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Abstract We present a novel method for the automatic
segmentation of the vertebral bodies from 2D sagittal mag-
netic resonance (MR) images of the spine. First, a new
affinity matrix is constructed by incorporating neighboring
information, which local intensity is considered to depict the
image and overcome the noise effectively. Second, the
Gaussian kernel function is to weight chi-square distance
based on the neighboring information, which the vital spa-
tial structure of the image is introduced to improve the
accuracy of the segmentation task. Third, an adaptive local
scaling parameter is utilized to facilitate the image segmen-
tation and avoid the optimal configuration of controlling
parameter manually. The encouraging results on the spinal
MR images demonstrate the advantage of the proposed
method over other methods in terms of both efficiency and
robustness.

Keywords Segmentation . Spatial neighboring information .

Gaussianweight . Chi-square distance . Local scaling

Introduction

Segmentation of anatomical structures and pathologies from
magnetic resonance (MR) images is a fundamental problem,
since the results play a crucial role in various medical
evaluations, including measure tissue volumes, diagnosis,

treatment planning, and surgical navigation. The segmenta-
tion of vertebral bodies in MR images is much challenging
and complex due to the relatively variations in soft tissue
contrast and artifacts like radio-frequency inhomogeneity.

Manual segmentation is time-consuming and varies from
case to case, so automatic or semi-automatic segmentation
of MR images is clinically desired. Up to now, many con-
siderable segmentation approaches based on image gray
level information have been proposed extensively, such as
fuzzy clustering [1], statistical classification [2], active con-
tour model (ACM) [3–7], active shape model (ASM) [8],
and active appearance model (AAM) [9] methods. One of
the most widely used fuzzy clustering algorithms is the
fuzzy c-means (FCM) algorithm, which was first proposed
by Dunn [10] and promoted as the general FCM clustering
algorithm by Bezdek [11]. An image can be represented in
various feature spaces, and the FCM algorithm classifies the
image by grouping similar data points in the feature space
into clusters. This clustering is achieved by iteratively min-
imizing a cost function that is dependent on the distance of
the pixels to the cluster centers in the feature domain. In the
segmentation based on the statistical classification, Markov
random field (MRF)-based methods [12] are used to seg-
ment MR images due to their capability of coping with noise
in images. The image is viewed as MRF and the observed
intensity and the contextual information were combined to
guide the classification under a Bayesian framework. How-
ever, due to the overlaps between object and nearby tissue in
the image gray distribution, fuzzy clustering and statistical
classification methods based on gray level information are
susceptible to environmental noise and image inhomogene-
ity. ACM is another popular image segmentation technique.
The basic idea of the ACM is to evolve a curve to fit the
desired object boundary according to predefined cost func-
tion. ACM is sensitive to initial curve placement and easily
falls into local minimum. To increase the robustness of the
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ACM, ASM establish a statistical model of the shape of
target object by introducing a training mechanism, and
the shape is constrained in a learned shape space during
the iterative shape deformation procedures. One disad-
vantage of ASM is that limited image information
extracted around the shape landmarks can be used to
guide the shape deformation, but all the other informa-
tion, i.e., the image information of the regions far from
landmarks, cannot be modeled in ASM. To overcome
this problem, a combination model of the shape and
image appearance is constructed in AAM. The shape
constrains and the abundant image appearance informa-
tion are available synchronously for AAM.

Notably, as graph-based method [13, 14], NCut [15],
extensively used for nature image segmentation, has
been applied in MR image segmentation [16]. NCut-
based approaches mainly include two steps. First, a
weighted graph is constructed, where nodes of the graph
correspond to image pixels, and the weight of the edge
reflects the similarity between two joined nodes. A
graph can be represented by an affinity matrix. Second,
the image segmentation is performed by solving the
eigenvectors and eigenvalues of the affinity matrix. This
step follows a partitioning criterion that maximizes the
total similarity within groups and minimizes the total
similarity between different groups. Using NCut-based
approaches, an image is usually segmented into several
distinct regions rather than the target and the back-
ground, and the pixels have high similarity within each
region. Through NCut, an optimal solution can be cal-
culated elaborately by solving the eigenvectors and
eigenvalues of the weight matrix.

NCut is a very flexible segmentation framework
where appropriate image feature extraction methods
and similarity metrics can be selected according to the
specific segmentation task. J. Gamio et al. [17] applied
Ncut to segment MR T1-weighted sagittal images of the
spine using windowed histograms of intensity [18] as
the most promising features. Due to the usage of the
simple statistical characteristics of local histogram,
Gamio’s algorithm is not a good choice for segmenting

the images with same statistical characteristics of local
histogram and low-contrast objects. As a typical exam-
ple, Fig. 1a, b illustrates that two windowed patches (A
and B) share the same statistical characteristics of local
histogram. The difference of the synthetic patch A and
patch B is obvious. Meanwhile, the corresponding histo-
grams are same as shown in Fig. 1c, d. The results
demonstrate that local statistic feature of the intensity
value cannot depict an image boundary exactly because
of the spatial information not taken into account. In
other words, the analysis of the local histograms does
not allow the segmentation method to accurately sepa-
rate the vertebral bodies from rest of the spine by the
presence of nearby structures of similar intensity.

In the current paper, we develop a new approach to
automatically segment vertebral bodies from spinal MR
images. Our methodology is novel in the following ways:
To build a new affinity matrix for advanced image seg-
mentation, we first use a cutoff window around each
pixel and stack the gray values inside the window into
a vector, which local intensity is introduced to depict the
image exactly and help to distinguish different tissues.
Second, considering the contribution of the nearby pixels
to the centered pixel, we adopt the Gaussian kernel
function to incorporate local spatial information, thus
allowing the suppression of noise and improve the accu-
racy of the segmentation. Third, an adaptive local scaling
parameter is used to refine the segmentation rather than a
fixed scaling parameter to avoid the manually tuned
parameter. Finally, the built affinity is introduced into
the segmentation process by using a graph-based method
to achieve the complete target. Extensively experiments
show that the present approach can accurately and effi-
ciently segment the vertebral bodies from MR images
containing the vertebral body lesions.

The remaining of the paper is organized as follows:
“Materials and Methods” section describes the image data,
the built affinity matrix, and the present method. In
“Results” section, the experiments setup and the evaluation
results are presented. Finally, the conclusions are given in
“Conclusions” section.

Fig. 1 Synthetic patches share the same statistical characteristic. a Patch A; b patch B. c The histogram of patch A; d the histogram of patch B
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Materials and Methods

Image Data

Sagittal MR images of the spine were performed at 3.0 Twith
the protocol name of 8CTL L-SPINE/2, at the department of
Orthopedics, Nanfang Hospital, Guangzhou, China and were
collected from 2009 to 2010. The final data set comprised of
100 images (34 healthy and 66 unhealthy) of 40 patients. The
patients’ ages ranged from 40 to 65 years old. Patients were
placed supine in the MR scanner, and T1-weighted and T2-
weighted images were performed with the following parame-
ters: pixel spacing00.5859mm, slice thickness04 mm, image
matrix size of 512 pixels×512 pixels, and slice spacing of
0.4 mm. A randomly selected 2D slice that was outlined by
four independent trained radiologists with more than 20 years
of clinical experience was considered the golden standard.
Manual segmentations were performed using specially
designed software and saved for validating the performance
of the proposed method. The trained radiologist ensured that
the segmented images covered the entire vertebral bodies.

Methodology

Graph-based image segmentation is an unsupervised seg-
mentation method that casts image segmentation as a graph-
partitioning problem. The given image I is represented as a
weighted undirected graph G0(V, E), with the pixels as
graph nodes V and the connections between every pair of
nodes as graph edge E. The above graph partitioning is
based on the eigenvectors and eigenvalues of a N×N matrix
derived from the matrix of pairwise affinities W. N repre-
sents the number of pixels in the image, and the weight of an
edge is the measurement of the dissimilarity between the
two pixels connected by that edge (e.g., the difference in
brightness, distance, color, motion, location, or some other
local attribute). The strength of these edges is weighted with
an exponential factor and usually defined as

Wij ¼ e�
d2 i;jð Þ
σ2 ð1Þ

where d(i, j) is the measure of the dissimilarity between
pixels i and j and σ controls the scale of this measure.

Fig. 2 Comparisons of the three used grey features. a The position of the pixel p and q; b the intensity of the p and q(n01); c the windowed
histograms q(nbins025); d the windowed intensities using our algorithm (n025)
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Various Affinity Matrixes

We briefly introduce three affinity matrixes and compare
them in “Results” section. A well-known example of an
affinity matrix that uses intensity information is that NJW
[19] algorithm, which is defined as

Wij ¼ e�
Ii�Ijk k2
σ2 ð2Þ

where Ii and Ij denote the intensities of pixel i and pixel j,
respectively. NJW algorithm is sensitive to noise and other
imaging artifacts.

J Gamio et al. [17] proposed another new affinity matrix
which uses local neighborhood information.

Wij ¼ e�
c2
ij

σ2 ð3Þ

c2ij ¼
1

2

Xnk
k¼1

hiðkÞ � hjðkÞ
� �2
hiðkÞ þ hjðkÞ ð4Þ

where hi k is the number of pixels with intensity inside the
range of the k-th bin of the i-th local histogram, i.e., the local
histogram of the i-th pixel. This method will lead to poor
segmentation because the various patches maybe share the
same statistical characteristics.

Next, we consider a more complex matrix based on
intensity and intervening contours, and this matrix is re-
ferred to as Shi’s algorithm [20], which is shown as

Wij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
WI

ij �WC
ij

q
þ aWC

ij ð5Þ

WI
ij ¼ e� Xi�Xjk k2

=σx� Ii�Ijk k2
=σI ð6Þ

WC
ij ¼ e�maxx2line i;jð Þ EdgeðxÞk k2=σC ð7Þ

where Xi and Ii denote pixel location and intensity; line i, j is
a straight line joining pixels i and j; Edge x is the edge
strength at location x; σx, σI, and σC are the scale parame-
ters; and α is the weight of the element Wij

C. This approach
has been found to be favor of image segmentation, but
increase the parameters.

The overall quality of segmentation depends on the effica-
cious affinity matrix. In order to remedy the deficiency of the
three approaches, we propose a novel affinity matrix that has a
tendency to deliver good results in object segmentation.

Fig. 3 The weights of the neighborhood. a l00.5. b l00.75. c l01.0

Fig. 4 The original and
processed image. a The original
image; b the processed image

Fig. 5 Golden standard. a The boundaries of the vertebral bodies; b
the segmented vertebral bodies
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Constructing the Novel Affinity Matrix

Local Spatial Neighbor Information and the Gaussian
Weighted Chi-Square Distance

In NJWalgorithm, only intensities information was used. How-
ever, the intensity varies significantly in certain tissues and
organs because of the noise and artifacts.Moreover, the intensity
of segmented object is close to the tissues growing around the
object. J. Gamio et al. [17] used windowed histograms of
intensity as the feature, thereby missing the spatial distribution
information will result in incorrect results. One of the important
characteristics of an image is that neighboring pixels are highly
correlated. So we take into account the values of neighboring
pixels to solve the above problem and extract a good spatial
structure feature. A box of 5×5 pixels centered on each pixel is
first used to extract local intensities of 25 pixels in order. Figure 2

shows the comparison between features, and the pixels p and q
do not have the same intensity, as shown in Fig. 2b. Note that the
difference between the histograms of p and q is very small (as
shown in Fig. 2c), unlike the intensities of the local patch
centered around the image pixels p and q (as shown in Fig. 2d).

The neighboring pixels possess similar feature values,
and the probability that they belong to the same cluster is
great. This spatial relationship is important in clustering. To
introduce the spatial information in graph cut, a spatial
function h i is defined as

hðiÞ ¼
X

k2Nn
viðkÞ ð8Þ

whereNn denotes a local square neighborhood of the pixel i, n is
the number of the square neighborhood of a fixed size, and vi k
is the intensity of the k-th pixel of the local square neighborhood
centered around the image pixel i. We incorporate the local

Fig. 6 Segmentation results by the various methods. a NJW algorithm
(σ00.2, C035); b the Gamio’s algorithm (σ00.45, C035); c the Shi’s
algorithm (σx0∞, σI00.12, σC00.08, α01, C065); d the present
algorithm (C040). e Golden standard. Row1 and row2 show the

boundaries (red line) and segmentation results of the vertebral bodies,
respectively. In row3, the golden standard is displayed in the green
line, and the automatic segmentation is displayed in the red line
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intensity and spatial information to the dissimilarity measure.
The dissimilarity between a pair of pixels can be written as:

d2 i; jð Þ ¼ c2 hðiÞ; hðjÞð Þ ¼ 1

2

Xn
k¼1

wk
viðkÞ � vjðkÞ
� �2
viðkÞ þ vjðkÞ

for
Xn
k¼1

wk ¼ 1; wk � 0

ð9Þ

where wk is the feature weight of the k-th pixel. Weight
wk depends on the Euclidean distance between the cen-
ter and the neighboring pixels. The closer the distance
between the position of the neighboring and center
pixel, the higher the weight value and vice versa.

wk ¼ Gl piðkÞ; piðiÞð Þ ¼ 1ffiffiffiffiffi
2p

p
l
e�

piðkÞ�piðiÞk k2
2l2 ð10Þ

where pi k is the spatial coordinate of the k-th pixel of
the local square neighborhood centered around the im-
age pixel i, and the parameter l controls the decay of
the exponential function and the decay of the weights as
a function of the Euclidean distances. Because the win-
dow size is 5×5, l should be between 0.5 and 1. To
show the effect of the size l, the weights, coded in
grayscale color map, of the neighborhood are shown
in Fig. 3. The local intensities and spatial neighboring
information are then combined and weighted through
the Gaussian function. This affinity matrix not only
considers the intensity of a single point but also the
influence of neighboring pixels and the geometrical
configuration in a whole neighborhood, which is incor-
porated to suppress the noise effectively and improve
the accuracy of the segmentation.

Fig. 7 Segmentation results by the various methods. a The NJW
algorithm (σ00.05, C065); b the Gamio’s algorithm (σ00.15, C0
40); c the Shi’s algorithm (σx0∞, σI00.02, σC00.15, α01, C068); d
the present algorithm (C040). Row1 and row2 show the boundaries

(red line) and segmentation results of the vertebral bodies, respectively.
In row3, the golden standard is displayed in the green line, and the
automatic segmentation is displayed in the red line
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Local Scaling

The scaling parameter is used to control the similarity
of two pixels. Andrew Y. Ng et al. ran their clustering
algorithm repeatedly and selected σ from a number of
values of σ using the criteria of least distorted clusters
but the calculation cost is very expensive. The range of
values to be tested should also be set manually. Rather
than selecting a fixed scaling parameter σ, our approach
aims to calculating a local scaling parameter σi for each
pixel i, which is similar to the one proposed by Manor
and Perona [21]. They used Euclidean distance between
the two points, which is sensitive to the noise. In order
to avoid the influence of the noise, we use the chi-
square distance between the two points to incorporate
the local spatial information. The distance from i to j as
“seen” by i is d i, j /σi while the converse is d i, j /σj.

Therefore, the affinity between a pair of points can be
given as:

Wij ¼ e
�c2 hðiÞ;hðjÞð Þ

σiσj ð11Þ

σi ¼¼ d i;Kð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 hðiÞ; hðKÞð Þ

p
ð12Þ

The neighbors of pixel i are sorted in ascending order of the
distance to i. Following the ordering process, pixelK is theK-th
distant neighbor from point i. We choose a fixed and predeter-
mined value of K07, which gives good results even for various
Gaussian window sizes. The adaptive local scaling is automat-
ically computed to avoid the manually tuned parameter. The
affinity should be large for pixels that should belong together
and small if otherwise. With this adaptive local scaling, the
present algorithm can remedy the deficiency of using a fixed
scaling parameter and improve the segmentation results.

Fig. 8 Segmentation results by the various methods. a The NJW
algorithm (σ00.1, C038); b the Gamio’s algorithm (σ00.12, C040);
c the Shi’s algorithm (σx0∞, σI00.2, σC00.025, α01, C063); d the
present algorithm (C040); e golden standard. Row1 and row2 show

the boundaries (red line) and segmentation results of the vertebral
bodies, respectively. In row3, the golden standard is displayed in the
green line, and the automatic segmentation is displayed in the red line
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New Algorithm

Partitioning on the construction graph provides segmentation
of the image regions by minimizing the cut functions, which
play an important role in the process of segmentation. The
common cut functions include minimum cuts [14], normal-
ized cuts [15], and ratio cuts [22]. To find a balanced partition,
we use the normalized cuts to segment the image and the
objective function of our method is defined as

Γ A1; . . . ;ACð Þ ¼ 1

2

XC
c¼1

W Ac;Ac

� �

vol Acð Þ ; ðA1 [ A2 . . . [ AC

¼ I ;A1 \ A2 . . . \ AC ¼ ΦÞ

ð13Þ

W Ac;Ac

� � ¼
X

i2Ac;j2Ac

Wij ð14Þ

vol Acð Þ ¼
X
i2Ac

di ð15Þ

di ¼
XN
j¼1

Wij ð16Þ

where A represents the set of all pixel nodes and I denotes the
image, which is assumed to be portioned into C not necessar-
ily disjoint sets A1, A2,… and Ac. Ac is the complement of Ac.

We use fixed choices C040 and l00.5 to obtain the
segmentation of the vertebral bodies. We summarize our
suggested algorithm as follows:

Fig. 9 Segmentation results by the various methods. a The NJW
algorithm (σ00.18, C040); b the Gamio’s algorithm (σ00.35, C0
35); c the Shi’s algorithm (σx0∞, σI00.12, σC00.12, α01, C070); d
the present algorithm (C040). Row1 and row2 show the boundaries

(red line) and segmentation results of the vertebral bodies, respectively.
In row3, the golden standard is displayed in the green line, and the
automatic segmentation is displayed in the red line
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1. Compute the dissimilarity and the local scale σi using
Eqs. (9) and (12), respectively.

2. Form the locally scaled affinity matrix W∊ ℜN×N where
Wij is defined according to Eq. (11) for i≠ j and Wii00.

3. Define D to be a diagonal matrix with Dii ¼
PN

j¼1 Wij

and construct the Laplacian matrix L0D−1/2WD−1/2.
4. Findx1,⋅⋅⋅, xC, the C largest eigenvectors of L and form

the matrix X0[x1,⋅⋅⋅, xC] ∊ ℜN×C.
5. Re-normalize the rows of X to determine the unit length

yielding Y ∊ ℜN×C, such that Yij ¼ Xij=
P

j W
2
ij

� �1=2
.

6. Treat each row of Yas a point inℜC and cluster via k-means.
7. Assign the original point i to cluster c if and only if the

corresponding row i of the matrix Y was assigned to
cluster c.

8. Display the segmented vertebral bodies through the use
of morphological operation.

Results

Comparison with Other Matrixes

In “Materials and Methods” section, we introduced three
matrixes and constructed our novel matrix. The purpose of
the experiments is to demonstrate that the algorithm using
the novel matrix can improve the performance of the seg-
mentation. All segmentations are done in a computer with
an Intel Core Duo processor, 2.53 GHz, and 2 GB RAM.
The original MR images are preprocessed by the anisotropic
diffusion [23, 24] for the present method, the NJW, Shi’s,
and the Gamio’s algorithms. Then, we give an example to
exhibit the result after performing the anisotropic diffusion
step, as shown in Fig. 4.

We divided the MR images of the patients in four catego-
ries: T1-weighted normal spine, T1 weighted with vertebral

Fig. 10 Segmentation results by the various methods. a The NJW
algorithm (σ00.1, C050); b the Gamio’s algorithm (σ00.1, C040); c
the Shi’s algorithm (σx0∞, σI00.22, σC00.05, α01, C090); d the
present algorithm (C040). Row1 and row2 show the boundaries (red

line) and segmentation results of the vertebral bodies, respectively. In
row3, the golden standard is displayed in the green line, and the
automatic segmentation is displayed in the red line
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lesion and disk degeneration, T2-weighted normal spine, andT2-
weighted with vertebral lesion and disk degeneration. T1-
weighted scans work well for differentiating fat from water with
water appearing darker and fat brighter. These scans are obtained
to observe the anatomical structure of the spine. T2-weighted
scans are another basic type. Like the T1-weighted scan, fat is
differentiated from water—but in this case, fat shows darker and
water lighter. In the case of spinal study, the cerebrospinal fluid
will be lighter in T2-weighted images. These scans are acquired
to examine the pathologic change of the spine.

Subject 1 T1-weighted normal spine
Figure 5 shows the result obtained by one of

the four medical experts manually. The result is
regarded as the golden standard, which is used
to validate the feasibility and superiority of the

algorithm. From Fig. 6, the NJW method is most
likely to lead to the phenomena of under-
segmentation (results are larger than the manual
labels) in the joint location (refer to the blue
arrow in Fig. 6a) which shows little contrast
between vertebral bodies and the rest of the
anatomical structures. Moreover, the pixel inten-
sity in the same tissue varies sharply because of
the noise and anisotropic factors, and NJW tech-
nique tends to over-segment in some vertebral
bodies (refer to the red arrow in Fig. 6a).

The Gamio’s algorithm uses the windowed
histograms of intensity as the most promising
features, but the histograms do not consider the
spatial information. It can be seen from the Fig. 6b
that the vertebral bodies are segmented in accor-
dance with the object boundaries. However, it
uses a single scaling parameter, which must be
tuned for the optimal result manually. In Fig. 6c,
the segmentation results of the vertebral bodies
we obtain by the Shi’s algorithm is not smooth
due to the information of intervening contours.

The present method uses local scaling and
takes into account the intensity of each pixel as
well as the intensity of the neighboring pixels.
This approach to the self-acting segmentation of
vertebral bodies has encouraging results on the
location of the intensities of the vertebral bodies,
which are similar to the tissues around the verte-
bral bodies. Obviously, the phenomena of over-
segmentation and under-segmentation can then be
reduced effectively. The vertebral bodies are
cleanly separated from the spine using the local
spatial information, as shown in Fig. 6d.

Subject 2 The patient has vertebral body lesions and disk
degeneration (T1-weighted)

The patients suffer from vertebral disease,
such as degenerative spondylosis and spinal disk
herniation. Figure 7 shows the encouraging
results of the present method. In this experiment,
the proposed metric allows the segmentation

Table 1 The comparisons between the four algorithms

Algorithm Fig Dice ME HD

NJW algorithm 5 0.901617 0.008217 3.3

8 0.912605 0.006710 4.5

11 0.947509 0.004051 1.7

14 0.886505 0.008152 4.2

17 0.957979 0.004467 1.7

Gamio’s algorithm 5 0.92693 0.006344 2

8 0.894051 0.007881 2

11 0.891325 0.007866 1.7

14 0.860596 0.010296 2.8

17 0.902853 0.010391 2.2

Shi’s algorithm 5 0.912966 0.007805 2.2

8 0.929405 0.005768 2.8

11 0.930789 0.005188 1.7

14 0.913751 0.006432 3.5

17 0.940525 0.006306 1.8

Improved algorithm 5 0.964549 0.003132 2

8 0.964315 0.002842 1.7

11 0.969118 0.002293 1.4

14 0.962901 0.002724 1.7

17 0.970673 0.003147 1.7

Table 2 The comparisons between the four algorithms

Method Parameter Time (s)

Intensity information Position information Intervene contours The weight Cluster number

NJW √(σ) × × × √(C) 51.47

Gamio’s √(σ) × × × √(C) 53.29

Shi’s √(σI) √(σx) √(σC) √(α) √(C) 15.25

Improved × × × × √(C) 57.01

The √ denotes the method has the parameter, if not is ×
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technique to accurately separate the degenerative
vertebral bodies from the rest of the thoracic
image despite its weak edge and the presence of
nearby structures of similar intensity. It can be
seen that the NJW algorithm, Gamio’s algorithm,
and Shi’s algorithm cannot find the desired object
boundary exactly, but the improved approach
resulted in fewer pixels being misclassified.

Subject 3 T2-weighted normal
The vertebral bodies of the patient are normal in

the 2D sagittal magnetic resonance images of the
spine, and the vertebral bodies show high contrast
with respect to the intervertebral bodies and sur-
rounding structures. The vertebral bodies are easier
to segment compared with other images. Figure 8
shows how the NJWalgorithm leads to a few of the
phenomena in under-segmentation (refer to the
blue arrow in Fig. 8). The segmentation of

vertebral bodies by the Gamio’s algorithm is much
smaller than the golden standard. The improved
algorithm segments the vertebral bodies smoothly,
clearly, and accurately. The segmented boundary
of the present method is very close to the golden
standard. We can observe from Fig. 8a–c that the
NJW algorithm, the Gamio’s algorithm, and the
Shi’s algorithm fail to segment the object, while
the correct segmentation result is obtained from the
present method.

Then, we consider the Fig. 9. Here, the vertebral
bodies of the patient are normal, and the pedicle of
vertebral arch is scanned because of the different
scanning flip angles. As we all know, the pedicle of
vertebral arch is a part of the vertebral body so we
should segment the pedicle of vertebral arch to-
gether with the vertebral body. The new algorithm
is capable of extending further to segment the

Fig. 11 Comparisons of the four algorithms on segmentation results
with zero-mean Gaussian white noise. a The NJW algorithm; b the
Gamio’s algorithm; c the Shi’s algorithm; d the present algorithm.
Row1 the original image and the segmentation results; row2 the image

which is added Gaussian white noise with variances 0.01 and the
segmentation results; row3 the image which is added Gaussian white
noise with variances 0.02 and the segmentation results
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Fig. 12 Zoom portions of the
segmentation results. The
golden standard is displayed in
the green line, and the
automatic segmentation is
displayed in the red line. a The
NJW algorithm; b the Gamio’s
algorithm; c the Shi’s
algorithm; d the present
algorithm. Row1 the original
image; rows 2 and 3 are added
Gaussian white noise with
variances 0.01 and 0.02,
respectively

J Digit Imaging (2013) 26:578–593 589



pedicle of vertebral arch (refer to the blue arrow in
Fig. 9). The Gamio’s algorithm performed well in
the vertebral bodies showing high contrast with
respect to the intervertebral disks and surrounding
structures (as shown in Fig. 9). However, the per-
formance was poor if the condition was not satis-
fied (as shown in Figs. 7 and 9). This improved
algorithm can segment the vertebral bodies
smoothly, clearly, and accurately. The segmented
results of the improved algorithm are more similar
to the golden standard than those of NJW algo-
rithm, Shi’s algorithm, and Gamio’s algorithm.

Subject 4 The patient has vertebral body lesions and disk
degeneration (T2-weighted)

One will have vertebral body lesions (refer to the
red arrow in Fig. 10) and disk degeneration (refer to
blue the arrow in Fig. 10) with advancing age. There
is bright prospect in the vertebral bodies via the
limitation of imaging methods, which increases the
level of complexity in the image. Consequently, the

segmented result of the NJWalgorithm is very poor,
as illustrated in Fig. 10. Again, a clear improvement
is shown. Although the patient has vertebral body
lesions and disk degeneration, the segmentation of
the present algorithm is much more accurate than
the other algorithms.

Dice index [25], misclassification error (ME) [26], and
Hausdorff distance (HD) [27] are selected to evaluate the
accuracy of segmentation. The Dice, ME, and HD are,
respectively, given by

Dice ¼ 2� FManual \ FAutoj j
FManualj j þ FAutoj j ð17Þ

ME ¼ 1� BManual \ BAutoj j þ FManual \ FAutoj j
BManualj j þ FManualj j ð18Þ

HD FManual; FAutoð Þ ¼ max h FManual; FAutoð Þ; h FAuto; FManualð Þ½ �
ð19Þ

Fig. 13 Dice, ME, and HD similarity measures computed for all methods. Original image is shown in red, and the images added Gaussian white
noise with variances 0.01 and 0.02 are shown in green and blue, respectively
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where FManual and BManual are the foreground and back-
ground of the manual algorithm, respectively, as the FAuto
and BAuto are foreground and background of the automatic
algorithm, and the |FManual| denotes the number of pixels
assigned to the foreground by the medical expert. Dice
index measures the similarity between automatic segmenta-
tion results and the golden standard, whereas ME measures
error ratio between automatic segmentation results and the
golden standard. The higher the value of Dice index, the
better the overall performance of the segmentation will be.
Dice index equal to 1 suggests a good match between
manual and automatic segmentation. The lower the ME
ratio, the fewer the misclassified pixels are. HD measures
the maximum distance between two contours. According to
Table 1, the segmentation results of the present approach are
much more accurate than the other algorithms.

The Comparison of the Variability

The NJW algorithm and the Gamio’s algorithm segment the
objects base on the intensity information. So in the segmen-
tation process, the parameter of the intensity information must
be set and tuned manually. The Shi’s algorithm based on
intensity and intervening contours increases the scaling pa-
rameter parameters and the complexity. We incorporate the
spatial information to the present segmentation algorithm by
introducing the adaptive local scaling to avoid the manually
tuned scaling parameter σ repeatedly. In many cases, there is
no appropriate scaling parameter to obtain the good segmen-
tation results. Comparison of themanually tuned parameters is
as in Table 2, and the parameters, which are set at the

beginning of the experiments and need not tune, do not listed,
such as the nbins of the Gamio’s method.

Our algorithm has the least parameter than other meth-
ods, in which the parameters σ, σI, σx, σC, α, and C have
high impact on the segmentation quality. The parameters
selected manually from a number of values, and this
requires a significant calculation, which is expensive. The
range of values to be tested should also be set manually. We
repeat abundant number of experiment and choose the best
ones for the NJW, the Gamio’s, and the Shi’s algorithms by
experts. In our method, the Gaussian weighted local spatial
information and adaptive scaling parameter σi for each pixel
i makes the set of cluster number easier to set parameter C,
as shown in Figs. 6, 7, 8, 9, and 10. Here, we can utilize the
fixed parameter C(040) to obtain the high-quality segmen-
tation results.

The execution time for the present method, the NJW, Shi’s,
and the Gamio’s algorithms are shown as in Table 2, and the
cost times of the computation of the affinity matrix are 0.3366,
0.3571, 0.6864, and 0.7650 s, respectively. Although the
proposed algorithm took more time than other methods, it is
just a calculation unlike other methods due to the optimal
configuration of controlling parameter manually.

Sensitivity to Noise

To study the effect of noise on the performance, a real image
is added zero-mean Gaussian white noise, and the segmen-
tation results are shown in Figs. 11 and 12. The original
image and the segmentation results are shown in row1.
Rows 2 and 3 in Fig. 11 show the segmentation results on

Fig. 14 The segmentations of the meningioma of four patients (window size07×7,C06). Top row the boundary of the segmented meningioma;
bottom row the segmentation results of the meningioma
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image added zero-mean Gaussian white noise with varian-
ces 0.01 and 0.02, respectively. We show in Fig. 13 the
Dice, ME, and HD similarity measures for the whole seg-
mentation, in the four methods studied, and in order to
compare, we show in Fig. 13 the Dice, ME, and HD values,
scaled to a range of the various and appropriate size. In both
sub-images, the ordering of the methods is: the NJW algo-
rithm, the Gamio’s algorithm, the Shi’s algorithm, and the
present algorithm. From Figs. 11, 12, and 13, we can see
that the proposed algorithm has higher anti-noise for the
Gaussian noise.

The encouraging results with real MR images demon-
strate the superior performance of the present method over
other clustering methods in terms of both accuracy and
robustness. The present method is a general one which can
be devoted to developing segmentation of other tissues and
organs. According to Fig. 14, the edge of the meningioma is
not smooth, but our algorithm can obtain the object bound-
ary correctly. All segmentations are done in a computer with
an Intel Core Duo processor, 2.53 GHz, and 2 GB RAM.

Conclusions

In this work, we present an adaptive segmentation algorithm
using local spatial neighboring information and Gaussian
weighted chi-square distance. In the traditional algorithms,
the parameter setting requires labor-intensive and time-
consuming. We incorporate the weighted spatial structure
information into the affinity matrix to allow for the affinity
between two pixels to be influenced by their neighborhoods,
which not only improve the accuracy of segmentation
results but also overcome the noise effectively. Additionally,
the scale parameters can be tuned automatically. The exper-
imental results show that the proposed method has stronger
anti-noise property and higher segmentation precision than
other matrixes. The robust and accurate result of segmenta-
tion should serve image registration and the analysis of
spinal deformities. It can also be used in organ location
and image-guided vertebra operation, with presumed signif-
icant clinical impact.

The future work is to differentiate the normal vertebral
bodies from the unmoral vertebral bodies and estimate verte-
bral fracture risk evaluation by using of the segmentation
results. Furthermore, as a reviewer’s comment, for decreasing
the computational time, a localization method like the gener-
alized Hough transform will be a interspersing choice to
improve the efficiency of the algorithm and meet the real-
time requirements, instead of processing the entire image and
utilizing the GPU or the multi-scale graph decomposition.
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