually, the maximum diameter of the
invalid region can reflect a potential possibility of the size
of the scene changes. Therefore, we simplify this measure-
ment and use the diameter of the max-inscribed circle
(DMC) of invalid region to evaluate whether there is a scene
change between two images.

The Scheme of the WCE Video Reduction

In our reduction scheme, WCE video is represented as the
set F0{f1,…, fi, fi+1,…fn}. We divide WCE video F into
some segments named shots. A shot is defined as a finite
subset of F: SF0{fi, fi+1,…,fm: i, m≤n}. Then, we define an
extract function, which describes an extracting images pro-
cedure in a shot KFj0extract(SFj). KF represents a set

Zi to i-1 Zi to i+1

image iimage i-1 image i+1

Backward 

Estimation

forward 

Estimation

Fig. 5 An invalid region is
measured in the forward and
backward manner. For example,
the image i has three points (red,
blue, and black), after
transformation, the black point
cannot be found in the images i−
1 and i+1
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consisting of some key images (key frames) should be
preserved in a shot (j is a jth shot). If a WCE video is
divided into the number of k shots, then our reduction
scheme can be described as an equation:

KFS ¼ [k
j¼1

extractðSFjÞ ¼ [k
j¼1

KFj ð10Þ

In our method, we set the first image in each shot as a key
frame (KF), then we estimate the scene motion between
source image i and key frame as backward estimation, and
estimate the scene motion between source image i and
neighborhood image i+1 as forward estimation. The invalid
region is calculated after scene motion estimation. Finally,
we determine whether current image should be preserved as
a key frame or not according to the threshold τ of DMC. If a
source image i is preserved as key frame, the following
image will estimate scene motion with this new key frame
in the backward estimation. This extraction procedure in a
shot can be described as follows:

extractðSFjÞ ¼ 9KF 2 SFj : DMCðKFÞ < t ð11Þ
In addition, we use the multiplication technique to deal

with the case that has an interval between source image i and
key frame, as shown in Fig. 7. The motion estimation
between source image 2 (CF2) and key frame (KF) is given
by:

ZKF ¼ M1 �M2 � YT
CF2 ð12Þ

Here, M1 and M2 are transformation matrices in Eq. (8),
YCF2 points in CF2 and ZKF points transformed from current
points YCF2 using the multiplication of transformation ma-
trices M2 and M1.

Results and Discussions

Material and Evaluation of the Proposed Method

We test our method with various WCE image sequences
from different patients provided by Nanjing General Hospi-
tal of Nanjing Military Command. We divide our experi-
ments into two parts. The first part verifies whether the
proposed WCE video motion model is suitable for WCE
image motion estimation and the second part tests whether
our reduction scheme is significant on WCE video.

In the experiments of the motion estimation, we use both
image registration and PSNR, MSE, SSIM, and MI to eval-
uate the motion estimation performance. In reduction
experiments, we use recall and precision to measure the
reduction performance, which are widely used in the field
of information retrieval. We also compare our reduction
scheme with ARPS and FCM-NMF. Recall and precision
in the reduction of WCE video is given as follows:

Recall ¼ Number of keyframes correctly detected

Number of keyframes in the ground truth
ð13Þ

Key Frame 

M3M2M1

image 1 Source  image 2

Forward EstimationBackward Estimation

image 3

Fig. 7 The reduction scheme in
a WCE video shot. We use
multiple multiplication
technique to calculate scene
changes between source image i
and key frame

i-1 image i image i+1 image color for similar scene

Fig. 6 Color for similar scenes:
green and red regions that are
the scenes of image i can only
be found in i−1 and i+1 images
respectively, yellow region (the
scenes of image i ) can be found
both in i−1 and i+1 images.
Green circle is a max-inscribed
circle of the invalid region
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Precision ¼ Number of keyframes correctly detected

Number of keyframes detected

ð14Þ

Experiments of WCE Video Motion Estimation

Both WCE camera and local gastrointestinal tract motion
estimation are tested in our experiments. The source and
neighborhood images as a pair of images are chosen from
WCE video including three types of gastrointestinal tract
images: stomach, small intestine, and colon, and motion esti-
mation performance is evaluated with image registration and

PSNR, MSE, SSIM, and MI. In the experiments of
WCE camera motion estimation as shown in Fig. 8,
we notice that the image registration of BAME is clearer
in structural information and less visual artifacts than the
direct image alignment method. We also run BAME on
some nongastrointestinal tract images and notice that
BAME is also effective in the general image scene.
The residual error between the neighborhood image and
transformed image with BAME is presented in Fig. 11.
BAME does not show noticeable geometrical difference,
which can explain that BAME can estimate WCE cam-
era motion precisely.

neighborhood 

image
Source image Direct alignment

BAME

Registration

Stomach

Jejunum

Ileum

Colon

Non

gastrointestinal

image

Fig. 8 The experiments of WCE camera motion estimation in gastro-
intestinal and nongastrointestinal image with BAME. Neighborhood
and source images as a pair of images were chosen from different parts
of WCE video: stomach, jejunum, ileum, colon and nongastrointestinal

tract. We compare our BAME performance with image registration.
The third column is the registration of image direct alignment without
any transformation
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Then, invariant feature transform (SIFT) matching and
shape context (SC) matching can be considered as a com-
parison with BAME in our experiments. SIFT and SC were
set the same parameters as described in the papers [19, 20].
In the experiments of SIFT matching, we found that SIFT
cannot extract dense matching points effectively between

two successive images in most cases. This may be due to
low resolution, poor structural information, and texture-less
regions in WCE images. For SC Matching, we extract the
edge (or contour) information of two successive WCE
images first [13]. Then, we apply the SC algorithm to
establish dense matching pair points between these images

Neighborhood and Source images
BAME

Registration

Shape Context

Registration

SIFT

Registration

Matching
Failed

Stomach

Jejunum

Ileum

Colon

non-gastrointestinal 
tract image

Fig. 9 A comparison on image registration of BAME, SIFT, and Shape Context (SC). BAME is more effective on WCE motion estimation. The
registration image of BAME has less visual artifacts than those of SIFT and SC

Table 1 The comparison of
BAME with SC and SIFT on
PSNR and MSE

Methods PSNR MSE

Stomach Jejunum Ileum Colon Stomach Jejunum Ileum Colon

Shape Context 25.56 27.28 19.35 28.36 182.03 122.60 760.31 95.55

SIFT 26.17 25.69 – 26.641 158.32 176.61 – 142.01

BAME 27.21 29.25 22.15 27.98 124.59 77.94 399.63 116.30
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according to the edge information. Finally, the motion is
estimated based on these matching points. For some cases,
we could not ensure to extract edges (or contours) correctly
from WCE images and also could not ensure that edges (or
contours) extracted from WCE images is consistent or con-
tains similar structural information between twoWCE images.
However, for the nongastrointestinal images, these images
have obvious contours and structure; thus, both SIFT and SC
can work well on the motion estimation of WCE camera.
Experimental results of SIFT and SC matching are presented

in Fig. 9. We use PSNR, MSE, SSIM, and MI to compare the
registration performance of these methods. We notice that the
performance of BAME is better than those of SIFT and SC in
most cases. These results are shown in Tables 1 and 2.

Next, we use Eqs. (5) and (6) to estimate the local nonrigid
motion of gastrointestinal tract based on the results from the
motion estimation of WCE camera. In Fig. 10, we can notice
that the alignment image with BAME-SIFTFlow is less
blurred than the only motion estimation with BAME, which
means SIFT flow can improve the accuracy of the motion

Table 2 The comparison of
BAME with SC and SIFT on
SSIM and MI

Methods SSIM MI

Stomach Jejunum Ileum Colon Stomach Jejunum Ileum Colon

Shape context 0.83 0.78 0.67 0.77 1.05 1.07 1.05 1.05

SIFT 0.84 0.784 – 0.75 1.05 1.04 – 1.06

BAME 0.86 0.79 0.72 0.76 1.18 1.24 1.19 1.21

BAME Registation
BAME-SIFTFlow

Registration

SIFT-flow 

Displacement 

field

Stomach

Jejunum

Ileum

Colon

Non-gastrointestinal 

tract image

Fig. 10 The local nonrigid
motion estimation with SIFT
flow. The registration image
with BAME-SIFTFlow is less
blurred than only motion esti-
mation with BAME. SIFT-flow
displacement field is a visuali-
zation of pixel displacements
using the color-coding scheme
of [23]
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estimation in the fine scale. This also verifies that the proposed
the motionmodel is suitable forWCE video. From Fig. 11, we
can find that the residual error is minimized between the
neighborhood image and transformed image with BAME-
SIFTFlow. Especially, the difference is smaller in nongastroin-
testinal images and stomach and colon images. However, for
images of jejunum and ileum, we still found some obvious
structure. The reason may be due to that the dense villi of
small intestine cause an uncertain local motion.

To further test the performance of BAME-SIFTFlow, we
compare the BAME-SIFTFlow with several popular nonrigid
motion estimation algorithms, which include standard optical

flow (HS), demon nonrigid registrationmethod [21], and large
displacement optical flow (LDOF) [22]. These methods are
tested based on the results from the motion estimation ofWCE
camera with BAME and are named BAME-HS, BAME-
Demon and BAME-LDOF.We again use PSNR,MSE, SSIM,
andMI to evaluate the performance. From the comparison, we
notice that the BAME-HS method is the worst of the local
motion estimation among these methods. The BAME-LDOF
has a poor performance compared with BAME-demon and
BAME-SIFTFlow. However, our method has the better per-
formance in most situations. The comparison is presented in
Tables 3 and 4.

Neighborhood and 

Source images

The difference of 

Direct alignment

The difference of 

BAME

The difference of 

BAME-SIFTFlow

Stomach

Jejunum

Ileum

Colon

non-gastrointestinal tract

Fig. 11 The residual error is
compared between the
neighborhood image and
transformed image with BAME
and BAME-SIFTFlow. BAME-
SIFTFlow does not present no-
ticeable geometrical difference

Table 3 The comparison of
BAME-SIFTFlow with BAME-
HS, BAME-Damon, and
BAME-LDOF on PSNR and
MSE

Methods PSNR MSE

Stomach Jejunum Ileum Colon Stomach Jejunum Ileum Colon

BAME-HS 26.88 26.20 22.00 26.35 134.55 156.87 413.388 151.21

BAME-Damon 28.19 30.35 26.06 28.26 99.45 60.45 162.16 97.75

BAME-LDOF 26.79 26.97 21.90 26.49 137.24 131.56 423.30 147.16

BAME-SIFTFlow 28.44 28.17 22.16 27.98 93.94 99.80 398.47 104.23
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Evaluation of the Reduction Scheme

Once the motion of a WCE video is estimated, we use it as
salient features to reduce the number of images in a WCE
video. In our experiments, we tested our reduction scheme
on WCE video clips collected from different gastrointestinal
tract scene, such as stomach, jejunum, ileum, and colon.
Each WCE video clip contains 100 images, and each shot
has 50 images. In each shot, we save the first image and last
image as initial key frames. From the second image, we
apply our reduction scheme as described in “Measuring
Scene Changes in WCE Images.” In experiments, DMC
threshold is set to 5 pixels empirically. The number of key
frames in each shot is shown in Table 5.

We plot the curves about the radius of max-inscribed circle
of each WCE image invalid region in a shot and draw key
frames and its neighborhood images (shown in Fig. 12). Red
circle represents an image chosen by DMC threshold. In
Fig. 12, key frames are marked with yellow number label,
such as 1222, 12232, 16729, etc., and neighborhood images
are marked with white number label. We notice that the key
frame has an obviously scene changes. Figure 12b is an
example of a WCE transition from ileum to colon, and key
frame 16729 is ileocecal valve. Neighborhood images (16728
and 16730) have an obvious different scene; therefore, both of
them are preserved as key frames. Figure 12b also explains a
phenomenon that the movement of small intestine is larger
than colon. However, even if the movement is less in colon,

but food residue may still distort the motion estimation in
colon images, which can explain why a shot of transition from
ileum to colon preserves more images.

We verify the performance of our reduction scheme by
recall (RC), precision (PC) and compression ratio (CR). The
key frames of ground truth in WCE video shots are labeled
by the clinician. We also compare our method with ARPS
and FCM-NMF scheme. These schemes were set same
parameters as described in the papers [9, 11]. These results
of which are presented in Tables 6 and 7. For a good WCE
video reduction scheme, we hope both recall and precision
should be as high as possible. However, in practice, we are
more concerned with the correct key frames detected in
WCE video because the false positives may lead to a failure
for medical diagnosis. Thus, recall is more important than
precision in our application.

From experimental results, the average performance of our
reduction scheme for recall is 74%, precision is 58%, and CR
is 68 %. Although ARPS and FCM-NMF have higher com-
pression radio (CR) than our method, the higher RC also
causes these methods having lower RC and PC. This is due
to ARPS and FCM-NMF cannot preserve the representative
images in WCE image sequence. For example, in images
sequence 16701 to 16750 (Ileum to Colon), both ARPS and
FCM-NMF cannot preserve ileocecal valve (16728 and
16729) as key frames. In fact, the local nonrigid deformation
is not considered inARPS. ARPS is a template search scheme,
which is not suited for the case of WCE movement because

Table 4 The comparison of
BAME-SIFTFlow with BAME-
HS, BAME-Damon, and
BAME-LDOF on SSIM and MI

Methods SSIM MI

Stomach Jejunum Ileum Colon Stomach Jejunum Ileum Colon

BAME-HS 0.86 0.78 0.72 0.76 1.05 1.04 1.04 1.07

BAME-Damon 0.85 0.80 0.73 0.79 1.25 1.27 1.23 1.24

BAME-LDOF 0.85 0.79 0.72 0.77 1.04 1.04 1.04 1.06

BAME-SIFTFlow 0.89 0.81 0.74 0.79 1.21 1.24 1.19 1.24

Table 5 The number of key frames in each shot

The shot Key frame number Compression
radio (CR)
(%)

3001-3050 Stomach 3000, 3004, 3013, 3015, 3016, 3017, 3018, 3025, 3035, 3039, 3043, 3048, 3049, 3050 72

12201-12250
Jejunum

12201, 12206, 12208, 12211, 12217, 12220, 12222, 12232, 12236, 12242, 12245, 12250 76

12251-12300
Jejunum

12251, 12256, 12258, 12261, 12267, 12270, 12272, 12282, 12286, 12292, 12295, 12300 76

13001-13050 Ileum 13001, 13003, 13005, 13008, 13012, 13013, 13015, 13019, 13023, 13026, 13029, 13036, 13038, 13042,
13043, 13046, 13048, 13050

66

13051-13100 Ileum 13051, 13055, 13059, 13060, 13062, 13064, 13068, 13070, 13073, 13074, 13076, 13078, 13086, 13088,
13091, 13092, 13097, 13100

66

16701-16750
Ileum-Colon

16701, 16709, 16711, 16712, 16714, 16718, 16720, 16725, 16726, 16727, 16728, 16729, 16730, 16731,
16732, 16733, 16734, 16735, 16736, 16743, 16747, 16749, 16750

54
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Fig. 12 The curve is the radius
of max-inscribed circle of each
WCE image invalid region in a
shot. a The curve of a ilenum
shot, and b the curve of a ile-
num–colon shot. Key frames
are marked with yellow number
label, and neighborhood images
are marked with white number
label
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the scheme assumes that the camera movements are just along
horizontal and vertical directions. Actually, the movement of
WCE can be in any directions. We also notice that it does not
have any obvious improvement in experiments of FCM-NMF
with increasing the number of clusters. Moreover, in the
experiments of FCM-NMF, we cannot obtain a consistent
result from same images sequence and parameters each time,
which may be due to the drift of clustering centers in cluster-
ing procedure. In addition, for FCM-NMF scheme, this is also
difficult to evaluate a right similarity and form the geodesics
distance matrix between successive images just using Euclid-
ean distances.

However, the average recall of our method is still 74 % (see
Table 6). A major reason could be the objective criterion of
reducing redundant data in a WCE video is very different from
subjective criteria of the clinician. For clinicians, they are more
interested in image content itself than in the WCE video. This
reason also explains why the precision is not high because our
scheme leads to more images taken as key frame in a shot than
the ground truth marked by clinician. In addition, different
clinicians may have different subjective criteria for the key
frame extraction. Even for a clinician, it is still very difficult to
judge if one image is better than another that should be pre-
served. Meanwhile, we find that different movement speed in

different part of gastrointestinal tract can cause different reduc-
tion ratio. If we increase the CR, it may decrease the recall. Thus,
we must make a tradeoff between the recall and CR.

To verify whether our reduction scheme is more suitable
than ARPS and FCM_NMF, we compare the sampling
frequency of our scheme with ARPS and FCM-NMF on a
WCE images sequence (500 frames) without ground truth
labeled by clinician. The result is presented in Fig. 13. Black
curve in Fig. 13 is intensity of an image sequence (500
frames). The changes of intensity can reflect the scene
changes in image sequence. In the sampling curves (blue,
red, and green), value one (1) represents a key frame
extracted from images sequence. We found that our scheme
is more consistent with the changes of intensity than ARPS
and FCM-NMF. The more changes of scene, the more key
frames need to be preserved, which can explain that our
scheme can produce an acceptable reduction sequence for
browsing and examination in WCE images sequence.

Conclusions

We presented a new reduction scheme for WCE video. This
scheme makes use of the motion feature to preserve those

Table 7 The comparison of our reduction scheme with ARPS k03 and FCM-NMF c06

Image Sequence ARPS k03 FCM-NMF c06 BAME-SIFTFlow

RC (%) PC (%) CR (%) RC (%) PC (%) CR (%) RC (%) PC (%) CR (%)

3001-3050 Stomach 27 43 86 18 40 90 73 67 72

12201-12250 Jejunum 57 49 80 43 17 64 86 60 76

12251-12300 Jejunum 20 29 86 50 28 64 60 60 76

13001-13050 Ileum 44 73 78 22 36 78 56 63 66

13051-13100 Ileum 44 50 84 33 33 82 78 44 66

16701-16750 Ileum-Colon 33 44 82 17 28 86 92 52 54

Average 38 48 83 31 30 77 74 58 68

RC, PC and CR denote recall, precision, and compression ratio, respectively

Table 6 The comparison of our reduction scheme with ARPS k02 and FCM-NMF c05

Image Sequence ARPS k02 FCM-NMF c05 BAME-SIFTFlow

RC (%) PC (%) CR (%) RC (%) PC (%) CR (%) RC (%) PC (%) CR (%)

3001-3050 Stomach 56 47 70 18 40 90 73 67 72

12201-12250 Jejunum 71 36 72 14 10 70 86 60 76

12251-12300 Jejunum 50 42 76 40 30 74 60 60 76

13001-13050 Ileum 56 71 72 38 50 72 56 63 66

13051-13100 Ileum 56 46 74 33 33 82 78 44 66

16701-16750 Ileum to Colon 33 31 54 17 17 76 92 52 54

Average 54 46 70 27 30 77 74 58 68

RC, PC and CR denote recall, precision, and compression ratio, respectively
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images that have obvious scene changes in the temporal neigh-
borhood. To obtain the motion feature from successive WCE
images, a new WCE video motion model is proposed. Based
on this new motion model, the motion estimation of WCE
video is divided into two levels, the coarse level and the fine
level. In the coarse level, theWCE camera motion is estimated
with BAME. In the fine level, the local gastrointestinal tract
motion is estimated with SIFT flow.

Through the empirical comparison, we find that the
BAME-SIFTFlow method can estimate the motion between
WCE images more accurate in most situations, especially
when two successive WCE images have a large displace-
ment. This is mainly due to the fact that the method takes
two stages to estimate the motion. Therefore, the BAME-
SIFTFlow is consistent with our gastrointestinal tract mo-
tion assumption and is robust for practical WCE video
applications. Moreover, we notice that SIFT-flow has a
better performance for local motion estimation than HS,
Damon, and LODF in WCE video. We think that SIFT flow
can be extended for other medical image applications. How-
ever, we also find that our reduction scheme has a lower
recall in some situation. A major reason could be that WCE
images preserved as key frames by a clinician may be more
subjective and lack of an objective criteria. Therefore, it is
still a challenging task to determine which images should be
preserved as key frames of WCE video with unsupervised
learning. Other reasons may be that the motion estimation is
not enough as a feature to capture the scene changes in
WCE images sequence. Therefore, it should be considered

by combining the motion feature and other image features,
such as color and texture, for future work.
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