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Abstract Considering that the traditional lung segmenta-
tion algorithms are not adaptive for the situations that most
of the juxtapleural nodules, which are excluded as fat, and
lung are not segmented perfectly. In this paper, several
methods are comprehensively utilized including optimal
iterative threshold, three-dimensional connectivity labeling,
three-dimensional region growing for the initial segmenta-
tion of the lung parenchyma, based on improved chain code,
and Bresenham algorithms to repair the lung parenchyma.
The paper thus proposes a fully automatic method for lung
parenchyma segmentation and repairing. Ninety-seven lung
nodule thoracic computed tomography scans and 25 juxta-
pleural nodule scans are used to test the proposed method
and compare with the most-cited rolling-ball method. Ex-
perimental results show that the algorithm can segment lung
parenchyma region automatically and accurately. The sen-
sitivity of juxtapleural nodule inclusion is 100 %, the seg-
mentation accuracy of juxtapleural nodule regions is

98.6 %, segmentation accuracy of lung parenchyma is more
than 95.2 %, and the average segmentation time is 0.67 s/
frame. The algorithm can achieve good results for lung
parenchyma segmentation and repairing in various cases
that nodules/tumors adhere to lung wall.
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Introduction

Lung cancer is one of the most serious cancers in the world.
In fact, the total number of deaths caused by lung cancer is
greater than the sum of breast, prostate, and colorectal
cancers [1,2]. Early detection and treatment of lung cancer
can improve the survival rate of the patients [3]. Computed
tomography (CT) is an important instrument for early de-
tection of nodules, but interpreting the large amount of
thoracic CT images is a very challenging task for radiolog-
ists. Computer-aided detection/diagnosis (CAD) is consid-
ered as a promising tool to aid the radiologist in lung nodule
CT interpretation.

In a lung CAD system, prior to the detection of lung
lesions, the segmentation of lung parenchyma from thoracic
images [4–6] has to be conducted in order to reduce the
amount of computation to minimize the computation time.
Good lung segmentation can improve the efficiency of the
entire CAD system and reduce misdiagnosis. Therefore, the
lung parenchyma segmentation is a key procedure of a CAD
system for lung diseases and pulmonary function assess-
ment [7], which will affect the accuracy of the whole lung
CAD system.

In recent years, scholars from various countries have put
forward a series of lung segmentation methods [8–15].
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Typically, these methods can be generally divided into the
following three categories: threshold method [16], region-
growing method [17,18], and pattern classification method
[19]. Threshold method is simple and fast, but it is unable to
rule out the tracheal/bronchial area effectively and cannot
include nodules attached to the lung parenchyma edge re-
gion. Region-growing method is semi-automatic segmenta-
tion algorithm. Although the method can segment high-
density areas attached to the lung parenchyma edge, but it
cannot separate the two lung lobes, it also needs to select
manually a seed point. It is sensitive to the selection of
parameters concerning rules of region growing and incor-
porating, which may affect the stability. Pattern classifica-
tion method requires a large number of training sample data,
and needs to extract the features, so the processing time is
longer. It cannot meet the real-time requirements of the
CAD system in clinical application.

For medical CT lung images, there is a kind of nodule/
tumor which is adhered to a lung wall, i.e., juxtapleural
nodule. It is important in the judgment of early-stage lung
cancer/disease, we cannot afford to ignore it. However, due
to the gray value is very similar to the fat outside the lung
wall. In the lung parenchyma segmentation process, the
juxtapleural nodule is often mistakenly judged as the fat to
exclude. Therefore in the subsequent disease, diagnosis
ignores impact of the lesion, and influences the diagnosis
of the illness, reduces the accuracy of the diagnosis. The
nodules/tumors are often mistaken as fat, and the
corresponding region in the segmented lung parenchyma
becomes a sunken area to the lung wall. Due to the impor-
tance of this kind of nodules/tumor in diagnosis, many
scholars are trying to take measures to improve the method.
The “the rolling-ball” method [18] is one of the most com-
monly used one. However, the “the rolling-ball” cannot
accurately judge the size of the defect, so it is difficult to
set the sphere radius accurately.

Considering the problems above in lung segmentation,
this paper presents a fully automatic algorithm for lung
parenchyma segmentation and repairing. First, optimal iter-
ative threshold method is adopted for binarization. Then,
three-dimensional (3-D) connectivity labeling and 3-D re-
gion growing are utilized to remove the main trachea. Two
lung lobes are judged to see whether they are connected. If
connected, center position locating method is used to sepa-
rate of left lung from the right. Finally, the original seg-
mented lung parenchyma will be repaired based on an
improved chain code method and Bresenham algorithm.
The whole process of the algorithm is depicted in Fig. 1.
Lung segmentation algorithm proposed in this paper can
effectively reduce the missing of juxtapleural nodules, and
the method makes a full use of 3-D CT image sequence. The
segmentation accuracy and implementation speed have been
improved greatly than the rolling-ball method.

Methods

A schematic of the different stages of our method is given in
Fig. 1. The proposed algorithm can be divided into two
stages: (1) initial segmentation of lung parenchyma based
on sequent images and (2) lung parenchyma repairing based
on improved chain code and Bresenham algorithm. Each
stage comprises different substages. The details are given
below. After the description of lung parenchyma segmentation
and repairing methods, evaluation methods are introduced in
this section.

Initial Segmentation of Lung Parenchyma Based
on Sequential Images

Original thoracic CT images include the examination bed,
fat, ribs, lung parenchyma, main trachea, etc. as are shown
in Fig. 2. Pulmonary lesions are within the lung parenchy-
ma. Before the detection of pulmonary disease, tissues out-
side the lung parenchyma should be removed, and the whole
lung parenchyma should be segmented from the original
thoracic CT images, in order to reduce the amount of com-
putation, to speed up the process of implementation, and to
minimize the interference of regions outside lung parenchy-
ma. Initial segmentation of the lung parenchyma is to re-
move tissues outside of the lung parenchyma from the
original image.

No

Yes

Optimal iterative thresholding for binarization

Separating the left and the right lungs

Original thoracic CT images

Removing background and main trachea

Segmented lung parenchyma

Are the left and the right lungs
adhered ?

Boundary repairing based on improved chain code and Bresenham algorithm

Fig. 1 Flow chart of automatic lung parenchyma segmentation and
repairing based on improved chain code and Bresenham
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Initial Segmentation of Lung Parenchyma Area

Lung parenchyma is filled with air and its density is relative
low. It can be separated from the ribs and the surrounding
tissues such as fat due to the densities are different. In CT
images, the HU value reflects the corresponding density and
forms its gray value in CT images. For the same machine, the
HU values of lung parenchyma in CT images are almost the
same for different patients. In this paper, the optimal threshold
value is obtained through an iterative procedure to segment
lung parenchyma regions initially. The process is as follows:

1. Set the initial background gray-scale Fb, object gray-

scale F0, the initial threshold value is T0 ¼ FbþF0
2 .

2. Calculate the average gray level of the background
region and object region Gb and G0.

3. Set T1 ¼ GbþG0
2 , and the new threshold is T1.

4. Iteration termination condition is T1≈T0, that is, the
difference between T1 and T0 is less than 5. Otherwise
assign T1 values to T0, and go back to step (2)

The above process will converge after 6 to 12 times of
iteration, in the obtained binary image (as shown in Fig. 3a).
The region outside the body and lung parenchyma region is
black.

3-D Connected Component Labeling to Remove
the Background

After iterative threshold processing, the background and the
low gray pixels are labeled black; fat and tissues outside
lung parenchyma are labeled white, as shown in Fig. 3a.
Then make the image inverted, and label 3-D connecting
components on the binary images. All the background pix-
els connected with the lung boundaries are negated, and the
results are as shown in Fig. 3b. After the above steps to deal

with image sequences, only the lung (white), trachea, bron-
chus (white), and vascular, nodular black hole, some resid-
ual background (white) are left, as shown in Fig. 3c.

3-D Region-Growing Method to Remove the Main Trachea

After these two steps of processing, main trachea, and
bronchus are usually preserved, as shown in Fig. 4a. Lung
trachea and bronchus can be easily removed if the
trachea is not close to the lung in the steps of “3-D Connected
Component Labeling to Remove the Background.” However,
when the lobar bronchi enter the lungs or are connected with
the lung [20], they will be marked as lung area in the process
of connecting component labeling. According to the anatomy
knowledge, air is filling trachea, and CT value of air in the CT
image is in a fixed range. Therefore, this paper adopts an
improved 3-D region-growing method to remove the trachea
and the bronchus. In the 3-D region-growing method, selec-
tion of seed points, rules of region growing and terminating,
are described as follows:

1. Selection of seed points
From anatomical knowledge, in a CT scan, the tra-

chea appears as early as the apex. Therefore, the com-
putation starts to find a connected domain of the
specified size from the first slice of the sequences and
select the centroid of the target area (trachea) as the
initial seed point. Seed points are identified in subse-
quent CT sections based on the centroid location of the
segmented trachea region in the previous section [18].

2. Rules of region growing
In our algorithm, 3-D region-growing conditions are

defined according to the CT values of the organizations
by the similarity criteria [20]. We define a variable: the
maximum gray-level threshold d. Compare the current
point grayscale with average grayscale of all pixels in
the segmented area. When the difference is less than or
equal to d, the pixel is added to the segmented area.

3. Terminating region growth
For a single slice image, when the absolute difference

of the pixel gray value and average gray of the segment-
ed region is less than or equal to d, the region growing
stops. For a sequence of images, when tracheal area
after the (i)th time growing minus the tracheal area of
(i-1)th time, and the difference is less than a certain area,
the growing ends. That is, a stopping criterion is estab-
lished to halt the region-growing process when the
trachea has been adequately segmented. This stopping
criterion is satisfied when the area of the trachea at
iteration i is less than 5 pixels greater than the
corresponding area at iteration i-1 [18].

The experimental result is as is illustrated in Fig. 4a.
Wherever the trachea and the lung are connected or

Fig. 2 An original thoracic CT image
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separated, our algorithm can split the main trachea and
bronchus accurately, as is shown in Fig. 4b.

Separation of Left and Right Lungs

After removing the trachea, if left and right lungs are stick-
ing together, as is depicted in Fig. 5a, b, lung separation
must be carried out, to be ready for lung nodule CAD or
pulmonary function assessment. This paper presents a sim-
ple and effective algorithm for left and right lung separation,
that is, center location method.

Separation of left and right lung is mainly related to three
issues: how to determine whether the left and the right lungs
are adhered; how to quickly locate the area of the adherence;
and how to separate the left and the right lungs. Here, the
separation steps of left and right lung are designed as
follows:

1. The judgment about the adherence of left and right
lungs is based on the connecting domain. In images of
removing trachea, bronchus, fat and other tissues, there
should be only two identifiable larger connectivity lung
regions. Other parts of the connected domain will be
much smaller. If there is only one connectivity region,
the two lung lobes can be thought as connected. In
addition, if there is one more connectivity region, and
area ratio between the first and the second largest region
is over a threshold T, then the two lung lobes can be
thought of as connected, and this threshold T is set as an
empirical value 9.

2. Calculate the width and the height of the binarized lung
parenchyma region respectively, and then calculate the
center of the lung parenchyma region p (m, n).

3. Scan the binary image, the scanning region is: row
range from row m to the height of the image, column
range of n − 30 to n + 30, get the point with the least
white pixels, and denoted by q(x, y), get region of (x −
30, x + 30), (y − 30, y + 30) as region of interest.

4. For the above identified region of interest-segmented
mask images, process as follows:

a. Scanning the ith row, if there are three black pixels
in the row, then the first and last black pixels are
denoted by Ai and Bi and get the midpoint Ci of Ai

and Bi. If there are no black pixels, or more than
three black pixels, no midpoint will be obtained;

b. Link up C1, C2, …,Ci as the dividing line, then do
morphological erosion to the mask image along the
dividing line with a structure element of black ball
whose radius is 1.

The processing result is depicted as Fig. 5c. Our algo-
rithm can separate two lung lobes accurately.

Lung Parenchyma Repairing Based on the Improved Chain
Code and Bresenham Algorithm

Lung parenchyma can be segmented from original thoracic
CT image as is described in “Initial Segmentation of Lung
Parenchyma Based on Sequential Images.” But if there are
nodules or tumors adhered to the lung wall, they will be

Fig. 3 Initial segmentation of
lung parenchyma. a Binarized
image by iterative threshold. b
Inverted image. c Initial mask
after removing background

Fig. 4 Removal of the main
trachea adhered with lung
parenchyma. a Initial
segmented lung parenchyma.
b Removing the main trachea
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wiped off as fat or other tissues, and it will form a concave
region on the corresponding lung border. This will bring
miss diagnosis because they are important for lung disease
CAD system. In this paper, we propose a lung parenchyma
repairing method based on the improved chain code and
Bresenham algorithm, to avoid the missing of nodules or
tumors adhered to the lung wall.

Discrimination of Concavity and Convexity of Boundary
Points Based on Chain Code Difference

Chain code is used to represent a boundary through a
specified length and a direction of straight section by a serial
number [21,22]. Suppose there are N points AðiÞ�
i ¼ 1; 2; 3 . . .N � 1;Nð Þ on the boundary, for each point
on the boundary there is a chain code A(i) which points to
this point from a pre-point and a chain code A(i+1) which
points to the next point from this point. The so-called
relative chain code is the relationship between A(i) and
A(i+1). If they are in the same direction, the relative chain
code is zero. Absolute chain code is the accumulated value of
the relative chains from the starting point. The absolute chain
code of the starting point can be set to zero. Its absolute value
will increase by 8 after moving along the border one circle.

The sum of three-point chain code is the sum of absolute
chain codes of the current point A(i) and the forehead two
points A(i−1), A(i−2), that is

SumðiÞ ¼ AðiÞ þ A i� 1ð Þ þ A i� 2ð Þ; i
¼ 3; 4; 5; . . .N ð1Þ

Chain code difference means the difference between Sum
(i+3) and Sum(i), that is

Diff ðiÞ ¼ Sum iþ 3ð Þ � SumðiÞ ð2Þ
Chain code difference means the difference between the

two directions and is proportional to the amount of curva-
ture. When the boundary points are calculated in the clock-
wise direction, a point will be concave if the difference is
positive. Otherwise, it will be convex.

According to every point’s chain code difference of the
boundary, we can draw the chain code difference curve

corresponding to the boundary. Thus, we can distinguish
the boundary’s concavity and convexity through the chain
code difference curve. The algorithm to distinguish the
boundary’s concavity and convexity through the chain code
difference can be summarized as follows:

1. Binarize the image, find its boundary.
2. Determine the starting point of chain code and write

down the location of the point. Here, the nearest bound-
ary point from the top left corner is as the starting point.

3. Determine the chain code’s direction of rotation clock-
wise or counterclockwise.

4. Calculate every point’s chain code difference Diff(i) of
the boundary.

5. Set a threshold according to the characteristics of the
chain code difference. Then, distinguish every point’s
concavity and convexity. In this paper, the point is
convex when Diff(i)<−1, the point is concave when
Diff(i)>2.

Here, we use an image that contains a variety of convex–
concave points to verify the algorithm. Figure 6 shows the
calculated results of chain code values and the marked
convex–concave points. Figure 6a is the original image;
Fig. 6b shows the sum of three-point chain code; Fig. 6c
shows the difference of three-point chain code; Fig. 6d
shows the marked convex–concave points. In Fig. 6d, “o”
indicates convex point, and “*” indicates concave point.

In Fig. 6c, we can find there are eight places where their
values are greater than 2 and thirteen places where their
values are less than −1. Referring to the threshold of the
literature [23], the point is convex when Diff(i)<−1, the
point is concave when Diff(i)>2, and the marked convex–
concave points are shown in Fig. 6d after judging. We can
see the algorithm’s judgment and the markers of convex–
concave points are very accurate.

Repair the Sunken Boundary According
to Convex–Concave Points

After distinguishing every point’s concavity and convexity
of the boundary, repair the sunken boundary according to
these points’ concavity and convexity. To illustrate the

Fig. 5 Separation of the two
lung lobes. a Original thoracic
CT image. b Initial segmented
mask (two lobes are connected).
c Separated two lobes
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repairing process, we amplify part of the Fig. 5d, as is
illustrated in Fig. 7. The steps of boundary repairing accord-
ing to concavity and convexity are summarized as follows:

1. Set the loop, look for convex points, update convex
point A, and write down its coordinate (x1, y1) and its
position a in the chain code, which is the location of the
point relative to the starting point in the boundary.

2. Pause when encountering a concave point B. Write down
its coordinate (x2, y2) and its position b in the chain code.

3. Continue to search along the direction of the chain code
until to find the nearest convex point C from the point B.
Then, write down the convex pointC’s coordinate (x3, y3)
and its position c in the chain code.

4 If the point after point C is also a convex point, then
update the point C. Write down the updated point’s
coordinate (x3, y3) and its position c.

5. Connect the convex point A and the convex point C.
6. Find the filling border in the radian domain formed by

line AC and the boundary. That is to connect the boun-
dary’s points a+1 (which is the next point of point a on
the boundary) and c−1 (which is the former point of
point c on the boundary), a+2 and c−2, a+3 and c−3
…until the point (a+c)/2 in turn.

Using Bresenham Algorithm to Fill the Sunken Boundary

Bresenham proposed the famous two-dimensional linear
space generated method [24]. In this paper, we use the
Bresenham algorithm to fill the boundary sunken area of
the lung parenchyma. The basic idea is two endpoints’ coor-
dinates of a known straight line are A(x1, y1) and B(x2, y2).

Assume that the slope of the straight line between 0 and
1, order

dx ¼ x2� x1
dy ¼ y2� y1

�
ð3Þ

Then the slop k is:

k ¼ dy

dx
; 0 � k � 1 ð4Þ

As Fig. 8 has shown, P1 (xs, ys) is the closest pixel to the
starting point A of the straight line, if x coordinates increase

Fig. 6 The value of chain code
and discrimination of convex–
concave points

Fig. 7 The illustration of filling
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1, the y coordinate should increase k, and reach the point of
P2 (xs+1, yk). The next point of P1 in the right direction is
Px, with coordinates (xs+1, ys), and the next point of the top
right is Pz with coordinates (xs+1, yk+1).

Set the grid unit to 1, one pixel distance. If the distance
between P2 and Px is no less than half a unit, that is, the
distance d≥0.5, then take the next point of P1, which is Pz,
with coordinates (xs+1, ys+1). Otherwise, if the distance
between P2 and Px is less than half a unit, that is, the
distance d<0.5, then take the next point of P1, which is
Px, with coordinates (xs+1, ys). It can be described as:

xiþ1 ¼ xi þ 1

yiþ1 ¼ yi þ 1 d � 0:5ð Þ
yi d < 0:5ð Þ

�8<
: ð5Þ

Here, the key issue is the error term d. The initial value is
0, for every step d0d+k. Whenever there is an increase of 1
at the y direction, it will move forward a step, and d subtract
1, that is d0d−1.

For simplicity, take e0d−0.5, and Eq. (5) changes to

xiþ1 ¼ xi ¼ 1

yiþ1 ¼ yi þ 1 e � 0ð Þ
yi e < 0ð Þ

�8<
: ð6Þ

Here, the initial value of e is −0.5, for every step e0e+k.
Also, whenever there is an increase of 1 at the y direction, it
will move forward a step, and e subtract 1, that is e ¼ e� 1.

All of the discussion above is a simple case with slope
between 0 and 1. As for the general condition, the follow-
ings should be conducted:

1. When the absolute value of slope is greater than 1.0,
exchange x and y, dx and dy.

2. Increase or reduce 1 to control x (or y) according to the
sign of dx (or dy).

In order to test the accuracy of the filling algorithm,
different structures of graphics and lung parenchyma images
are used for verification respectively. The results of filling of
Fig. 6a are shown in Fig. 9. Another image shown in
Fig. 10a is used to experiment, in which there is a nonrigid

concave area. Convex–concave points are marked in
Fig. 10b; the filling result is shown in Fig. 10c. Here, we
can see whether the concave region is rigid or not. All of the
filling results are satisfactory by our repairing algorithm. For
the lung parenchyma boundary filling example of Fig. 2,
with the right lung wall nodules case, the repairing process
is illustrated in Fig. 11. Figure 11a depicts the mask of initial
segmentation; Fig. 11b shows labeling of convex–concave
points on the boundary, where “+” indicates convex point
and “o” indicates concave point; Fig. 11c shows the filling
areas by Bresenham algorithm; Fig. 11d shows the obtained
mask after repairing; and Fig. 11e shows the final segmen-
tation results.

Evaluation Methods

The segmentations from the automated algorithms have
been compared with manual segmentations. Manual con-
tours were traced by three experienced chest radiologists on
all slices from the top to bottom parts of the lungs. The
manual segmentation results were judged consensually by
the panel and are used as the golden standard, with which
the performance of automated algorithms was compared.
Quantitative measures for segmentation accuracy are applied
according to the following metrics.

Segmentation Accuracy of the Whole Lung Parenchyma

In order to quantitatively evaluate the segmentation accura-
cy, here we use the overlapping areas between the segmen-
tation results and the golden standard, to measure the degree
of coincidence as segmentation accuracy. Figure 12 shows
the illustration of segmentation accuracy, in which, VSeg, is
segmented area of lung parenchyma area (number of pixels)
which is obtained automatically by segmentation algorithm,
while Vgs is the golden standard area (number of pixels).

Fig. 8 Principle illustration of Bresenham algorithm

Fig. 9 Image of filling result for Fig. 6a
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Overlap as the accuracy of lung segmentation is defined
as:

overlap ¼ Vseg \ Vgs

Vseg [ Vgs

����
����� 100% ð7Þ

Overlap can effectively describe the difference between
segmented lung parenchyma region and golden standard.
Overlap values are in the range of 0~100 %. When the
automatic segmentation and manual segmentation results
are in agreement, VSeg and Vgs overlap completely, and the
overlap value will be the maximum, of 100 %, which means
the automatic segmentation method will achieve the most
ideal results; otherwise, if there is greater difference between
automatic segmentation and manual segmentation results,
that is, VSeg and Vgs have smaller overlapped region, the
value of overlap will be smaller, and the automatic segmen-
tation will have less satisfactory results.

Accuracy of Including Juxtapleural Nodule Regions

We define a metrics of including_accuracy to measure the
accuracy of including juxtapleural nodule regions as is
illustrated in Fig. 13. SSeg is segmented area of juxtapleural
nodule (number of pixels) that is obtained automatically by
segmentation algorithm, while Sgs is the golden standard
area (number of pixels). The including_accuracy is defined
as:

including accuracy ¼ Sseg \ Sgs
Sseg [ Sgs

����
����� 100% ð8Þ

The including_accuracy ranges from zero (not including
the juxtapleural nodules) to 100 % (totally including the
juxtapleural nodules).

Experiments and Results

Databases

A Lung Nodule Database and a Juxtapleural Nodule
Database Are Set to Evaluate the Effectiveness
of the Proposed Method

The Lung Nodule Database includes 97 thoracic CT scans,
they are from ShengJing Hospital affiliated to Chinese Med-
ical University and Beijing Xuanwu Hospital of China. The
samples were collected retrospectively from 97 patients with
66 males and 31 females; age range from 37 to 82, with an
average age of 62.3. The slice thickness is from 0.75 to
5 mm, and the total slice number of each scan varies from
129 to 395 with an average of 195/scan. The X-ray tube
current ranges from 30 to 220 mA. Of those 97 scans, 67
scans have 30 mA tube current, 10 scans at 50 mA, and the
other 20 scans are above 100 mA. The pixel dimensions
range from 0.51 to 0.74 mm, the pixel matrices are 512×
512. There are 197 nodules in the dataset; the nodule diam-
eter range is 4–30 mm, with an average of 19 mm; the CT
value range is 20–50 HU.

The Juxtapleural Nodule Database includes 25 thoracic
CT scans, which are from the same hospitals. Of the 25

Fig. 10 Another example for
filling

Fig. 11 An example for lung
parenchyma repairing
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patients, there are 16 males and 7 females; the age range is
43–77 years old, with an average of 59.4 years old. The
acquisition parameters are the same as abovementioned.
Among the 25 scans, 16 scans are at 30 mA tube current
with 2-mm slice thickness, 7 scans at 50 mA with 5-mm
slice thickness, and the other 2 scans are 120 mA with
5-mm slice thickness. There is at least one juxtapleural
nodule in each scan, with a total of 32 juxtapleural
nodules in the dataset. The nodule diameter ranges from
8 to 25 mm, with an average of 16 mm; the CT value
range is 25–40 HU, with an average of 30 HU; 16 juxta-
pleural nodules are subtle GGO which are in the scans at
30 mA tube current.

Qualitative Results of Lung Parenchyma Segmentation
and Repairing

Segmentation Process and Results

The proposed method can segment completely automatical-
ly and repair lung parenchyma properly. In the two datasets
of 97 thoracic CT scans of lung nodule and 25 scans of
juxtapleural nodule. By our algorithm of lung parenchyma
segmentation and repairing, all the images have fine results
of lung parenchyma segmentation and repairing, and all the
32 juxtapleural nodules are included well. Figure 14 illus-
trates the repairing process and the results of five images.
Column (a) shows the original images, column (b) shows
the initial lunge parenchyma segmentation results, column
(c) shows labeling of convex–concave points on the bound-
ary, column (d) shows filling areas by Bresenham algorithm,
column (e) shows segmentation masks after repairing, and
column (f) shows the final segmentation results.

Segmentation Results Compared with the Rolling-Ball
Method

We compare our method with the most-cited rolling-ball
method [17] to segment and repair lung parenchyma with
juxtapleural nodule database. Here, the rolling-ball is 17×17
round structure element, and three of the segmentation
results are shown in Fig. 15. In Fig. 15, column (a) shows
the original image, column (b) shows the lunge parenchyma
segmentation results by method of the rolling-ball, and
column (c) shows the lung parenchyma segmentation results
by our method. As we can see, in the first row, the rolling-
ball method makes the two lung lobes linked together and
misses the juxtapleural nodule partly; for the second and
third rows, the juxtapleural nodules are both lost partly by
the rolling-ball method. Whereas, all the three the lung
parenchyma are segmented correctly by our method.

Quantitative Results of Segmentation Accuracy

We evaluate the quantitative results for the two databases,
respectively. For the Lung Nodule Database, the segmenta-
tion accuracy of the whole lung parenchyma of the 97 CT
scans was calculated. For the Juxtapleural Nodule Database,
besides the segmentation accuracy of the whole lung paren-
chyma of the 25 CT scans, the accuracy of including juxta-
pleural nodule regions for the 32 juxtapleural nodules was
also calculated.

Segmentation Accuracy for the Lung Nodule Database

For the 97 CT scans of the Lung Nodule Database, segmen-
tation accuracy (overlap) of the whole lung parenchyma is

Fig. 12 The illustration of segmentation accuracy

Fig. 13 The illustration of including accuracy of juxtapleural nodules
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calculated by Eq. (7).The average overlap value of our
algorithm is 95.24 %, with the standard deviation of
2.01 %; the average overlap value of the rolling-ball method
is 88.82 %, with the standard deviation of 5.51 %. All the
segmentation results by our automatic method are satis-
factory, except for some tiny difference at lung border
compared with manual-segmentation. For the 97 thorac-
ic CT scans, the calculated results of overlap by our
algorithm and the rolling-ball method are shown in
Fig. 16.

Segmentation Accuracy for the Juxtapleural Nodule Database

For the 25 CT scans of the Juxtapleural Nodule Database,
overlap of 25 lung parenchyma and including_accuracy of
32 juxtapleural nodules are calculated by Eqs. (7) and (8),
respectively. The average value of overlap and includin-
g_accuracy by our method and the rolling-ball method is
given in Table 1. From the comparison, we can see that our
method have much better performances for the processing of
juxtapleural nodule cases.

Fig. 14 Experiment results of lung parenchyma segmentation and repairing
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The comparison results show that our algorithm can
better adapt various cases of the lung parenchyma segmen-
tation than the rolling-ball method and achieve satisfactory

segmentation results. From these experimental results, we
can see that stable and satisfactory segmentation lung pa-
renchyma results can be obtained automatically by the al-
gorithm proposed in this paper.

Discussion

Analysis of Segmentation Error

By our method, all of the experimented juxtapleural nodules
are included well. The sensitivity of including juxtapleural
nodules is 100 %, and the including_accuracy is 98.6 %, but
the segmentation accuracy (overlap) of the whole lung pa-
renchyma is approximately 96 %. This indicates that the
main segmentation errors with our method do not occur in
the position of juxtapleural nodules, but in other parts of
lung parenchyma, which will not influence the proper diag-
nosis. Figure 17 shows three examples of segmentation
errors occur compared with referenced standard, where three
images in the first row are three segmentation results by our
method, another three images in the second row are the

Fig. 15 Comparison of
segmentation results between
the rolling-ball method and our
algorithm

Fig. 16 Comparison of overlap value between the rolling-ball method
and our algorithm
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corresponding referenced standard obtained as is described
in “Evaluation Methods”. In Fig. 17, white circles and
rectangles indicate the main segmentation errors compared
with the corresponding referenced standard.

For all the experiment of dataset of 122 thoracic CT scans
(97 scans of the Lung Nodule Database and 25 scans of the
Juxtapleural Nodule Database), the two main segmentation
errors occur at lung hilar regions (which are marked with
white circles in Fig. 17) and pleural sunken areas (which are
marked with white rectangles in Fig. 17), which account for
more than 95 % of the total segmentation errors.

Analysis of Computation Complexity

In the proposed lung parenchyma repairing method, the
main computation is taken on the chain code and Bresenham
algorithm. Suppose there are N points on the boundary, the
chain code algorithm need N times of comparison oper-
ations. For one time of lung parenchyma repairing, as
Fig. 7 illustrates, set x1; y1ð Þ, x2; y2ð Þ, and x3; y3ð Þ are
coordinates of the three points A, B, and C; the filling
needs x3 � x1ð Þ y2 � y1ð Þ 2= times of adding operations, so

the computational complexity of the proposed algorithm is O
kX 2ð Þ, where X is distance between A and B, and k is times of
parenchyma filling operations. Generally, in the process of
lung parenchyma segmentation and repairing, k is less than
10. Obviously, in the worst cases the complexity is O N2ð Þ.

For the rolling-ball repairing method, if the radius of a
rolling-ball is r pixels, the size of the structural element
usually is 2� r þ 1ð Þ � 2� r þ 1ð Þ pixels and it is scanned
across the image. The computational complexity of the
algorithm [12] will be O r2 � n2ð Þ , where the size of the
image is n� n.

We compare the implementation time of the proposed
algorithm with the rolling-ball method. The configuration
of the computer used for experiments is with Intel Core Duo
3.33 GHz CPU, RAM Memory 2 GB; the algorithms are
used MatLab2010b programming. The comparison of im-
plementation time between our algorithm and the rolling-
ball method is given in Table 2, from which we can see that
the average speed of our method is faster obviously than that
of the rolling-ball method.

The analysis of computation complexity and comparison
of implementation speed for lung parenchyma segmentation
and repairing shows that our method is more efficient than
the rolling-ball method.

Table 1 Comparison results of our algorithm and the rolling-ball
method

Average of
overlap (%)

Average of
including_accuracy (%)

The rolling-ball method 88.82 45.34

Our algorithm 95.24 98.67

Fig. 17 Three examples of
segmentation results compared
with referenced standard

Table 2 Comparison of implementation speed between our algorithm
and the rolling-ball method

The rolling-ball method Our algorithm

Average speed/frame (s) 0.82 0.67

494 J Digit Imaging (2013) 26:483–495



Conclusions

In this paper, we comprehensively use several methods
including optimal iterative threshold, 3-D connectivity la-
beling, 3-D region growing for the initial segmentation of
the lung parenchyma, the method based on improved chain
code and Bresenham algorithm to repair the lung parenchy-
ma, and proposed a new automatic method for lung paren-
chyma segmentation and repairing.

Ninety-seven lung nodule thoracic CT scans and 25 jux-
tapleural nodule scans were used for experiments, and the
proposed algorithm provides satisfactory performance and
segmentation quality, with more than 95.2 % of segmenta-
tion accuracy of lung parenchyma, 98.6 % of the segmen-
tation accuracy of juxtapleural nodule regions, and 100 % of
juxtapleural nodule inclusion sensitivity. Compared with the
most-cited rolling-ball method, our method shows such
advantages as low computational cost, good performance
of including juxtapleural nodules, easy implementation, and
no user interaction.

The proposed method can meet the requirements of lung
nodule CAD system, and provide high-quality pre-data for
the sequential processing. The robustness of this approach in
terms of other types of lung disease such as mesothelioma
and emphysema, etc., remains to be verified further.
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