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Abstract Carpal tunnel syndrome (CTS) has been reported
as one of the most common peripheral neuropathies. Carpal
tunnel segmentation from magnetic resonance (MR) images
is important for the evaluation of CTS. To date, manual
segmentation, which is time-consuming and operator depen-
dent, remains the most common approach for the analysis of
the carpal tunnel structure. Therefore, we propose a new
knowledge-based method for automatic segmentation of the
carpal tunnel from MR images. The proposed method first
requires the segmentation of the carpal tunnel from the most
proximally cross-sectional image. Three anatomical features of
the carpal tunnel are detected by watershed and polygonal
curve fitting algorithms to automatically initialize a deformable

model as close to the carpal tunnel in the given image as
possible. The model subsequently deforms toward the tunnel
boundary based on image intensity information, shape bending
degree, and the geometry constraints of the carpal tunnel. After
the deformation process, the carpal tunnel in the most proximal
image is segmented and subsequently applied to a contour
propagation step to extract the tunnel contours sequentially
from the remaining cross-sectional images. MR volumes from
15 subjects were included in the validation experiments. Com-
pared with the ground truth of two experts, our method showed
good agreement on tunnel segmentations by an average
margin of error within 1 mm and dice similarity coefficient
above 0.9.
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Introduction

The carpal tunnel is a passageway in the wrist, formed by the
carpal bones and the transverse carpal ligament. The carpal
tunnel encloses a median nerve and nine digit flexor tendons
passing from the forearm into the hand. These tissues are
essential for performing normal hand functions. When the
median nerve becomes compressed, squeezed, or irritated,
carpal tunnel syndrome (CTS), which is the most frequent
compressive neuropathy in the upper extremity, will occur.
CTS is progressive and produces numbness, pain, swelling,
and weakness of hands, causing significant inconvenience for
patients. The prevalence of CTS has been reported from 1 to
3 % in a general population [1], and there is some evidence
indicating that the incidence of CTS is increasing [2]. More-
over, about 400,000 procedures of carpal tunnel release,
which is the most common hand and wrist surgery, are per-
formed in the USA per year [2]. Although CTS has been
shown to be a compression neuropathy convincingly, how
the compression is generated or maintained have not been
identified definitely [3, 4]. Investigation into causes and pa-
thologies of CTS hence becomes a critical issue.

In recent years, a lot of progress has been made in
noninvasive imaging methods, such as magnetic resonance
(MR) imaging. It has been reported that the MR imaging
technique is able to accurately and reliably visualize the
three-dimensional (3D) geometries of the carpal tunnel and
some of its contents to quantitatively measure the carpal
tunnel [5, 6]. Ablove et al. [7] estimated the morphological
changes in the carpal tunnel before and after carpal tunnel
release surgery using MR images. In addition, Cobb et al. [8]
performed a preliminary study that assessed the ratio of carpal
contents to carpal tunnel volume in patients with CTS.
Uchiyama et al. [9] investigated the correlation between the
severity of CTS and the geometry features of the carpal tunnel
(e.g., palmar bowing of the transverse carpal ligament) using
MR images. More recently, Mogk and Keir [10, 11] evaluated
the shape and size of the carpal tunnel in different wrist
postures based on MR images. Pacek et al. [4] investigated
the correlation between carpal tunnel and hand dimensions
based on a morphological analysis of the carpal tunnel. From
the above-mentioned literature, it can be posited that the
quantitative measurements of the carpal tunnel from MR
images are essential for investigating structural changes asso-
ciated with CTS. However, all of them have adopted the
manually segmentation approach for estimating their target
measurements. Thus, their measuring process is tedious and
time-consuming, and moreover, the resulting measurements
are not reproducible due to intra- and interoperator variability.

Because segmentation results greatly influence measure-
ment accuracy, segmentation is the most critical step of
carpal tunnel measurement. Changes in carpal tunnel pres-
sure, which behave as a function of tunnel volume as well as
the volume of its contents, could be detected based on the
segmentation results and are important signs of tunnel com-
pression [10]. However, the median nerve usually presents
unclear and inconsistent intensity appearance in MR images,
making automatic nerve segmentation challenging. Changes
in spatial configuration of carpal tunnel and flexor tendons
potentially provide insight into median nerve trauma
[12–14], so the present study focuses on the automatic
segmentation of tunnel and tendons, rather than directly
segments and analyzes the morphology of median nerve.
Although there have been a large number of studies dedi-
cated to the design of segmentation methods for different
modalities of medical images, the work of Kunze et al. [15]
is the only one that has been found to be related to automatic
analysis of carpal tunnel MR images. Kunze presented a
region-based method to semiautomatically segment the flex-
or tendons, while the boundary of the carpal tunnel was still
identified manually. For this purpose, our research aims to
develop an image analysis system for automatic segmenta-
tion and quantitative measurement of carpal tunnel.

In the past, region-based methods [16–18] have been
extensively developed to address the issue of image
segmentation. Two typical methods are the watershed
[16] and region growing [17] methods. Region-based
methods can delineate regions with homogeneously dis-
tributed intensities well. However, their performance depends
on the intensity gradient strength of the target boundary. A
severe edge-leaking problem tends to occur when the
intensity gradient is weak, which is often seen in carpal
tunnel segmentation. Purely region-based methods are thus
unsuitable for carpal tunnel segmentation in the present
study.

To overcome this problem, deformable model (DM)-
based segmentation methods [19–23] have been developed.
Two typical deformable models are the active contour model
(snakes) [19] and the active shape model [21]. Such meth-
ods usually achieve segmentation by adjusting the deform-
able model to the strong edges of a target object. As the
deformation process refers to not only the intensity infor-
mation of the image but also the bending degree of the
model shape, DM-based methods can usually avoid signif-
icant segmentation errors even when the boundaries of the
target object are vague. In these methods, the initial position
and shape of the DM are major concerns. Convergence to
the true solution is very likely to fail if the distance between
the contours of the target object and the DM is too large.

Recently, DM-based approaches incorporating anatomi-
cal knowledge have been developed to handle this problem.
Han et al. [24] proposed a coarse-to-fine strategy with hand
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anatomy knowledge for epiphyseal region segmentation.
They first utilized the watershed approach to extract hand
bones and then determined the location of the initial epiph-
yseal model based on the bone positions. Seifert et al. [25]
presented a segmentation method for the soft tissues of the
cervical spine based on spine anatomy. This issue was also
addressed by Yu et al. [26] for fetal ultrasound image seg-
mentation. These methods combined anatomical knowledge
with segmentation protocols in order to initialize the model
closely to the target and increase the accuracy of the
segmentation.

Nevertheless, there are still some difficulties with seg-
menting MR carpal tunnel images that were not resolved in
these studies. For instance, several edges of irrelevant tis-
sues, including carpal bones, ligaments, and flexor tendons,
are located nearby the tunnel. Such a complex context may
make segmentation unstable. Meanwhile, the boundary of
carpal tunnel is usually vague due to the partial volume
effects of MR imaging, thus perplexing the definition of
the tunnel boundary. In addition, the tunnel position, shape,
and boundary appearance have large variations among dif-
ferent cross-sectional images and thus increase the complex-
ity of segmentation procedures. In general, a 3D DM
approach is a more natural choice to segment a 3D structure.
However, the above-mentioned difficulties make it imprac-
tical to automatically initialize a suitable 3D tunnel model
close to the true tunnel surface. Reliable segmentation is
thus rarely a result using a fully 3D approach.

In this paper, we propose a new 2D knowledge-based
method for carpal tunnel segmentation in MR images. The
proposed method incorporates anatomical knowledge of
carpal tunnel with object segmentation algorithms to over-
come the aforementioned difficulties. The major features of
the proposed method are described below. Two algorithms
based on watershed and polygonal curve fitting are designed
to detect the anatomical features of the carpal tunnel. By
means of the geometrical information from the detected
features, we are able to automatically initialize a DM close
to the carpal tunnel in the MR image and properly constrain
the geometry of the DM in the segmentation process. More-
over, the intensity properties of MR images and geometry
information about the tunnel and its contents are jointly
utilized for the purpose of capturing the true boundary of
the carpal tunnel in the MR image. Furthermore, a sequen-
tial contour propagation strategy is designed to compensate
the shape changes in the carpal tunnel in adjacent images
caused by interslice gaps. Finally, our proposed method
does not need user interventions in the carpal tunnel seg-
mentation process, thus avoiding intra- and interoperator
variability. The rest of this paper is organized as follows:
the image acquisition and description, the details of the
proposed segmentation method, the experimental results,
the discussion, and finally the conclusions.

Image Acquisition and Description

This study was approved by National Cheng Kung University
Hospital Institutional Review Board, and participants gave
informed consent. All MRI examinations in the following
experiments were performed using the same 1.5-T whole-
bodyMR imaging system (Achieva; PhilipsMedical Systems,
Best, TheNetherlands) with a phased-array surface coil placed
on the palmar aspect of the affected wrist with the patient in an
MR imager. Imaging sequences include the following: an
axial spin-echo T1-weighted sequence (repetition time ms/
echo time ms 500–682/15–18; flip angle, 90°) and axial
spin-echo intermediate-weighted (i.e., PD-weighted) se-
quence (2,000–3,000/15–30; flip angle, 90°; echo train length,
5; and spectral fat saturation) with two excitations. All MRI
examinations with 22 contiguous slices were performedwith a
field of view of 10 cm, a matrix size of 200×198, and a slice
thickness of 2 mm with no interslice gap. The imaging region
covers from distal radius to carpometacarpal joint, which was
under the supervision of the radiologist (Chien-Kuo Wang).

Figure 1 shows examples of the MR images acquired
from PD (Fig. 1a) and T1 (Fig. 1b) scans. Through joint
reference to both images, we are able to delineate the
boundary of the carpal tunnel, which is surrounded by the
transverse carpal ligament and deep fascia, as shown in
Fig. 1c and d. The tunnel can also be thought of as a
passageway that is formed by the transverse carpal ligament
and carpal bones without including the fatty tissues. The
intensity contrast between the transverse carpal ligament
and its surrounding regions in PD images is greater than that
in T1 images. Moreover, the fatty tissues show much higher
intensity in T1 images than in PD images. Using either a PD or
a T1 scan is insufficient for featuring the intensities of all
tissues adjacent to the carpal tunnel and demarcating the
carpal tunnel from the wrist structure. To obtain sufficient
information for carpal tunnel segmentation, both PD and T1
images are used in the proposed method. In the rest of this
paper, PD and T1 images are denoted as IPD, c and IT1,c,
respectively, where c01, 2, …, N−1, N, is the index of the
cross-sectional images along the distal-proximal direction,
and N is the number of the cross-sectional images.

Method

The anatomical context around the carpal tunnel is very
complex, as shown in Fig. 1, making it difficult to automat-
ically separate the tunnel solely based on intensity. In order
to handle such a problem, we design a new knowledge-
based segmentation protocol by utilizing anatomical knowl-
edge of carpal tunnel on the cross-sectional images. Three
anatomical features, including the digit flexor tendons, the
transverse carpal ligament, and deep fascia, are used to
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identify the tunnel border position and to construct an ap-
proximate model of the carpal tunnel for achieving subse-
quent stable and accurate segmentation. Based on
anatomical knowledge, the tunnel structures are progres-
sively segmented from the proximal side toward the distal
direction to obtain the complete carpal tunnel structure.

The tendons, located inside the tunnel, are first detected
from the most proximally cross-sectional image, and the
detection results are then applied to delineate the ligament
and deep fascia, which are parts of the carpal tunnel bound-
ary. Using the three detected features, a DM with a proper
initial shape and position for the carpal tunnel can be gen-
erated and subsequently fitted to the image in order to
segment the carpal tunnel. Considering that the anatomical
structures in the adjacent cross-sectional images are similar
in shape, we then design a sequential contour propagation
strategy to segment the remaining images. Lastly, a 3D
carpal tunnel can be reconstructed from a stack of segment-
ed cross-sectional images.

Carpal Tunnel Feature Detection

Digit Flexor Tendons

The proposed method employs the morphological water-
shed [16] to extract the regions of the digit flexor
tendons within the carpal tunnel in the most proximally
cross-sectional image. Generally, uniformly distributed
intensities in the target regions and a high degree of
contrast intensity with regard to the surrounding regions
are helpful for achieving a stable segmentation process.
We hence average IPD, N and IT1, N and then obtain the

average image IN (see Fig. 2a). The average image

maintains uniformly low intensities inside the tendon
regions, a large intensity difference between the tendons
and the bones, and a high intensity contrast between the
tendons and their surrounding regions. Thus, it is used
as the input image of the watershed.

After the watershed segmentation, a large number of
homogeneous regions including tendons and nontendons
can be obtained, as shown in Fig. 2b. As can be seen in
Fig. 2a, the tendons are dark in intensity, circular in
shape, and have sizes in a certain range. A region,
which has geometry and intensity properties dissimilar
to those of tendons, is then removed when one of the
following rules is satisfied: (1) the area is too large (i.e.,
the number of pixels is more than 2,000 pixels) or too
small (i.e., the number of pixels is less than 50 pixels);
(2) the brightness is not low (i.e., the intensity is larger
than 50); (3) the shape is non-circular (i.e., the longitu-
dinal length is larger than 40 pixels [27]). After that,
there are still a few regions that are similar in appear-
ance to the tendons but not enclosed by the carpal
tunnel, as indicated by the arrows in Fig. 2b. Considering
that the flexor tendons inside the tunnel are located close
together because of the constraints of tunnel geometry, we
subsequently utilize our previously developed distance-
based grouping approach [28] to pick out those target
tendons within the carpal tunnel. Consequently, the digit
flexor tendons in the most proximally cross-sectional image
can be obtained (see Fig. 2c) and denoted as TDN. The solid
and dashed arrows in Fig. 2c indicate the ulnar- and radial-side
end points, respectively. Based on TDN, the flexor tendons in
the other cross-sectional images, i.e., TD1, TD2, …, TDN−1,
can subsequently be detected using a registration-based
segmentation approach [28].

Fig. 1 Examples of two
corresponding cross-sectional
images: a the PD-weighted im-
age, b the T1-weighted image.
A transverse carpal ligament, B
digit flexor tendons, C median
nerve, D fat, E deep fascia, F
carpal bones. c, d The boundary
of the carpal tunnel shown on
the enlarged subregions of a
and b, respectively
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Transverse Carpal Ligament and Deep Fascia

The transverse carpal ligament and deep fascia are of great
importance in estimating the border positions of the carpal
tunnel. Anatomical knowledge about their shape is utilized in
the detection process. Since their shape is limited in the degree
of bending, a two-segment polygonal curve is used to approx-
imate their shape and position. In addition, their intensity
contrast relative to the neighboring regions in PD images is
greater than that in T1 images. We thus design a polygonal
curve fitting algorithm to detect the ligament and deep fascia
from IPD, N.

The polygonal curve used in the proposed method consists
of two line segments, which are specified by three consecutive
control points p1, p2, and p3. By rotating p2 and p3 around p1
by angle θ and translating p1, p2, and p3 by vector t, we are
able to globally adjust the orientation and position of the
curve, as shown in Fig. 3a and b, respectively. The dashed
and solid curves indicate the curves before and after adjust-
ment, respectively. Moreover, we are able to adjust the local
shape of the curve by moving p2 with vector d (see Fig. 3c),
which determines the position and height of the curve’s peak.
By adjusting pose parameters θ, t, and d, a specific pose of the
polygonal curve can then be obtained.

Now that we have specified the structure of the polygonal
curve, we next describe the feature detection process. We first
generate a polygonal curve for the transverse carpal ligament
with an initial pose indicated by the dashed line in Fig. 3d. The
control points p1 and p3 are placed at the ulnar- and radial-side
end points of the tendon regions, respectively, and p2 is given
as the intermediate point between p1 and p3. With the initial
polygonal curve, the ligament, which is a thick band with low

intensity in axial images, can then be estimated by finding the
pose parameters that maintain the minimal sum of intensity on
the curve. In addition, we first generate a polygonal curve with
the same initial pose for the detection of the deep fascia of the
carpal tunnel. The deep fascia, which lies in the transition
from bright to dark regions, is then found by solving the
optimal pose parameters, which maintain the maximal sum
of directed gradient strength on the curve.

In the implementation, a geometrical condition based on
the anatomy of a carpal tunnel is taken into account in order to
reduce the computation time of the optimization process. The
tunnel is elliptical shaped in the axial view and therefore is
supposed to be enclosed by a rectangle. Based upon such prior
knowledge, the search space for the optimal polygonal curves
can be confined to a smaller range, instead of the entire image,
as indicated by the rectangle in Fig. 3d. In our experiments,
the major axis of the rectangle was parallel to the direction
from the ulnar- to radial-side end points of the tendon regions.
The length of the long side was specified as the distance
between the two end points, and the length of the short side
was set to three fourths the length of the long side. After
solving the pose parameters of the two polygonal curves, the
transverse carpal ligament and deep fascia could be detected,
as indicated by the solid curves in Fig. 3e.

Carpal Tunnel Segmentation

Deformable Model Initialization

Given the spatial information of carpal tunnel features, the
initial shape and position of the DM can then be determined.
We connect the ulnar-side end point of the tendon regions to

Fig. 2 Digit flexor tendon
detection: a the PD-T1 average
image, b the result of watershed
flooding, and c the result of
digit flexor tendon detection

Fig. 3 Transverse carpal
ligament and deep fascia
detection: a–c pose adjustment
of the curve by rotation,
translation, and bending,
respectively; d the initial
polygonal curve and solution
search space; and e the
detection results of the
transverse carpal ligament (top)
and deep fascia (bottom) shown
in the PD-weighted image
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the ulnar-side end points of the ligament and deep fascia.
Similarly, the radial-side end point of the tendon regions can
be connected to the radial-side end points of the ligament
and deep fascia. Consequently, a closed contour (see
Fig. 4a) near to the boundary of the carpal tunnel of the
underlying image can be automatically obtained as the ini-
tialized DM.

Energy Function of the Deformable Model

To obtain a good fit between the DM and the underlying
image, the initial contour of the DM is deformed toward the
true boundary of the carpal tunnel via minimizing energy
function Etotal:

Etotal ¼
XM
i¼1

wEedge við Þ þ 1� wð ÞEshape við Þ þ Cgeometry við Þ� �

ð1Þ
where Eedge is the edge energy, Eshape is the shape energy,
and Cgeometry is the geometry constraint. vi represents the
coordinate of the ith point of the DM, M is the number of
model points, and w is a weighting value. The edge energy
measures the boundary fitness between the DM and the
underlying image. The boundary of the carpal tunnel is
expected to appear in the transition from high to low inten-
sity (i.e., from inside tunnel toward outside) in the PD scan.
Moreover, based on anatomical knowledge in delineating
the carpal tunnel, the tunnel region should exclude the fatty
tissues, which are characterized by high-intensity signals in
the T1 scan and usually adjoin the tunnel as shown in Fig. 1.
To characterize such intensity properties of the carpal tunnel
in the segmentation process, we design Eedge based on the
intensity information from both T1 and PD images:

Eedge við Þ ¼ Pj¼3

j¼1
8 vi þ jn við Þð Þ � Pj¼�1

j¼�3
8 vi þ jn við Þð Þ;

8 xð Þ ¼
1
3 IPD;c xð Þ; if IT1;c xð Þ > If
IPD;c xð Þ; otherwise

�
;

ð2Þ

where n(vi) denotes the outward-pointing normal vector of
model contour at vi, c is the index of the cross-sectional
images, If is a threshold value indicating the fatty tissues,
and 8 is an intensity transform function. If a pixel in IT1, c

has an intensity signal higher than If, then its intensity
in IPD, c is reduced to sharpen the changes of intensity
near the carpal tunnel boundary. In other words, the evidence
of the carpal tunnel boundary can be reinforced using the
proposed edge energy.

The shape energy indicating the contour curvature of the
DM is defined as

Eshape við Þ ¼ viþ1 þ vi�1 � 2vik k ð3Þ
where vi−1, vi, and vi+1 are the coordinates of the (i−1)th,
ith and (i+1)th points on the DM, respectively. This energy
is used to maintain the smoothness of the model shape in the
deformation process. On the other hand, the geometry con-
straint Cgeometry, which constrains the movement of points
on the DM, is designed based on the geometry relationship
between the carpal tunnel and the digit flexor tendons:

Cgeometry við Þ ¼ kI vi þ dIn við Þ; d ¼ 1; . . . ; Lf g \ TDcj j ð4Þ
where κ is a large positive constant, L is the length of the
search line, and TDc represents the pixels of the tendon
regions in the cth cross-sectional image. From an anatomical
point of view, the digit flexor tendons are completely
enclosed by the carpal tunnel contour. Equation 4 is used
to maintain such an anatomical condition in the segmenta-
tion process; if there are tendon regions excluded from the
DM, Etotal will be penalized by a large Cgeometry. After
minimizing Etotal, the carpal tunnel of the Nth cross-
sectional image can be segmented as shown in Fig. 4b.
Compared to the initial contour in Fig. 4a, better boundary
fitness between the DM and the carpal tunnel image can be
achieved after the contour optimization process.

Equation 1 is minimized by iteratively adjusting the
positions of contour points of the DM to fit the true tunnel
boundary along the normal directions of points. The itera-
tion converges and stops when the sum of the displacements
of vertices between the previous and current iterations is less
than two pixels or if the number of iteration reaches 50. On
the other hand, the DM’s behavior can be controlled by
adjusting the system parameters of Eq. 1. In our experi-
ments, they were empirically assigned; the value of w was
set to 0.3. The value of κ was assigned with 1,000, and the
value of L was 13. The value of If was determined by two
standard deviations from the mean intensity of the second

Fig. 4 Carpal tunnel
segmentation: a initialized DM
and b the segmentation result
for the carpal tunnel shown on
IPD, N
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highest cluster, which is obtained by applying the K-means
clustering approach (K04) to the T1 images [29].

Sequential Contour Propagation

In this section, we present a contour propagation strategy,
which sequentially matches the segmented tunnel to its adja-
cent image along the proximal to distal direction in order to
achieve the segmentation of the entire MR carpal tunnel vol-
ume. In the matching process, given an image pair of IPD, c and
IPD, c−1, we first align the segmented tunnel of IPD, c to IPD, c−1
by employing the iterative closest point (ICP) algorithm [30]
and then improve the boundary fitness between the aligned
tunnel contour and the underlying image through the proposed
contour deformation method. The sequential propagation pro-
cess begins with the most proximally cross-sectional image
and finally stops at the most distal image.

Since the longitudinal direction of the carpal tunnel is
usually not perpendicular to the MR imaging plane (i.e.,
axial plane), there is a certain positional offset of the carpal
tunnel between IPD, c and IPD, c−1. In the proposed method,
we utilize the ICP to reduce the spatial offset. The ICP
alignment is achieved by iteratively finding a rigid transfor-
mation RT, which includes a 2D rotation matrix and a
translation vector, to minimize the distance of the tendon
regions between IPD, c and IPD, c−1:

Dis RTð Þ ¼
Xi¼U

i¼1

RT pi TDcð Þð Þ � pj TDc�1ð Þ�� �� ð5Þ

where TDc and TDc−1 are the sets of pixels of the tendon
regions in the cth and (c−1)th cross-sectional images, re-
spectively, which are extracted in the previous section.
pi(TDc) represents the ith contour point of TDc, and
pj(TDc−1) is the jth contour point of TDc−1 that is the closest
to pi(TDc). U is the number of contour points of TDc. The
details of numerical computation in optimizing Eq. 5 can be
found in [30]. Having the solved transformation RT, we are
able to map the segmented carpal tunnel in the cth cross-
sectional image to the position, which is close to the tunnel
in the (c−1)th image. The transformed contour then serves
as the initial DM, and its shape is subsequently improved
through the contour optimization method in the previous
section with a reduced search line length (L06). The im-
proved contour consequently serves as the segmentation
result of the carpal tunnel in the distally adjacent image.
By adopting the proposed contour propagation strategy,
which takes the spatial relationship between adjacent frames
into account, we can properly maintain the smoothness
between the segmentations of two adjacent frames. After
the entire propagation process is finished, a stack of seg-
mented cross-sectional images can be obtained for the re-
construction of the 3D carpal tunnel.

Experimental Results

In the following experiments, the proposed segmentation
method was validated with respect to accuracy and reliabil-
ity using the MR volumes of 15 subjects in the neutral
posture. In addition, a comparative study with two other
segmentation methods was carried out to show how the
proposed ideas could improve segmentation results. For
each volume data, the carpal tunnel was automatically seg-
mented using the proposed method.

Qualitative Assessment

A qualitative evaluation was performed by visually inspect-
ing how well the automatic results were fitted to the true
boundary of the carpal tunnel. Figure 5 shows the segmen-
tation results of the carpal tunnel from the validation data.
The first and second rows demonstrate the resulting carpal
tunnel contours superimposed onto the axial PD images.
The surfaces of the segmented carpal tunnels from two
subjects were triangulated using the marching cube algo-
rithm [31] and displayed in the third row of Fig. 5.

Quantitative Evaluation

In addition to the qualitative assessment, the accuracy of the
proposed method was also validated by quantitatively com-
paring the automatic results to the average of the manual
results of two experts, which served as the ground truth. For
each axial image, a spatial overlap index called the dice
similarity coefficient (DSC) [32] and two distance measures
including the mean error (ME) and the root mean square
error (RMSE) were utilized to evaluate consistency between
the automatic result and the ground truth. The three metrics
were defined below:

DSC ¼ 2 A \ Bj j
Aj j þ Bj j ; ð6Þ

ME ¼
XH
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ui � yj

� �2
r

=H ; ð7Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXH
i¼1

ui � yj
� �2=H

vuut ð8Þ

where A and B are the sets of pixels of automatic result and
ground truth, respectively. ui represents the coordinate of the
ith contour point of the automatic result, and yj is the
coordinate of the jth contour point of the ground truth,
which is the closest to ui. H is the number of contour points
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of the automatic result. A higher value of DSC and a smaller
value of either ME or RMSE indicate better consistency
between the automatic result and the ground truth. The
evaluation results are reported in Table 1, of which each
row lists the means and standard deviations of the DSC,
ME, and RMSE from the axial images of each subject. The
average DSC, ME, and RMSE were 94.681±1.093 %,
0.294±0.067 mm, and 0.416±0.095 mm, respectively.

Comparative Study

In this section, a comparative study was carried out to show
the improvement of the proposed method over conventional
methods on the automatic segmentation of carpal tunnel. To
our knowledge, there have been no solutions proposed for
carpal tunnel segmentation other than the proposed method.
Therefore, two popular deformable model-based methods,
the conventional snake [19] and the Chan–Vese method
[33], were selected for comparison.

For the conventional snake, it is firstly considered that an
initial contour is required for snake deformation on each
image slice. To obtain a fair comparison, we adopted the
same initial contour for snake as the proposed method did.
Then, the snake was deformed toward the tunnel boundary
on the most proximally cross-sectional image. After that, we
adopted the same strategy on the rest cross-sectional images
as the proposed sequential contour propagation (i.e., ICP-

based registration) did. Different from the proposed method,
the conventional snake does not refer the intensity informa-
tion on T1-weighted images (i.e., intensity transform func-
tion φ in Eq. 2) and does not utilize the geometric constraint
of carpal tunnel and flexor tendons (i.e., Cgeometry in Eq. 4).
As to the Chan–Vese method, which does not require an
explicit initial contour, it can achieve segmentation by
evolving an implicit curve (i.e., zero-level) based on the
deduction of Euler–Lagrange equation [33]. Overall, the
parameters of the Chan–Vese and conventional snake meth-
ods were selected empirically to obtain the best results.

The comparison was first achieved by visually evaluating
the segmentation results obtained by both the proposedmethod
and the other two methods. The two compared methods do not
incorporate any anatomical knowledge and intensity character-
istics of carpal tunnel from interprotocol MR images in the
segmentation processes. The two selected methods cannot well
handle the segmentation of carpal tunnel images, which are
usually with complex anatomical context and fuzzy bound-
aries, thus failing in many cases. Two examples are demon-
strated in Fig. 6a and b, which are two MR images (PD-
weighted). Figure 6c and d is the segmentation results of the
conventional snake. Figure 6e and f shows the segmentation
results of the Chan–Vese method. Lastly, Fig. 6g and h shows
the segmentation results of the proposed method. To highlight
the results, we further superimposed the results onto the
corresponding T1 images (see Fig. 6i and j).

Fig. 5 Segmentation results for the carpal tunnel by the proposed
method: first and second rows the resulting contours superimposed
onto axial PD-weighted MR images; third row the reconstructed

surfaces of the segmented tunnels, of which the first and second
columns represent the carpal tunnels of two subjects
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Beyond the visual evaluation, we further carried out the
quantitative comparison based on the measures of DSC,
ME, and RMSE. Since using the Chan–Vese method obtains
not only the contour of carpal tunnel but several contours of
irrelevant anatomical structures, an objective quantitative
comparison is difficult to perform. The quantitative compar-
ison was only performed on the conventional snake and the
proposed method. The evaluation results for the two exam-
ples obtained using the conventional snake were (84.558,
0.730, and 0.922) and (82.163, 1.048, and 1.375) in DSC
(%), ME (mm), and RMSE (mm). The results obtained by

the proposed method were (95.188, 0.234, and 0.335) and
(95.051, 0.248, and 0.300).

Discussion

The images in this study naturally suffer from anatomical
variability, including the size, position, and shape of carpal
tunnel and its neighboring contexts (including tendons and
fatty tissues). Moreover, as the images were taken at differ-
ent time and from different subjects, there exist various

Table 1 Means and standard
deviations of the accuracy
measures of the DSC, ME, and
RMSE estimated from the axial
MR images of 15 subjects

Number within parentheses rep-
resent the number of axial
images covering the carpal
tunnel.

Subject DSC (%) ME (mm) RMSE (mm)

Subject 1 (8) 96.829±0.660 0.179±0.044 0.269±0.059

Subject 2 (8) 93.402±1.488 0.337±0.077 0.449±0.103

Subject 3 (9) 94.122±1.064 0.319±0.054 0.419±0.064

Subject 4 (7) 93.671±1.136 0.326±0.071 0.451±0.104

Subject 5 (10) 94.828±0.996 0.294±0.056 0.407±0.085

Subject 6 (7) 95.542±0.789 0.253±0.054 0.353±0.054

Subject 7 (8) 93.776±1.145 0.338±0.072 0.488±0.107

Subject 8 (7) 94.572±0.761 0.301±0.057 0.439±0.081

Subject 9 (9) 94.930±1.016 0.325±0.069 0.452±0.091

Subject 10 (10) 93.855±1.284 0.303±0.063 0.414±0.084

Subject 11 (10) 93.396±1.135 0.351±0.073 0.483±0.132

Subject 12 (10) 95.081±1.219 0.271±0.068 0.402±0.102

Subject 13 (8) 94.809±1.506 0.315±0.109 0.469±0.160

Subject 14 (7) 95.639±1.036 0.248±0.068 0.360±0.087

Subject 15 (8) 95.756±1.155 0.245±0.066 0.389±0.114

Mean±standard deviation 94.681±1.093 0.294±0.067 0.416±0.095

Fig. 6 Comparison study: a, b the original images (PD-weighted); c, d the results of conventional snake; e, f the results of Chan–Vese method; g,
h and i, j the results of the proposed method superimposed onto the PD-weighted and T1-weighted images, respectively
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imaging conditions potentially affecting the image quali-
ties, e.g., different coil position and distance to the wrist.
Accordingly, these variations certainly lead to the ana-
tomical and image noises embedded in the 15 cases of
subject image data. As shown in the first and second
rows in Fig. 5, desirable segmentation results that are
very close to the true tunnel boundaries in the validation
data can be obtained using the proposed method. More-
over, the resulting tunnel surfaces (the third row in
Fig. 5) give realistic shapes and smooth surfaces as the
true anatomical appearance of the carpal tunnel does. As for
the quantitative evaluation, the average DSC was higher than
0.9, indicating a great overlap between the automatic and
manual segmentation results [32]. Moreover, the average
ME and RMES were <0.5 mm, which is very small compared
to the average carpal tunnel width (about 20 mm). Further-
more, the small standard deviations in these accuracy meas-
ures indicate that the proposed method provides satisfactory
reliability for carpal tunnel segmentation. From the accuracy
evaluation for the fifteen subjects’ data (large DSC, small ME,
and RMSE), it was found that the proposed method can
accommodate the effects of anatomical and image noises.
The evaluation results are considered satisfactory for the
requirements of biomechanical investigation and clinical stud-
ies of CTS.

In the comparison study, the conventional snake does not
consider the geometrical relationship between the carpal
tunnel and the flexor tendons, and intensity characteristics
of carpal tunnel from interprotocol MR images, so the
deformation is easily influenced by undesirable strong
edges, as indicated by the dash arrows. Even though the
snake was given initial models close to the true tunnel (same
as the proposed method adopted), incorrect convergence of
the deformation (see Fig. 6c and d) still occurred. As for the
Chan–Vese method, it yielded a large number of incorrect
and fragmentary regions, as shown in Fig. 6e and f. This is
probably because the Chan–Vese method segments regions
only based on homogeneity of image intensity, and it is thus
difficult to differentiate tissues such as the flexor tendons,
carpal bones, and transverse carpal ligament, which have
similar intensities.

Compared to the results of the conventional snake and
Chan–Vese methods, ours are more desirable because they
have more realistic tunnel shapes and fit better with the true
tunnel boundaries in the images, as indicated by the solid
arrows in Fig. 6g and h. For each subject, the proposed
method can automatically obtain an approximate subject-
specific tunnel model based on the structural information of
anatomical features, thus facilitating the convergence of the
final segmentation process. In addition, anatomical knowl-
edge was employed to define constraints to avoid some
undesirable solutions (e.g., intersection of the tunnel bound-
ary and flexor tendon boundaries). As a result, the proposed

method successfully overcame the difficulties of segmenta-
tion in MR carpal tunnel images (e.g., vague boundaries and
confusing edges of irrelevant tissues) and obtained better
segmentation results.

When evaluating the accuracy of an image segmentation
method, the observer variability that potentially affects the
reliability of the ground truth is usually a concern. An
additional experiment, not demonstrated in this paper, found
that the manual detection of tunnel boundary can be per-
formed precisely by referring to both T1- and PD-weighted
MR images. This experiment of manual detection by four
experts obtained small interobserver variability with small
standard deviations of DSC, ME, and RMSE (0.771, 0.044,
and 0.038). As a result, the ground truth has not suffered
from the interobserver variability in this case of carpal
tunnel segmentation.

Conclusions

Carpal tunnel segmentation in MR images is an essential
requirement for investigating the causes and pathologies of
CTS. We have proposed a new method, combining feature
detection, object segmentation, and anatomical knowledge,
to automatically segment the carpal tunnel from MR images.
For each subject, a DM, which was well matched to the
most proximally cross-sectional image, was automatically
generated based on three anatomical features of the carpal
tunnel. Moreover, both the T1 and PD image contents were
utilized to calculate the edge energy in order to achieve
precise segmentation of the carpal tunnel. Furthermore, the
geometrical information obtained from the detected anatom-
ical features was employed to constrain the shape deforma-
tion of the DM. Finally, we successfully achieved 3D
segmentation of the carpal tunnel by sequentially propagat-
ing and evolving the segmented tunnel contour throughout
the MR volume.

The accuracy of the proposed method was validated in
both quantitative and qualitative experiments. The agree-
ment between the automatic and manual segmentations
was validated by a small margin of error and high spatial
dependency. Moreover, the superior accuracy of the pro-
posed method compared to the conventional methods was
also demonstrated. In the future, the proposed method can
be utilized to investigate the clinical signs of CTS for early
diagnosis. It can also be extended to measure the structural
changes of carpal tunnel in dynamic postures for the pur-
pose of studying wrist kinematics.
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