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Abstract The accuracy of an ultrasound (US) computer-
aided diagnosis (CAD) system was evaluated for the classi-
fication of BI-RADS category 3, probably benign masses.
The US database used in this study contained 69 breast
masses (21 malignant and 48 benign masses) that at blinded
retrospective interpretation were assigned to BI-RADS cat-
egory 3 by at least one of five radiologists. For computer-
aided analysis, multiple morphology (shape, orientation,
margin, lesions boundary, and posterior acoustic features)
and texture (echo patterns) features based on BI-RADS
lexicon were implemented, and the binary logistic regres-
sion model was used for classification. The receiver operat-
ing characteristic curve analysis was used for statistical
analysis. The area under the curve (Az) of morphology,
texture, and combined features were 0.90, 0.75, and 0.95,
respectively. The combined features achieved the best per-
formance and were significantly better than using texture
features only (0.95 vs. 0.75, p value=0.0163). The cut-off

point at the sensitivity of 86 % (18/21), 95 % (20/21), and
100 % (21/21) achieved the specificity of 90 % (43/48),
73 % (35/48), and 33 % (16/48), respectively. In conclusion,
the proposed CAD system has the potential to be used in
upgrading malignant masses misclassified as BI-RADS cat-
egory 3 on US by the radiologists.
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Introduction

As an adjunct to mammography, ultrasound (US) is widely
used in breast imaging. Stavros et al. [1] proposed several
US characteristics to describe a mass and achieved a sensi-
tivity of 98.4 % (123 of 125) and a specificity of 67.8 %
(424 of 625) for the classification of 750 solid breast
masses. In 2003, Breast Imaging Reporting and Data
System (BI-RADS) lexicon was developed to provide the
descriptors for tumor characterization on breast US [2]. The
BI-RADS lexicon defined for US findings in masses in-
cludes shape, orientation, margin, lesion boundary, echo
pattern, and posterior acoustic features. According to the
BI-RADS, the management strategy of breast masses clas-
sified as BI-RADS category 3 is follow up rather than core
needle or surgical biopsy since the likelihood of malignancy
is very low (less than 2 %) [3–5]. The results of recent
studies support this strategy [6–9]. Circumscribed margin
and parallel orientation of the mass has been emphasized as
benign US findings like fibroadenomas. However, to avoid
misclassifying carcinomas into the category 3, the radiolo-
gists should thoroughly evaluate lesions before placing them
in this category [10, 11].

Various computer-aided diagnosis (CAD) systems were
proposed to quantify the characteristics of benign and
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malignant breast tumors [12–19]. In several studies, the
quantitative features used in the CAD systems were com-
bined to classify tumors according to BI-RADS assessment
categories [14]. The performance similar to expert radiolo-
gists was achieved with the CAD system. Consequently, the
CAD system was suggested as a second reader for tumor
assessment and used to decrease false positive rates at US
[16]. Previous US CAD studies, however, used image data-
base including wide spectrum of breast masses belonged to
typically benign lesion (category 2 by BI-RADS) to lesions
with suspicious (category 4) or typical malignant (category
5) findings. With increasing use of breast US in screening
women with dense breasts, breast lesions classified as cate-
gory 3 are found more often [6, 8]. Therefore, CAD system
can play a role in classifying benign and malignant among
category 3 lesions.

In this study, the benign and malignant breast masses
assessed as BI-RADS category 3 at US by radiologists were
evaluated using the proposed CAD system. To provide
probability of malignancy in breast masses, various quanti-
tative features connected to the BI-RADS lexicon were
implemented in the proposed CAD system. This system is
likely going to be used while a radiologist detects a lesion
with uncertainty about whether the lesion is benign or
malignant. In this situation, the proposed CAD can provide
a quantitative suggestion.

Materials and Methods

Patients and Data Acquisition

The approval for this retrospective study was obtained from
our institution review board, and informed consent was
waived. During a 2-year period, US images of 100 consec-
utive solid tumors were obtained before needle biopsy or
surgery. These cases were initially assessed as BI-RADS
category 3 in 32, category 4 in 56, and category 5 in 12
cases. The acquired breast US images were collected using a
Voluson 530 scanner (Kretz Technik, Zipf, Austria) or an
ATL HDI 3000 scanner (Philips, Bothell, WA, USA) and a
linear transducer with a frequency of 5–10 MHz. For each
lesion, blinded retrospective interpretation was performed
by five radiologists to provide BI-RADS category. There
were 69 masses (21 malignant and 48 benign masses) that
were assigned to BI-RADS category 3 by at least one of five
radiologists included in this study. The age of the patients
ranged 20–84 years (mean age, 43). All 21 malignant le-
sions were invasive ductal carcinoma and were histological-
ly grade 2 (n=6) or grade 3 (n=15). For benign lesions, 34
cases of fibroadenoma, 13 cases of fibrocystic changes, and
one case of papilloma were included. The size of malignant
masses had a mean value of 2.7 cm (range, 1.2–4.7 cm), and

the size of benign masses had a mean value of 2.6 cm (range
1.4–4.3 cm). Lesions were palpable in 15 cases and
nonpalpable in 54 cases.

Feature Extraction

In the proposed CAD system, a tumor has to be segmented first
for feature extraction. To segment a tumor from background
tissues, level-set segmentation method was used [20]. Using
gradient as the criterion in differential equation, level-set func-
tion evolves the user-defined seed into a complex shape to get
the approach for tumor contour. After tumor segmentation, the
contour of a tumor (Fig. 1a) was delineated to specify tumor
area as show in Fig. 1b. With the specification of tumor area,
two-dimensional (2D) spatial information was employed for
image interpretation. According to the suggested six descrip-
tive categories in BI-RADS lexicon including shape, orienta-
tion, margin, lesion boundary, echo pattern, and posterior
acoustic features, the corresponding measurements were quan-
tified in the CAD systems for classifying breast masses. They
were listed in Table 1. In each descriptive category, there were
one or more quantitative features.

The quantitative features developed in previous CAD
systems [15] were classified into two categories: morpholo-
gy features and texture features. In this study, the perfor-
mance of morphology features, texture features, and the
combination of both feature sets were evaluated. Figure 1
shows the subgroups of morphology features included shape
(Fig. 1c), orientation (Fig. 1d), margin (Fig. 1e), lesion
boundary (Fig. 1f), and posterior acoustic features
(Fig. 1g). The texture features took the echogenicity of echo
pattern (Fig. 1h) into consideration. The measurements in-
dicated in the figures were described below.

Morphology Features

To describe the regularity of tumor boundary, normalized
radial length (NRL) [21] was defined according to the
distance between the center of tumor area and each bound-
ary pixel. NRL entropy and NRL variance are two of the
measurements to exhibit the uniformity degree of the
lengths. Typical benign lesions, which have ellipse-like
boundaries, have less variance of NRL than malignant le-
sions. The length of tumor boundary was also compared
with the perimeter of best-fit ellipse (Fig. 1c) [14] to obtain
the contour difference. Typical malignant lesions with irreg-
ular shape have longer perimeter than its best-fit ellipse.

In addition to the boundary pixels, compactness measure-
ment of the perimeter and area of the segmented tumor was
used to estimate whether the shape is oval or irregular [22].
The overlap between the tumor area and the corresponding
best-fit ellipse was also suggested for compactness.
Malignant lesions have typically taller than wide

1092 J Digit Imaging (2013) 26:1091–1098



appearance. Consequently, calculating the angle between
the major axis of the best-fit ellipse and the horizontal
achieved the measurement and was used as the orientation
features shown in Fig. 1d [14].

To describe tumor margin, a maximum circle inside a
tumor was built according to the distance between the center
and the boundary pixels. Several parts of tumor that exceeded
the circle were partitioned into the lobulate regions, which
were used to determine the variability as shown in Fig. 1e
[14]. Spicules on tumor boundary can also be counted to
express the smoothness level. With a similarity threshold,
peaks that had relatively longer distance than their neighbors
to the tumor center were regarded as spicules.

The lesion boundary was measured using two bands as
shown in Fig. 1f. Whether there was a sharp demarcation
between the lesion and surrounding tissue can be estimated
by the intensity difference between the inner band and outer
band of tumor contour [14].

For measuring the posterior acoustic feature, a posterior
area was defined behind the mass as shown in Fig. 1g. The
width of the posterior area was defined by two-thirds of the
mass width. At both sides of posterior area, a gap which had
one-sixth of the mass width was preserved for avoiding the
edge shadowing. The height of posterior area was equal to

the mass height but did not exceed 100 pixels. The average
intensity difference between the tumor and the region under
the tumor (PS) and the average intensity difference between
the surrounding tissues and the region under the tumor
(PS_diff) were used as posterior acoustic features [13].

Texture Features

For tissue characterization, texture analysis of breast tumors
on B-mode images was proposed, and gray-level co-
occurrence matrix (GLCM) [23] was used in this study.
That is, the correlations between pixels and their neighbors
inside the tumor region were calculated via the statistics of
their gray-level values. The average and standard deviation
(SD) of eight GLCM metrics including energy, entropy,
correlation, inverse difference moment, inertia, cluster
shade, cluster prominence, and Haralick’s correlation were
calculated to be the texture features which were used to
interpret echo pattern. The distance for the occurrence of
two pixels was one, and four offset directions (0°, 45°, 90°,
and 135°) were used. For rotation invariance, the four di-
rections were combined to one matrix. In Fig. 1h, the
correlation between a pixel and its neighbors inside a tumor
interpreted the echogenicity for texture features.

Fig. 1 The illustration of the quantitative features for describing BI-
RADS US lexicon. a The original US image of a BI-RADS category 3
mass confirmed as benign fibroadenoma at core needle biopsy. b The
segmentation result of (a). c Tumor perimeter (Tumor_p) was com-
pared to the length of the major axis of the best-fit ellipse (Ellipse_a) to
quantify the shape features. d The angle between the major axis of the
best-fit ellipse and the horizontal line (Ellipse_theta) was used to
quantify the orientation feature. e The undulations on tumor boundary

(MU,MNS) were used to quantify the margin features. f The gray-level
intensity difference between the inner and outer bands around the
tumor boundary (LB) was used to quantify the boundary feature. g
The gray-level intensity difference between the region under the tumor
and the tumor (PS) was used to quantify the posterior acoustic feature.
h The spatial correlations between pixels inside a tumor (16 GLCM
texture features) were used to quantify the echo pattern features
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Classification

To evaluate the likelihood of malignancy, the proposed quan-
titative features were all used in a classifier for classifying BI-
RADS category 3 masses. Besides, the performances of tex-
ture features and morphology features were also evaluated,
respectively. GLCM features were combined to be the texture
feature set. The rest of the features extracted from the seg-
mented tumor contour were combined to be the morphology
feature set. The classifier used in the experiment was binary
logistic regression [24]. Based on the stepwise procedure,
backward elimination evaluated the capabilities of features
in distinguishing between benign and malignant lesions for
feature selection. While the least error rate was obtained in the
classifier, the corresponding feature set was selected to be
relevant. The total 69 specimens were all used for the feature
selection process. Therefore, the performance of the classifier
was evaluated by using leave-one-out cross-validation

method. A total of 69 iterations of case training and testing
were performed in the method. In each iteration, one individ-
ual case was separated from the total cases and was used to test
the result trained by the rest 68 cases. The final performance of
the classifier was the average of 69 iterations. The leave-one-
out cross-validation was used to make the validation more
rigorous and to show the true generalization ability of the
CAD to new cases. The number of cases was not a limitation
to the number of quantitative features.

Statistical Analysis

According to the biopsy-proven pathology, the cases were
labeled as true positive, true negative, false positive, and false
negative. Then, five performance indices, accuracy, sensitivi-
ty, specificity, positive predictive value (PPV), and negative
predictive value (NPV), were calculated to evaluate the clas-
sification result. In addition to the individual morphology and

Table 1 Quantitative BI-RADS features

Category Feature Description

Shape Tumor_a, Tumor_p Tumor area (Tumor_a) and tumor perimeter (Tumor_p) [14]

Ellipse_a, Ellipse_b, Ellipse_a/b The length of the major axis (a) and minor axis (b) of the
best-fit ellipse [14]

Ep/Tp The ratio of the ellipse perimeter (Ep) and the tumor
perimeter (Tp) [14]

Ellipse_compactness The overlap between the tumor area and the ellipse
area [14]

NRL entropy, NRL variance The statistics of the distances between boundary
points and tumor center

Compactness Tumor roundness [22]

Orientation Ellipse_theta The angle between the major axis of the best-fit
ellipse and the horizontal line [14]

Margin Undulation, Sharp, MU The number of undulations on tumor boundary [13]

NS The number of spicules on tumor boundary

MNS NS×Compactness

MaxSpicule Length of the longest spicule of NS

Lesion boundary LB Intensity difference around tumor boundary [13]

Echo pattern EPc Intensity difference between the 25 % brighter
pixels and whole tumor pixels [13]

EP_diff Intensity difference between the tumor and the
surrounding tissues

Energy avg., Energy std., Entropy avg.,
Entropy std., Correlation avg., Correlation
std., Inverse Difference Moment avg., Inverse
Difference Moment std., Inertia avg., Inertia
std., Cluster Shade avg., Cluster Shade std.,
Cluster Prominence avg., Cluster Prominence
std., Haralick Correlation avg., Haralick
Correlation std.

16 GLCM texture features [23], the statistics of the
correlations between neighbor pixels

Posterior acoustic
features

PS The average intensity difference between the tumor and the
region under the tumor [13]

PS_diff The average intensity difference between the surrounding
tissues and the region under the tumor
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texture feature set, the performance of combining both feature
set was evaluated in the comparison. The difference between
two feature sets for the five performance indices was analyzed
using chi-square test. With respect to the trade-offs between
sensitivity and specificity, receiver operating characteristic
(ROC) curve was drawn. The area under the ROC curve
(Az) was also calculated and compared using the z-test in
ROCKIT software (C. Metz, University of Chicago,
Chicago, IL, USA).

Furthermore, individual quantitative feature implemented in
the proposed CAD system was evaluated. Student’s t test [25]
was used to evaluate features with normal distribution.
Features with non-normal distribution were evaluated using
the Mann–Whitney U test [25]. As the evaluation result, fea-
tures obtained a p value less than 0.05 were significant

statistically in distinguishing between benign and malignant
lesions. To quantize the correlation between the numeric dis-
tribution of each feature and the biopsy-proven malignancy,
Pearson correlation [25] was also used in the analysis. Finally,
the classification accuracy of the individual quantitative feature
in the binary logistic regression model was obtained, and the
most significant features were ranked to provide their domi-
nances in classifying BI-RADS category 3 masses. Pearson
correlation and test methods were performed using SPSS
software (version 16 for Windows; SPSS, Chicago, IL, USA).

Results

In Table 2, the performance of the morphology features, the
texture features, and the combined feature set are listed. The
performance achieved by the morphology features was

Table 2 The comparisons of performance indices and p values (chi-square test or z test) among the morphology features, the texture features, and
the combined feature set

Morphology Texture Combined Morphology vs.
texture (p value)

Combined vs. morphology
(p value)

Combined vs. texture
(p value)

Accuracy 84 % (58/69) 77 % (53/69) 88 % (61/69) 0.2833 0.4586 0.0724

Sensitivity 86 % (18/21) 62 % (13/21) 86 % (18/21) 0.0793 1.0000 0.0793

Specificity 83 % (40/48) 83 % (40/48) 90 % (43/48) 1.0000 0.3709 0.3709

PPV 69 % (18/26) 62 % (13/21) 78 % (18/23) 0.5982 0.4749 0.2349

NPV 93 % (40/43) 83 % (40/48) 93 % (43/46) 0.1569 0.9318 0.1261

Az 0.90 0.75 0.95 0.0703 0.2898 0.0163*

Combined feature set includes the morphology features and the texture features

*p<0.05 (indicates a statistically significant difference)

Fig. 2 The receive operating characteristic (ROC) curves of the mor-
phology features, the texture feature, and the combined feature set

Fig. 3 The performances of the top eight features evaluated by using
accuracy, Pearson correlation, and t test. The first four features
(Ellipse_a/b, Ellipse_theta, Ep/Tp, and Ellipse_b) achieved better ac-
curacy and Pearson correlation value than the last four. Ellipse_a/b,
Ellipse_theta, Ep/Tp, and Ellipse_b were extracted from the best-fit
ellipse. Tumor_p was the tumor perimeter. EPc was the contrast value
of tumor. NRL_entropy was the regularity measurement of tumor
boundary. Undulation described tumor margin
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better than the performance of the texture features. However,
the difference was not statistically different (Az 0.90 vs. 0.75;
p value, 0.0703). The performance achieved by the combined
features set was statistically significantly better than the tex-
ture features (Az 0.95 vs. 0.75; p value, 0.0163; Fig. 2). The
cut-off point at the sensitivity of 86 % (18/21), 95 % (20/21),
and 100 % (21/21) achieved the specificity of 90 % (43/48),
73 % (35/48), and 33 % (16/48), respectively.

The best eight features were illustrated in Fig. 3
according to their accuracy, Pearson correlation, and t test.
The first four features, Ellipse_a/b, Ellipse_theta, Ep/Tp,
and Ellipse_b, achieved the accuracy near 80 % (55/69).
For Pearson correlation, the result is not the same as the
classification accuracy. That is, a feature that has a higher
classification accuracy may not also have a higher Pearson
correlation than other features. This was the reason why we
provided three different performance metrics to generate a
more objective evaluation. Nevertheless, the first four fea-
tures all have higher Pearson correlation value than the last
four features. For the t test, only Tumor_P and EPc have the
p values higher than 0.001. The other six features all have
the p value less than 0.001 which represents better
discriminability.

Figure 4 shows one case of malignant lesions which were
correctly classified by the proposed CAD system. This

malignant lesion with round shape had quantitative features
of Ellipse_a/b=1.1 (mean=1.3) and Ellipse_theta=0.4
(mean=0.3). In Fig. 5, one ellipse-like benign lesion with
Ellipse_a/b=2.0 (mean=1.7) and Ellipse_theta=0.1
(mean=0.1) was evaluated to have low likelihood of malig-
nancy. For all lesions, the mean values of Ellipse_a/b and
Ellipse_theta were 1.6 and 0.2, respectively.

Discussion

The proposed CAD system based on the morphology and
texture features was used for estimating the likelihood of
malignancy of masses assessed as BI-RADS category 3,
probably benign by at least one of five radiologists. With
the performance (Az) of 0.95, the US CAD system achieved
the sensitivity of 95 % and the specificity of 73 %. That is,
20 of 21 BI-RADS category 3 malignant masses were
recognized as carcinomas, while 35 of 48 BI-RADS cate-
gory 3 benign masses were correctly classified as benign by
the US CAD system. Since the CAD could not be perfect
(100 % sensitivity and 100 % specificity), the cut-off point
with sensitivity of 95 % (20/21, one malignant case
misclassified) can be chosen for the classification in a clin-
ical setting. Recognizing the carcinomas among the BI-

Fig. 4 One malignant lesion (invasive ductal carcinoma) classified correctly by the proposed CAD system. a The original US image. b The
segmentation result of (a). c The corresponding best-fit ellipse compared to the segmentation result of (b)

Fig. 5 One benign lesion (fibrocystic changes) classified correctly by the proposed CAD system. a The original US image. b The segmentation
result of (a). c The corresponding best-fit ellipse compared to the segmentation result of (b)
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RADS category 3 lesions is important since circumscribed
malignant lesions are often high-grade tumors [26–28]. The
proposed CAD system can correctly upgrade most of ma-
lignant masses misclassified as BI-RADS category 3 on US
by radiologists while downgrade majority of benign lesions
classified as BI-RADS category 3. To the best of our knowl-
edge, this is the first study to evaluate the BI-RADS cate-
gory 3, probably benign lesions with a US CAD system.

In this study, the quantitative features based on the stan-
dardized BI-RADS lexicon were implemented and investi-
gated to classify BI-RADS category 3 masses into benign or
malignant. The result suggested that the features extracted
from the best-fit ellipse would be useful to estimate the
likelihood of malignancy in BI-RADS category 3 masses.
According to the described characteristics, the BI-RADS
category 3 masses showing round shape tend to be malig-
nant compared to masses showing ellipse-like shape. The
orientation and the length of tumor boundary features were
also helpful for the classification [29]. Consequently, the
developed CAD may provide complementary diagnostic
assessment for radiologists to reduce the interobserver and
intraobserver variability [11, 30].

With respect to the performances achieved in the previ-
ous CAD systems [12–19], the Az values presented in the
literature were in the range of 0.92–0.97. The suggested
quantitative features were significant in distinguishing be-
tween benign and malignant lesions. However, the BI-
RADS category classification of the collected specimens
was only shown in several studies [13, 14, 18]. For the
others, the descriptions of specimens just focused on the
types of malignant and benign lesions. All of the studies
suggested their CAD systems to classify the tumors into
malignant and benign without considering whether the
CAD systems performed well in the BI-RADS 3 masses.
As a second viewer, the proposed CAD system which
upgraded the malignant masses misclassified as BI-RADS
category 3 on US by radiologists is more meaningful.
Especially, we found that the features extracted from the
best-fit ellipse such as Ellipse_a/b, Ellipse_theta, Ep/Tp,
and Ellipse_b were useful. In previous CAD systems with-
out BI-RADS classification, round and oval shapes were
considered to be benign findings. For BI-RADS 3 masses
used in this study, round shape was more likely to be a
malignant finding. The quantitative features used in our
experiment included morphology and texture features,
which were already suggested in the previous CAD systems.
As the results shown in the literature, the best diagnostic
performance can be achieved by combining both morphol-
ogy and texture features.

The limitations of this study included the number of
specimens and the types of malignant tumors. The number
of masses assessed as BI-RADS category 3 for evaluating
the proposed CAD system in this study was only 69, and all

malignant cases belonged to the invasive ductal carcinomas.
To apply the proposed CAD system on clinical examination,
more specimens and various types of cancers should be
included in further experiments for evaluation. The criterion
for classifying the truth in our study was very liberal since
only one of five radiologists had to call it a category 3. The
results could have changed if some other stricter criteria
were used instead of using this criterion. However, previous
studies consistently showed that CAD is more useful to
improve performance in the less experienced than in the
experienced radiologists [16]. For the improvement of the
CAD system, more robust quantitative features can be de-
veloped. In the experiment, the performance of texture fea-
tures was not as good as that of morphology features. The
possible reason may be the variance of gray-level intensities
among US images. Combining more intensity-invariant fea-
tures with the existed quantitative features would enhance
the CAD system further.

Conclusions

Using morphology and texture features to estimate the like-
lihood of malignancy of BI-RADS category 3 masses in the
proposed CAD obtained the performance (Az) of 0.95 with
95 % sensitivity and 73 % specificity. The proposed CAD
system has the potential to be used in upgrading malignant
masses misclassified as BI-RADS category 3 on US by the
radiologists. However, an observer study needs to be done
to see if it actually does impact decision making clinically.
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