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Abstract Introduce the notion of cross-sectional relatedness
as an informational dependence relation between sentences
in the conclusion section of a breast radiology report and
sentences in the findings section of the same report. Assess
inter-rater agreement of breast radiologists. Develop and
evaluate a support vector machine (SVM) classifier for au-
tomatically detecting cross-sectional relatedness. A standard
reference is manually created from 444 breast radiology re-
ports by the first author. A subset of 37 reports is annotated
by five breast radiologists. Inter-rater agreement is computed
among their annotations and standard reference. Thirteen
numerical features are developed to characterize pairs of
sentences; the optimal feature set is sought through forward
selection. Inter-rater agreement is F-measure 0.623. SVM
classifier has F-measure of 0.699 in the 12-fold cross-
validation protocol against standard reference. Report length
does not correlate with the classifier’s performance (correla-
tion coefficient=−0.073). SVM classifier has average F-

measure of 0.505 against annotations by breast radiologists.
Mediocre inter-rater agreement is possibly caused by: (1)
definition is insufficiently actionable, (2) fine-grained nature
of cross-sectional relatedness on sentence level, instead of,
for instance, on paragraph level, and (3) higher-than-average
complexity of 37-report sample. SVM classifier performs
better against standard reference than against breast
radiologists’s annotations. This is supportive of (3). SVM’s
performance on standard reference is satisfactory. Since op-
timal feature set is not breast specific, results may transfer to
non-breast anatomies. Applications include a smart report
viewing environment and data mining.

Keywords Radiology reports . Information retrieval .

Support vector machine . Text mining . Inter-rater
agreement . Textual entailment

Introduction

In breast radiology, the Breast Imaging Reporting and Data
System (BI-RADS) [1] mandates that a report encompasses a
“clear description of significant finding(s),” and, in a sepa-
rate section, “final impressions […] based on thorough eval-
uations of mammographic features of concern.” This orga-
nization of information is optimized for the clinical
workflow: the findings section state image features that are
comprehensible to those skilled in the art of interpreting
breast images; the impression or conclusion section answers
the clinical question of referring clinicians.

Thus, in BI-RADS-compliant radiology reports, or any
report with a similar sectional structure for that matter, there
is an informational relation between sentences in the findings
section and the sentences in the conclusion section of a
report. Sentences can be related in multiple ways. For
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instance, a conclusion sentence may summarize a finding
sentence or correlate it with information from another radio-
logical exam.

In this paper, we introduce the notion of cross-sectional
relatedness to the scientific literature: a sentence from the
findings section of a radiology report is related to a sentence
from the conclusion section of the same report, if the former
conveys the same information as or directly elaborates on
any of the main phrases or assertions of the latter. Table 1
lists a series of related and nonrelated finding and conclusion
sentence pairs.

Understanding the cross-sectional relatedness in a report
is key to understanding its information flow and the reason-
ing pattern of the radiologist who dictated it. This holds for
human consumers of reports, such as referring clinicians and
radiologists, as well as automated agents that analyze the
reports and expose it to downstream consumers.

Such automated agents serve to realize a variety of use
cases. For instance, in the radiology workflow, a smart report
viewing environment can be devised in which users navigate
from sentences in the conclusion section to pertinent
sentences or paragraphs in the findings section of the report.
This use case can be taken one step further by shuffling the
contents of an initial report by grouping together related
information from findings and conclusion sections [2]. The
technology can also be used for quality control, for instance,
for verifying if all critical findings are summarized in the
conclusions section of a report [3]. Other applications in-
clude automated discovery of relations between image char-
acteristics from the findings section and diagnoses from the
conclusion sections by means of data mining techniques.

We define automatic detection of cross-sectional related-
ness as a classification problem: given a sentence from a
findings section and a sentence from the conclusion section
of the same report, are they related? We address this problem
with natural language processing methods. General-purpose
natural language processing engines [4] have been developed
that index medical reports according to linguistic and/or
information-theoretic axes [5–8]. The output of these engines
has been utilized to solve specific information extraction and
classification problems [9–12]. The problem of detecting
cross-sectional relatedness in radiology reports has not been
addressed in the literature. The topic of detecting entailment
between sentences is a topic of continuing interest in the
natural language processing community that culminates in
the recognizing textual entailment (RTE) challenge series.
We relate our work to this effort in the “Discussion” where
we also discuss future research directions.

The aims of this paper are as follows:

1. Standard reference creation and evaluation—develop a
standard reference for cross-sectional relatedness in a cor-
pus of breast radiology reports. As this notion is newly
introduced to the literature, we also obtain the cross-
sectional relatedness annotations of five breast radiologists.
We compute inter-rater agreement among the breast radi-
ologists and the standard reference. This analysis serves to
analyze the extent to which cross-sectional relatedness is an
objective notion, and the quality of the standard reference.

2. Feature selection and cross-validation—develop a sup-
port vector machine (SVM) classifier that automatically
detects relatedness between sentences across sections in
breast radiology reports. SVMs [13, 14] generally achieve
best-in-class results on natural language processing tasks.

Table 1 Pairs of finding and conclusion sentences and their relatedness

F conveys the same information as C

F No abnormal findings in right breast

C There are no abnormal findings in right breast

F elaborates on the multifocal carcinoma mentioned in C

F The third lesion may represent a multifocal cancer or metastatic
lymph node

C Probably multifocal carcinoma in left breast

F elaborates on seroma cavity at site of previous surgery

F Within the left upper outer quadrant, a 3×1.2-cm seroma cavity is
present at the previous surgical site

C Breast MRI demonstrates irregular thickened enhancement
surrounding a seroma cavity at the site of prior surgery

F1 elaborates on abnormality that leads to the diagnosis in C and F2
elaborates on the metastatic lymphadenopathy of C. F3 elaborates on
the malignant character mentioned in C

F1 There is a briskly enhancing nodular lesion in the left breast,
measuring 10×9 mm

F2 It may represent a multifocal cancer or metastatic lymph node

F3 Kinetic curve of this lesion demonstrated wash-out pattern
suggesting malignancy

C Possible metastatic lymphadenopathy

F1 and F2 elaborate on assertions in C. F1 discusses a mammogram
finding, whereas F2 discusses an ultrasound finding

F1 There is associated ill-defined increased density with the
calcifications suggesting of an infiltrating component

F2 Ultrasound evaluation of the left breast demonstrates an ill-defined
hypoechoic mass at the 2 o’clock position

C Malignant left breast mass as detailed above is most
compatible with an infiltrating ductal carcinoma with an
intraductal component

C is not related to any of the sentences F1–F3 since none of these
sentences express the same information as C or directly elaborate on
any of the main phrases or assertions of C

F1 There is a tiny cyst at 3 o’clock position in the right breast, and
upper outer aspect of the left breast

F2 With dynamic contrast study, no abnormal enhancement is seen in
either breast

F3 No abnormal lymph nodes are seen in either axilla

C No MR findings to suggest malignancy

F, F1, F2, and F3 finding sentences, C conclusion sentence
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The domain will be characterized by 13 numerical fea-
tures based on vector space models and language models
[15], which are filtered in a nested cross-validation feature
selection protocol with respect to the standard reference.

3. Comparison against breast radiologists’ annotations—
evaluate the SVM classifier against the annotations of the
breast radiologists and the standard reference. Depending
on the use case, revealing cross-sectional relatedness is
potentially most useful in wieldy reports. For this reason,
we track the classifier’s performance against report length.

Materials and Methods

Reports

A corpus of 444 de-identified, breast radiology reports was
obtained from a radiology department of a US-based univer-
sity hospital. The reports were automatically split in sections,
paragraphs, and sentences by an enhanced sentence bound-
ary detection classifier (C#-port of the OpenNLP library)
optimized on our corpus. The section headers were mapped
to a fixed set of section types including Clinical history,
Findings, and Conclusions. Henceforth, the term finding
sentence refers to a sentence in the Clinical history or Find-
ings section; a conclusion sentence refers to a sentence in the
Conclusions section.

If s is a finding sentence and s′ a conclusion sentence from
the same report, then the pair (s and s′) is an instance. A
report with x finding sentences and y conclusion sentences
gives rise to x × y instances. An annotation of a report is a
subset of the report’s instances. We say that the instances in
the annotation of a report are selected. The annotation of a
set of reports is simply the union of the annotations of the
corpus’ reports.

Breast Radiologists’ Annotation Creation

The corpus of 444 reports was divided into three samples,
called S1, S2, and S3 (see Table 2). Care was taken that the
second sample, S2, accurately represented the reports of
nonsimple cases, so as to avoid that the sample would consist

mostly of short and highly similar reports. Three of the
reports in S2 had BI-RADS class 0 (“Incomplete; additional
imaging required”), seven had BI-RADS class 1 to 3 (benign
to probably benign), and ten had BI-RADS class 4 or 5
(probably or most likely malignant); the remaining reports
had no BI-RADS classification, which was an artifact of our
report acquisition process. Six reports were interpretations of
outside exams. Eight reports discussed a combined mammo-
gram–ultrasound exam, ten discussed one or more mammo-
gram exams, and three discussed one or more ultrasound
exams; the remaining 16 discussed an MRI exam. Sample
S2 was annotated by five breast radiologists.

Reports in the corpus contained 9.24 (±5.32) finding
sentences and 7.23 (±4.79) conclusion sentences on average.
In sample S2, reports had 11.78 (±5.26) finding sentences
and 7.19 (±4.79) conclusion sentences on average. Reports
in S2 contained significantly more finding sentences than the
other reports in the corpus (p<0.001; Mann–Whitney U
test); no significant difference was observed for conclusion
sentences (p=0.671).

A home-grown annotation tool was used for recording
related finding–conclusion sentences. In the tool, one con-
clusion sentence is active at a time (highlighted). The active
conclusion sentence can be changed by clicking another
conclusion sentence. The annotator indicates that one or
more finding sentence s is related to the active conclusion
sentence s′ by clicking s, in which case the instance (s, s′) is
in the report’s annotation. Conclusion sentences that were
selected by the annotator and that were found to be related to
at least one finding sentence were highlighted with low
intensity, and likewise for finding sentences (see Fig. 1).

Annotation guidelines were constructed in an iterative
fashion by the first and second author. In each cycle, the
current set of annotation criteria were applied to ten fresh
reports. Then, annotations were compared and differences
discussed. The criteria were updated accordingly. Two iter-
ations yielded the following criteria (italics copied from in-
structions presented to subjects):

1. Select by clicking all sentences in the clinical history
and/or finding sections that convey the same information
as or directly elaborate on any of the main phrases or
assertions of the selected impression sentence.

2. This criterion may not be black and white for all cases.
When in doubt, you may want to break the tie by using
the following rule as an additional criterion: Select the
sentence in question if highlighting it would be clinically
useful.

Prior to each session, the participating breast radiologist
was trained on the annotation task. This encompassed an
introduction to the annotation guidelines and the annotation
tool showing two representative reports. The annotations of
these reports were discussed with the supervisor of the

Table 2 Details of the three sample sets and the annotations based on
them

Sample Number of reports Details

S1 200 Annotated by first author

S2 37 Annotated by five breast radiologists
and first author

S3 207 Pre-annotated by preliminary SVM
classifier, then corrected by first author
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experiment. On average, annotators used slightly more than
an hour to complete the annotation task.

Standard Reference Creation

The standard reference was created by the first author in
three phases. In the first phase, reports from sample S1 were
annotated in the annotation tool. In this phase, and in this
phase only, features were developed and refined by the first
author to characterize the instances for the SVM classifier. In
the second phase, reports from sample S2 were annotated.
Prior to the third phase, an SVM classifier was trained on the
annotated reports from S1 and S2 with respect to all features
defined. The phased approach ensures that no features were
developed during or after exposure to the reports from sam-
ple S2, which were annotated earlier by the breast radiolo-
gists. In the third phase, reports from sample S3 were pre-
annotated by the SVM classifier and then corrected by the
first author.

In the standard reference, 8.96 % (1,789/19,972) of the
instances in the corpus are selected, and 5.44 % (186/3,419)
of the instances in S2 are selected.

Feature Engineering

Each instance (Ι) is described as a tuple f 1 Ið Þ;…; f n Ið Þ; ℓIð Þ
generated from a collection of features (f1,…,fn) and a binary
label ℓI. We consider n=13 features divided over six feature
families. In this paper, we only present the six features,
spread over four feature families that prove to be optimal.
The remaining seven features are described in the first sup-
plemental document.

We represent a sentence as a bag of its normalized words,
excluding stopwords. The normalization step entails removing
non-alphanumerical characters and casting alphabetic charac-
ters to lower case. We experimented informally with word
stems, chunks, bi- and trigrams, as well as extracted concepts
from the Systemized Nomenclature of Medicine–Clinical
Terms (SNOMED-CT). However, none of these extensions
had a positive impact on the performance of the classifier. For
the sake of simplicity, we suppressed these extensions.

The features discussed below are rooted in vector space
models and language models. We refer the reader to the
second supplemental document for a brief introduction to
language models. Informally speaking, a language model LC
is a probabilistic device that estimates the similarity between
a bag of words and a corpus of documents C, such as, for
instance, a set of reports. If we have two corpora C and C′,
we can combine the language models LC and LC′ into one
device LLRC, C′ that estimates the extent to which a given
bag of words is more (dis)similar to C than to C′.

Feature Family—Sentence Similarity

We inspect words in the intersection of s and s′ to determine
if Ι=(s, s′) should be selected. Each sentence in the report R
of s and s′ is considered a separate document. Write dt for the
vector of sentence t, where the entry corresponding to word
w holds the inverse document frequency of w in the back-
ground body defined by R:

idfR wð Þ ¼ log
Rj j

t0∈Rf jw∈t0j gj;

if t contains w, and 0 otherwise. In this formula, the nomi-
nator denotes the number of sentences in R and the

Fig. 1 Annotation tool. In the
left pane are (hashed) report
identifiers; the middle pane is
split in the conclusion section
(lower pane, marked
“impression”) and the
remainder of the report (upper
pane)
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denominator the number of sentences that contain w. No
division-by-zero-error can occur, as for every word in R there
is sentence containing it.

For two words, idfR(w)>idfR(w ′) indicates that w′ is more
frequent in R than w. Inverse document frequency is often
combined with a word’s frequency in the document. Being
sentences, our documents are very short, which renders
frequency a weak parameter.

Let Ι=(s, s′) be an instance with sentences s and s′.
Let d and d′ be the vectors that correspond with s and
s′, respectively. We compute the similarity between s
and s′ by measuring the cosine similarity between their
vectors d and d′:

sim d; d0ð Þ ¼ cosα ¼ d ⋅ d0

dk k d0k k;

where the nominator denotes the dot product of the two
vectors and the denominator denotes the product of their
Euclidean lengths. Note that α corresponds to the angle
between the two document vectors.

Feature Family—Relative Sentence Similarity

If the sentences of Ι=(s, s′) are only weakly similar (that is,
sim (s, s′) is low), we may still want to select it, if their
similarity is highest among the instances that share a sen-
tence with I. Write Is={I ′ |I ′=(t, t ′), t=s} for the set of in-
stances with finding sentence s. Then, we model the relative
sentence similarity of Ι with respect to its conclusion sen-
tence as

f 2 Ið Þ ¼ rel�sim�concl Ið Þ ¼ sim Ið ÞX
I 0∈Issim I 0ð Þ :

Write Js ′={I ′ |I ′=(t, t ′), t ′=s ′} for the set of instances
with conclusion sentence s′. Then, we model the relative
sentence similarity of Ι with respect to its finding sen-
tence as

f 3 Ið Þ ¼ rel�sim�find Ið Þ ¼ sim Ið Þ
max sim I 0ð Þ I 0∈Js0jf g :

Note the asymmetry between rel-sim-concl(Ι) and rel-
sim-find(Ι) in terms of their denominators. We experimented
with different nominators to model the contextual similarity
values; these denominators produced highest scores.

Feature Family—Word Salience

Consider the finding and conclusions sentences from the
second group of sentences in Table 1. These sentences have
only four words in common: seroma, cavity, at, site, and the.
Thus, the sentences are quite dissimilar according to f1.
However, the human reader will be alerted by the words

seroma and cavity, which are highly salient to him in the
sense that if two sentences contain these words, then they are
likely to be related. The next feature aims to capture this
notion of salience as a numerical value based on language
models.

For a given training set of instances O and an annotation
A⊆O, we obtain the set of potentially salient words by
intersecting the sentences in the instances in A:

W ¼ s∩s0 Ij ¼ s; s0ð Þ; I∈Af g:

We obtain the set of all shared words in the same manner:

V ¼ s∩s0 Ij ¼ s; s0ð Þ; I∈Of g:

The word salience of Ι=(s, s′) in terms of the language
models defined by W and V is then given by

f 4 Ið Þ ¼ salience Ið Þ ¼ LLRW ;V s∩s0ð Þ:

Feature Family—A Priori Probability

Some sentences can be excluded from being involved in a
selection merely by inspecting their meaning. For instance,
the conclusion sentence “findings were discussed with pa-
tient and her daughter” is unlikely to have any related finding
sentence. On the other hand, the conclusion sentence “new
spiculated lesion, with measurement as detailed above” is
certainly involved in a selection.

We model the a priori probability that a sentence is in-
volved in a selection. We distinguish between finding and
conclusion sentences. Let

Y f ¼ sf j s; s0ð Þ∈Ag

be the finding sentences involved in a selection and Nf be the
finding sentences in the corpus not contained in Yf.

Then, define:

f 5 Ið Þ ¼ a�priori�find Ið Þ ¼ LLRY f ;N f sð Þ:

We let

Y c ¼ s0f j s; s0ð Þ∈Ag

be the conclusion sentences involved in a selection. We let
Nc be the conclusion sentences in the corpus not contained in
Yc. Then, we define the conclusion analogue to the previous
feature:

f 6 Ið Þ ¼ a�priori�concl Ið Þ ¼ LLRY c;N c s0ð Þ:
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Evaluation Metrics

As explained above, the annotation C of a corpus is a set of
instances. For two annotations C and C′ of the same corpus,
the precision of C with respect to C′ is given by

Precision C;C0ð Þ ¼ L instances in C∩C0

L instances in C0 ;

whereas the recall of C with respect to C′ is given by

Recall C;C0ð Þ ¼ Precision C0;Cð Þ ¼ L instances in C∩C0

L instances in C
:

The F-measure between C and C′ is the harmonic mean of
precision and recall:

F�measure C;C0ð Þ ¼ 2� Precision C;C0ð Þ � Recall C;Cð Þ
Precision C;C0ð Þ þ Recall C;C0ð Þ :

The average F-measure of C with respect to annotations
D1…,Dn is the defined as:

1

n

X

1≤ i≤n
F�measure C;Dið Þ:

The average recall and precision of an annotation is de-
fined with respect to a set of annotations in the same way.

The F-measure between two breast radiologists is the F-
measure between their annotations of S2. The F-measure
between a breast radiologist and the standard reference is
the F-measure between the breast radiologist’s annotation of
S2 and the standard reference confined to S2; and similarly
for the F-measure between a breast radiologist and the an-
notation of the SVM classifier of S2.

The average F-measure of a breast radiologist is the
average F-measure between his/her annotation of S2 and
the annotations of the other breast radiologists and the stan-
dard reference confined to S2. The average F-measure of the
standard reference is defined similarly with respect to the
annotations of S2 of the five breast radiologists. The average
F-measure of the SVM classifier is defined as the average F-
measure between the annotation of SVM with respect to S2
on the one hand and the standard reference confined to S2
and the annotations of the breast radiologists on the other
hand.

We use (Cohen’s) κ as another measure of inter-rater
agreement. F-measure and κ are related in the following
way: in domains where the number of true negatives out-
numbers the other categories, κ approximates F-measure
from below [16].

Feature Selection and Nested Cross Validation

Overfitting is the phenomenon in pattern recognition that a
classifier is biased toward incidental patterns in the training

set, which leads to weaker performance on the test set. To
avoid overfitting we deploy two strategies.

The first strategy will be to disentangle feature selection
from evaluation by means of nested cross validation [17, 18].
In this procedure, we set apart a portion of the standard
reference, called the outer fold. Then, we seek the optimal
set of features on the remaining reports. Once such a feature
set is found an SVM is trained on all reports in the standard
reference minus the reports in the outer fold at hand. The
resulting SVM is evaluated against the outer fold.

In the feature selection phase, we use the forward selec-
tion principle based on feature families, that is, we iteratively
include the features from the family that maximally increases
F-measure of the SVM classifier in a 12-fold cross validation
trial. This cross-validation trial is “nested” within the outer
cross-validation process. We stop if none of the remaining
feature families improve the performance of the SVM clas-
sifier. Conducting feature selection on feature families in-
stead of individual features is our second strategy to combat
overfitting.

We experiment with 12 outer folds. In each outer fold, one
optimal set of feature families is returned. We label the set of
feature families that is returned most frequently as optimal.
Then, we run a 12-fold cross-validation protocol on the
entire standard reference with respect to the optimal set of
feature families. We shall regard the resulting scores as most
representative of the SVM’s performance on the standard
reference.

Evaluation Protocol

Following the aims of the paper, the evaluation is divided in
three steps.

1. Standard reference creation and evaluation—compute
average F-measure of each breast radiologist and aver-
age F-measure of the standard reference.

2. Feature selection and nested cross validation—seek the
optimal combination of feature families, following the
forward selection principle in a 12-fold nested cross-
validation protocol on the standard reference. Evaluate
the SVM in an overall 12-fold cross-validation trial. We
use 12 folds since sample S2 represents one twelfth of
the corpus’ reports and can thus be regarded as one fold
in the next step when evaluated against the SVM classi-
fier trained on the annotations of S1 and S3.

3. Comparison against human annotations—train the SVM
classifier on samples S1 and S3 of the standard reference
using the optimal combination of feature families. Apply
the resulting classifier to S2. Compute the average F-
measure of this annotation against the breast radiolo-
gists’ annotations and the standard reference.
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Results

Annotation Creation and Comparison

Table 3 compares the breast radiologists’ annotation and the
standard reference confined to S2. Overall inter-rater agreement
is 0.623 (bottom right cell). The average precision and average
recall of the breast radiologists and the standard reference are
plotted against the number of selected instances in Fig. 2.

Feature Selection and Cross Validation

Table 4 summarizes the feature selection procedure in the
nested cross-validation procedure. The set of four feature
families, which were detailed above, was selected in nine
of the twelve outer folds and is thus considered the (globally)
optimal set of feature families. The Structural properties
family was selected in three folds; the Domain knowledge
family was not selected in any fold. On average, the SVM
achieved F-measure 0.702 in the folds in which the globally
optimal set of feature families was returned.

The SVM classifier trained on the optimal set of features
has F-measure 0.699 in the overall 12-fold cross-validation
trial. Precision is higher than recall (0.711 versus 0.688).

In each fold in the overall trial, we also compute the
F-measure between the SVM’s annotation of each indi-
vidual report and the standard reference’s annotation of
that report. Thus we obtain 444 F-measure scores, one
for each report. Mean F-measure is 0.698 (± 0.268),
median is 0.723. Distribution of F-measures is given
in Fig. 3. Fig. 4 breaks down the F-measure scores by
number of conclusion sentences in the report. The num-
ber of instances per report does not correlate with its
F-measure (correlation coefficient = −0.073).

Overall, 6.98 % (31/444) of the reports have F-measure
score 0. On these reports, precision and/or recall is 0, meaning
that none of the instances selected by the SVM classifier were

in the standard reference. Overall, 22.75 % (101/444) of the
reports have maximum F-measure of 1, which indicates com-
plete agreement between the SVM classifier and the standard
reference.

Comparison Against Human Annotations

Trained on S1 and S3, the SVM makes 211 selections in S2.
Table 5 gives the evaluation metrics for the SVM annotation
of S2 against the breast radiologists’ annotations and the
standard reference. Against the breast radiologists, the
SVM has F-measure of 0.491; against the standard reference,
it has F-measure of 0.574.

Average precision and average recall are plotted against
the number of selections of SVM in Fig. 2.

Discussion

We address the three aims of the paper in the first three
subsections, respectively. The fourth and fifth subsections
address related work and directions for future research.

Annotation Creation and Comparison

There is considerable variation between the numbers of selec-
tions made by the breast radiologists, ranging from 163 to 364.
This may imply that some users interpret the notion of cross-
sectional relatedness more liberally than others and/or that they
prefer to see more sentences highlighted if the classifier were

Table 3 Number of selected instances and evaluation metrics of the
breast radiologists and the standard reference on sample S2

Annotation Number
of selected
instances

Average
precision

Average
recall

Average
F-measure

Average κ

BR1 163 0.768 0.546 0.628 0.606

BR2 175 0.735 0.532 0.613 0.589

BR3 257 0.603 0.694 0.631 0.605

BR4 364 0.480 0.838 0.605 0.574

BR5 265 0.598 0.672 0.636 0.610

SR 186 0.703 0.573 0.626 0.603

Alla 235.0 0.648 0.643 0.623 0.598

aMean scores

Fig. 2 For each breast radiologist and the standard reference, the
number of selections plotted against average precision and average
recall. The dotted lines represent the linear regression best fit. The
curved dotted lines represent the F-measures associated with the preci-
sion and recall linear regressions lines. SR standard reference
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integrated in a report viewing tool. Such personal preferences
can be accounted for by training an ROC curve of SVM
classifiers. The SVM classifier that is closest to the user’s
preferences can then be selected by setting a slider on a scale
from few to many highlights.

Average F-measure of the standard reference is compara-
ble to that of the average F-measures of the breast radiolo-
gists. This indicates that the annotation skills of the first

author—who is a medical informatician—are comparable
to that of breast radiologists.

Generally, inter-rater agreement of 0.8 is considered to be
substantial. On our task, the annotators (i.e., the breast radi-
ologists and the first author) have lower agreement, 0.623.
We list several root causes:

Table 4 For each outer fold, the second column presents the order in which feature families were selected

Outer fold Selected feature families Precision Recall F-measure κ

1 RelS–APr–WSal–Sim–StrP 0.669 0.689 0.679 0.646

2 RelS–APr–WSal–Sim 0.675 0.512 0.582 0.542

3 RelS–APr–WSal–Sim 0.706 0.736 0.721 0.688

4 RelS–APr–WSal–Sim–StrP 0.645 0.630 0.639 0.609

5 RelS–APr–Sim–WSal 0.843 0.705 0.768 0.744

6 RelS–APr–WSal–Sim 0.634 0.712 0.671 0.636

7 RelS–APr–WSal–Sim 0.776 0.735 0.755 0.732

8 RelS–APr–WSal–Sim 0.722 0.698 0.710 0.679

9 RelS–APr–WSal–Sim 0.702 0.677 0.689 0.663

10 RelS–APr–WSal–Sim 0.757 0.680 0.717 0.692

11 RelS–APr–WSal–Sim 0.700 0.712 0.706 0.672

12 RelS–APr–WSal–Sim–StrP 0.754 0.631 0.687 0.659

{RelS, Apr, WSal, Sim}a 0.724 0.685 0.702 0.672

Allb 0.715 0.676 0.694 0.664

For each outer fold, an SVM was trained on all remaining reports with respect to the features found optimal in this fold. The evaluation metrics score
the SVM against the reports in the outer fold. RelS relative sentence similarity, APr a priori probability,WSal word salience, Sim sentence similarity,
StrP structural properties (see S2)
a Presents the mean of the folds in which the set of feature families was returned that is considered as globally optimal, that is, all folds except 1, 4, and 12
b Presents the mean of all folds

Fig. 3 Distribution of F-measures between standard reference and
SVM classifier per report

Fig. 4 F-measures between standard reference and SVM classifier per
report broken down by number of conclusion sentences. Bars represent
1 standard deviation from the mean. Dotted line represents mean F-
measure overall

984 J Digit Imaging (2013) 26:977–988



1. Strict versus loose interpretation: as observed above with
respect to numbers of selections. However, further anal-
ysis shows that if we compute F-measure between each
annotator and the annotator that is nearest to him/her in
terms of number of selected instances, then average F-
measure is 0.650. Since the increase with respect to
overall inter-rater agreement (0.623) is modest, we posit
that this factor has a weak impact on the inter-rater
agreement.

2. Cross-sectional relatedness definition is insufficiently
actionable: to mitigate this risk, we framed the annota-
tion task in the context of a workflow enhancement tool.
The instruction to select pairs of sentences that would be
useful in clinical practice, was intended to contribute to
the task’s concreteness. The annotation setting could
have been made more concrete by letting the annotation
take place behind a PACS workstation simulating the
imaging histories of the patients whose reports were
annotated. Anecdotal evidence (short chat after experi-
ment) shows that the breast radiologists did not find the
task insufficiently clear.

3. Cross-sectional relatedness between sentences is too fine
grained: possibly, higher inter-rater agreement scores are
obtained if cross-sectional relatedness between para-
graphs is considered instead. In the context of a report
viewing tool, such a notion may be equally valuable.
There is a concern though, that some radiologists use
more paragraphs in their reports than others.

4. Sample S2 is of higher-than-average complexity. This fac-
tor is supported by the observation that the SVM classifier
has weaker performance on S2 than on a randomly selected
sample of 37 reports, see our discussion below.

Other causes, such as lack of conscientiousness or inher-
ent level of noise, cannot be excluded.

Feature Selection and Nested Cross Validation

The optimal set of features comprised six features. This set
was returned in 9 of the 12 outer folds in the nested cross
validation trial. The average F-measure of these nine folds
was only slightly higher than the F-measure of the SVM in
the overall cross validation evaluation (0.702 versus 0.699).

We conclude that report length does not impact the clas-
sifier’s performance. This is a positive result: the classifier
has the same level of performance on lengthy—and poten-
tially harder to navigate—reports as on short reports. We
used report length as a measure for report complexity. An
alternative measure would be BI-RADS classification.

Comparison Against Human Annotations

In the 12-fold cross-validation protocol on the standard ref-
erence, the SVM classifier has F-measure of 0.699. When
trained on samples S1 and S3 and evaluated on sample S2,
the SVM classifier has F-measure of 0.574. The difference
between these scores may be caused by the fact that the
average report complexity of sample S2 is higher than the
complexity of the entire corpus. It cannot be caused by an
unfavorable proportion of training versus test data. Recall
namely that S1 and S3 contain 11 times as many reports as
S2. So in terms of number of reports, this evaluation (training
on S1 and S3, evaluating on S2) is equivalent to any fold in
the 12-fold cross-validation protocol.

On sample S2, the annotation of SVM is in higher agree-
ment with the standard reference than with the breast radiol-
ogists’ annotations (see Table 5). This is presumably because
of the fact that the standard reference was created by one
annotator which guarantees a certain level of consistency but
also potentially introduces bias.

Sample S3 was annotated using pre-annotated by an early
incarnation of the SVM classifier. Since this mode of annotation
was different from the mode of annotation adopted for S1 and
S2, this may have caused a bias. This is a limitation of our study.

Related Work

For two fragments of text H (hypothesis) and T (text), H is said
to textually entail T if “the meaning of H can be inferred from
the meaning of T, as would typically be interpreted by people”
[19]. For instance, in the example below [20], T entails H:

T the drugs that slow down or halt Alzheimer’s disease
work best the earlier you administer them.

H Alzheimer’s disease is treated using drugs.
Textual entailment is studied in the RTE challenges series

organized yearly, starting in 2004. In the RTE challenges, a
data set is provided that consists of hypothesis–text pairs. In
the first three RTE episodes, focus was on the core task of
detecting textual entailment. In later episodes, extensions

Table 5 Evaluation metrics of SVM against the breast radiologists and
the standard reference confined to S2

Comparison
annotation(s)

Average
precision

Average
recall

Average
F-measure

Average κ

BR1 0.490 0.607 0.542 0.517

BR2 0.422 0.509 0.461 0.431

BR3 0.540 0.444 0.487 0.452

BR4 0.664 0.385 0.487 0.445

BR5 0.540 0.430 0.479 0.442

BRa 0.531 0.475 0.491 0.457

SR 0.540 0.613 0.574 0.549

Allb 0.533 0.498 0.505 0.473

aMean scores against the breast radiologists
bMean scores against the breast radiologists and the standard reference
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were explored, such as detecting contradictory relations and,
in the two latest episodes (RTE-6 and RTE-7), the main task
was defined as follows: “Given a corpus and a set of “can-
didate” sentences […] from that corpus, RTE systems are
required to identify all the sentences from among the candi-
date sentences that entail a given Hypothesis.”1

In Ref. [21], the authors present the results of their com-
petitive algorithm in the past five RTE challenges. In terms
of F-measure, their top scores range from 0.529 (RTE-1) to
0.671 (RTE-3). Top contesters of the first three challenges
achieved F-measure scores of 0.580 (RTE-1 [22]), 0.724
(RTE-2 [23]), and 0.766 (RTE-3 [24]). Note that in RTE-2
and RTE-3, a team headed by Hickl ranked higher, but the F-
measures of his team’s algorithm were not published [25,
26]. The F-measure score of the winner of RTE-6 (0.480, see
Ref. [27]) is substantially lower than the scores of the win-
ners of previous episodes. This may indicate that the com-
plexity of the main task of the first five episodes is lower than
that of the two latest episodes. Results of RTE-7 were not
available to us, as we did not participate.

Like cross-sectional relatedness, textual entailment is
about detecting informational relations in pairs of sentences.
A number of differences between our problem and the prob-
lems addressed in the RTE challenges must be noted, though:

& Cross-sectional relatedness subsumes textual entailment
in the sense that if finding sentence F entails conclusion
sentence C, then F and C are cross-sectionally related.
The converse direction does not hold necessarily.

& The fragment pairs of T and H in RTE challenges are
sampled from general domains, whereas our standard
reference concerns breast radiology reports only. The
latter domain is arguably lexically more homogeneous.

& The numbers of positive and negative instances are fairly
balanced in the RTE challenge, whereas our data is
highly unbalanced.

Directions for improvement

Over the years, RTE participants have experimented with
various techniques. An early approach [28], brought forward
in RTE-1, regards a sentence as a bag of words. It decides
that one sentence entails another if the aggregated weight of
the words in the intersection of the sentences’ bags of words
exceeds a certain threshold (F-measure, 0.628). Advanced
features have been used since that model domain knowledge
[23, 29] and use background knowledge sources such as
WordNet and Wikipedia [30].

Although we have not experimented with WordNet or
Wikipedia as background knowledge sources, we are doubtful
if they improve performance of the SVM classifier on our task.

One of the main use cases for background knowledge is detec-
tion of synonymous words or phrases. In the course of our
optimizations, we experimented informally with representing
each sentence as a bag of SNOMED-CT concepts extracted by
MetaMap [31]. This extension did not result in higher outcomes
than the bag-of-words approach.

This may not be surprising if we recall that relatedness
between sentences is confined by the scope of the report.
Since a report is generally written by one radiologist, it is
unlikely—and not preferred per BI-RADS—that he uses
synonyms to describe the same finding or diagnosis within
one report. Other classification problems have been de-
scribed in the literature in which semantic normalization of
narrative content does not improve, and sometimes deterio-
rates, classification accuracy. We refer the reader to [32] for a
good entry point to this literature.

It would be interesting to generalize this research to other
areas of radiology. The optimal feature set has no breast-
specific features and can be used as a realistic starting point.
We have reasons to believe that similar or better results can be
obtained on other anatomies. The breast domain is arguably less
complex (anatomically and pathologically) than other anato-
mies, such as, for instance, brain and abdomen/pelvis. Thus, we
hypothesize that the terminology base of breast reports is small-
er than that of reports of other anatomies. We hypothesize that
cross-sectional relatedness detection is harder in domains with a
smaller terminology base, since the vector space model has
fewer dimensions which may impair its discriminative power.

Instead of describing sentences as bags of words or bags of
concepts, it might prove valuable to use semantically richer
representations. Such representations could, for instance, im-
pose a hierarchical structure on the sentences’ elements, so
that, for instance, it could be determined that “2 o’clock
position” is a location, “scattered microcalcifications” is an
image finding and that the former is the location of the latter
[12]. Domain knowledge, modeled in the form of rules, could
then determine that microcalcifications pose an increased risk
for malignancy, which can be taken into account when testing
relatedness of the sentence with other sentences.

Conclusions

The notion of cross-sectional sentence relatedness in radiol-
ogy reports was defined and formulated as an information
detection problem. We described the development and eval-
uation of an SVM classifier on this problem. A 444-report
standard reference was created; a subset of 37 reports was
annotated by five breast radiologists. The SVM classifier has
F-measure of 0.699 against the standard reference in a 12-
fold cross-validation evaluation. Performance of the SVM
classifier is not negatively impacted by the length of the
report.1 http://www.nist.gov/tac/2010/RTE/
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Overall inter-rater agreement on the 37-report subset
among the breast radiologists and the first author, who cre-
ated the standard reference, was mediocre (0.623). Reasons
were discussed: (1) definition of cross-sectional relatedness
is insufficiently actionable, (2) fine-grained nature of cross-
sectional relatedness on sentence level, instead of, for in-
stance, on paragraph level, and/or (3) higher-than-average
complexity of 37-report sample.

The optimal feature set of the SVM classifier contains no
breast-specific and may thus generalize to other anatomies.
We argued that the detection of cross-sectional relatedness
may in fact be harder in breast as its lexical base is smaller
than that of other anatomies.

Like cross-sectional relatedness, textual entailment is de-
fined in the RTE challenge series as a relation between
sentences. Thus, techniques used in these contests may be a
source of inspiration for future work.

The ultimate proof of this work lays in its practical utility.
Potential outlets include automated report structuring en-
gines that produce mineable data. Since finding sections
generally contain image characteristics of findings and con-
clusion sections diagnostic information, the proposed algo-
rithm can be used to find correlations between image char-
acteristics on the one hand and higher-level information,
such as diagnostics information, on the other hand. The
annotation task was framed in the context of a smart report
reading tool that helps users navigate from sentences in the
conclusion section of a report to pertinent information in the
rest of the report. This is another potential application of our
work.
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