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Abstract Identification and classification of left ventricular
(LV) regional wall motion (RWM) abnormalities on echo-
cardiograms has fundamental clinical importance for vari-
ous cardiovascular disease assessments especially in
ischemia. In clinical practice, this evaluation is still per-
formed visually which is highly dependent on training and
experience of the echocardiographers and therefore suffers
from significant interobserver and intraobserver variability.
This paper presents a new automatic technique, based on
nonrigid image registration for classifying the RWM of LV
in a three-point scale. In this algorithm, we register all
images of one cycle of heart to a reference image (end-
diastolic image) using a hierarchical parametric model. This
model is based on an affine transformation for modeling the
global LV motion and a B-spline free-form deformation
transformation for modeling the local LV deformation. We
consider image registration as a multiresolution optimiza-
tion problem. Finally, a new regional quantitative index
based on resultant parameters of the hierarchical transfor-
mation model is proposed for classifying RWM in a three-
point scale. The results obtained by our method are quanti-
tatively evaluated to those obtained by two experienced
echocardiographers visually as gold standard on ten healthy
volunteers and 14 patients (two apical views) and resulted in
an absolute agreement of 83 % and a relative agreement of

99 %. Therefore, this diagnostic system can be used as a
useful tool as well as reference visual assessment to classify
RWM abnormalities in clinical evaluation.
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Introduction

Cardiovascular disease (CVD) is one of the major causes of
death throughout the world (34.3 % of mortality in 191
countries) [1]. Coronary artery disease causes more than half
of CVD deaths per year [1]. This disease is the result of the
occlusion of coronary arteries. When the blood flow to the
heart muscle is reduced, contractility or motion of that piece of
heart muscle fed by the obstructed artery will become im-
paired. This is known as ischemia. This disease can be diag-
nosed by measuring and scoring the regional wall motion
(RWM) of the left ventricle (LV). Currently, echocardiography
is the preferred method among other modalities (e.g., magnetic
resonance (MR) and computed tomography) to assess RWM
of LV because of its low cost, harmlessness to the human body,
portability, and real-time imaging. In clinical practice, the
evaluation of the RWM is mainly based on visual analysis of
echocardiographic images. It relies on the ability of the echo-
cardiographers to recognize patterns of endocardial and epi-
cardial motion and thickening of each segment of the LV and
then to assign a quantitative score to each segment according
to a three-point scale—1: normal, 2: hypokinetic, 3: akinetic
[2, 3]. This process which is usually denoted as visual RWM
scoring facilitates and optimizes the treatment decision mak-
ing. However, this visual assessment is highly dependent on
experience and training of the echocardiographers and there-
fore suffers from significant interobserver and intraobserver
variability [4]. Consequently, a robust and accurate automated
method for detection and classification of RWM abnormality
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is highly desirable to obtain more objective and quantitative
diagnosis, particularly for the novice echocardiographers.

Several methods have been proposed for quantifying the
regional LV wall motion from two-dimensional (2-D) echo-
cardiography images in the literature [5–35]. Two of these
techniques are based on analyzing ultrasound radiofrequency
(RF) signals [5–17]. The first method known as acoustic
quantification is based on the detection of the interface be-
tween the tissue and the blood in each image. Synthesized
color-coded images (color kinesis) are provided using this
method to display the timing and magnitude of endocardial
wall motion over time, either during the systolic phase or
during the diastolic phase [5–11]. The various quantitative
indices obtained from these synthesized images are proposed
for assessment of RWM of LV [6–11]. However, this method
is very dependent on the signal to noise ratio of RF signal. In
addition, it only measures the movement of the endocardium
and thickening of each segment is not considered. The second
approach known as Tissue Doppler Imaging (TDI) estimates
velocity, and strain/strain–rate values of the LV myocardial
wall. The different quantitative indices obtained from these
parameters are proposed to characterize the RWM [12–17].
However, this method is very dependent on the signal to noise
ratio of the Doppler data. Moreover, it only measures the
deformation of LV myocardial wall throughout the direction
of the ultrasound beam. Other methods based on image post-
processing techniques have been proposed for quantifying the
RWMof LVin the literature [18–35]. In general, three types of
methods have been proposed. The first studies the movement
of the interior (endocardial) and exterior (epicardial) contours
of the LV myocardium wall throughout the cardiac cycle after
segmentation and tracking in echocardiography images. Then,
several quantitative features are extracted to characterize the
RWM of LV [18–26]. However, segmentation and tracking
the interior and especially exterior contours of the LV myo-
cardium wall in echocardiography images are difficult due to
high level of uncorrelated speckle noise, shadowing and arti-
facts from valves and papillary muscles. The second type is
based on methods of parametric imaging. In these methods,
unlike approaches based on tracking a physical point, the
variations in the grey levels measured in each pixel during a
cardiac cycle are analyzed [27–31]. These methods provide
synthesized color-coded images to summarize the information
of LV myocardial contraction. The quantitative indices
obtained from these synthesized images are proposed to clas-
sify RWM abnormality. However, these methods do not con-
sider LV wall thickening and may be severely affected by
cardiac translation. The third type is based on methods of
tracking the speckle pattern or natural acoustic markers within
the LV myocardium throughout the cardiac cycle [32–35].
These methods estimate displacement, velocity, and strain/
strain–rate values of the LV myocardial wall. The different
quantitative indices obtained from these parameters are

proposed to quantify the RWM of LV. However, in the 2-D
echocardiography images, the speckle pattern is decorrelated
throughout the cardiac cycle because of the 3-D movement of
the heart and the complex deformation of the myocardium.

In this paper, we attempt to overcome the underlying prob-
lems by proposing a new automatic method, based on nonrigid
image registration, for detection and classification of RWM
abnormalities of LV. In this algorithm, all pixels of an image
(end-diastole) are tracked simultaneously over the cardiac cycle
with a hierarchical parametric model, following an image reg-
istration algorithm as an optimization problem. The hierarchi-
cal model is based on an affine transformation for modeling the
global LV motion and a free-form deformation (FFD) transfor-
mation based on B-spline for modeling the local LV deforma-
tion. The algorithm uses amultiresolution optimization strategy
for higher speed and robustness. Consequently, the hierarchical
transformation model together with a multiresolution optimi-
zation strategy provides a good framework for accurate estima-
tion of the LV myocardial displacement field. Finally, a new
regional quantitative index based on the resultant parameters of
the hierarchical transformation model throughout the cardiac
cycle is proposed for classification of RWM of LV.

Materials and Methods

Data Description

The study was approved by the Regional Committee for Med-
ical Research Ethics and performed according to the Helsinki
Declaration.Written informed consent was obtained from each
participant. The 2-D image sequences of ten healthy volunteers
and 14 patients (ischemic heart disease) from two apical views
(apical four-chamber (A4C) and apical two-chamber (A2C))
were acquired. All recordings were made using a General
Electric ultrasound machine with a frame rate of 46–74 per
second, including the electrocardiogram (ECG) display. In the
present study, for each view, one cardiac cycle was stored, with
care being taken to ensure that there was no respiratory move-
ment or probe displacement during the data acquisition. One
cardiac cycle was identified by selecting the two consecutive
R-wave of the ECG signal which is synchrone with the end of
diastole phase. Echocardiography images were acquired
during standard clinical examinations and no study was ex-
cluded because of image quality.

The American Heart Association (AHA) proposed a stan-
dard LV division of 17 segments that had a correspondence
with the irrigation areas of the main coronary arteries (Figs. 1
and 2) [2]. In this study, RWM of LV myocardium was
evaluated visually by examining the motion of the interior
and exterior of the LV myocardium and also thickening of
each segment. Then, each segment was scored according to a
three-point standard scale—1: normal (normal wall thickening
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and motion), 2: hypokinetic (reduced wall thickening and
motion), 3: akinetic (absence of wall thickening and motion)
[2, 3]. The segments were analyzed and scored independently
by two highly experienced echocardiographers, and then the
consensual visual RWM scores between the two echocardiog-
raphers were used as reference scores (gold standard) for all
comparisons. Currently, for each subject, we only used A2C
and A4C views. Consequently, according to the reference
scoring, among the 336 analyzed segments (48 sequences),
188 (56 %), 44 (13 %), and 104 (31 %) were normal, hypo-
kinetic, and akinetic, respectively.

LV Standardized Division

The approximate region of LV was extracted from echocar-
diography images (Fig. 3a) in each apical view. This was
done by manually defining a rectangular region of interest
(ROI) around LV on end-diastole image. This image was
chosen because it has maximum LV volume at one cycle of
heart and easily identified from the R-wave on the ECG signal.
Then, the coordinates of the extracted rectangular ROI were
automatically applied on all images of one cardiac cycle. These
images are used for the following analysis in this study.

Fig. 1 The recommended definition of LV division of 17 segments on echocardiographic views by the AHA [3]

Fig. 2 The distributions of coronary arteries perfusion in 17 segments of LVon echocardiographic views. The right coronary artery (RCA), the left
anterior descending (LAD), and the circumflex (CX) are the coronary arteries [3]
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The LV in each apical view was divided up into seven
regions in agreement with the LV standardized division by
the AHA. To do this, for each view, three anatomical land-
marks (the apex P1 and each side of the mitral valve P2, P3)
and a distance d were manually located on end-diastole
image by echocardiographer (Fig. 3a). Then, the LV divi-
sion was automatically performed in three steps. First, the
apex point P1 was connected to the mid-point P4 of the
mitral valves points by a line, defined as the LV main axis.
Second, the LV main axis was divided into three equal
sections named apical, mid-, and basal using two orthogonal
lines with length 2d. Third, apical section was divided into
three equal regions by two radial lines with length d. There-
fore, we defined a mask with seven regions located on the
LV excluding the mitral valve (Fig. 3b). It should be noted
that this LV division had been previously used for echocar-
diography images [27–31].

LV Displacement Field Estimation Using Image
Registration

We consider an image sequence (images of one cardiac
cycle) f (x, y, t) with t 0 t0 (t 0 0) ,… , tI–1 (t 0 I – 1) and
0 ≤ x < X, 0 ≤ y < Y, where f (x, y, t) is the intensity of each
pixel at position x, y and time t. Moreover, I is the total
number of images of one cardiac cycle; X and Y denote the
domain of the image.

Our goal is to estimate a displacement field, DF(x, y, t),
for all pixels of end-diastole image (t 0 t0) as a reference
image over the cardiac cycle, that represents the position at
time t of a pixel that was at position x, y at time t0. In other
words, we consider the end-diastole image as a spatial
reference and we want to estimate the displacement field
for all pixels of this image over the cardiac cycle. To do this,
we register all images in a cardiac cycle to end-diastole
image using a hierarchical transformation model [36]. The
goal of image registration is to find the optimal parameters
of the transformation model T(x, y). In conclusion, the
displacement field for all pixels of the end-diastole image

over the cardiac cycle is represented by the resultant trans-
formation models as follow:

DF x; y; tð Þ ¼ f x; y; t0ð Þ þ Tt x; yð Þ
t ¼ t1; t2; . . . ; tI�1

ð1Þ

Tt(x, y) is the estimated hierarchical transformation model
using the image registration at time t to end-diastole image.

The motion of the LV is nonrigid. Moreover, it has a global
motion and a local deformation. Therefore, in this paper, the
transformation is represented by a nonrigid hierarchical
model which consists of a global and a local model as follow
[36]:

T x; yð Þ ¼ TGlobal x; yð Þ þ TLocal x; yð Þ ð2Þ
The global motion model describes the overall motion of

the LVover the whole sequence and is modeled by an affine
transformation as follow:

TGlobal x; yð Þ ¼ a11 a12
a21 a22

� �
x
y

� �
þ a13

a23

� �
ð3Þ

The coefficients (a11, a12, a21, a22, a13, a23) parameter-
ize the 6 degrees of freedom of the transformation, describ-
ing the rotation and translation of the LV.

The local deformation of the LV is modeled by a FFD
transformation based on B-spline basis functions [37]. This
nonrigid transformation is a powerful tool for modeling 2-D
deformable objects and has been previously applied to the
LV motion analysis in echocardiography images [38, 39].
FFD transformation deforms the shape of a 2-D object by
manipulating an underlying mesh of control points [37]. The
FFD is written as the 2-D tensor product of standard 1-D
cubic B-spline:

TLocal x; yð Þ ¼
X3
n¼0

X3
m¼0

BmðuÞ BnðvÞ;mþi;nþj ð4Þ

Where i 0 bx/nxc − 1, j 0 by/nyc − 1, u 0 x/nx − bx/nxc,
v 0 y/ny − by/nyc. Φ denotes a nx × ny mesh of control points
(∅i,j) with uniform spacing δ. Moreover, Bm(u) and Bn(v) are

P1        

P2        
P3        P4        

d        
d        

d        

P1        

P2        
P3        

d        

P2        
P3        

P4        

P1        

d        
d        

d        

Fig. 3 The LV standardized division in agreement with the guidelines
of the AHA in A4C view. a A rectangular box around LV, three
anatomic landmarks (P1, P2, P3) and a distance d manually positioned

on the end-diastole image. b A mask with seven regions located on the
LV excluding the mitral valves. c Extracted rectangular ROI
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the basis functions of the B-spline evaluated at u and v,
respectively as follow [37]:

B0ðuÞ ¼ 1� uð Þ3 6=
B1ðuÞ ¼ 3u3 � 6u2 þ 4ð Þ 6=
B2ðuÞ ¼ �3u3 þ 3u2 þ 3uþ 1ð Þ 6=
B3ðuÞ ¼ u3 6=

The control points Φ act as parameters of the FFD
transformation and the resolution of the control point mesh
determines, simultaneously, the number of degrees of

freedom of nonrigid deformation and consequently, the
computational complexity. In the initial configuration, the
control point mesh lies at their initial positions (Φinitial) and
by displacing or manipulating the control points, a desired
deformation of the image is derived.

The result of image registration as an optimization prob-
lem is to estimate the optimal parameters of the hierarchical
transformation ( ,Φ) so that a cost function defined in Eq. 5
associated with the image similarity and the smoothness of
transformation is minimized.

ð5Þ

We have used the sum of the squared intensities
difference between homologous pixels in the two images
as an image similarity criterion (Eq. 6). We chose to use
this criterion because of its simplicity, fast computation
time and good result even in the presence of decorrelated
speckle noise. The similarity criterion is written as
follow:

Similarity ¼ 1

N

X
0 � x < X

0 � y < Y

T f x; y; tð Þð Þ � f x; y; t0ð Þð Þ2 ð6Þ

Where N is the number of pixels in the image. Moreover,
the transformation should be constrained to be smooth to
prevent artifacts such as folding [40]. A common smoothing
term which regularizes the transformation [40] is written as
follow:

Smoothness ¼
Z X

0

Z Y

0

@2T

@x2

� �2

þ @2T

@y2

� �2

þ 2
@2T

@xy

� �2
" #

dxdy:

ð7Þ
In Eq. 5, l is the weighting parameter which defines the

tradeoff between the smoothness of the transformation and
the image similarity criterion.

For computational efficiency, the optimization process pro-
ceeds in several stages. First, the affine transformation param-
eters are optimized by minimizing the cost function defined
in Eq. 5. It is noted that the smoothness term of the cost
function is zero for any affine transformation [40]. Then, the
parameters of B-spline FFD transformation are optimized by
minimizing the cost function defined in Eq. 5. In this step, we
employ an iterative multiresolution optimization approach in
which the resolution of the mesh of control points is increased,
along with the image resolution, in a coarse to fine fashion to
obtain a higher speed and robustness [41]. In addition, in each
step, we apply an iterative gradient descent method [42] which

steps in the direction of the gradient vector with a certain step
size μ. The algorithm stops if the ║∇C║ ≤ ε for some small
positive threshold, where ∇C is the gradient vector of the cost
function. Consequently, the final resultant positions of the
control points of B-spline FFD (Φfinal) are the solution of our
image registration problem.

A New Quantitative Regional Index

To quantify the RWM of LV, a new quantitative regional
index which is related to final resultant position of control
points of B-spline FFD model is proposed. To do this, after
registering each image in one cycle of heart to the reference
image, the sum of the squared Euclidean distance between
homologous positions of initial (Φinitial) and the final
resultant (Φfinal) of the control points of B-spline FFD
model for each region is computed. This value is divided
by the number of control points in each region to normalize
LV size and allow comparison between different
cases.

It;r ¼ 1

nr

X
Φfinal;r;t � Φinitial;r

�� ��2 ð8Þ

t ¼ t0; t1; . . . ; tI�1

r ¼ 1; 2; . . . ; 7 for each apical view

Where nr is the number of control points in region r and
(Φfinal,r,t) is the final resultant positions of control points of
B-spline FFD for image at time t and region r. Finally, for
each myocardial region, the maximal value of the It,r
through the images of one cardiac cycle is defined as the
quantitative index for this region Indr.

Indr ¼ max It;r
� �

; t ¼ t0; t1; . . . ; tI�1 ð9Þ
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Results

First, the LV in each apical view is divided up in a simple
way into seven regions in agreement with the guidelines of
the AHA, described in previous section (Fig. 3a). In this
division, we reduce the influence of the mitral valve motion
in the estimation of the LV myocardial motion. The coordi-
nate of the seven regions are automatically saved for the
next analysis. Then, we have computed the displacement
field of every point of LV myocardium during a cardiac
cycle by the proposed nonrigid image registration algorithm

described in previous section in all data sets. For this pur-
pose, we register all images in a cardiac cycle to end-
diastole image using the hierarchical transformation model.
We perform the image registration using the optimum pa-
rameter values (λ00.01, ε00.00001. A control point spac-
ing of 5 mm). These values are chosen because these have
provided a good compromise between the computing time
and the accuracy of nonrigid image registration. Fig. 4
shows the image registration process between two images
in A4C view for a healthy and a patient case. The left and
middle parts show the end-diastole (reference) and end-

End-diastole (reference image)
(The image on which first frame will be registered)End- systole (The image which will be registered)

registrated coresponding image on
the reference image

End- systole (The image which will be registered) End-diastole (reference image)
(The image on which first frame will be registered)

registrated coresponding image on
the reference image

Fig. 4 The image registration process between two images in A4C
view for two cases. The left and middle parts show the end-diastole
(reference) and end-systole images, respectively and the right part
shows registrated coresponding image on the reference image. The
positions of initial (left part) and final resultant (right part) mesh of

control points of B-spline FFD model. Healthy case (top), patient case
(bottom). According to the reference visual scoring, all segments for
the healthy case are scored normal and all segments for the
patient case are scored akinetic, except the basal lateral which is
scored hypokinetic
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systole images, respectively. The right part shows the
corresponding image from registering end-systole image
to the reference image. This figure also shows the
positions of initial and final resultant mesh of control
points of B-spline FFD model in two cases. As illus-
trated in these figures, the proposed image registration
using the hierarchical transformation model (Fig. 4c)
recovers the global motion and local deformation of
the LV appropriately.

Quantification of RWM of LV

After registering each image in one cycle of heart to the
reference image for each case, we have computed the
quantitative index Indr for each of seven regions accord-
ing to Eq. 9 to quantify the RWM of LV. This regional
index Indr which is related to final resultant position of
control points of B-spline FFD model over a cardiac
cycle, reflects wall motion and thickening of each myo-
cardial segment of the LV. Therefore, it decreases with
the severity of the RWM abnormality, being the highest
values in normal segments and the lowest values in
akinetic segments. The curves obtained from the values
of the It,r (Eq. 8) for the images of one cardiac cycle in
the apical, mid-, and basal segments of interventricular
septum (left wall of LV in A4C view), separately are
demonstrated in Fig. 5 for the two above cases. Accord-
ing to the reference visual scoring, these segments for
the healthy case and the patient case are scored normal
and akinetic, respectively. The maximal value of each
curve is defined the quantitative index for this region
Indr. The mean values and standard deviations of the
quantitative indices Indr for the apical, mid-, and basal
segments (A4C and A2C views) independently, in the
three reference visual scores (normal, hypokinetic, and
akinetic) are calculated and summarized in Table 1.
These values indicate that the proposed quantitative index
decreases gradually according to the severity of RWM abnor-
mality. Moreover, results show that the basal segments have
slightly greater values than the mid- and apical segments.
Besides, the mid-segments have slightly greater values than
the apical segments. These results confirm the fact that the
wall motion increases from apex to base.

Classification of RWM of LV

Since the proposed regional quantitative index Indr decreases
according to the severity of RWM abnormality, the
estimation of two threshold values TH1 and TH2 sepa-
rating akinetic from hypokinetic and respectively hypo-
kinetic from normal is required to classify RWM of LV
in a three-point scale. This process is done for apical,
mid-, and basal segments of the LV, independently.

0 10 20 30 40 50 60
0
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16

18

Frames number 

Apical segment of interventricular septum

Akinetic

Normal

0 10 20 30 40 50 60
0
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10
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20

25
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35

40

45

50
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Mid segment of interventricular septum

Akinetic

Normal

0 10 20 30 40 50 60
0

50

100

150

Frames number 

Basal segment of interventricular septum 

Akinetic

Normal

Fig. 5 The curve obtained from the values of the It,r (Eq. 8) for the
images of one cardiac cycle in the apical (up), mid- (middle) and basal
(bottom) segments of interventricular septum (left wall of LV in A4C
view) for a healthy case and a patient case. It should be noted that the
images of one cardiac cycle for the healthy and the patient cases are 40
and 54, respectively. The maximal value of each curve is defined the
proposed quantitative index for this region Indr
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Therefore, we must determine six threshold values
(TH1a, TH2a, TH1m, TH2m, TH1b, TH2b).

Apical
Akinetic 0 � Indr � TH1a

Hypokinetic TH1a � Indr � TH2a

Normal Indr > TH2a

8<
:

Mid
Akinetic 0 � Indr � TH1m

Hypokinetic TH1m � Indr � TH2m

Normal Indr > TH2m

8<
:

Base
Akinetic 0 � Indr � TH1b

Hypokinetic TH1b � Indr � TH2b

Normal Indr > TH2b

8<
:

To estimate the threshold values, a cross-validation pro-
cedure [43] is achieved and repeated ten times. For each
trial, 2/3 of the cases (A2C and A4C views) are randomly
selected for training and the remaining cases are used for
validation. The distribution of the three reference RWM
scores in randomly selected training subsets and the entire
data sets is similar approximately to have an unbiased esti-
mation of inter-scores thresholds during the training step.
For each training subset, the thresholds are estimated by
maximizing the weighted kappa coefficient [44] calculated
from the 3×3 contingency table obtained from the compar-
ison between the reference visual scoring and the proposed
automated scoring. As mentioned above, this process is
done for apical, mid-, and basal segments of the LV, inde-
pendently. Consequently, for each trial, the six thresholds
are estimated using this process. These thresholds are used

for the quantitative scoring of wall motion of each segment
of LV as normal, hypokinetic, or akinetic. The resultant
scoring obtained from the proposed method is compared
against those assigned by the reference visual analysis using
two parameters, the absolute and the relative agreement. The
absolute agreement is defined as the percentage of segments
for which the scores obtained by the two methods are equal
and the relative agreement is defined as the percentage of
segments for which the scores obtained by the two methods
differed is no more than 1. The values of agreement between
two methods averaged over the ten subsets in the validation
and training subsets for the apical, mid-, and basal segments,
independently are demonstrated in Table 2. Results show
that the apical segments which are known to be more com-
plex to analyze have fewer absolute agreement values than
the mid- and basal segments. Moreover, results show that
the difference between the automatic and the reference visual
scores in only apical segments is more than 1. In addition,
there is absolute agreement of RWM scores between two
methods averaged over the ten subsets in 88±1.1% of normal,
64±2.2 % of hypokinetic, and 82±1.3 % of akinetic segments
as classified by the reference visual scoring. Finally, the same
performances are obtained on both the validation and the
training subsets indicating that the cross-validation procedure
performs correctly without ‘over learning’.

Discussion

In this paper, a new suitable method, based on nonrigid image
registration for classification of RWM of LV in a three-point
scale with only minimal manual intervention (the placement
of mitral annulus and the apex) is presented for 2-D echocar-
diography images. The clinical importance of having an auto-
matic and objective method to classify RWM of LVas well as
highly experienced echocardiographers is very high, because
many clinical decisions and guidelines are based on this
evaluation, but an experienced echocardiographer is not al-
ways present. This method can also be used as a second
opinion when an experienced echocardiographer is available.

The proposed algorithm is able to accurately estimate the
LV myocardial displacement field over the cardiac cycle using
a hierarchical nonrigid transformation model, following an

Table 1 Mean and standard deviation of the quantitative index Indr
values (square millimeter) defined in Eq. 9 for the apical, mid- and
basal segments (A4C and A2C views), independently corresponding to
the three reference scores

Quantitative index Reference scoring

Segment Normal Hypokinetic Akinetic

Apical 39.27±23.16 20.69±11.11 9.45±6.72

Mid 61.72±25.20 28.83±14.04 12.90±6.04

Basal 195.66±64.60 96.71±38.82 38.99±23.10

Table 2 The values of agreement (absolute and relative agreement)
between the quantitative scoring of RWM obtained by the proposed
method and those assigned by the reference visual analysis averaged

over the ten subsets in the validation and training subsets for the apical,
mid-, and basal segments, independently

Apical Mid Basal

Training Validation Training Validation Training Validation

Absolute agreement (%) 74±1.5 72±3.5 89±0.8 86±2.6 94±0.9 92±1.8

Relative agreement (%) 98±0.5 96±1.6 100 100 100 100
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image registration algorithm as a multiresolution optimization
problem. This model which is a combination of affine trans-
formation and B-spline FFD transformation describes the glob-
al and local LV myocardial motion with a high degree of
flexibility. Finally, a new quantitative index for each region of
LV based on the resultant parameters of the hierarchical trans-
formation model is proposed for the characterization of RWM
scoring. It should be noted that the processing algorithm in
Matlab (MathWorks Inc, USA) for each test sequence takes a
fewminutes on a standard laptop computer (2-GHz Dual Core,
4 GB ram), which makes the routine application in a clinical
environment possible. We expect that the computation time is
reduced significantly once the method is entirely recoded in C.

Our proposed method has some advantages rather than the
other popular approaches of RWM scoring mentioned in the
“Introduction” section. First, it is independent of analyzing of
the RF signals which is very sensitive to the signal to noise
ratio. Second, unlike TDI, it allows multidirectional (i.e. lon-
gitudinal, radial, and circumferential) assessment of the LV
myocardial deformation. Third, any LV myocardial segmen-
tation and tracking in the echocardiography images, which are
very difficult, are not required. Fourth, a hierarchical paramet-
ric model is introduced to the displacement field of LV myo-
cardium in order to overcome some of limitation of the 2-D
echocardiography images (decorrelated speckle patterns
throughout the cardiac cycle because of the 3-D movement
of the heart and the complex deformation of the myocardium).
Finally, our method can calculate the displacement of all
points of the LV myocardium through the cardiac cycle not
only the LV myocardial edges. Consequently, it considers the
LV myocardial wall thickening in addition to endocardial and
epicardial motion. In some approaches, color kinesis, para-
metric imaging, and segmentation only endocardial motion is
considered and thickening of the myocardium which is an
important clue for RWM scoring is disregarded. It should be
noted that because of differences in databases, a direct com-
parison between our proposed method and other methods is
not possible. However, in different databases, the results show
that the proposed method yields an absolute agreement of
83 % and a relative agreement of 99 %, which is higher than
the results achieved by other known algorithms.

Our method estimated the two threshold values for api-
cal, mid- and basal segments, separately to classify the
RWM of LV in a three-point scale. However, if we estimate
the two threshold values for each segment of the LV (in A4C
and A2C) separately, instead of only for apical, mid- and
basal segments we could improve the performances of the
proposed method largely. Although this would require a
larger database which is our future work.

Results indicated a better classification of normal and aki-
netic segments (agreement in 88 and 82 %, respectively) than
hypokinetic segments (64 %). Misclassification of hypokinetic
segments is probably due to the definition of hypokinetic

(reduced motion and wall thickening), which is much more
subjective than the definition for both normal (normal motion
andwall thickening) and akinetic segments (absence of motion
and wall thickening). Moreover, akinetic segments may appear
hypokinetic to the human eye in visual reference scoring
because of the tethering of the neighbor segments but would
be analyzed more accurately by the proposed algorithm.

Scoring the RWM of the LV has proven to be a reliable
diagnosis parameter in the myocardial ischemia. It has a
high prognosis value. Moreover, it has other clinical impor-
tance such as prognosis in patients undergoing heart surgery
[45], subarachnoid hemorrhage and dialysis [46, 47]. It is
also important for decision making in patients with chest
pain in the emergency department [48] and in patients with
congestive heart failure [49].

The absence of a true gold standard for RWM scoring is
the limitation of this study. Visual scoring by experienced
echocardiographer as reference scoring is not ideal; howev-
er, to reach clinical acceptance, any attempt for quantifica-
tion should be compared against this clinically accepted and
daily used technique. In the present study, the reference
visual scoring was defined as the consensual visual scoring
between the two highly experienced echocardiographers in
order to reduce the possible observer variability. This refer-
ence scoring seems to be the best “gold standard”. In the
future, we would like to use a more objective measure as
gold standard such as MR imaging and coronary angiogra-
phy. Further validation would facilitate the acceptance of
this automatic method in routine clinical environment.

These results proved that the proposed algorithm is ap-
propriate for the rest echocardiography images. Next, we are
going to test the algorithm on stress echocardiography
images, in order to define ischemia accurately. Moreover,
the proposed algorithm could be adapted without theoretical
difficulty to 3-D echocardiography images. Finally, the pro-
posed algorithm is not modality specific and could be equal-
ly applied on cardiac MR images.

Conclusion

A new practical method, based on nonrigid image registra-
tion, is successfully used in the present study for automatic
classification of RWM of LV in a three-point scale, with
good agreement to visual assessment by highly experienced
echocardiographers.
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