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Abstract Dynamic contrast material-enhanced magnetic
resonance imaging (DCE-MRI) of breasts is an important
imaging modality in breast cancer diagnosis with higher
sensitivity but relatively lower specificity. The objective of
this study is to investigate a new approach to help improve
diagnostic performance of DCE-MRI examinations based on
the automated detection and analysis of bilateral asymmetry
of characteristic kinetic features between the left and right
breast. An image dataset involving 130 DCE-MRI examina-
tions was assembled and used in which 80 were biopsy-
proved malignant and 50 were benign. A computer-aided
diagnosis (CAD) scheme was developed to segment breast
areas depicted on each MR image, register images acquired
from the sequential MR image scan series, compute average
contrast enhancement of all pixels in one breast, and a set of
kinetic features related to the difference of contrast enhance-
ment between the left and right breast, and then use a multi-
feature based Bayesian belief network to classify between
malignant and benign cases. A leave-one-case-out validation
method was applied to test CAD performance. The comput-
ed area under a receiver operating characteristic (ROC) curve
is 0.78±0.04. The positive and negative predictive values are

0.77 and 0.64, respectively. The study indicates that bilateral
asymmetry of kinetic features between the left and right
breasts is a potentially useful image biomarker to enhance
the detection of angiogenesis associated with malignancy. It
also demonstrates the feasibility of applying a simple CAD
approach to classify between malignant and benign DCE-
MRI examinations based on this new image biomarker.
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Introduction

Breast cancer is the most prevalent cancer with high mortal-
ity rate in women over the age of 40 worldwide [1], and
scientific evidences have repeatedly shown that the effective
detection and treatment of earlier cancer significantly re-
duced patients’ mortality and morbidity rates [2–4]. Al-
though conventional X-ray mammography is the most wide-
ly used cancer screening and detection tool to date, it has a
number of limitations; for example, cancer detection sensi-
tivity of screening mammography is substantially reduced
from the range of 98 to 100 % in fatty breasts (BIRADS 1) to
30 to 48 % in dense breasts (BIRADS 3 or 4) [5–7].

To increase cancer detection sensitivity in particular among
the groups of premenopausal women with dense breasts or
carrying higher risk genes, several other imaging modalities
have been investigated and evaluated. Among them, the dy-
namic contrast-enhancement magnetic resonance imaging
(DCE-MRI) of breast [8] has demonstrated significantly
higher sensitivity in detecting early cancers depicted in dense
breasts (e.g., increasing sensitivity from 33 to 59 % using
mammography to 71 to 94 % when using DCE-MRI in a
number of studies worldwide [9–11]). Despite the higher
sensitivity, MRI actually has comparable or lower specificity
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than mammography [12, 13]. The higher false-positive rates
do not only cause woman’s anxiety and also substantially
increase health care costs by prompting a large number of
unnecessary recalls for additional imaging workup and/or
biopsies of the benign lesions [14]. As a result, in one large
study involving 1,215 high-risk women, 512 (42.1 %) refused
the offered breast DCE-MRI screening examinations because
of a variety of reasons (including claustrophobia, refusing
intravenous injection, and seriously concerning about addi-
tional biopsies or other procedures that may follow subse-
quently) [15]. Therefore, developing more accurate and reli-
able method to extract image features with higher discrimina-
tory power in classifying between cases depicting malignant
and benign breast lesions could be important to increase
efficacy of applying DCE-MRI examinations to detection
and diagnosis of breast cancer in the clinical practice.

To help improve diagnostic accuracy of DCE-MRI exami-
nations, a number of research groups have developed and
tested several computer-aided detection and/or diagnosis
(CAD) approaches. The CAD schemes first extract and com-
pute dynamic contrast enhancement features from the charac-
teristic kinetic curves generated from a set of the selected pixels
located inside the identified and segmented breast lesions, and
then apply different machine learning classifiers to distinguish
between the malignant and benign lesions [16–20]; for exam-
ple, one study reported that using a leave-one-case-out testing
method, a CAD scheme using a set of selected DCE-MRI
features and a Bayesian artificial neural network yielded an
area under a receiver operating characteristic (ROC) curve
(AUC=0.78±0.04) when applying to a dataset involving 168
malignant and 45 benign breast lesions [21]. Although the
previous studies focused on detection and analysis of charac-
teristic kinetic curves computed from the pixels inside the
segmented lesions, a recent study also showed that similar to
a widely used image-based risk factor, namely, the mammo-
graphic density, the background parenchymal enhancement
(BPE) evaluated or computed from the entire breast areas
depicting on DCE-MRI images also carried useful or higher
discriminatory information associated with cancer risk assess-
ment [22] as well as the performance of cancer detection and
staging [23].

These studies indicated that because of the difference of
angiogenesis associated between malignant and benign le-
sions, adding BPE features computed from the whole breast
could also increase discriminatory power or classification per-
formance of the CAD schemes than using the dynamic contrast
enhancement features computed only from the pixels inside the
lesions. However, such assumption has not been tested in CAD
development to date. Meanwhile, researchers also recognized
that similar to the assessment of mammographic density [24],
BPE values computed from breast DCE-MRI also depend on
menstrual cycle at the examination date and other different life
style factors of the individual woman. Hence, without knowing

or considering women’s life style factors, using BPE values
computed from DCE-MRI images to assess cancer risk or the
likelihood of cancer detection could be biased or unreliable
[25]. To overcome this limitation, we investigated and tested a
different approach in this study.

Our approach is developed based on the following under-
lying assumptions. First, since humans naturally show bilat-
eral symmetry in paired morphological traits including two
(left and right) breasts, breast tissue pattern asymmetry is an
important radiographic image phenotype that is highly relat-
ed to the abnormal biological processes leading to cancer
development [26]. Second, since many potential biases or
dependent factors in assessing breast density using mammo-
grams and/or PBE using DCE-MRI images should equally
affect on image features computed from the left and right
breast, subtraction of characteristic kinetic features comput-
ed from all enhanced breast tissue pixels depicted on two
bilateral breasts should help reduce or minimize many indi-
vidualized biases to achieve more robust results because we
compare the feature difference of two bilateral breasts of the
same women not among the different women at different
ages or having different genetic factors and life cycles or
styles. As a result, the primary hypothesis of this study is that
developing a new CAD scheme that enables to extract and
compute bilateral asymmetry (or difference) of dynamic
contrast enhancement related features on the left and right
breast regions segmented from DCE-MRI images may pro-
vide a new feature (or a classification index) with more
reliable and higher discriminatory power to help distinguish
between the cases depicting malignant and benign lesions.
The purpose of this study is to test this hypothesis. If suc-
cessful, this new feature can provide useful supplementary
information to be applied to the existing CAD schemes and
help improve classification performance.

Materials and Methods

Image Dataset

The image dataset assembled and used in this study was
retrospectively collected. It includes 130 DCE-MRI examina-
tions acquired from 130 women who previously underwent
breast cancer diagnosis and treatment at Zhejiang Cancer
Hospital in the City of Hangzhou, Zhejiang Province, China.
This study was approved by a human subject administration
office (IRB). All the patient identifiers were removed in the
research. Althoughmany of these cancer patients had multiple
DCE-MRI examinations before and after therapeutic treat-
ment, all images selected in this dataset were acquired before
the therapeutic treatment.

We divided these cases into two groups. Group one in-
cludes 80 cases depicting cancer (with biopsy and pathology-

J Digit Imaging (2014) 27:152–160 153



verified malignant lesions) and group two involves 50 cases
that were highly suspicious in imaging examinations but later
proved by biopsy as benign lesions. In each malignant case of
this dataset, only one breast depicts malignant lesions and
another breast is negative or benign. The majority of women
whose DCE-MRI examination images are selected in this
dataset are relatively younger. The mean and standard devia-
tions of these women’s age are 48.7±8.8 and 43.0±9.5 for
groups one and two, respectively.

During each breast DCE-MRI examination, the woman
was scanned in prone position using a SiemensMRI machine
(MAGNETOM Espree-Pink 1.5T) equipped with a standard
double-breast MRI coil. The DCE-MRI examination proto-
col adopted in the hospital first acquires the pre-contrast
(baseline) series of T1- and T2-weighted 3D image scans.
After injection of Gd-DTPA contrast agent with a dose of
0.2 mmol/kg body weight and a saline flush of 20 ml intra-
venously at the same flow rate of 2 ml/s, three post-contrast
series of 3DMR image scans and data acquisitions were then
performed. The first two post-contrast series (namely T1 and
T2) use the same image scanning process and thus generate
images with the same spatial resolution as the pre-contrast
(termed T0) images with a data matrix of 512×512 pixels.
All three (T0 to T2) image scan series also have the same
number of 88 image slices representing the same in-depth
resolution. The third post-contrast series (T3) generates high
in-depth resolution images involving 160 image slices. In
this study, we only used three image scan series (T0, T1, and
T2) in kinetic feature computation and data analysis process.

A CAD Scheme

We developed and tested a new CAD scheme to automatically
detect and classify between the malignant and benign DCE-
MRI examinations using a new image biomarker or classifi-
cation index based on the bilateral asymmetry (difference) of
contrast enhancement features computed from all pixels
depicted on the left and right breast areas segmented from
each DCE-MRI image slice. Specifically, the scheme includes
following four basic image processing and data analysis steps
namely (1) segmenting left and right breast areas, (2) register-
ing images acquired from the sequential MR image scan
series, (3) computing the bilateral asymmetry (or difference)
value of the dynamic contrast enhancement features from the
kinetic curves of all pixels between the left and right breasts,
and (4) applying a multi-feature based Bayesian belief net-
work (BBN) to produce a likelihood score for classifying each
testing case into malignant or benign case group.

Breast Area Segmentation

To identify the characteristic kinetic curves and compute
average contrast enhancement (or wash-in and wash-out)

ratios of all enhanced pixels on the left and right breasts,
CAD scheme automatically segments breast areas depicted
on each breast MR image slice. Hence, the contrast enhance-
ment of pixels located behind the chest wall will not affect
the final case classification result. For this purpose, we
designed the following image processing procedures to seg-
ment breast area depicted on each MR image slice automat-
ically (as shown in Fig. 1).

1. Apply a Sobel filter to enhance the boundary pixels
between breast skin and the air background recorded
on each image slice.

2. Apply a morphological closing and smooth filter to
remove isolated pixels (e.g., artificial noise) and gener-
ate a smoothed protruding curvature to segment between
imaged skin (both breast and chest) and air background
pixels depicted on each image slice.

3. Detect and fit a line passing through the segment curva-
ture detected in step 2 in the central chest region between
the left and right breasts (Fig. 1b) based on the fact that the
chest boundary between two breasts is almost horizontal.

4. Temporally remove the breast areas located above the
fitted line in step 3 from each image slice (Fig. 1c).

5. Detect and fit two chest skin surface curves beyond breast
areas in both left and right side of breast regions (Fig. 1d).

6. Apply a parabolic model based curve fitting method to
generate a complete segmentation curve to separate be-
tween breast and chest wall regions (Fig. 1e) in which
the parameters of the parabolic model are defined based
on the least square criterion.

7. Connect the first curve separating between breast skin and
air background and the second fitted curve separating be-
tween breast tissue and chest wall or skin to generate two
segmented regions that represent the left and right breast
areas depicted on one DCE-MRI image slice (Fig. 1f).

Image Registration

To help overcome the impact of potential body motion of a
woman during the sequential imaging scanning procedure of a
DCE-MRI examination on the reliability in computing kinetic
(contrast enhancement) features and the accuracy of lesion
classification [17, 27], we developed and implemented a
simple and easy to performed image registration process in
our CAD scheme. Since in our DCE-MRI examination pro-
tocol, three image sequences (T0, T1, and T2) have the same
number of image slices; for the simplicity, we ignored the
possible motion along the vertical (z) direction in this study.
Thus, our image registration process was only applied on three
matched MR image slices acquired from three (T0, T1, and
T2) image scanning sequences. Using each pre-contrast image
slice (T0) as the reference, our scheme applies a rigid image
registration method to shift image slices acquired from T1 and
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T2 scans accordingly to align with the corresponding T0
image slice. For this purpose, we tested several image
matching and registration methods (including mutual infor-
mation and Pearson correlation based template matching
methods [28, 29]) and visually examined/compared the per-
formance of these methods being directly applied to the orig-
inal MR images. Given the image noise and gray level vari-
ation among the sequentially scanned MR images, we found
that the registration results were often not reliable. Hence, we
tested and implemented a new approach in this study. Taking
Fig. 2 as an illustration example, our image registration algo-
rithm is explained as follows.

1. Apply a Sobel filter to process each image slice to
enhance the edge curves of the fibro-glandular tissue
structure within breast area and use an adaptive thresh-
old embedded in the Sobel filter program to generate a
binary image (Fig. 2). The image registration was then
conducted based on the converted binary images instead
of the original gray level images.

2. Open a rectangular window and apply it to scan over the
generated binary image in baseline (T0) examination.
During the scan, the scheme detects and counts the
number of nonzero pixels within the covered window.
The scheme then searches for and identifies one location
of the image where the window includes the maximum
number of nonzero pixels. This window is considered

depicting the maximum information and is named as a
reference window in the T0 image slice with the center
coordinate of (xc and yc). Based on our experiment and
data analysis results, size of the reference window was
experimentally determined with 40×25 pixels (Fig. 2a).

3. Apply a new floating (or scanning) window with the
same size as the reference window selected in T0 image
slice to the matched image slice acquired from either T1
or T2 imaging scan sequence. By assuming that only
small image shift is required because of the restricted
slight motion of the woman during the whole DCE-MRI
scanning process, the floating window is first mapped to
be centered at the same location of (xc and yc) as the
baseline (T0) image slice and then scanned within a
range of (xc±Δx and yc±Δy) in which Δx=5 and
Δy=5 in T1 or T2 imaging slice. By computing corre-
lation coefficient between two regions defined by the
scanning window in T1 or T2 image and the reference
window in T0 image at different locations, the scheme
determines the final center location of this scanning
window (Fig. 2b) on the post-contrast image slice (T1
or T2). At this location, the correlation coefficient of the
two (reference and scanning) windows reaches the max-
imum level.

4. Register one pre-contrast (T0) and one matched post-
contrast (T1 or T2) image slices by linearly shifting T1
or T2 image slice to align with T0 image. The registration

Fig. 1 Illustration of image
processing steps to automatically
segmenting bilateral breast areas
depicted on one MR image slice
which includes a showing a raw
MR image slice, b detecting an
initial line passing through the
central section of chest wall, c
removing breast areas above the
initial line, d delineating the
surface curve of the remaining
area, e fitting a parabolic curve as
a segmentation boundary curve,
and f showing the left and right
breast areas finally segmented
from the MR image slice
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target is to make the reference window identified in step 2
and the scanned window determined in step 3 being exact-
ly matched (or overlapped) on the sequential MR images.

Computing the Bilateral Difference of Characteristic Kinetic
Features

After breast area segmentation on each image slice and
registration of matched images in three MRI scanning se-
quences, CAD scheme counts all qualified nonzero (e.g.,
fibro-glandular tissue) pixels inside one entirely segmented
(either left or right) breast area and computes two average
characteristic kinetic (contrast enhancement) values. The
first one is computed from the relative average difference
of all registered pixel values between T0 and T1 images
and the second one is computed from the difference between

T0 and T2 images namely, M1 ¼ 1
N ∑

i¼1

N
p1i − p01

� �
=p01 and

M2 ¼ 1
N ∑

i¼1

N
p2i −p0i
� �

=p0i , where pi
0,pi

1,pi
2 are the pixel value

of matched pixels (i) depicted on T0, T1, and T2 image
slices, respectively, and N is the total number of nonzero
pixels detected inside one 3D breast volume (segmented in
all 2DMR image slices) in T0MRI scanning sequence. CAD
scheme then computes three image features related to bilat-
eral asymmetry (difference) of characteristic kinetic features
F1=|M1LB−M1RB| in T1, F2=|M2LB−M2RB| in T2 image
scanning sequences, respectively, and their change,
F3=F3−F1, between the left (LB) and right (RB) breasts.

A Bayesian Belief Network

To optimally utilize these three image features (F1, F2, and
F3) in classifying between the malignant and benign cases,
we also designed and implemented a BBN in the final step of
our CAD scheme (as shown in Fig. 3). BBN is a popular

statistical learning method that has been investigated and
applied in a number of CAD schemes for detecting breast
cancer [30–32]. One unique advantage of the BBN approach
is that the topology of the BBN represents the joint proba-
bility distribution of a problem domain by exploiting the
dependencies between variables and capturing the knowl-
edge of a given problem in a natural and efficient way [33].
Unlike many other types of machine learning methods or
networks (i.e., artificial neural network and support vector
machine) in which the iterative training or learning processes
are required to minimize the errors to the specific targets, a
BBN uses all available samples (data) once to compute a
joint probability table installed in the network when the node
topology of the network is determined. This reduces the risk
of over-fitting and increases the robustness of the network.
To compute these joint probabilities, each node (feature)
must be represented by a relatively small number of discrete
states.

In our study, one feature computed from all training sam-
ples was divided into five discrete states with equal sample
distribution [31]. Since the decision node (case classification
in Fig. 3) has three potentially dependent nodes represented by
features (F1, F2, and F3), a set of joint probabilities can be
computed to generate the final joint-conditional probability
table. When assuming all three features are used in the BBN, a

Fig. 2 Illustration of DCE-MRI
sequential image registration
based on alignment of two
maximum information windows
detected on the T0 (a) and T1 or
T2 (b) image slices

Fig. 3 An example of building a Bayesian belief network using all
three bilateral asymmetric kinetic features to classify between malig-
nant and benign cases

156 J Digit Imaging (2014) 27:152–160



set of the conditional probability values are computed as
follows.

P1 Malignant ¼ Yes F1 ¼ state 1; F2 ¼ state 1; F3 ¼ state 1jð Þ;
P2 Malignant ¼ Yes F1 ¼ state 2; F2 ¼ state 1; F3 ¼ state 1jð Þ;
Pm Malignant ¼ Yes F1 ¼ state 5; F2 ¼ state 5; F3 ¼ state 5jð Þ:
In this study, we built and tested several BBNs using the

different number and combinations of these three features to
identify an optimal network. Specifically, once the features
(i.e., two or three in this study) were selected to build the
BBN, the complete conditional probability table applied to
build the network was automatically generated using a pub-
licly available BBN optimization tool (the BN power con-
structor and predictor [34]). Using a pre-established condi-
tional probability table, the BBN was then applied to classify
testing cases based on a BBN-generated probability or likeli-
hood score of the case being malignant (e.g., from 0 to 100 %).

Performance Assessment

We took the following steps to conduct the tasks of assessing
classification performance of our CAD scheme. First, we
plotted box-plot diagrams, took statistical t test to analyze
and compare the discriminatory power of each image feature.
Second, we computed correlation coefficients among differ-
ent combinations of feature pairs (e.g., F1 and F2, F1 and F3,
as well as F2 and F3). Third, after building and implement a
BBN, we tested classification performance using a leave-
one-case-out method by applied CAD scheme to our entire
DCE-MRI testing dataset. A set of BBN or CAD-generated
classification scores was recorded. The feature and classifi-
cation scoring data were analyzed using a maximum likeli-
hood algorithm based ROC program (ROCKIT, 0.9B beta
version, http://www.radiology.uchicago.edu/krl/, University
of Chicago, 1998 [35]). The areas under the ROC curves
(AUC) and the corresponding 95 % confidence intervals (CI)
were computed as performance assessment index. In addi-
tion, the positive predictive value (PPV) and the negative
predictive value (NPV) were also computed and compared
between using a single feature and the BBN.

Results

Figure 4 shows three sets of box-plots that illustrate the
distributions of three kinetic features (F1, F2, and F3) in
two groups of 80 malignant and 50 benign cases. The first
two sets of box-plots (Fig. 4a, b) indicate that malignant
cases in general have higher average bilateral contrast en-
hancement difference (asymmetry) between the two bilateral
(left and right) breasts (F1 and F2). The third set of box-plots
(Fig. 4c) shows that the asymmetrical level is also likely to
increase faster in the malignant cases from T1 scan to T2

scan than the benign cases. The results indicate that in both
T1 and T2 image scanning sequences, the malignant breasts
typically have higher average kinetic (contrast) enhancement
than the negative or benign breasts. However, the t test for
each individual feature indicates that the differences as de-
scribed above are not statistically significant (p>0.05).

Using ROC data analysis method, Table 1 summarizes the
computed AUC values and the corresponding 95 % CIs when
one of three features was independently applied in classifying
between two groups of malignant and benign cases. Compar-
ing the classification results evaluated using AUC values, the
results show no statistically significant differences between
the AUC values generated using these three features. The
computed two-tailed p values are 0.329, 0.055, and 0.082
between using these three feature pairs of F1 and F2, F1 and
F3, and F2 and F3, respectively. Meanwhile, the correlation
coefficients of the computed AUC values are 0.873, −0.238,
and −0.634 when comparing AUC values generated using
pairs of F1 and F2, F1 and F3, F2 and F3, respectively. Among
these three features, using F1 yielded the highest classification
performance (AUC=0.657±0.049). As a result, when using
F1 to predict diagnostic outcome of 80 malignant and 50
benign cases verified in our dataset, this feature index classi-
fied that 103 cases were malignant and 27 cases were benign.
The overall classification accuracy is 65.4 %, while the PPV is
0.67 (69/103) and the NPV is 0.59 (16/27).

Table 2 summarizes and compares several performance
levels of classification indices (including absolute classifica-
tion accuracy, areas under ROC curve and 95 % confidence
intervals, positive predictive and negative predictive values)
when using three BBNs that involve either two or three
computed DCE-MRI features. Given the high correlation
between features F1 and F2, although using a BBN that
combined these two features yielded greater AUC value (in-
creasing from 0.657±0.049 when using F1 only to
0.705±0.046 when using a BBN that combines features of
F1 and F2), the classification performance improvement is not
statistically significant (with two-tailed p value=0.092). How-
ever, when using the second BBN that combined two sub-
stantially low-correlated features (F1 and F3), the computed
AUC value was significantly increased to 0.776±0.041
(p<0.01). Figure 5 plots and compares two ROC curves
generated using the single feature (F1) and the BBN. The
results also show that the BBN using all three features has
little performance improvement (AUC=0.779±0.040) com-
pared with the BBN that involves only two features of F1 and
F3 (p=0.907) indicating that F2 is a redundant feature.

In summary, using three simple characteristic kinetic fea-
tures computed from the entirely segmented breast areas and a
BBN classifier, our CAD scheme enabled to classify 93 out of
130 cases correctly in our testing dataset yielding an absolute
classification accuracy of 71.5 %. Specifically, the scheme
classified 81 cases as malignant cases in which 62 were
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correctly classified and 19 were misclassified, which results in
PPV=0.765. The scheme also predicted 49 as benign cases in
which 31 were correct and 18 were incorrect making
NPV=0.633. Based on ROC analysis, AUC=0.779±0.040
and thus the scheme could yield 47% classification sensitivity
level at 90 % specificity or 62 % sensitivity level at 80 %
specificity. As a result, adding a BBN, our scheme enables to
achieve significantly higher classification performance than
using only a single image feature (e.g., F1).

Discussion

DCE-MRI has been considered an important and valuable
imaging modality used in breast cancer diagnosis and patient
management (including treatment planning and efficacy as-
sessment). However, the lower diagnostic specificity reduces
the efficacy of applying DCE-MRI in the clinical practice.
As a result, exploring and extracting more effective and non-
redundant image features or biomarkers from DCE-MRI
images to help improve performance in classifying between
malignant and benign cases remains an attractive research
topic in the biomedical imaging and CAD fields.

In this study, we investigated a new DCE-MRI image
feature or biomarker that is related to the bilateral dynamic
contrast enhancement asymmetry computed from the entire
breast areas and tested its discriminatory power of classifying
between malignant and benign DCE-MRI examinations. The
experimental results showed that using this new feature, our
CAD scheme enabled to yield a classification performance
level (e.g., AUC≈0.78) that is quite comparable to the existing
CAD schemes using a set of optimally selected DCE-MRI
kinetic features that are computed from pixels located inside
the segmented breast lesions [21]. Although the performance
of our CAD scheme remains lower if it is used as a standalone
tool, this study provides a new image biomarker or classifica-
tion index that has never been used in any previously devel-
oped CAD schemes for DCE-MRI images. Hence, our ap-
proach and CAD scheme does not directly compete with the

existing CAD schemes due to the use of totally different image
features. If there is low correlation between the classification
scores generated by our CAD scheme and the other existing
CAD schemes (which needs to be verified in future studies),
one could relatively easily add this new feature or optimally
fuse the classification score of our CAD scheme into the
existing CAD schemes without scheme retraining. This will
have potential to significantly improve the overall CAD per-
formance levels in classifying between the malignant and
benign DCE-MRI examinations (cases). The similar approach
has been investigated and used in our previous work to im-
prove performance of CAD schemes for mammography by
fusing with a bilateral mammographic density asymmetry-
based classification index [36].

Although previous studies have shown that BPE comput-
ed from DCE-MRI examinations was a useful cancer risk
prediction and/or a cancer diagnostic factor [22, 23], this
study is different. We investigated and tested a new feature
index that is generated based on the bilateral asymmetry of
BPE feature values computed from the left and right breasts
of one woman. Since similar to mammographic density, BPE
could vary substantially in different examination date be-
cause of the change of woman’s menstrual cycle and also
be influenced by many other woman’s life style factors (e.g.,
using hormonal agent, smoking, and drinking alcohol) [24,
25]. However, these potential biases or influences on BPE
feature assessment should equally impact on the features
computed from two bilateral breasts of the same woman,
subtraction of two feature values computed from the left and
right breasts should help cancel or reduce many of these
assessment biases. As a result, this new image feature could

Fig. 4 Box-plots showing
distributions of three features (a
F1, b F2, and c F3) in two groups
of malignant and benign cases
with statistical t test p values

Table 1 Summary of AUC values and their 95 % confidence intervals
(CI) using three individual features (F1, F2, and F3)

Feature F1 F2 F3

AUC 0.657 0.628 0.523

95 % CI 0.557, 0.746 0.528, 0.718 0.423, 0.622
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be more robust. The similar approach has been previously
investigated in assessing the association between mammo-
graphic density and breast cancer risk, which demonstrated
that using bilateral mammographic density symmetry en-
abled a computerized prediction model to yield more robust
and significantly higher discriminatory power than those
using the average mammographic density assessed from
two breasts in breast cancer risk prediction [37].

Despite encouraging experimental results, this is a prelim-
inary study that has several limitations. First, the size of our
image dataset is relatively small and it may not adequately
cover the diversity of cases in the real clinical environment.
Hence, the performance and reliability level of our CAD
scheme needs to be further tested using larger andmore diverse
datasets in future studies. Second, the malignant case group in
our dataset does not include the cases with bilateral malignan-
cy. All malignant cases in this dataset have only one malignant
breast and one negative (or benign) breast. Although the

percentage of cancer cases with two malignant breasts is small
in the clinical practice, how the inclusion of the cases with
bilateral malignancy affects performance of our scheme has
not been tested. Third, considering the special DCE-MRI
examination protocol used in Zhejiang Cancer Hospital (in
China), we only computed kinetic features (enhancement
values) in two time post- contrast points (M1 and M2),
which makes it unable to generate an entire kinetic curve.
Although in this study we found that features computed
from the first and the second post-contrast image scanning
time points (F1 and F2) are highly correlated, whether
involving more time points in the kinetic curves could help
further improve the classification performance of this type
of schemes need to be later investigated and verified with
the diverse image datasets acquired from different DCE-
MRI examination protocols. Fourth, we have not investigat-
ed the correlation between this new image feature and other
image features extracted from the targeted lesions by other
existing CAD schemes. Thus, whether fusion between the
classification scores generated by the BBN of our scheme
and those generated by the existing CAD schemes could
help significantly improve CAD performance in diagnosis
of DCE-MRI examinations is also an interesting research
topic in the future studies.

In summary, we investigated in this study a new type of
kinetic image features computed from breast DCE- MRI
images and reported our preliminarily experimental results.
The study demonstrated that a new image biomarker or
classification index based on the bilateral asymmetry of
characteristic kinetic features computed from the entire left
and right breast areas segmented from breast DCE-MRI
images provided a relatively higher discriminatory power
to classify between the malignant and benign cases. Since
this type of features or classification index has never been
investigated and applied in previous CAD schemes for DCE-
MRI images to date, it may provide useful supplementary
information in future CAD development. However, to realize
the ultimate goal of adding this new image feature or a
classification index generated by our CAD scheme to im-
prove diagnostic performance in DCE-MRI examinations
using CAD approach, much work is needed including build-
ing large and diverse image databases, exploring and
selecting optimal image features to more effectively detect
bilateral asymmetry of characteristic kinetic image features,
and evaluating the performance and reliability of CAD
schemes after integrating or fusing with this or similar image
features in future studies.
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Table 2 Summary of classification performance levels using three
BBNs involving the combination of three features (F1, F2, and F3)

Feature F1+F2 F1+F3 F1+F2+F3

Classification accuracy 66.9 % 70.8 % 71.5 %

Areas under ROC curves 0.705 0.776 0.779

95 % confidence interval 0.611, 0.788 0.689, 0.847 0.692, 849

Positive predictive value 0.69 0.75 0.77

Negative predictive value 0.61 0.63 0.64

Fig. 5 Comparison of ROC curves generated using a single feature
(F1) and a BBN that involves two features (F1 and F3). The areas under
the reference (dashed) line and two ROC curves are 0.5, 0.657, and
0.776, respectively
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