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Abstract Increasing incidence of Crohn’s disease (CD) in the
Western world has made its accurate diagnosis an important
medical challenge. The current reference standard for diagnosis,
colonoscopy, is time-consuming and invasive while magnetic
resonance imaging (MRI) has emerged as the preferred nonin-
vasive procedure over colonoscopy. Current MRI approaches
assess rate of contrast enhancement and bowel wall thickness,
and rely on extensive manual segmentation for accurate analy-
sis. We propose a supervised learning method for the identifi-
cation and localization of regions in abdominal magnetic
resonance images that have been affected by CD. Low-level
features like intensity and texture are used with shape asymme-
try information to distinguish between diseased and normal
regions. Particular emphasis is laid on a novel entropy-based
shape asymmetry method and higher-order statistics like skew-
ness and kurtosis. Multi-scale feature extraction renders the
method robust. Experiments on real patient data show that our
features achieve a high level of accuracy and perform better
than two competing methods.
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Introduction

Inflammatory bowel diseases (IBDs) constitute one of the
largest healthcare problems in theWestern world afflicting over
1 million European citizens. Out of these, nearly 700,000 suffer
from Crohn’s disease (CD). Crohn’s disease is an autoimmune
IBD that may affect any part of the gastrointestinal tract causing
abdominal pain, diarrhea, vomiting, or weight loss. It is ob-
served that, in most cases, the disease is localized in the most
distant part of the small intestine, the terminal ileum. CD
detection is essential to grade its severity, extent, and activity
and also determines the subsequent therapeutic strategy. Cur-
rently, the reference standard for diagnosis relies on results of
colonoscopy and biopsy samples [1]. Apart from therapeutic
strategy, colonoscopy also has implications for patient progno-
sis. Through colonoscopy, a trained physician examines the
ulcerations in the bowel and evaluates the severity and extent of
inflammatory lesions using a standard scale called Crohn’s
Disease Endoscopic Index of Severity. However, the procedure
is invasive, requires extensive bowel preparation, and gives
information only on superficial abnormalities. Therefore, it is
beneficial to have a non-invasive approach to detect CD.

Several drawbacks of colonoscopy like invasiveness,
procedure-related discomfort, and risk of bowel perforation
have led to the exploration of imaging techniques to assess
extension and severity of IBDs [2–4]. In Bodily et al. [5],
sonography and computed tomography (CT) have been
explored as alternatives to colonoscopy. For young patients,
exposure to ionizing radiations is a serious limitation of CT.
Assessment in sonography is limited due to gas interposi-
tion. MRI has the potential to overcome these limitations
because of high tissue contrast, lack of ionizing radiations,
and lower incidence of adverse events related to intravenous
contrast employed in CT [6]. Horsthuis et al. [6] report the
diagnostic accuracy of various signs for detection of active
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inflammation. However, this information is not sufficient to
guide therapeutic decisions. Rimola et al. [2] determine that
rate of contrast enhancement and bowel wall thickness
identifies the presence of endoscopically active disease.
But its reliance on explicit segmentation of the bowel wall
and extensive manual scoring limits its effectiveness.

Related Work on Disease Classification

There do not exist abundant research on image analysis of
abdominal MRI to identify Crohn’s Disease, although Bhushan
et al. [7] look at dynamic contrast-enhanced (DCE) MRI for
identifying colorectal cancer and [8] deal with ulcerative colitis.
Atasoy et al. [9] addressed the tasks of localization, annotation,
or classification of optical biopsies in colonoscopy. Ourmethod
will serve as a diagnostic tool for clinicians to localize the
diseased area without the need for explicit segmentation of
bowel wall.

Cheng et al. [10] propose the use of biologically inspired
features for classification of different glaucoma types. The
biological features are based on saliency maps predicting
interesting regions for humans in pictures. Saliency-inspired
features have been used in various applications like object
tracking [11, 12], registration [13–15], and segmentation
[16–19]. Automatic localization of multiple anatomical struc-
tures in medical images provides important semantic informa-
tion for potential benefits in various clinical applications.

Pauly et al. [20] propose supervised regression techniques to
detect and localize different parts in whole-body magnetic
resonance (MR) sequences. They use 3D local binary patterns
along with random ferns to achieve high segmentation accura-
cy. Kelm et al. [21] propose a random–regression-basedmethod
for detecting and grading coronary stenoses in CT angiography
data. Their motivation is to provide an automated system that
can rule out clinically relevant stenosis in the coronary arteries
and serve as a second reader in the absence of an expert
physician. Brain imaging data have seen a lot of applications
of machine learning methods for classification, particularly
Alzheimer’s disease [22–24]. Chest images have also generated
a lot of interest with methods proposed for localization of chest
pathologies in Avni et al. [25], pediatric tuberculosis in Irving et
al. [26], and diffuse lung disease in Xu et al. [27].

Scope of Our Work

This paper proposes a semi-automated method to detect CD-
afflicted regions from input abdominal MR images. Thus, we
do not need an explicit segmentation of the bowel wall which
turns out to be quite difficult based on MR imagery. Our
method will serve as a tool to assist clinicians, reduce reliance
on colonoscopy, and help in rapid diagnosis of CD. Many
studies highlight the importance of low-level features in dis-
ease identification, e.g., intensity, texture, symmetricity in

shape, and structure information [28, 29]. Kovalev et al. [30]
showed the importance of anisotropy (a measure of feature
asymmetry) from texture maps to detect abnormalities in
diseased brain images. Anisotropy can be applied to other
features for characterizing diseased regions. For example, in
Liu et al. [28], reflectional asymmetry based on a pigmenta-
tion model was employed to detect skin lesions.

We propose a novel method to calculate shape asymmetry
that uses the entropy of orientation angles. Our approach is
simple to compute and gives accurate detection results. Inten-
sity, texture, and shape asymmetry features from multiple
scales are used to characterize normal and CD-affected regions
in the bowel. This paper makes the following novelties: (1) a
shape asymmetry measure based on entropy of the distribution
of orientation angles is proposed; I2) it is combined with
higher-order image statistics to identify diseased regions; and
(3) the features are used for identification of CD areas in
abdominal MRI, a novel application that has immense poten-
tial in assessing IBDs. We describe our method in “Materials
and Methods,” present results in “Experiments and Results,”
and conclude with the section on “Conclusions.”

Materials and Methods

Overview of Our Method

Our aim is to detect presence of Crohn’s Disease in a MRI
volume. For that purpose, we have to classify a voxel in the
volume. For a 400×400×100 volume, the processing time can
be very high if we were to analyze each individual voxel.
Since the bowel is visible in only a few slices, we focus on
these slices to identify CD affected regions. Furthermore, in
these slices, the bowel occupies part of the image. A rectan-
gular region of interest (ROI) is manually defined which
covers the regions most likely to contain diseased tissues but
is smaller compared with the whole image. Physicians get an
approximate idea of the ROI from the results of other tests like
colonoscopy and DCE MRI. Since our proposed approach
aims to assist expert doctors, this semi-automated approach
seems reasonable. We employ a two-stage classification,
details of which are described in the later sections. In the first
stage (henceforth referred to as Stage 1), the pixels are first
classified as either intestine or background. Those pixels that
are labeled as intestine are further classified as either diseased
or normal in the second classification stage (Stage 2). Figure 1
shows an example slice with the ROI outline shown in red and
the diseased region shown in green.

Feature Extraction

Appropriate features are crucial in determining the accuracy
rate of disease identification and its subsequent grading. We
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extract intensity, texture, and shape asymmetry features from
three different scales for disease identification. For higher
accuracy and robustness, features were extracted from neigh-
borhoods centered around each pixel. Henceforth, we shall
refer to these neighborhoods as a patch.

Intensity and Texture Features

To identify the exact area afflicted with CD, radiologists rely
on the results of different tests like colonoscopy and biopsy,
as well as different imaging protocols like MR-T1, MR-T2,
and DCE-MRI. A simple visual examination of T1 MRI
does not provide sufficient information to identify the dis-
eased part. We propose to investigate features that are not
discernible by the human eye but may provide discriminat-
ing features for our task. Psychophysical experiments have
established that the human visual system is sensitive only to
image features of the first- and second-order (mean and
variance) [31]. It is common in MR images to have regions
that do not form distinct spatial patterns but differ in their
third order statistics, e.g., boundaries of some malignant
tumors are diffuse and invisible to the naked eye [32].
However, with computational tools at our disposal, we can
analyze higher-order statistics to determine their efficacy in
disease classification. For every image patch (neighborhood
of a pixel), we calculate the mean, variance, skewness, and
kurtosis for intensity and texture features. Let us denote
each patch as Si, the intensity of its jth pixel as Si(j), the
mean intensity by Si, and the variance by σ2

i . The skewness
(third-order statistic) of the intensity distribution is given by

Sk ¼ 1

N

Xn

i¼1
Si � Sl
� �3

� �
� 1

σ3
i

ð1Þ

where the term within the square brackets is the third-order
moment. The skewness is a measure of symmetry of a distri-
bution. Negative skew indicates that the bulk of the values lie

to the right of the mean, and positive skew indicates the bulk
of the values lie to the left of the mean. A zero value indicates
that the values are relatively evenly distributed on both sides
of the mean (e.g., a Gaussian distribution).

Kurtosis (the fourth-order statistic) is a measure of the
“peakedness” of the probability distribution and along with
skewness describes its shape. It is given by

Ku ¼ 1

N

Xn

i¼1
Si � Sl
� �4

� �
� 1

σ4
i

ð2Þ

where the term within the square brackets is the fourth-order
moment. A high kurtosis distribution has a sharper peak and
longer, fatter tails, while a low kurtosis distribution has a
more rounded peak and shorter, thinner tails.

Texture Maps Texture can be modeled as patterns which are
distinguished by a high concentration of localized spatial
frequencies. 2-D Gabor filter banks, which have optimal joint
localization in the spatial and spatial-frequency domains, have
been used for texture representation in Manjunath and Ma,
and Liu and H. Wechsler [33, 34]. Due to its multiscale and
multi-orientation structure, Gabor filter banks conform to the
receptive fields profiles of simple cortical cells [35] and are
able to capture rich visual properties such as spatial localiza-
tion, orientation selection, and spatial frequency character-
istics. Since Gabor filters incorporate Gaussian smoothing,
they are robust to noise. Because of these desirable properties,
we select the Gabor filter bank to characterize texture in our
images. The Gabor filter bank can be represented as

gg;w x; yð Þ ¼ agg ag x cos wyð Þ þ y sin wyð Þð Þag �x sin wyð Þ þ y cos wyð Þð Þð Þ
ð3Þ

where γ=0,… Γ−1, ω=0,…Ω−1. The mother function g is
Gaussian defined as:

g x; yð Þ ¼ 1

2pσxσy

� �
exp � 1

2

x2

σ2
x

þ y2

σ2
y

 !
þ 2pjWx

" #
ð4Þ

Γ=6 is the total number of orientations, Ω=2 is the total
number of scales. The rotation factor ψ=π/Ω and the scaling
factor a=(Uh/Ul)1 Γ −1. Uh and Ul are parameters that
determine the frequency range of the filter bank, and W is
a shifting parameter in the frequency domain. Texture maps
are obtained using oriented Gabor filters along six directions
(0°, 30°, 60°, 90°, 120°, and 150°).

Shape Asymmetry

In Liu et al. [28], the authors use reflectional asymmetry to
identify skin lesions. Also, in Liu et al. [28], global point
signatures (GPSs) were defined at each pixel to characterize
color and orientation information, and the asymmetry descriptor

Fig. 1 Illustration showing the original slice image, the ROI in red and
annotated region in green
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is calculated based on bin differences about a principal axis of a
histogram. The principal axis is chosen from one of 180 bins,
and some of the bins are translated to ensure that there are 90
bins on each side of the principal axis. We propose a novel
method for quantifying the shape asymmetry which is based on
the entropy of the orientation distributions. Entropy-based
measures have been used in computer vision studies to detect
salient regions [12] and tracking [11]. This novel measure is
simpler to calculate and also functions as a good descriptor.

Each patch is divided into 18 sectors of a circle centered
at the geometric center of the patch. For each sector, we
calculate orientation angles of the pixels and determine the
entropy of the angle distribution. Entropy measures the
information in the respective distributions. A uniform dis-
tribution has high entropy while the entropy is low for a
peaked distribution. If the orientation angles are distributed
over many angle ranges, there is greater asymmetry in
shape, leading to a higher entropy value. On the other hand,
low entropy values indicate that most of the pixel orientation
angles are distributed along a few directions leading to
lower shape asymmetry. The shape asymmetry measure for
a sector r is given by

ShrAsymmetry ¼ �
X

θ
prθ log p

r
θ ð5Þ

prθ denotes the angle distributions in sector r. Figure 2a
shows an illustration of a circle divided into 18 sectors.
Figure 2b shows a patch around a diseased pixel, and
Fig. 2c shows a map giving the value of the corresponding
orientation angles. Figure 2d shows a patch around a normal
pixel with the corresponding angle map shown in Fig. 2e.
The angle values are in the range [180°, 180°]. Figure 2f
shows the plot of entropy values for each of the 18 sectors
for the two patches shown in Fig. 2b and d. It is interesting
to note that the orientation profile for the normal patch is
quite regular as compared with the diseased patch. This is
indicative of the fact that the orientation in diseased regions
becomes distorted due to ulcerations or other abnormalities.
Thus, they lose the regularity observed in healthy tissues.
This is corroborated by the plot in Fig. 2f where the diseased
patches show higher entropy, indicating greater randomness.

The above set of features give a 46-dimension feature
vector (intensity, 4; texture, 6×4×2=48; and shape, 18) for
a single patch. In order to capture information over multiple
scales, we extract similar features over neighborhood of
different sizes. Thus, for each annotated pixel, features were
extracted over three neighborhoods of sizes 25×25, 30×30,
and 35×35. The final feature vector is of length 46×3=138.
Although the Gabor texture maps are inherently multi-scale
representations, intensity and shape measures are not de-
rived from multiple scales. Thus, to include intensity and
shape features from multiple scales, we consider three
neighborhoods. Although the computation cost is slightly

more, it leads to higher classification accuracy. A brief
discussion is found in the section on “Importance of
Multi-scale Feature Extraction” on the importance of such
feature extraction.

Features for Comparison

We compare the effectiveness of our method with two other
methods. The first is a wavelet–transform-based method
(dual tree complex wavelet transform (DTCWT)) in
Berks et al. [29]. The second is a shape–asymmetry-
based method (Asy), where asymmetry is calculated
similar to Liu et al.’s [28]. Instead of GPS, orientation
angles are used.

DTCWT Wavelet transforms have been used extensively in
image processing and analysis to provide a rich description
of local structure. The DTCWT has particular advantages
because it provides a directionally selective representation
with approximately shift-invariant coefficient magnitudes
and local phase transformations [36]. DTCWT combines
outputs of two discrete transforms (differing in phase by
90° to form the real and imaginary parts of complex coef-
ficients. For 2-D images, it produces six directional sub-
bands oriented at ±15°,±45°, and ±75° at a series of scales
separated by a factor of 2. A feature vector is constructed by
sampling DTCWT coefficients from six oriented sub-bands
from a w×w neighborhood centered on the pixel. This gives
an 18-dimension feature vector (i.e., six sub-bands from the
three neighborhoods stated above). Details of the method
can be found in Berks et al. [29].

Asy Liu et al. [28] define a measure of reflectional asym-
metry based on the pigmentation model of skin lesions. We
use a similar approach for an alternative shape asymmetry
metric where, instead of the GPS, we calculate shape asym-
metry based on orientation angle information. For every
patch, the distribution of orientation angles is calculated
such that the magnitude of angles lies between 180° and
180° and the number of bins equals 40 with an equal
number of bins for positive and negative magnitudes. The
shape asymmetry is determined as

Asy ¼
X20

i¼1
hi � h�ið Þ ð6Þ

Here h− i denotes the histogram count of ith bin of
negative magnitudes, and hi denotes the histogram count
of the corresponding bin of positive magnitudes. Note that
we do not take the absolute value of differences. A net
positive value of Asy indicates that the orientation angles
have a net positive leaning, while a negative Asy indicates a
net negative leaning. Thus, the sign and magnitude of Asy
indicates an “asymmetry vector.”
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Experiments and Results

The datasets comprised of samples from 26 patients diagnosed
with CD (mean age, 36 years; range, 19–72 years; 17 females
and 9males) at the AcademicMedical Center (AMC), Amster-
dam, TheNetherlands. Two radiologists withmore than 7 years
of experience with dealing with abdominal MR images anno-
tated regions (with consensus) corresponding to diseased, nor-
mal, and background (normal nonintestine) on the 26 patients.
Patients fasted 4 h before a scan and drank 1,600 ml of
mannitol (2.5%) (Baxter, Utrecht, The Netherlands) 1 h before
the scan. Images were acquired with patients in supine position
using a 3-T MR imaging unit (Intera, Philips Healthcare, Best,
The Netherlands) with a 16-channel torso phased array body
coil. The protocol consists of axial and coronal single-shot fast-
spin echo (SSFSE) sequences followed by a coronal fat satu-
rated SSFSE sequence and coronal 3D T1-weighted spoiled
gradient echo sequence. The spatial resolution of the images
was 1.02×1.02×2 mm, and the acquired volume dimension
was 400×400×100 pixels.

The number of samples was 6,827 from diseased regions,
5,156 from normal, and 3,725 from background regions. Here,
each sample refers to the feature vector from a pixel’s multiple
neighborhoods. We employ a tenfold cross-validation (leave-
one-out) approach for testing our classifier’s performance.
Each sample class is divided into roughly ten equal parts, of
which nine parts are used for training and the other one for
testing. The study was approved by the AMC’s ethics commit-
tee andwaived informed consent. The study was in accordance
with the rules of the European Community’s Seventh Frame-
work Programme. Our method was compared with DCTWT
and Asy. Each of the three methods was evaluated using three
different classifiers, random forests (RF), support vector
machines (SVM), and a Bayesian classifier (BC).

Classifiers

Random forests [37] have been successful in a variety of
domains and compare favorably with other state-of-the-art
algorithms [38]. A random forest is an ensemble of decision

Fig. 2 a Illustration of sectors for entropy, b, c diseased patch, and corresponding map of orientation angles; d, e normal patch and corresponding
map of orientation angles; f plot of entropy values for the two patches. The color bars show the angle magnitude in degrees

924 J Digit Imaging (2013) 26:920–931



trees where each tree is trained with a different subset of the
training data to improve the classifier’s generalization abil-
ity. Training finds the set of tests that best separate the
training data into different classes. Random forests and their
variants have been used to detect abnormalities in mammo-
grams [29] and identify coronary artery stenoses [21] and
semantic segmentation in CT images [39]. In our experi-
ments, 100 trees were used for the RF classifier.

SVMs construct a hyperplane or set of hyperplanes in a
high-dimensional space, which can be used for classifica-
tion, regression, or other tasks. Intuitively, a good separation
is achieved by the hyperplane that has the largest distance to
the nearest training data of any class (so-called functional
margin). In general, the larger the margin, the lower the
generalization error of the classifier. SVMs have also seen
wide application in classification tasks like brain tumor
segmentation [40, 41], chest pathologies [25], and glaucoma
classification [10], among others. For SVMs, we use the
LIBSVM package [42] and define a radial basis function
(RBF) as the kernel.

The default naive Bayesian classifier in MATLAB was
the third classifier. A Bayesian classifier was chosen to
highlight the linearly non-separable nature of the data and
the advantages of having a RBF kernel in SVMs. We have
two classification stages for all classifiers. For all classifiers,

we employ tenfold cross-validation (leave-one-out with ten
subsets of the original data) approach.

Classification Results for Stage 1

Table 1 shows the average accuracy and sensitivity of the first
classification stage using tenfold cross-validation. Here, each
sample is classified as either intestine or background. The
highest classification accuracy is obtained using our features,
the results of which are shown in the box plots of Fig. 3. In this
stage, we desire a high sensitivity or true-positive rate (TPR)
even at the expense of low overall accuracy. True positive
refers to an intestine sample correctly classified as intestine.
We do not want an intestine sample to be incorrectly labeled as
background, thus increasing the false-negative rate (FNR). In
such a situation, the diseased samples (which are part of
intestine in the first stage) get classified as background and,
hence, escape the scrutiny of the next stage. This is particu-
larly undesirable in a clinical decision making system.

In trying to reduce the FNR, we observe an increase in
false-positives, i.e., increasing number of background
regions are identified as intestine. This situation does not
adversely affect the outcome of the decision system. The
background regions classified as intestine are invariably
identified as normal in the second classification stage. Those

Table 1 Quantitative measures for the Stage 1 classification for various features and using different classifiers

Asy DTCWT OurFeatures

SVM BC RF SVM BC RF SVM BC RF

Accuracy (%) 80.4 (2.6) 72.0 (2.3) 79.9 (2.2) 82.2 (2.4) 71.3 (2.9) 80.1 (2.5) 86.4 (1.5) 73.2 (4.4) 83.3 (4.1)

Specificity (%) 67.9 (1.8) 41.5 (1.8) 68.0 (1.7) 68.1 (1.6) 42.7 (1.7) 67.6 (1.8) 71.1 (1.8) 49.1 (2.1) 70.6 (2.2)

Sensitivity (%) 86.2 (1.9) 81.5 (1.4) 84.6 (1.8) 93.9 (2.7) 88.3 (2.1) 85.7 (1.9) 96.7 (1.2) 90.1 (6.5) 92.1 (4.1)

Precision (%) 90.1 (1.1) 77.9 (1.8) 89.6 (1.3) 92.1 (2.1) 78.8 (1.7) 89.5 (1.1) 96.3 (1.8) 80.4 (4.2) 90.9 (2.9)

Values indicate mean (standard deviation)

Fig. 3 Box plots for Stage 1 classification: a Accuracy; b Sensitivity. c ROC curves for three classifiers using OurFeatures
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background regions identified as diseased in the second
stage can be discarded by examination of a clinician.

Classifiers’ Performance in Stage 1 A comparison of ROC
curves of all three methods using RF classifier in Stage 1 is
shown in Fig. 3c. During tenfold cross-validation, sensitivity
and specificity values are obtained for each run which are then
used to draw the ROC curves. All the three methods give high
sensitivity (more than 90 %), but their specificity values are
comparatively lower, indicating a large number of false-
positives. The overall accuracy (i.e., correct classification
percentage of both intestine and background samples) is lower
than 86 % in all cases. This indicates a high number of false
positives, i.e., many background samples are classified as
intestine. This is not a disadvantage since these incorrectly
labeled background samples are invariably identified as nor-
mal in Stage 2. It is interesting to note that BC has an overall
accuracy less than 75 %, because of a high number of false-
positives. This is reflected in the specificity values in Table 1
and the ROC curves in Fig. 3c. This gives some interesting
insight into the nature of data and performance of classifiers.
BC can find a good decision boundary for data which are
linearly separable, or which have low overlap amongst the
feature values. For different classes which have similar feature
values, BC produces lots of errors. The performance of
different classifiers suggests that our data have such char-
acteristics. In spite of the low specificity, BC shows an
accuracy of 74 % because the number of background
samples is about a third of the number of intestine samples.
Had the number of samples been equal, then BC’s accuracy
would have been still lower. All classifiers perform better
than a random classifier.

In order to achieve good discrimination, it is important that
the samples in the training set represent all possible variations

in the real world. However, this is not always possible in
practice. Feature selection plays an important role in order to
make the best use of the available samples. Intensity, texture,
and shape asymmetry provide lot of important discriminating
information between the different classes. An additional factor
is multi-scale feature extraction which overcomes issues like
choosing an appropriate neighborhood and sufficient neigh-
bors to get a stable statistical measure.

Importance of Different Features

We also investigate the importance of different features in
our classification framework. Here, we report the results of a
combination of different features using the RF classifier.
Table 2 shows different quantitative measures for Stage 1
classification using only intensity, texture, and shape asym-
metry and their different combinations. As expected, the
sensitivity and accuracy for the individual features are lower
than the values in Table 1. The combination of texture and
shape features produces results that are closest to the values
in Table 1. However, this does not indicate that intensity
information is unimportant. Conducting a t test on the values
for Tex+Shape (Table 2) and All Features (Table 1) gives
p<0.032 which clearly indicates statistically different
results. Furthermore, we also conduct t tests for features
Tex versus Tex-Int, and Shape versus Shape-Int. In both
cases, we find that p<0.04, thus clearly showing that
inclusion of intensity statistics improves classification
accuracy.

DTCWT Versus Tex DTCWTalso calculates texture maps of
an image. While DTCWT only calculates the mean across
different orientations and scales, Tex calculates mean, vari-
ance, skewness, and kurtosis across orientation and scales.

Table 2 Quantitative measures for individual and different combination of features using RF classifier

Int Tex Shape Tex+Int Shape+Int Shape+Tex

Accuracy (%) 77.1 (2.3) 81.6 (2.1) 79.1 (2.7) 79.2 (1.3) 79.5 (2.4) 82.3 (1.3)

Sensitivity (%) 79.3 (3.2) 86.9 (2.1) 82.3 (1.9) 83.1 (3.1) 83.8 (2.3) 86.6 (2.8)

Values indicate mean (standard deviation)

Table 3 Quantitative measures for the Stage 2 classification for various features and using different classifiers

Asy DTCWT OurFeatures

SVM BC RF SVM BC RF SVM BC RF

Accuracy (%) 81.5 (1.3) 59.1 (0.9) 81.7 (1.2) 82.2 (1.4) 58.4 (6.1) 81.9 (1.2) 89.5 (2.6) 62.8 (5.4) 88.9 (1.5)

Specificity (%) 80.8 (3.1) 35.1 (4.8) 83.4 (2.4) 82.8 (1.4) 37.7 (2.7) 84.2 (1.9) 90.2 (1.7) 39.3 (4.1) 90.1 (1.6)

Sensitivity (%) 84.5 (1.9) 60.5 (1.2) 84.9 (1.8) 86.9 (1.7) 61.3 (8.2) 86.1 (1.9) 91.9 (2.6) 64.8 (9.7) 90.4 (1.2)

Precision (%) 82.9 (1.4) 59.7 (1.9) 82.7 (1.5) 85.3 (1.4) 59.7 (5.4) 84.9 (1.4) 90.2 (2.0) 63.3 (4.3) 88.9 (1.3)

Values indicate mean (standard deviation)
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Thus, it is expected that Tex would be a more accurate
measure than DTCWT, and it is reflected in the quantitative
measures for Tex (Table 2) and DTCWT (Table 1).

Asy Versus Shape The difference between the two features
is that, while Asy operates on the whole patch, Shape oper-
ates on different sectors of the patch. They also differ in

their approach to determining asymmetry. Asy calculates
asymmetry as the difference in “positive” and “negative”
histograms of orientation distributions. On the other hand,
Shape characterizes asymmetry as the entropy of orientation
angles in each sector. A comparison of the results for Shape
(Table 2) and Asy (Table 1) show that their performance is
very similar, with p=0.13.

Fig. 4 Box plots for Stage 2 classification: a Accuracy; b Sensitivity. c ROC curves for three classifiers using Ourfeatures

Fig. 5 Visual results for CD detection in Patient 23. First row shows
results of RF using different features (our features, DTCWT, and Asy).
Second row shows performance of different classifiers (RF, SVM, and

BC) using our features. The two images in the first column are identical
and are shown for continuity
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Classification Results for Stage 2

Those samples that are identified as intestine in the first
stage are considered in Stage 2 for further classification into
diseased or normal. Suppose there are N number of intestine
samples at the beginning of Stage 1, out of which Nd are
diseased and Nn are normal, i.e., Nd+Nn=N. In Stage 1, let
N2 intestine samples be correctly classified, out which Nd2
are diseased and Nn2 are normal. The sensitivity of Stage 1
is calculated using N2 and N. The N2 number of samples is
now considered for classification in Stage 2. At the end of
Stage 2, suppose the number of correctly classified diseased
samples to be Nd3 and the number of correctly classified
normal samples, Nn3. The different quantitative measures
for Stage 2 are based on the original number of samples at
the beginning of Stage 1, i.e., Nd and Nn. Below, we shall
define the different measures:

1. Accuracy: the number of diseased and normal samples
that were correctly classified, i.e., (Nd3+Nn3)/N.

2. True-positives (TP): number of correctly classified dis-
eased samples(Nd3).

3. True-negatives (TN): number of correctly classified nor-
mal samples (Nn3).

4. False-positives (FP): number of normal samples classi-
fied as diseased (Nn-Nn3).

5. False-negatives (FN): number of diseased samples iden-
tified as normal. (Nd-Nd3).

6. True-positive rate (TPR) : TPR ¼ TP
TPþFN ¼ Nd3

Nd
. It is the

same as sensitivity and recall.
7. True-negative rate (TNR) : TNR ¼ TN

TNþFp ¼ Nn3
Nn

. It is the
same as specificity.

8. 8. Precision ¼ TP
TPþFP ¼ Nda

Nd3þNn�Nn3
. It is the fraction of

retrieved instances that are relevant. In this case, retriev-
ing diseased samples is relevant.

Table 3 shows the accuracy and sensitivity after the final
classification stage, i.e., an indicator of performance over the
originalN samples. Although BC’s accuracy and TPR in Stage
1 was comparable to RF and SVM, it showed significantly
worse results for Stage 2. From the results of BC, we infer that
the feature values of diseased and normal samples are not
linearly separable. This supports our use of features from
multiple scales. The high difference of measures between BC

Fig. 6 Visual results for CD detection in Patient 16. First row shows
performance of RF using different features (our features, DTCWT, and
Asy). Second row shows performance of different classifiers (RF, SVM,

and BC) using our features. The two images in the first column are
identical and are shown for continuity
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and the other classifiers in Stage 2 as compared with the
corresponding values in Stage 1 can be explained as follows.
The extracted features of diseased and normal samples have
lower differences than the feature values of background and
intestine (normal and diseased) samples. Thus, in Stage 1, BC
did a good job because intestine and background samples
formed “clusters” which were reasonably distant. However,
diseased and normal samples seem to form clusters that are not
very far apart. This would explain the low accuracy, sensitivity,
and specificity values for BC in Stage 2. These observations
make a stronger case for RF and SVMs using RBF kernels.

Figure 4 shows the box plots of accuracy and sensitivity, and
ROC curves whenwe consider Stage 2 as different classification
process without any link to Stage 1. The accuracy and sensitivity
are calculated only over the samples that pass Stage 1, i.e., TRP

(Sensitivity)= Nda
Nd

; Accuracy=(Nd3+Nn3)/(Nd2+Nn2). Obvious-

ly, the values will be higher than those reported in Table 3
(which are based on all the original number of samples). The
box plots and ROC curves indicate that a high percentage of
each sample type is correctly classified by both SVM and RF.
This is highly desirable because, ultimately, we would like to
detect the diseased regions from abdominalMRI.During tenfold
cross-validation, sensitivity and specificity values are obtained
for each run which are then used to draw the ROC curves.

Results on Real Patient MRI

Figure 5 shows visual results for CD detection in Patient 23.
After classification, we generally get one large cluster and
smaller isolated clusters. Isolated clusterswith less than 10 pix-
els were removed, and the large cluster was transformed into a
single continuous region using contour fitting. The first row
shows the detection results obtained using the RF classifier
with the three methods namely our features, DTCWT and Asy.
The manually annotated diseased regions are shown in red
while the result of automatic detection is shown in green. The
figures show that our features give the best performance.
DTCWT and Asy both detect less number of diseased pixels,
which can prove to be critical in decision making systems.
They also identify many background or normal pixels as
diseased (false-positives), while using our features the number
of false-positives is very low.

The second row of the same figure shows the detection
results using our features with different classifiers, namely RF,
SVM, and BC. The two figures in the first column are the same
but have been shown for consistency. Although our features
give the best performance using RF, the results vary depending
upon the choice of classifier. SVM’s performance is close to that
of RFs in terms of high true-positives and low false-positives.
However, BC shows significantly poor performance than the
other two classifiers with low true-positives and high false-
positives because of its limited ability to handle non-linearly
separable data.Wewould like to point out that, if we use a linear
kernel in SVMs, it performs poorly than RFs, and is closer to
BC’s performance. Figure 6 shows the detection results on
Patient 16, where there are two diseased regions to be detected.
Again, our features perform better than DTCWT and Asy; RF
and SVM show similar performance, and BC performs poorly.

The manual annotations can be treated as ground truth
segmentations. The pixels identified as diseased or normal
can be grouped together to form automatic segmentations.
Thus, we can calculate measures like Dice metric (DM) and
Hausdorff distance (HD) between the two regions. The
average DM and HD values are summarized in Table 4.

Importance of Multi-scale Feature Extraction

Althoughmulti-scale feature extraction leads to a slight increase
in computation time, it contributes toward to higher classifica-
tion accuracy. Table 5 summarizes the performance of our
features for different neighborhoods using RF classifiers over
all samples. Results are shown only after Stage 2, although the
analysis was carried out for both Stage 1 and Stage 2. 1 Scale
refers to features extracted from a 25×25 neighborhood; 2

Table 5 Accuracy percentage and computation time for multi-scale
feature extraction and comparison with other methods

Asy DTCWT Our
Features

1 Scale 2 Scales

Accuracy
(%)

81.7 (1.2) 81.9 (1.2) 88.9 (1.5) 84.3 (1.9) 80.1 (1.5)

Computation
time (s)

349 (14) 404 (21) 463 (24) 415 (22) 381 (17)

Values indicate mean (standard deviation)

Table 4 Average DM and HD values after Stage 2 using different features and classifiers

Asy DTCWT OurFeatures

SVM BC RF SVM BC RF SVM BC RF

DM (%) 84.1 (1.1) 79.3 (2.4) 84.7 (1.5) 85.3 (2.1) 80.1 (2.3) 85.6 (1.4) 90.3 (2.1) 81.8 (2.1) 90.9 (1.2)

HD
(pixels)

3.4 (2.1) 6.3 (2.8) 3.5 (1.8) 3.1 (1.2) 6.7 (2.2) 3.2 (2.1) 2.1 (1.1) 4.8 (1.6) 2.0 (1.1)

Values indicate mean (standard deviation)
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Scales refers to features extracted from a 25×25 and 30×30
neighborhoods. The computation time is shown for the whole
pipeline consisting of Stage 1 and Stage 2 for a 100×30 man-
ually drawn ROI. The results clearly indicate thatOur Features
(multi-scale feature extraction) improves accuracy measures
significantly over 1 Scale (p<0.01 from ttests) and 2 Scales
(p<0.018). However, the corresponding extra computation time
is not significantly high. Therefore, we can include multi-scale
features without a large increase in computation time.

Conclusion

In this paper, we have proposed a method to identify regions in
the human gastrointestinal tract that are afflicted with Crohn’s
disease. Higher order intensity and texture statistics, and shape
asymmetry information are extracted at multiple scales and
used to discriminate between diseased, normal, and back-
ground regions. Higher-order statistics capture image proper-
ties that are not discernible to the human eye. Our shape
asymmetry measure is simple to compute and is informative
in detecting diseased regions. We compare our features with a
wavelet–transform-based feature (DTCWT) and asymmetry
descriptor (Asy) using three standard classifiers. Experimental
results show that our designed feature vector performs better
thanAsy andDTCWT. Our results indicate that Crohn’s disease
can be detected from MR images and, thus, reduce reliance on
invasive procedures like colonoscopy and biopsy. With further
improvements of our method in the future, we can hope to
build a reliable detection and CD classification system.

Our system also has its limitations: (1) manual definition of
ROI is not always possible. Therefore, we are working on a
reliable method to detect regions of disease activity (i.e., the
ROIs). Once an approximate ROI is identified, each pixel
within it can be further analyzed for disease activity; (2) a
two-stage classification takes lot of time which can be reduced
by efficient coding and faster feature extraction; (3) post-
processing to remove isolated pixel clusters increases the
manual involvement. We are working on a solution using
segmentation frameworks (like graph cuts) that inherently
impose spatial smoothness constraints and produce a coherent
segmentation of diseased regions.
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