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Abstract The Insight Segmentation and Registration Toolkit
(ITK) is a software library used for image analysis, visualiza-
tion, and image-guided surgery applications. ITK is a collec-
tion of C++ classes that poses the challenge of a steep learning
curve should the user not have appropriate C++ programming
experience. To remove the programming complexities and
facilitate rapid prototyping, an implementation of ITK within
a higher-level visual programming environment is presented:
SimITK. ITK functionalities are automatically wrapped into
“blocks” within Simulink, the visual programming environ-
ment of MATLAB, where these blocks can be connected to
form workflows: visual schematics that closely represent the
structure of a C++ program. The heavily templated C++
nature of ITK does not facilitate direct interaction between
Simulink and ITK; an intermediary is required to convert
respective data types and allow intercommunication. As such,
a SimITK “Virtual Block” has been developed that serves as a
wrapper around an ITK class which is capable of resolving the
ITK data types to native Simulink data types. Part of the
challenge surrounding this implementation involves automat-
ically capturing and storing the pertinent class information
that need to be refined from an initial state prior to being
reflected within the final block representation. The primary
result from the SimITK wrapping procedure is multiple
Simulink block libraries. From these libraries, blocks are

selected and interconnected to demonstrate two examples: a
3D segmentation workflow and a 3D multimodal registration
workflow. Compared to their pure-code equivalents, the
workflows highlight ITK usability through an alternative vi-
sual interpretation of the code that abstracts away potentially
confusing technicalities.

Keywords Software design . Image processing . Image
segmentation . Image registration . Visual programming

Introduction

Medical image analysis is typically performed with the aid of
software designed to manipulate and augment medical im-
ages. Such manipulation enables deriving surgical plans, reg-
istering information between different modalities, and making
regions of interest clearly visible. The Insight Segmentation
and Registration ToolKit (ITK) [1] is an open-source, cross-
platform collection of C++ image-processing classes and li-
braries commonly used in developing software for research in
clinical applications of medical image analysis.

Classes in ITK have individual functionalities and are
broken down into many different types, such as file readers/
writers and image filters that perform image-processing tech-
niques. As of March 2013, ITK consisted of 12,985 files
composed of 2,445,718 lines of code. Of these files, approx-
imately one-third are classes with specific functionalities; the
remaining files aid in the building and installing of ITK or
provide documentation.

Medical image analysis software is typically built using a
dataflow paradigm or “pipeline,” where one selects and con-
nects desired classes to one another to form a program where,
upon execution, the data will flow and bemanipulated by each
specified subsequent class until completion; a graphical rep-
resentation of a typical ITK pipeline can be seen in Fig. 1a.
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Constructing an ITK program requires familiarity with ad-
vanced C++ concepts such as generic programming and is
further complicated by a proliferation of ITK-specific data
types. These potentially heavy programming requirements
are a major setback, keeping libraries like ITK from being
commonplace within a biomedical research laboratory or a
clinical environment. A solution that abstracts away these
programming complexities would greatly reduce the required
learning curve and increase accessibility as the user could
learn how to build and manipulate programs without needing
to first learn how to program. At the same time, a means to
rapidly prototype ITK programs that can showcase and take
advantage of the powers of these libraries would be of great
benefit to both present and future researchers.

As detailed in “Background,” several solutions have been
proposed before to alleviate the issues above and facilitate
ITK programming, including ITKBoard [2], MeVisLab [3, 4],
and MITK [5, 6]. However, these solutions rely on a propri-
etary graphical user interface (GUI) unique to each implemen-
tation. In such cases, this convenience substitutes deep ITK
knowledge for deep environment knowledge putting the user
at risk of becoming proficient in the particular environment
and not the underlying library. This either forces the user to
remain within the familiar environment or begin anew and
learn how to perform the same tasks within a new
environment.

Alternatively, since we observed that the pipeline-based
nature of ITK and the visual programming approach
employed by Simulink, an environment within the
MATLAB (Mathworks, Natick, MA) scientific programming
suite, are both based on dataflow programming, combining
the two environments was a natural conclusion. Simulink is an
interactive graphical environment within MATLAB created
for model-based design of dynamic systems, complete with a
customizable set of block libraries that facilitate the design,
simulation, implementation, and testing of a variety of time-
varying systems, including, but not limited to, image process-
ing. From a given block library (or combination thereof),
desired blocks are selected and added to a blank Simulink
canvas before being interconnected to create a model file.
Subsequently, the model file is executed to perform a given
task. Figure 1b is an example of a Simulink signal-processing
model.

In this article, we present SimITK, an implementation of
ITK within the Simulink environment that joins the power of
image processing with the simplicity of visual programming.
A benefit of graphical environments like Simulink, particular-
ly when the user is not an experienced programmer, is that
details of a written programming code are abstracted away and
replaced by an equivalent visual representation, allowing the
user to focus on solving the problem at hand. As shown in
Fig. 1, similarities can be observed between pipeline-based
programming and visual programming models: blocks

represent data or performed actions and arrows represent
information passed between blocks.

Background

The dataflow programming paradigm was initially envisioned
in the late 1960s (Adams [7]) and early 1970s (Dennis [8]) out
of an increased desire to design a method of programming
based on the connections, or flow, between program elements
as opposed to focusing on the data changes occurring as
program execution progressed. Typically, this programming
style is modeled similar to a graph diagram representation, as
shown in Fig. 1.

Another paradigm, visual programming, aims to substitute
the written aspect of programming with functionally equiva-
lent visual representations. All programming elements, such
as input data and executed commands, are represented by
graphics that interconnect to create a program. As an example
of an early visual programming implementation, in pictorial
transformations (PT) [9], the user performs “algorithm anima-
tion.” A programmer specifies an algorithm in PT by altering
and interacting with visual representation objects. By the
nature of the programming, as the “animation” is visually
constructed so is the algorithm. This is only one of many of
the concepts introduced in PT that parallel the Simulink
environment. However, since ITK exists as a C++ library
without any standard visual programming front-end, the tech-
nique of “language wrapping” can be employed in order to
incorporate ITK into the visual programming paradigm used
in Simulink.

Fig. 1 A comparison of pipeline-based ITK programming and graphical
programming within Simulink. If blocks are incorporated into Simulink
from an image-processing library such as ITK, then Simulink can be used
as a visual programming environment for image processing. a A flow-
chart representing the pipeline-based nature of ITK programming where
classes are connected to one another to create a virtual information
“processing chain”. b In a Simulink model, the inputs, outputs, and the
processing blocks are displayed graphically in the Simulink window. For
example, the model above computes a product and then an integral
(highlighted in yellow) of two different inputs (in cyan and green) and
produces the result as an output (shown in red)
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Wrapping is a computer language translation technique that
aims to translate just the interface specification of a program-
ming library from one computer language to another, while
leaving the implementation in the original programming lan-
guage. This is commonly done to facilitate software library
interaction written in the former language in terms of the latter
environment. The Simplified Wrapper and Interface
Generator (SWIG) [10] is an example of a tool that can be
used to take libraries and/or programs written and implement-
ed in C or C++-like programming languages and integrate
them within higher-level programming environments.
WrapITK [11] is a front-end for SWIG designed specifically
for use with the ITK image-processing library, which uses a
powerful tool called GCCXML to create a symbolic represen-
tation of the ITK interface specification. As such, WrapITK
represents a crucial component necessary to encapsulate ITK
within Simulink to create SimITK. The implemented method
(detailed in “Methods”) is a complex wrapping process that
integrates the C++ ITK library into the Simulink visual pro-
gramming environment facilitates the rapid development of
ITK programs in the form of SimITK workflows.

There are several image-processing environments that aim
to provide the user with enough flexibility to construct custom
pipelines, without requiring knowledge of programming.
Implementations include, but are not limited to, SCIRun
[12], ANALYZE [13], MATITK [14], 3D Slicer (Slicer) [15,
16], and XIP [17, 18].

In most of these implementations, the convenience of
ITK integration carries a potentially heavy setback: deep
ITK knowledge is substituted for deep environment
knowledge. The danger of this is that the user becomes
competent in the environment and not the implemented
library; moving to a different environment may require
re learning leading to prolonged development .
Furthermore, when collaborating or presenting results,
having the environment installed becomes a necessity.
As such, with ITK becoming increasingly ubiquitous, it
may be of greater interest to take advantage of the
functionalities ITK offers by being familiar with its
inner workings rather than a given implementation
environment.

As with SimITK, several other visual programming envi-
ronments have integrated ITK’s image-processing abilities
through the visual programming paradigm. Examples include,
but are not limited to, ITKBoard [2], MeVisLab [3, 4], MITK
[5, 6], and VolView [19]. In the case of ITKBoard, this
includes the convenience of automatically wrapping ITK.
However, they all differ sharply as a proprietary GUI has been
developed exclusively for each implementation. SimITK dif-
fers from the rest in that it uses WrapITK, which provides a
comprehensive, automatic translation of the ITK interface
instead of only translating a hand-picked subset.
Furthermore, the use of Simulink is another difference which

couples the power of ITK with the scientific computing abil-
ities of MATLAB, allowing for the creation of more complex
workflows.

All these previously detailed concepts will be fused togeth-
er to create the SimITK visual programming implementation
of the ITK image-processing library. As outlined, the ITK
image-processing library uses dataflow programming con-
cepts to build programs composed of connected classes.
These ITK class interconnections can be naturally represented
by the visual programming paradigm found at the core of
Simulink. Therefore, to successfully integrate ITK within
Simulink, a language-wrapping procedure is used to combine
the image-processing power of ITK with the visual ease of
Simulink to create SimITK. The next section extensively
outlines the SimITK wrapping process including the steps
taken, challenges faced, and solutions implemented.

Methods

A graphical overview of the wrapping method, the different
required files, and the order in which they are created can be
seen in Fig. 2. As a convention, the files at the top of the figure
are lowest on the dependency tree, meaning they must be
generated before the files lower in the figure.

The implemented method for wrapping ITK classes as
SimITK blocks requires a simple and legible representation
of each ITK class at its core. This transparent representation is
critical because the information stored therein will be retrieved
frequently for substitution into several different, custom-
written template files—one for each filetype needed—to suc-
cessfully integrate ITK within Simulink. Within the represen-
tation, pertinent class information needs to be stored such as
the name, type (Image Filter, Optimizer, Transform, etc.),
parameters, as well as all inputs, outputs, methods, method
arguments, acceptable dimensionalities, and permitted data
types.

The Extensible Markup Language (XML) was selected as
the language best suited for creating a schema, an organiza-
tional structuring of the contained data, which would allow for
storage and retrieval of the ITK class information. Another
reason for selecting XML stemmed from the desire to take
advantage of WrapITK, an optional part of ITK that generates
a complete, yet complex, XML representation of an ITK class.
However, this complex document requires significant consol-
idation to make it useful within the SimITK wrapping
procedure.

After an XML representation of each ITK class is generat-
ed using WrapITK and refined into a usable state, the ITK
information therein is used to generate all SimITK source files
by expansion of keywords within specialized SimITK-
template files: special keywords within the templates serve
as anchor points to be replaced by ITK information and/or

222 J Digit Imaging (2014) 27:220–230



integration code. One series of substitutions exists for each
template with one template for each filetype. Several perl
scripts and modules were written to perform the substitution
series for each template in order to generate class-specific
files.

As illustrated, after the XML class information has been
retrieved, it is substituted into a template for the Virtual Block
.tpp file: a data converter that exists between the Simulink and
ITK workspaces. The subsequent files require the Virtual
Block to be created prior to subsequent blocks being
generated.

Following .tpp generation, several Simulink/MATLAB
source-code files need to be generated. One is a Simulink

“S-Function” .cpp file that contains the code that will be
executed by Simulink at runtime. Two accompanying files
provide the block representationwithin Simulink: aMATLAB
Callback .m file and a Simulink Mask .mdlpart file. These
files detail information such as the number of ports on a given
block as well as establish the options the user can
modify within the “block mask,” a dialog box that
appears when the block is double-clicked that facilitates
block configuration (e.g., providing the filename for
image data to be loaded). These files are generated like
the .tpp file by taking their respective custom filetype
template and applying a series of substitutions on cus-
tom keywords therein.

Fig. 2 A graphical overview of
the SimITK wrapping procedure.
The dependency tree is
constructed such that a parent file
is a required dependency of a
child file (e.g., the .cpp depends
on both the .tpp and SimWrapITK
.xml files being generated before
it can be generated itself)
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Next, the .cpp files are compiled intoMATLAB-specific .mex
files that contain the code executed by Simulink at runtime.

Finally, since an image-processing pipeline depends
strongly on the data type used to store the image (16-bit
integer, 32-bit floating-point, etc.) and the type of image being
manipulated (2D image or 3D volume), this procedure is
repeated to generate corresponding Simulink .mdl library files
composed of all similar .mdlpart files for each combination of
data type and dimensionality.

XML Creation

Representing the ITK classes in a simple, standardized, and
legible format was absolutely critical for ensuring an effective
wrapping procedure—a required consideration as the XML
information needed to be later substituted into the various file
templates. “WrapITK” details the optional WrapITK package
and the challenges therein, the solutions to these problems,
and the final structure of the SimITK XML schema.

WrapITK

WrapITK [11] is an optional part of an ITK installation that
aids in wrapping the library into other non-C/C++ languages
and/or environments. GCCXML, a program used by
WrapITK, generates a complex XML representation of each
ITK class according to specified configuration options. This
output representation contains all class information including
name, parameters, data type, dimensionality, methods, method
arguments, inputs, and outputs as well as any required ITK
types and associated superclasses (and respective set of perti-
nent class information—the same aforementioned information
list) for all related superclasses in the ITK-hierarchy. An
example of this XML can be seen in Fig. 3a. To give the
reader a more concrete understanding for the desired output

from the XML conversion, the final representation for this
same method can be seen in Fig. 3b.

It can be observed from Fig. 3a that while some of the
information can be easily extracted by reading the XML (the
method name from the “name” element, for example), there is
much information to be desired from this code that is not
directly apparent: class-specific information like dimensional-
ity, data type, and whether data are related. Though data
relations can be determined through comparing ID and con-
text values associated with each entry, any possible relations
are not immediately apparent and difficult to understand.

As previously mentioned, all acceptable data types and
dimensionalities are included within the initial XML document
generated by WrapITK. Since an ITK class is capable of
handling image data stored in different dimensionalities and
data types, the XML representation describes a “class template
instance” for each combination. For example, if a given class
can handle data in either two or three dimensions, of either a
float or a short data type, four template instances will exist: 2D-
float, 3D-float, 2D-short, and 3D-short. These multiple in-
stances of the same class template cause problems when
attempting to resolve if/when variables corresponding to the
data type or dimensionality were usedwithin the class instance.
These “template variables” act as placeholders—the exact
value is not important, but knowing that this variable corre-
sponds to information that depends on the class instance is
critical. Discovering when these variables have been used is
extremely difficult as GCCXML resolves these variables to the
instance information within its output XML. As such, template
variables must be reverse-engineered from the class instances
in order to re-establish when such variables were used. This
requirement, as well as all other pertinent class information,
can then be reflected within the final SimWrapITK XML to be
used throughout the wrapping procedure.

The solution used to integrate the ITK class information
into the SimITK wrapping procedure was to process and
refine the original WrapITK XML into a simple and transpar-
ent class representation. This was accomplished through the
creation of convertWrapITKtoSimITK.pl, a perl script that
used the XML::DOM perl module to analyze the WrapITK
XML file for a given class, construct a hierarchy of XML
nodes based on the relations between the entries, and produce
a final XML document containing the extracted class infor-
mation in an easily retrievable format.

After this process had been performed for each ITK class
file, the data could then be integrated into the various template
files using the “custom-keyword substitution” technique
outlined next.

XML Substitution

The technique employed in substituting the various templates
with the appropriate information seeks out special keywords

Fig. 3 A comparison of the XML files generated by WrapITK and what
is ideal for SimITK. a Sample WrapITK XML. b Final SimWrapITK
XML
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within the templates and replaces them with appropriate XML
information and/or extra code. To ensure unique keywords,
the variables were pre-pended and appended with an amper-
sand or “at symbol” (@). The various file templates and their
role in the wrapping procedure will be outlined next in the
following sections.

File Generation

As outlined in Fig. 2, the “Virtual Block” .tpp is the first file
template substituted with the class XML data and subsequent-
ly compiled. The .tpp file serves as a communication layer
between the Simulink and ITKworkspaces. The Virtual Block
is aptly named as it exists transparently to the user yet serves
the important task of converting special ITK data types into
appropriate Simulink data types and vice versa. It is also
responsible for instantiating the ITK class that is created at
simulation runtime as well as ensuring that all the arguments
specified within the workflow are established as specified by
the user. The .tpp file for a given class is required as a
dependency in the creation and generation of all subsequent
files in the wrapping procedure.

With the .tpp file generated, the next file to be keyword-
substituted is the Simulink S-Function .cpp file template that
contains the C and C++ source code for the Simulink block. It
is divided into multiple methods that are executed at different
steps when executing a Simulink workflow. Once substituted
with the XML information, the .cpp file is ready to be com-
piled into its final .mex file—the file executed at Simulink
runtime.

Several additional files required generation using the same
method as the .cpp and .tpp files. These included the
MATLAB Callback .m file (contains the code necessary to
alter the GUI elements within the block “mask”: the dialog
box the user controls to customize a given ITK class’ method
arguments); the .mdlpart file (containing the actual code rep-
resentation of the GUI elements); one .mdl library file for each
combination of Image Filter data type and dimensionality,
Transform dimensionality, and one library for all Optimizer
classes.

Build Automation

Creation of the various files is handled individually by the
previously mentioned collection of perl scripts and modules.
In order to automate the process, a build script was written in
CMake [20], the same build tool used when configuring ITK,
which takes all the input XML and processes them into each
template by executing the perl scripts/modules in sequence,
appends the .mdlpart files together into libraries, and finally
compiles each Simulink S-Function .cpp file into its final .mex
MATLAB-executable library.

A series of perl scripts and modules were written to substi-
tute the keywords within the templates with the appropriate
XML information. One main perl script was responsible for
managing the substitutions while the creation of the final .mdl
files was handled by a second script.

Results and Discussion

The results from the SimITK wrapping procedure are orga-
nized into several sections to reflect the various steps of
Simulink block generation, evaluation of SimITK runtime,
and the website created to promote and support the project.

SimWrapITK XML Generation from WrapITK

As previously described in “XML Creation,” the
convertWrapITKtoSimITK.pl script is executed to generate
SimWrapITK class representations of previously generated
WrapITK XML documents. From these generated
SimWrapITK files, the information therein can be successful-
ly substituted into the templates for the several required files,
and compiled when necessary, to complete the SimITK wrap-
ping procedure. Following this step, construction of SimITK
workflows is possible within MATLAB/Simulink.

Simulink Block Libraries

The primary result from the SimITK wrapping procedure is
the generation of multiple Simulink Block libraries. Eight
Image Filter libraries are created: one for each combination
of data type (float, short, unsigned short, unsigned char) and
dimensionality (2D or 3D); two Transform libraries: one for
each dimensionality; and one library for Optimizers used in
registration frameworks. To date, 129 Image Filters, 6
Transforms, and 7 Optimizers have been wrapped in entirety.
A screenshot of an example Image Filter library can be seen in
Fig. 4.

Workflow Creation

With the libraries generated, it is possible to create SimITK
“workflows,” Simulink models composed of SimITK blocks
that perform a given task. The first required step is to select
and place desired blocks as objects within a new Simulink
model file. This is accomplished through clicking a given
block and dragging it from the library onto the Simulink
model workspace, or “canvas,” as shown in Fig. 4.

With the desired blocks placed on the canvas, interblock
connections can be established that will pass information
(such as image data) from block to block in order to process
the data as directed by the workflow. This is achieved by

J Digit Imaging (2014) 27:220–230 225



simple clicking and dragging to connect the output ports of a
block to the desired input ports of a consecutive block (Fig. 4).

The final step in workflow creation, prior to execution, is to
set the desired method arguments for each class. This is
accomplished through double-clicking a given block to reveal
its Simulink “mask dialog,” the control interface for the block
(Fig. 5a). In this dialog box, desired methods can be enabled
for use within the workflow. When enabled, a text-input field
is revealed where desired method arguments can be entered.
In cases like the Transform and Optimizer blocks, the mask
contains checkboxes that can enable/disable the input or out-
put of additional information. Figure 5a is an example of an
itkCenteredEuler3DTransform3D block mask where multiple
inputs and an output can be specified, if desired. As a further
example, Fig. 5b–d shows the same Transform block in sev-
eral configurations depending on the enabled checkboxes
within the mask.

Once a given workflow has been built of properly connect-
ed blocks, and corresponding mask dialogs adjusted as need-
ed, the Simulink timer, or clock, needs to be set to the desired
number of full workflow executions. With the clock set,
Simulink can be instructed to start the simulation (i.e., execute
the workflow and perform the ITK image-processing task).

Two in-depth examples are presented as case studies for
SimITK. One demonstrates segmentation using pixel-
intensity thresholding and another demonstrates MRI-to-CT
registration using a Mattes Mutual Information metric,
Gradient Descent optimization, and Nearest Neighbour inter-
polation. With respect to the data used in these examples, the

segmentation cranial data (Fig. 6, lower left) can be found
within the Examples directory of a base ITK installation, and
the registration cranial CT (Fig. 8a) and MRI data (Fig. 8b)
can be acquired from the American National Institute of
Health Visible Human Project.

Case Study 1: 3D Segmentation

An example SimITK workflow that segments the skull from
cranial CT data is shown in Fig. 6. The first block is a file
reader used to load the 3D image data and pass the information
to a threshold filter that replaces the pixels below the user-set
pixel-intensity threshold level with black, while highlighting
the bony areas above the threshold in white. This modified
volume is then written to disk for future use.

As a point for comparison, the three-block SimITK
workflow for this example was also implemented as a C++
ITK application, which required 86 lines of code.

Case Study 2: 3D MRI to CT Registration

Another workflow example performs a registration of MRI
and CT data of the same cranium is shown in Fig. 7 (corre-
sponding data and output can be seen in Fig. 8). Similar to the
previous example, one file reader is used to load each of the
MRI and CT data as separate inputs to a registration method
using a Centered 3D Euler transform, Nearest Neighbour
interpolation, Mattes Mutual Information metric, and
Gradient Descent registration optimization. Following

Fig. 4 A graphical representation
of adding a block to a workflow
canvas and the final connected
workflow. An example SimITK
Library can be seen in the
background with a populated
canvas inlay
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registration, the MRI data are processed with the optimally
calculated registration parameters before being written to disk
as a new file. Upon completion, the final value for the Metric
(in violet) and the Transform parameters (in yellow) used to
create the optimal alignment will be printed in their respective
labelled blocks in the workflow.

As a point for comparison, the 15-block SimITK workflow
for this example was also implemented as a C++ ITK appli-
cation, which required 296 lines of code.

StepByStepImageRegistrationMethod

To complement the automatically wrapped built-in ITK classes,
a custom ITK class, StepByStepImageRegistrationMethod,
was created for inclusion with SimITK that allows Simulink
to collect information like Metric value(s), Transform parame-
ters, and any other desirable intermediary results during
workflow execution. Functionally, the class operates identically
to the standard ITK-supplied itkImageRegistrationMethod

Fig. 5 Block modifications. aAn
example mask dialog. b The
default state for the
itkCenteredEuler3DTransform3D
block. c The same block with the
FixedParameters as Input
checkbox enabled. d The block
once again with both the
FixedParameters as Input and
Parameters as Output
checkboxes enabled

Fig. 6 An example workflow
segmenting the skull from 3D
Cranial Volume data. This three-
block workflow replaces
approximately 90 lines of C++
code
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except that the iteration of the ITK optimizer is tied to the
iteration of the Simulink clock. Typically, the Simulink clock
is responsible for establishing the number of desired full
workflow executions; StepByStepImageRegistrationMethod
modifies this behaviour such that one Simulink clock iteration
is equivalent to one ITK registration iteration. This allows the
user to retrieve and store registration parameters from within
the MATLAB/Simulink workspace in real time (i.e., with each
iteration progressing towards registration completion). Figure 7
exemplifies this through the use of Simulink “To Workspace”
blocks for the Value Output and Parameters Output blocks that

save the data collected from either respective block at each
iteration as a user-defined MATLAB variable.

Run-Time Performance

All results were computed using an Intel Core 2 Quad CPU
Q9400 @ 2.66 GHz with 4 GB of RAM, Windows XP
Service Pack 3, ITK 3.18, MATLAB/Simulink R2008b,
CMake 2.8, and Visual Studio 2008. All benchmarking times
were generated using the same C++ timestamp-generating

Fig. 7 An example workflow registering 3D MRI cranial data to 3D CT data. The 15 blocks illustrated here replace approximately 300 lines of C++
code

Fig. 8 Reference images of the
initial CT and MRI data used in
the Registration example (Fig. 7)
as well as a comparison of the CT
and MRI datasets pre- and post-
execution of the registration
implementations. a The CT data
were processed into a .vtk volume
file of 129 slices (at 1-mm
thickness) of 245-by-255 pixel
images. One pixel is equivalent to
0.898 mm. b The T1 MRI data
were processed into a .vtk volume
file of 34 slices (at 4-mm
thickness) of 128-by-128 pixel
images. One pixel equivalent to
1.016 mm. c The CT data and
unregistered MRI data overlay in
red. d The CT data and registered
MRI data overlay in green
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code injected at the same execution point within each respec-
tive code to ensure comparability.

For the segmentation workflow (Fig. 6), the runtimes are
considered equivalent in both pure, written C++ ITK code and
SimITK flowchart. The difference in runtime was found to be
on the order of milliseconds. As such, implementing code to
calculate a sub-millisecond time difference would have intro-
duced time overhead well above this requirement without
merit.

The registration example (Fig. 7) results for both the stan-
dard itkImageRegistrationMethod and the custom
StepByStepImageRegistrationMethod are shown in Fig. 9,
which also compares SimITK workflow runtimes to their
pure-C++ equivalent. All implementations were executed for
the same number of iterations and yielded the same final
registration parameters.

It is worth noting that the decrease in runtime observed in
Fig. 9 for SimITK workflows was not anticipated. Since the
runtime comparison code behaved identically in each case (as
the timestamp code executed was verbatim at equivalent
points in each respective code), it is hypothesized that any
discrepancy is due to MATLAB pre-allocating memory for all
SimITK image storage, while ITK must make system calls to
initialize, allocate, and manage memory.

Longer registration times are expected for the
StepByStepImageRegistrationMethod compared to the stan-
dard itkImageRegistrationMethod. The former runs the regis-
tration for only a single optimizer iteration before returning
control to Simulink in order to facilitate information retrieval
prior to resuming registration. This results in an overall slow-
down of program execution. The latter is coded to run the
registration until completion without interruption.

The runtime results shown in Fig. 9 were presented using a
specific set of case studies running a specific hardware con-
figuration. While the results suggest that SimITK decreases
time overhead, the runtime performance has not been further
analyzed to ensure that similar results would be expected on
other systems with configurations that differ from the

development environment. For further validation, it is recom-
mended that the created C++ programs and equivalent
SimITK workflows are processed using a code profiler. This
would provide a more complete insight with respect to the
time discrepancies to give a more complete understanding as
to the true nature of the runtime performance comparison
between pure C++ ITK and SimITK.

Conclusions and Future Work

In this work, SimITK was presented: a collection of block
libraries that can be connected within the Simulink visual
programming environment to create workflows that parallel
their equivalent pure C++ ITK code. Constructing the
workflow visually, instead of building a written pipeline of
code, allows the user to focus on solving the image-processing
problem with simple, intuitive graphical representations while
not having to be concerned with potentially difficult program-
ming nuances.

SimITK allows for the image-processing capabilities of
ITK to be made readily available to users that would normally
have to invest substantial time and effort into learning the
details of ITK, and potentially high-level C++. This makes
SimITK an ideal environment for educators hoping to teach
the concepts of image processing within a classroom setting.
Medical research groups can also use SimITK to test hypoth-
eses by rapidly developing workflows as a starting point for
experiments.

While this work is proof-of-concept that a subset of ap-
proximately 130 classes of ITK can be successfully wrapped
and integrated into SimITK, there are areas for further devel-
opment that would increase the impact and overall abilities of
SimITK. A large, required development will be the expansion
of the Virtual Block .tpp files as they are presently capable of
handling only a subset of all the defined data structures and
types specific to ITK. Many more types still require appropri-
ate conversion rules before they can be properly integrated
into SimITK. As such, this has limited the total number of
classes within SimITK.

Simulink was the targeted visual programming environ-
ment because of the ubiquity of MATLAB, its parent applica-
tion, within research and development environments. This
ubiquity would allow for a large and established user-base to
take advantage of ITK’s image-processing capabilities within
a familiar environment. Furthermore, since MATLAB can
execute Simulink codes (and vice versa), any Simulink model
file with a SimITK block can interact with any previously
developed MATLAB code, increasing the variety and power
of the toolset available to the user. Utilizing a previously
developed, mature, and well-maintained graphical environ-
ment also eliminated the need for creating such an environ-
ment specifically for this project.

Fig. 9 Comparison of MRI to CT Registration code runtimes (100
executions, each consisting of 100 iterations, timed until completion)
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At present, each different data type and dimensionality yields
its own Simulink Block Library. As such, a workflow created to
segment, for example, three-dimensional float data cannot be
used to segment short data, a duplicate workflow composed of
blocks of the latter data typemust be created. It is recommended
that instead of resolving the template variables into their specific
data types and dimensionalities at compilation time, they should
be left as is (i.e., unresolved). Workflows could then be coupled
with an initial block (not presently developed) that would
establish the desired data type for workflow execution. This
development would greatly increase the reusability of a created
workflow allowing it to work for each of the wrapped data types
by changing only one block instead of recreating entire
workflows for each data type, when needed.

A website was created to promote SimITK, as well as its
sister project SimVTK, and provides user and developer-level
support. Present and past releases can be found on the website
as well as extensive user and developer documentation. The
documentation includes installation and configuration instruc-
tions for SimITK and prerequisite software, as well as tutorials
and examples to guide a user through workflow creation. All
examples are also supplied as pre-built Simulink files for
immediate use. Demonstration videos, previous publications,
and contact information are also included.
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