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Abstract Characterization of hepatocellular carcinomas
(HCCs) and metastatic carcinomas (METs) from B-mode
ultrasound presents a daunting challenge for radiologists
due to their highly overlapping appearances. The differential
diagnosis between HCCs and METs is often carried out by
observing the texture of regions inside the lesion and the
texture of background liver on which the lesion has evolved.
The present study investigates the contribution made by
texture patterns of regions inside and outside of the lesions
for binary classification between HCC and MET lesions.
The study is performed on 51 real ultrasound liver images
with 54 malignant lesions, i.e., 27 images with 27 solitary
HCCs (13 small HCCs and 14 large HCCs) and 24 images
with 27 MET lesions (12 typical cases and 15 atypical
cases). A total of 120 within-lesion regions of interest and
54 surrounding lesion regions of interest are cropped from
54 lesions. Subsequently, 112 texture features (56 texture
features and 56 texture ratio features) are computed by
statistical, spectral, and spatial filtering based texture fea-
tures extraction methods. A two-step methodology is used

for feature set optimization, i.e., feature pruning by removal
of nondiscriminatory features followed by feature selection
by genetic algorithm–support vector machine (SVM) ap-
proach. The SVM classifier is designed based on optimum
features. The proposed computer-aided diagnostic system
achieved the overall classification accuracy of 91.6 % with
sensitivity of 90 % and 93.3 % for HCCs and METs,
respectively. The promising results obtained by the pro-
posed system indicate its usefulness to assist radiologists
in diagnosing liver malignancies.

Keywords Texture analysis . B-Mode liver ultrasound .

Hepatocellular carcinoma .Metastasis . Primary malignant
liver lesion . Secondary malignant liver lesion . Genetic
algorithm . Support vector machine classifier . Small
hepatocellular carcinoma . Large hepatocellular carcinoma .

Typical metastasis . Atypical metastasis . Focal liver lesions

Introduction

The real-time imaging capabilities offered by widely avail-
able ultrasound (US) imaging modality along with its inex-
pensive, nonradioactive, and noninvasive nature makes it a
first-line examination for screening of focal liver lesions
(FLLs) [1, 2]. However, there are certain disadvantages
associated with the use of conventional gray-scale US for
characterization of FLLs. (1) There is limited sensitivity for
detection of small FLLs (<2 cm) developed on cirrhotic liver
which is already nodular and coarse-textured [3–5]. (2)
Sonographic appearance of hepatocellular carcinoma
(HCC), primary malignant solid FLL and metastatic carci-
noma (MET), secondary malignant solid FLL are highly
overlapping [1, 3–6].

The sensitivity of contrast-enhanced US, contrast-
enhanced spiral computed tomography, and magnetic reso-
nance imaging modalities for detection and characterization

J. Virmani (*)
Biomedical Instrumentation Laboratory, Department of Electrical
Engineering, Indian Institute of Technology Roorkee,
Uttarakhand 247667, India
e-mail: jitendra.virmani@gmail.com

V. Kumar
Department of Electrical Engineering, Indian Institute
of Technology Roorkee, Uttarakhand 247667, India
e-mail: vinodfee@gmail.com

N. Kalra :N. Khandelwal
Department of Radiodiagnosis and Imaging, Post Graduate
Institute of Medical Education and Research, Sector-12,
Chandigarh 160012, India

N. Kalra
e-mail: navkal2004@yahoo.com

N. Khandelwal
e-mail: khandelwaln@hotmail.com

J Digit Imaging (2013) 26:1058–1070
DOI 10.1007/s10278-013-9578-7



of FLLs is higher than conventional gray-scale US, but
these modalities are not widely available, expensive,
and pose greater operational inconvenience [1, 3–6].
Therefore, a computer-aided diagnostic (CAD) system
for accurate characterization of primary and secondary
malignant FLLs based on conventional gray-scale US is
highly desired to facilitate radiologists in clinical
environment.

Among malignant FLLs, the present study is focused on
characterization of HCC (most common primary malignant
FLL) and MET (most common secondary malignant FLL).
For the present work, benign FLLs such as hemangioma
(HEM) and cyst are not considered because experienced
participating radiologists (co-authors of this paper) having
13 and 23 years of experience in US imaging opined that
HEM and cysts can be easily diagnosed from B-mode US
with their classic diagnostic features. Typically, HEM
appears as a well-circumscribed and uniformly hyperechoic
lesion and cyst appears as a well-defined, rounded, anechoic
lesion with thin imperceptible walls and posterior acoustic
enhancement [1, 4, 5]. These typical sonographic appearan-
ces of benign FLLs can easily be differentiated from malig-
nant FLLs, but differentiation between HCC and MET
malignant lesions presents a daunting challenge even for
experienced radiologists.

Early and accurate characterization of malignant FLLs is
necessary because treatment options like curative surgical
resection or successful percutaneous ablation are only pos-
sible if these malignancies are detected early [3, 5]. How-
ever, the practical problem faced by radiologists during
routine practice is highly overlapping sonographic appear-
ances of HCC (small and large HCCs on top of cirrhosis)
and MET lesions (atypical METs) [1, 4, 5].

In 85 % of cases, HCC occurs in patients with cirrhosis.
In fact in radiology practice, the condition of cirrhosis is
seen as a precursor to the development of HCC [1, 3–5]. The
only feature which favors the possibility of HCC in differ-
ential diagnosis between HCC and other FLLs is that HCC
is most commonly associated with cirrhosis [1]. The sono-
graphic appearances of small HCCs (<2 cm) vary from
hypoechoic to hyperechoic. Large HCCs appear frequently
with mixed echogenicity [4, 5]. A lesion can be labeled as
typical in appearance when its subjective diagnosis can be
made with a good confidence level by looking at the US
examination. Experienced participating radiologists opined
that the HCC case series should not be isolated as having
typical or atypical sonographic appearance because of wide
variability of sonographic appearances even within small
and large HCCs; therefore, no sonographic appearance is
typical for HCC. A representative dataset for designing the
classifier should contain both small and large HCCs.

The occurrence rate of MET is 20 times more than that of
HCC eventually because liver is the most common site for
metastatic disease [5, 6]. Metastatic deposits may appear as
single solitary mass or multiple masses of varying sizes. The
sonographic appearance of MET lesions is extremely variable
ranging from anechoic, hypoechoic, isoechoic, hyperechoic,
and even with mixed echogenicity [1, 3–6]. However, the
typical sonographic appearance of MET lesion is the “target”
or “bull’s-eye” appearance (i.e., hypoechoic center surrounded
by a hyperechoic rim) [1, 7, 8]. Diagnosis of these typical MET
lesions can be made easily by an experienced radiologist from
B-mode US, but differentiating atypical metastasis from HCCs
lesions is considerably difficult. The sample images of small
HCC, largeHCC, typicalMET, and atypicalMET lesions from
the acquired database are shown in Fig. 1.

Fig. 1 Ultrasound liver images. a Small HCC image. b Large HCC image. c Typical MET image. d Atypical MET image. In (c), typical “bull’s-
eye” appearance of MET lesion alternating layers of hyper- and hypoechoic tissue are clearly visible
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The sonographic characterization of HCC and MET
lesions is often carried out not only by observing the textural
characteristics of regions inside the lesion but also by the
texture of the background liver on which the lesion has
evolved [1, 9]. The experienced participating radiologists
opined that the textural characteristics of the neighboring
liver parenchyma surrounding the lesion should contribute
for differentiating the HCC and MET lesions from B-mode
US. The present work investigates the contribution of tex-
ture of surrounding liver parenchyma in characterization of
HCC and MET malignant liver lesions.

The related researches in literature for characterization of
FLLs are few. The brief details of these studies [8, 10–12]
are depicted in Table 1.

The study in [10] reported classification of benign, malig-
nant, and normal liver with statistical texture analysis methods
by using linear discriminant analysis and neural network
classifier. The study in [12] reported classification of cyst,
HEM, strike out this and malignant and normal liver with
manually selected optimal statistical and spectral texture fea-
tures by using a neural network classifier. A CAD system for
classification in five classes, namely, HEM, cyst, HCC, MET,
and normal liver, is proposed in [8]. However, their proposed
CAD system is developed using a large feature vector con-
sisting of 208 features extracted with statistical, spectral, and
spatial filtering based methods and neural network classifiers.
In studies [10, 12], malignant lesions are considered as single
class; however, the characterization of malignant lesions as
HCC or MET lesions is clinically significant for effective
treatment and management of liver malignancies [3, 5]. The
study in [8] used the region of interest (ROI) size of 25 × 25
pixels for computing texture features; however, in [10, 11] the
use of ROI size of 10 × 10 pixels is reported. The use of 10 ×
10 pixels and even 25 × 25 pixels as ROI size yields a smaller
number of pixels in comparison to minimum 800 pixels
required to estimate reliable statistics [13–15].

The related research reported in [12] used wavelet
packet texture descriptors with neural network classifier
for binary classification tasks, i.e., HEM vs. HCC, HEM
vs. MET, and HCC vs. MET. Among these, the lowest
characterization performance for HCC vs. MET is
reported on their data. Their study reports the use of
64 × 64 pixels as ROI size, possibly because they used
high-resolution scanned images instead of real US
images. It is otherwise difficult to select such a large
ROI size keeping in view the size of small lesions and
resolution of images obtained from US machines.

According to the best of the authors’ knowledge, all the
researches in literature for characterization of FLLs have
considered only the texture patterns of regions inside the
lesions, and a CAD system for characterization of HCC and
MET lesions has not been experimented as yet. The present
study investigates the contribution made by texture patterns

of regions inside and outside of the lesions for binary
classification of HCC and MET lesions.

In the present work, support vector machine (SVM) has
been chosen for the classification task because classifier
designs which use regularization like SVM are less prone
to overfitting and obtain good generalization performance to
a certain extent even without feature space dimensionality
reduction [16–18]. Extensive literature surveys on texture
classification reveal that SVM has shown remarkable per-
formance for classification of medical images [19–27].

Materials and Methods

Data Collection and Description

Data Collection For the present work, 51 images were
collected from 51 different patients; out of these 27 images
are HCC images with 27 solitary HCC lesions and 24
images are MET images with 27 MET lesions, i.e., 21
MET images with solitary MET lesion and 3 MET images
with 2 MET lesions each. These images were collected from
different patients visiting the Department of Radiodiagnosis
and Imaging, Post Graduate Institute of Medical Education
and Research (PGIMER), Chandigarh, India over the time
period from March 2010 to December 2011. Informed con-
sent of patients for using these images for research was
taken prior to recording. The medical ethics board of
PGIMER, Chandigarh, granted the ethical clearance to carry
out this research work. The direct digital images recorded by
using Philips ATL HDI 5000 US machine equipped with
multifrequency transducer of 2–5 MHz range were used.
The size of the images is 800 × 564 pixels with gray scale
consisting of 256 tones, and horizontal as well as vertical
resolution is 96 dpi. The following protocols were followed
for data collection:
(1) The judgment regarding the diagnostic quality (free
from artifacts) and representativeness of each image
class (HCC and MET) was made by two domain
experts (co-authors of this paper) with 13 and 23 years
of experience in US imaging. (2) The acquired dataset
contained 27 HCC images with 27 solitary HCC lesions
comprising of 13 small HCC lesions and14 large HCC
lesions. While recording these images, both transverse
and longitudinal views of each image were observed to
determine the size of each lesion. (The HCC lesion was
considered as small if its size was less than or equal to
2 cm.) (3) Only HCCs evolved on cirrhotic liver are
considered. (4) The acquired dataset contained 24 MET
images with 27 metastatic lesions comprising of 12
lesions with typical bull’s-eye or target appearance and
15 MET lesions with variable sonographic appearances.
(5) The labeling of HCC lesions as small HCC and
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large HCC lesions and labeling of MET lesions as one
with typical target bull’s-eye appearance and other atyp-
ical sonographic appearances was done during data col-
lection solely for the purpose of having representative
data in training set for designing the classifier.

Selection of Regions of Interest (ROIs) The following pro-
tocols were followed for cropping the ROIs from the image
database (cropping here refers to extraction of ROIs not to
be confused with similar terminology used in photography
for removal of unwanted details/objects in the images):

Table 1 Studies on classification of FLLs

Authors (year) Liver image classes Dataset description

Patients Images per class No. of ROIs ROI size

Sujana et al.
(1996) [10]

NOR – – 113 10 × 10 pixels
HEM

Malignant

Classifier used Distribution of ROIs for classifier design
Neural Network LDA Training data Testing data

NOR (40) NOR (13)

HEM (15) HEM (5)

Malignant (30) Malignant (10)

Yoshida et al.
(2003) [12]

HEM 44 HEM (17) 193 64 × 64 pixels
Malignant (HCC+MET) HCC (11)

MET (16)

Classifier used Cross-validation procedure
Neural Network HEM (50)

HCC (87)

MET (56)

Poonguzhali et al.
(2008) [11]

NOR – – 120 10 × 10 pixels
Cyst

HEM

Malignant

Classifier used Cross-validation procedure
Neural Network NOR (30)

Cyst (30)

HEM (30)

Malignant (30)

Mittal et al.
(2011) [8]

NOR 88 NOR (16) 800 25 × 25 pixels
Cyst Cyst (17)

HEM HEM (18)

HCC, MET HCC (15)

MET (45)

Classifier used Training data Validation data Testing data

Neural Network NOR (50) NOR (10) NOR (172)

Cyst (50) Cyst (10) Cyst (6)

HEM (50) HEM (10) HEM (30)

HCC (50) HCC (10) HCC (167)

MET (50) MET (10) MET (125)

Present study
(2013)

HCC 51 HCC (27) 174 (120 WLROIs, 54 SLROIs) 32 × 32 pixels
MET MET (24)

Classifier used Training data Testing data

SVM HCC (30) HCC (30)
MET (30) MET (30)

In the present work, HCCs evolved on cirrhotic liver are considered

WLROIs within-lesion ROIs, SLROIs surrounding lesion ROIs, SVM support vector machine
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(1) The ROIs were cropped by an experienced participat-
ing radiologist by using a specially designed ROI manager

software developed in Biomedical Instrumentation Labora-
tory, Indian Institute of Technology, Roorkee. This ROI
manager software provided the radiologist the flexibility to
load the image, choose the ROI size and shape, move the
ROI to any desired location over the image, freeze the ROI
at any location, and crop the ROIs together after the position
of all the ROIs for a particular image is frozen. (2) Two
types of ROIs are used in this study, within-lesion ROIs
(WLROIs) and surrounding lesion ROIs (SLROIs). (3)
Maximum nonoverlapping WLROIs were cropped from
well within the boundary of each lesion. (4) The areas of
necrosis were avoided while cropping WLROIs. (5) For
each lesion, a single SLROI was cropped approximately at
the same depth as that of the center of the lesion. (6) SLROI
were cropped by avoiding the inhomogeneous structures
like hepatic ducts and blood vessels, etc.

In the present work, two types of features are considered
for analysis, i.e., texture features computed from WLROIs
and texture ratio features computed by taking the ratio of

Fig. 2 a HCC image with WLROIs and SLROI marked. bMET image
with WLROIs and SLROI marked. Necrotic area within the MET
lesion is avoided while cropping WLROIs
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texture feature computed from WLROI and texture feature
computed from corresponding SLROI.

It can be noted that HCC lesion in Fig. 2a contains five
WLROIs and a corresponding SLROI. Thus, five instances
of a single texture feature can be obtained with these five
WLROIs and five instances of texture ratio feature can be
obtained by dividing the texture feature value obtained for
each WLROI with the texture feature value obtained for the
corresponding SLROI.

Selection of ROI Size The ROI size should be chosen so as
to provide good statistical population for computing texture
features. In literature, different ROI sizes ranging from 10 ×
10 pixels [9, 11], 25 × 25 pixels [8], and 64 × 64 pixels [12]
have been chosen for classification of FLLs. After interac-
tion with the participating radiologists, ROI size of 32 × 32
pixels was considered appropriate for the present study
considering the facts mentioned below:

1. There is sufficient evidence in the literature that ROI size
must be at least 800 pixels to provide good sampling
distribution for estimating reliable statistics [13–15]; as
ROI size of 32 × 32 gives 1,024 pixels, it can be believed
that the computed texture parameters are reliable estimates.

2. During initial discussions with the participating radiol-
ogists, an attempt was made to mark larger ROI sizes,
but few practical difficulties were faced. Certain lesions
had necrotic area, radiologists opined that the necrotic
area inside lesions must be avoided while extracting
WLROIs, and it was not possible to consider large
ROI size for these lesions. Also, participating radiolog-
ists were of the view that SLROI for each lesion must be
selected by avoiding the inhomogeneous structures like
hepatic ducts and blood vessels, etc., which was practi-
cally difficult by considering larger ROI size.

3. For real-time implementation, small ROI size is always
favorable as time taken for feature extraction and clas-
sification is obviously less in comparison to large ROI
size. Also, with small ROI size, more number of sam-
ples are available for classifier design.

Interpretation by Radiologists One of the experienced par-
ticipating radiologist having more than 13 years of experience

confirmed the presence of HCC and MET lesions using liver
image assessment criteria including (1) visualization of sono-
graphic appearances, imaging features of FLLs based on their
knowledge and expertise, (2) follow-up of clinical history of
the patient and other associated findings, and (3) imaging
appearance on dynamic helical computed tomography (CT)/
magnetic resonance imaging (MRI)/pathological examina-
tions and biopsy, which is an invasive procedure.

Data Set Description The distribution of clinically acquired
database of 51 B-mode liver US images among HCC and
MET image categories and the bifurcation of ROIs in train-
ing and test data set is described in Fig. 3 below.

Proposed Computer-Aided Diagnostic System The block
diagram of the proposed CAD system is depicted in Fig. 4.

For implementation of the proposed CAD system, the
database of 120 nonoverlapping WLROIs and 54
SLROIs was created from 51 clinically acquired US
images. The CAD system consisted of feature extrac-
tion, feature selection, and classification modules. In
feature extraction module, texture features are computed
from WLROIs as well as SLROIs by gray-level co-
occurrence matrix (GLCM) [28], gray-level run length
matrix (GLRLM) [29–31], Fourier power spectrum
(FPS) [32], and Laws’ texture feature [33] extraction
methods. In feature selection module, initially feature
pruning is carried out by removal of nondiscriminatory
feature vectors followed by feature selection by genetic
algorithm–support vector machine (GA–SVM) approach.
The GA–SVM procedure results in optimal reduced set

Fig. 5 Nine 2-D Laws’ masks

Fig. 4 CAD system for characterization of malignant FLLs
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of features. In classification module, a support vector
machine (SVM) classifier is designed with the selected
optimal features. The SVM classifier is implemented
using LibSVM library [34].

Feature Extraction The general idea of feature extraction
is to convert both visually extractable and visually non-
extractable sonographic features into mathematical
descriptors. These mathematical descriptors are either
morphological (based on shape or contour of the lesion)
or textural features (based on intensity distribution) [35].
Both these morphological as well as textural features are
significant for developing CAD systems for breast
lesions from B-mode US [36–39]. Experienced partici-
pating radiologists opined that morphological sono-
graphic features of FLLs do not give any significant
information for their characterization; as also evident
from other related researches, the proposed CAD sys-
tems for characterization of FLLs from B-mode US
have relied on textural features only [8, 10–12].

Initially, a wide variety of visual and nonvisual echotexture
features are extracted by using statistical, spectral, and spatial
filtering based feature extraction methods. These features are
then applied in the present classification system with a tedious

task of combining the most relevant and effective features
while discarding the nonperforming features.

Statistical texture features are defined by the spatial distri-
bution of gray-level intensity values in the image. Local fea-
tures are computed at each point in the image and a set of
statistics are derived from the distribution of these local fea-
tures. Statistical methods are classified as first-order statistics,
second-order statistics, or higher-order statistics depending up-
on the number of pixels used in defining a local feature [8, 40].

Spectral features computed by FPS method such as radial
sum and angular sum of the discrete Fourier transform are
used to describe texture [32].

Spatial filtering based texture descriptors, i.e., Laws’ tex-
ture features, determine texture properties by performing local
averaging, edge detection, spot detection, wave detection, and
ripple detection in texture [33]. Laws’ texture features are
computed by using special 1-D filters of length 3, 5, 7, and
9. Different filter lengths correspond to different resolutions
for extraction of texture features from a ROI. In the present
work, 1-D filters of length 7, i.e., L7 = [1, 1, 6, 6, 15, 15, 20],
E7 = [−1, −4, −5, 0, 5, 4, 1], and S7 = [−1, −2, 1, 4, 1, −2, −1],
are used. Special 2-D filters called Laws’masks are derived by
outer vector product of these 1-D kernels with themselves or
with each other as shown in Fig. 5.

Table 2 Description of 112 texture features extracted for characterizing HCC and MET FLLs

Statistical methods Spectral method Spatial filtering method

GLCM features (13) GLRLM features (11) FPS features (2) Laws’ texture features (30)

F1: angular second moment F14: short run emphasis F25: angular sum F27: LLmean F45: LLkurt

F28: EEmean F46: EEkurtF2: contrast F15: long run emphasis F26: radial sum

F29: SSmean F47: SSkurtF3: correlation F16: low gray level run emphasis

F30: LEmean F48: LEkurtF4: sum of squares variance F17: high gray level run emphasis

F31: LSmean F49: LSkurt

F32: ESmean F50: ESkurt

F5: inverse difference moment F18: short run low gray level emphasis

F33: LLstd F51: LLenergy

F34: EEstd F52: EEenergy

F6: sum average F19: short run high gray level emphasis

F35: SSstd F53: SSenergy

F7: sum variance F20: long run low gray level emphasis

F36: LEstd F54: LEenergy

F8: sum entropy F21: long run high gray level emphasis

F37: LSstd F55: LSenergy

F9: entropy F22: gray level non uniformity

F38: ESstd F56: ESenergy

F10: difference variance F23: run length non uniformity

F39: LLskew

F11: difference entropy F24: run percentage

F40: EEskew

F12: information measures
of correlation—1

F41: SSskew
F42: LEskew

F13: information measures
of correlation—2

F43: LSskew

F44: ESskew

F57 to F112: 56 texture ratio features corresponding to above features (F1 to F56). [Note: the above 56 features (F1 to F56) are computed for each
WLROI and SLROI so as to compute another 56 texture ratio features (F57 to F112) corresponding to the above features]

F57–69: GLCM ratio
features (13)

F70–F80: GLRLM ratio
features (11)

F81–82: FPS
ratio features (2)

F83–F112: Laws’ ratio
features (30)
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The texture images are obtained by convolving the ROI
of size M × N with these 2D Laws’ masks, for example

TIE7E7 ¼ ROI� E7E7 ð1Þ

The output TIs are processed by texture energy measure-
ment (TEM) filters. The TEM filter performs moving aver-
age nonlinear filtering operation as depicted by:

TEI ¼ TEM TI x; yð Þ½ � ¼
X7

i¼�7

X7

j¼�7

I xþ i; yþ jð Þj j ð2Þ

Here, 15 × 15 descriptor windows are used to obtain nine
texture energy images (TEIs). Texture energy images
obtained by a pair of identical filters, for example, TEIE7L7
and TEIL7E7, are combined to obtain a rotational invariant
image (90° rotational invariance) (TR) [41].

TRE7L7 ¼ TEIE7L7 þ TEIL7E7
2

ð3Þ

Statistics derived from these TR images provide significant
texture information of ROI. Five statistics, i.e., mean, standard
deviation, skewness, kurtosis, and energy are extracted from
each TR image [41, 42]. Thus, 30 Laws’ texture features (6 TR
images × 5 statistical parameters) are computed for each ROI.

In the present work, statistical methods, i.e., GLCM and
GLRLM methods, spectral method, i.e., FPS method, and
spatial filtering based method, i.e., Laws’ texture feature
extraction method, are selected for the classification task.
The selection of these methods for the classification task is
based on other related researches with US images [13, 14,
41, 43] and few other studies for diagnosis of FLLs with US
images [8, 10–12].

For extraction of efficient diagnostic features for charac-
terization of liver malignancies, initially 112 features (56
features computed from WLROIs and 56 texture ratio fea-
tures) are computed using GLCM, GLRLM, FPS, and
Laws’ texture feature extraction methods as tabulated in
Table 2.

For computation of Laws’ texture features, different 1-D
filters of length 5, 7, and 9 were experimented as shown in
Table 3.

Statistics derived from TRs are used as feature vectors. In
the present work, five features, i.e., mean, standard devia-
tion, skewness, kurtosis, and energy, are computed from
TRs. Thus, feature vector of lengths 70, 30, and 70 are
obtained with 1-D filter of length 5, 7, and 9, respectively.
It was observed that the classification accuracy obtained by
SVM classifier by feature vector of length 30 obtained for
filter length 7 is higher in comparison with feature vectors of
length 70 obtained for filter lengths 5 and 9. Thus, 30 Laws’
texture features computed for filter length 7 are considered
for further analysis.

Feature Selection Feature selection is used to eliminate the
interference of irrelevant features which often increases the
time taken to perform classification task and also reduces
the classification accuracy. In the present work, two-step
methodology is followed for feature selection. In the first
step, initial feature pruning is carried out by removal of
nondiscriminatory individual texture feature vectors
(TFVs). The discrimination ability of a TFV is measured
by the classification accuracy obtained by SVM classifier.
Feature pruning yields a pruned TFV consisting of best-
performing individual TFVs.

In the second step, GA–SVM feature selection is applied
on pruned TFV; here binary genetic algorithm (GA) is used

Table 3 Description of various
1-D filters used for computation
of Laws’ texture features

TRs rotational invariant texture
images

Length of
1-D filter

1-D filter coefficients No. of 2-D
Laws’ masks (X)

TRs obtained
from identical
filters pairs (Y)

Total TRs
(X–Y)

5 L5=[1, 4, 6, 4, 1] 25 10 15

E5=[−1, −2, 0, 2, 1]

S5=[−1, 0, 2, 0, −1]

W5=[−1, 2, 0, −2, 1]

R5=[1, −4, 6, −4, 1]

7 L7=[1, 6, 15, 20, 15, 6, 1] 9 3 6

E7=[−1, −4, −5, 0, 5, 4, 1]

S7=[−1, −2, 1, 4, 1, −2, −1]

9 L9=[1, 8, 28, 56, 70, 56, 28, 8, 1] 25 10 15

E9=[1, 4, 4, −4, −10, −4, 4, 4, 1]

S9=[1, 0, −4, 0, 6, 0, −4, 0, 1]

W9=[1, −4, 4, 4, −10, 4, 4, −4, 1]

R9=[1, −8, 28, −56, 70, −56, 28, −8, 1]
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to evolve subsets of pruned TFV and the classification
accuracy obtained by the SVM classifier is used as a fitness
function. The GA–SVM feature selection procedure
removes irrelevant features from pruned TFV to yield an
optimal subset of discriminatory features. The main steps for
implementation of binary GA [39] are:

Step 1 Define fitness function and select GA run parame-
ters like population size, crossover type, crossover
rate, and mutation rate.

Step 2 Create initial population (a set of binary coded chro-
mosomes or genotypes).

Step 3 Decode chromosomes (binary chromosomes are
converted into candidate solutions or phenotypes).

Step 4 Fitness function (fitness evaluation of each candi-
date solution or phenotype).

Step 5 Selection (the selection of parents to enter the
mating pool based on fitness evaluation).

Step 6 Applying crossover andmutation to generate offsprings
Step 7 Create next generation (by evaluating offsprings

using fitness function)

The GA terminates when there is no improvement in the
fitness value or after a fixed number of successive iterations.
In the present work, single-point crossover is used and the
other run parameters are set as crossover rate equal to 0.7,
mutation rate equal to 0.05, and population size equal to 20
after a series of trials.

Table 5 Performance of SVM classifier for combined TFV of all 56 WLROI texture features

Classification performance SVM

TFV (l) CM Accuracy (%) Sen.HCC (%) Sen.MET (%)

GLCM , GLRLM, FPS and Laws’ texture
features WLROIs (56)

H M 61.6 60 63.3
H 18 12

M 11 19

TFV texture feature vector, l length of feature vector, CM confusion matrix, H HCC,MMET, Sen.HCC sensitivity for HCC cases, Sen.MET sensitivity
for MET cases

Here, Sensitivity of class A, denoted as Sen.A refers to (Number of cases correctly classified as class A/ Total number of cases in class A)

Table 4 Comparison of performance of SVM classifiers for various individual TFVs

Classification performance SVMs

TFV (l) CM Accuracy (%) Sen.HCC (%) Sen.MET (%)

GLCM features WLROIs (13) H M 58.3 53.3 63.3
H 16 14

M 11 19

GLCM ratio features (13) 20 10 70 66.6 73.3
8 22

GLRLM features WLROIs (11) 20 10 56.6 66.6 46.6
16 14

GLRLM ratio features (11) 22 8 71.6 73.3 70
9 21

FPS features WLROIs (2) 16 14 68.3 53.3 83.3
5 25

FPS ratio features (2) 17 13 53.3 56.6 50
15 15

Laws’ features WLROIs (30) 26 4 70 86.6 53.3
14 16

H M

Laws’ ratio features (30) 20 10 56.6 66.6 46.6
16 14

Best-performing individual TFVs are in bold

TFV texture feature vector, l length of feature vector, CM confusion matrix, H HCC,MMET, Sen.HCC sensitivity for HCC cases, Sen.MET sensitivity
for MET cases

Here, Sensitivity of class A, denoted as Sen.A refers to (Number of cases correctly classified as class A/ Total number of cases in class A)
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Classification

SVM Classifier The SVM classifier attempts to construct an
optimum hyperplane in the higher dimensional feature space to
separate the training data with minimum expected risk. Kernel
functions are used for nonlinear mapping of the training data
from input space to higher dimensional feature space. In the
present work, the performance of Gaussian Radial Basis Func-
tion kernel is investigated. For a detailed description of SVM
approach, additional information can be found in [16, 17].

A crucial step for obtaining good generalization perfor-
mance is correct choice of the regularization parameter C and
kernel parameter γ. The regularization parameter C attempts to
maximize the margin while keeping low value for training
error. In the present work, extensive search is carried out in
the parameter space for the values of C ∈ {2−4, 2−3… 215}, γ ∈
{2−12, 2−11… 24} using 10-fold cross-validation on training
data. To avoid the bias caused by unbalanced feature values,
the extracted features were normalized in the range [0, 1] by
using min–max normalization procedure. For the present work,
SVM classifier is implemented using LibSVM library [34].

Results

Rigorous experimentations were carried out to identify potential
TFVs of texture features and texture ratio features for character-
ization of HCC and MET FLLs. In all the experiments, the

discrimination ability of texture feature vectors (TFVs) has been
evaluated by using a SVM classifier.

In experiment 1, the discrimination ability of total 112 texture
features, i.e., total eight TFVs (four TFVs corresponding to
texture features and four TFVs corresponding to texture ratio
features) obtained by GLCM, GLRLM, FPS, and Laws’ feature
extraction methods is investigated. The results of experiment 1
are used to obtain a pruned TFV by removal of individual
nonperforming TFVs.

Experiments 2 and 3 investigate the discrimination ability
of combined TFVs, i.e., combined TFV consisting of all
texture features and combined TFV consisting of all texture
ratio features. It is observed that combined TFV consisting
of texture ratio features has more discrimination ability.

In experiment 4, the discrimination ability of pruned TFV
obtained as a result of experiment 1 is examined. Experiment
5 investigates the discrimination ability of optimal reduced
TFVobtained by passing pruned TFV to GA–SVM method.

Experiment 1 This experiment compares the performance of
SVM classifiers by use of various individual
TFVs. The results obtained are reported in
Table 4. It can be seen from Table 4 that
GLRLM texture ratio features provide highest
classification accuracy of 71.6 %. Both Laws’
WLROI features and GLCM ratio features
provide the second highest accuracy of 70 %. It
can also be observed that GLCM and GLRLM

Table 7 Performance of SVM classifier for pruned TFV

Classification performance SVM

Feature vector (l) CM Accuracy (%) Sen.HCC (%) Sen.MET (%)

GLCM, GLRLM texture ratio
features and FPS, Laws’
features WLROIs (56)

H M 80 76.6 83.3
H 23 7

M 5 25

TFV texture feature vector, l length of feature vector, CM confusion matrix,H HCC,MMET, Sen.HCC sensitivity for HCC cases, Sen.MET sensitivity for
MET cases

Here, Sensitivity of class A, denoted as Sen.A refers to (Number of cases correctly classified as class A/ Total number of cases in class A)

Table 6 Performance of SVM classifier for combined TFV of all 56 texture ratio features

Classification performance SVM

TFV (l) CM Accuracy (%) Sen.HCC (%) Sen.MET (%)

GLCM, GLRLM, FPS, and Laws’ texture
ratio features (56)

H M 78.3 70 86.6
H 21 9

M 4 26

TFV texture feature vector, l length of feature vector, CM confusion matrix, H HCC,MMET, Sen.HCC sensitivity for HCC cases, Sen.MET sensitivity
for MET cases

Here, Sensitivity of class A, denoted as Sen.A refers to (Number of cases correctly classified as class A/ Total number of cases in class A)
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ratio features show better characterization
performance than correspondingWLROI fea-
tures. Further, it can be noted that FPS and
Laws’ WLROI features show better charac-
terization performance in comparison to
corresponding ratio features.

Experiment 2 This experiment evaluates the performance of
SVM classifier by use of combined TFVof all
56 WLROI texture features. The results
obtained are reported in Table 5. It can be
seen from Table 5 that combined TFV of all
56 WLROI texture features provide a classi-
fication accuracy of 61.6 % for characteriza-
tion of HCC and MET FLLs.

Experiment 3 This experiment evaluates the performance of
SVM classifier by use of combined TFVof all
56 texture ratio features. The results obtained
are reported in Table 6. It can be seen from
Table 6 that combined TFVof all texture ratio
features provide classification accuracy of
78.3 %. For further experimentations, feature
pruning is carried out on the basis of classifi-
cation accuracy obtained by SVM classifier
for eight individual TFVs shown in Table 4.
The nonperforming individual TFVs are

removed and the best-performing individual
TFVs (highlighted in Table 4) are combined
to form a pruned TFV for adequate discrimi-
nation of HCC and MET FLLs.

Experiment 4 This experiment evaluates the performance of
SVM classifier by use of pruned TFV of
length 56 consisting of best-performing indi-
vidual TFVs. The results obtained are
reported in Table 7. From Table 7, it can be
seen that pruned TFV yields a classification
accuracy of 80 %. For further experimenta-
tion, this pruned TFV is subjected to GA–
SVM feature selection procedure which iter-
atively removes the irrelevant and interfering
features from the pruned TFV and returns an
optimal reduced TFVof length 9. Nine texture
features, i.e., four GLCM ratio features
(angular secondmoment, sum average, differ-
ence entropy, and inverse difference moment)
, three GLRLM ratio features (long run em-
phasis, gray level non uniformity, and long
run high gray level emphasis), one FPS
WLROI feature (radial sum), and one Laws’
WLROI feature (LLmean), are selected by
GA–SVM procedure.

Table 8 Performance of SVM classifier for optimal reduced TFV

Classification Performance SVM

TFV (l) CM Accuracy (%) Sen.HCC (%) Sen.MET (%)

Texture ratio features WLROIs
selected by GA–SVM method (9)

H M 91.6 90 93.3
H 27 3

M 2 28

TFV texture feature vector, l length of feature vector, CM confusion matrix, H HCC,MMET, Sen.HCC sensitivity for HCC cases, Sen.MET sensitivity
for MET cases

Here, Sensitivity of class A, denoted as Sen.A refers to (Number of cases correctly classified as class A/ Total number of cases in class A)

Table 9 Misclassification analysis of 60 cases of test data set

Misclassification analysis for HCC cases Misclassification analysis for MET cases

Total HCC cases: 30 Total MET cases: 30

Small HCC cases: 9, large HCC cases: 21 Typical MET cases:6, atypical MET cases: 24

Correctly classified: 27, misclassified: 3 Correctly classified: 28, misclassified: 2

Sensitivity HCC: 90 % Sensitivity MET: 93.3 %

1 out of 9 small HCC cases is misclassified All six typical MET cases are correctly classified

2 out of 21 large HCC cases are misclassified 2 out of 24 atypical MET cases are misclassified

SensitivitySHCC: 88.8 % SensitivityTypical MET: 100 %,

SensitivityLHCC: 90.4 % SensitivityAtypical MET: 91.6 %

SensitivitySHCC sensitivity for small HCC cases, SensitivityLHCC sensitivity for large HCC cases, SensitivityTypical MET sensitivity for typical MET
cases, SensitivityAtypical MET sensitivity for atypical MET cases

Here, Sensitivity of class A, denoted as Sen.A refers to (Number of cases correctly classified as class A/ Total number of cases in class A)
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Experiment 5 This experiment evaluates the performance of
SVM classifier by use of optimal reduced
TFVof length 9 consisting of features selected
by GA–SVM procedure. The results obtained
are reported in Table 8. From Table 8, it can
be observed that using optimal reduced TFV
consisting of nine features selected by GA–
SVM procedure with SVM classifier yields
the classification accuracy of 91.6 % and
sensitivity of 90 % and 93.3 % for HCC and
MET lesions, respectively. It is observed that
for the studied population consisting of small
HCCs, large HCCs, typical METs, and atyp-
ical METs, the proposed CAD system yields
high sensitivity values for differentiation be-
tween malignant lesions. The generalization
ability of the proposed CAD system can be
tested by analyzing larger datasets.

Discussion

Misclassification Analysis Analysis of five misclassified
cases out of 60 cases in the test data set is reported in Table 9.
It can be observed from Table 9 that sensitivity of proposed
CAD system for small HCC cases and large HCC cases is
88.8 % and 90.4 %, respectively. In case of MET cases, the
sensitivity obtained is 100 % and 91.6 % for typical and
atypical METcases, respectively. However, it can be observed
from Table 8 that the classification accuracy of the proposed
CAD system is 91.6 %with sensitivity of 90% for HCC cases
and 93.3% forMETcases. Given the fact that the sonographic
appearances of HCC and MET overlap sufficiently, and the
sensitivity of conventional B-mode US is limited, the results
obtained by the proposed CAD system for the population
studied are quite promising specifically in the presence of a
comprehensive and representative dataset consisting of
SHHCs, LHCCs, and typical as well as atypical MET cases.
However, the generalization ability of the proposed CAD
system remains to be tested by analyzing larger datasets for
which data collection may take a long span of time. At the
same time, it is worth mentioning that the selected features
significantly account for the textural variations exhibited by
primary and secondary liver malignancies as the proposed
system performs well on unseen test data.

Conclusions

The ratio features are more discriminatory than WLROI fea-
tures for characterization of HCC and MET FLLs. Only nine
texture features (seven ratio features and two WLROI fea-
tures) are significant to account for textural variations

exhibited by HCC and MET lesions. It can be concluded that
the texture of the background liver on which the lesion has
evolved do contribute towards characterization of primary and
secondary malignant FLLs from B-mode US. The proposed
CAD system yields the classification accuracy of 91.6 % with
sensitivity of 90 % and 93.3 % for HCC and MET cases,
respectively. The results obtained by the proposed CAD are up
to the satisfaction of experienced participating radiologists.
The promising results of the study indicate that the proposed
CAD system can be routinely used in a clinical environment to
assist radiologists in diagnosing liver malignancies and there-
by facilitate in providing better disease management.
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