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Abstract This study presents a completely automated meth-
od for separating the left and right lungs using free-formed
surface fitting on volumetric computed tomography (CT). The
left and right lungs are roughly divided using iterative 3-
dimensional morphological operator and a Hessian matrix
analysis. A point set traversing between the initial left and
right lungs is then detected with a Euclidean distance trans-
form to determine the optimal separating surface, which is
then modeled from the point set using a free-formed surface-
fitting algorithm. Subsequently, the left and right lung vol-
umes are smoothly and directly separated using the separating
surface. The performance of the proposed method was esti-
mated by comparison with that of a human expert on 44 CT
examinations. For all data sets, averages of the root mean
square surface distance, maximum surface distance, and vol-
umetric overlap error between the results of the automatic and
the manual methods were 0.032 mm, 2.418 mm, and 0.017 %,
respectively. Our study showed the feasibility of automatically
separating the left and right lungs by identifying the 3D
continuous separating surface on volumetric chest CT images.

Keywords Left and right lung separation . Hessian matrix
analysis . Euclidean distance transform . Free-formed surface
fitting . Lung segmentation

Introduction

Computed tomography (CT) imaging technology has been
improved for more accurate interpretation of lung diseases.
Advances in CT imaging techniques have reduced the scan
time and increased both the quality and quantity of image data.
Consequently, the desirability of thin-section CT examination
compared to other modalities has greatly increased with respect
to lung analysis, including diagnostic lung imaging, computer-
aided detection of lung nodules [1, 2], whole lung quantifica-
tion [3–7], and lung functional analysis [8–10]. The large
number of images that can be easily obtained has encouraged
research into the computer-guided analysis of chest CT images.

Lung segmentation is essential in computer-guided analyses
of parenchymal density, airways and emphysema evaluation, the
detection of lung nodules, and lobe-based studies. In CT images,
the lung tissue appears as a dark region while the surrounding
tissue is relatively bright, as air has a low attenuation value
(ideally, −1,000 Hounsfield unit (HU)) on CT scans and it
occupies most of the lung. Consequently, previous lung seg-
mentation techniques have been based primarily on the contrast
between the lung and the surrounding tissue [11]. Among lung
segmentation techniques, the gray-level thresholding method,
which defines a cutoff value between gray values of the lung and
the other tissues and divides the lung and other regions accord-
ing to that value, has been widely used in most computer-aided
applications and its performance has been satisfactory; however,
this method is quite vulnerable to the partial volume effects
(PVE). Thus, if a patient has chronic obstructive pulmonary
disease (COPD) or performs a deep inspiration during CT
scanning, the anterior or posterior regions of the facing bound-
aries between the left and right lungs can be very close to each
other, as shown in Fig. 1. In general, these regions may be very
narrow and of low contrast due to PVE. Therefore, in these
cases, with thresholding-based lung segmentation, the left and
right lungs may falsely appear to be connected which makes it
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difficult to detect and quantify lung diseases accurately based on
global and local lung function measurements.

In an attempt to overcome this problem, several approaches
have been examined. Most lung separation methods developed
thus far are based on 2-dimensional (2D) slice images and
consist of three steps: junction region detection, the search for
a separating line, and lung separation [12–16]. Leader et al. [12]
used a heuristic method to detect the junction region between
the left and right lungs; they searched for a separating line by
finding the largest pixel value in the junction region. Armato
and Sensakovic [13] found the most anterior point along the
cardiac aspect of the lung region and used it to search for a
separating line. However, as this method assumes that most
junction regions are located in the anterior part of the lung, it
cannot be used for separating lung data with a posterior junction
or both anterior and posterior junctions. Brown et al. [14]
identified the narrow junction region by modeling an individual
lung shape as a cylinder, and a separating line was then deter-
mined using a dynamic programming algorithm. Hu et al. [15]
found anterior and posterior junction regions more reliably by
obtaining the initial separation result using 2D morphological
erosion and conditional dilation and then searching for a sepa-
rating line. However, this method involves increased computa-
tional complexity in cases in which an area of the connected
region is relatively large, as the morphological operations must
be repeated many times. Park et al. [16] proposed a newmethod
based on the 3-dimensional (3D) information of sequential CT
images. The location of the junction was determined by ascer-
taining the middle point with the shortest distance between any
two points on the facing lung boundary. The detected middle
point was then used as a seed point to determine the junction
region in the next slice. After detecting the junction region, they
found the separating line using their proposed guided dynamic
programming algorithm, which showed better performance than
the original one in their experimental results. However, although
this method uses 3D information on volumetric lung data, the
separating line must be iteratively searched for in each slice of
the given volumetric data and the lung separation process must
be repeated if the number of junctions is more than two. In

summary, as lung separation methods have thus far been based
on 2D slice images, they unnecessarily require repeated pro-
cesses and the 3D continuity of separated lung boundaries
cannot be guaranteed.

To resolve these issues, we propose a more effective lung
separation method using free-formed surface fitting. Instead of
searching for the location of the junction region in the proposed
method, the initial left and right lung volumes are separated by
3D morphological operator. The 3D distance transform algo-
rithm is then applied to the initial lung volumes. Based on these
results, 3D central points between the facing left and right lung
boundaries are obtained and subsequently used to generate a
free-formed surface by using a surface fitting algorithm. Finally,
the left and right lung volumes are smoothly divided by this
surface. In the experiments, it was proven that the left and right
lungs are effectively separated using the proposed method
without the need for repetition of the process and regardless
of the number and position of the junctions.

This paper is organized as follows. The proposed method
for the left and right lung separation is described in Section II.
In Section III, the evaluation technique and experimental
results are presented. Finally, a discussion of the results and
the conclusion are provided in Section IV.

Materials and Methods

Testing Data Sets

For this study, CT volumetric images of the whole chest were
selected from a collection of data in the Radiology Depart-
ment of Asan Medical Center (Seoul, South Korea). This data
set consisted of two groups: one group of patients with COPD
and another with normal lungs. For the COPD data set, CT
scans from 30 of COPD patients were retrospectively selected
from all of the scans acquired from this group between June
2010 and June 2011. The normal data set consisted of CT
scans from 14 of the 34 patients from whom scans were
obtained between January 2011 and June 2011. A data

Fig. 1 An example of the
anterior junction between the left
and right lungs: when an upper-
bound threshold value to be used
for lung segmentation is −400
HU, a narrow region with low
contrast located between the two
lungs (including a voxel with
−669 HU) belongs to a lung
region
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inclusion criterion was that the CT image data could not be
separated into left and right lungs using a typical lung extrac-
tion algorithm, due to junctions between the two lungs.

CT Protocol

Volumetric CT scans were performed without bronchodilatation
within a day of pulmonary function tests. All CT scans were
obtained using 16-MDCT scanner (Somatom Sensation; Sie-
mens Medical Systems, Erlangen, Germany). Scan parameters
included 16×0.75 mm collimation, 100 eff. mAs, 140 kVp, and
pitch of 1. The scale of attenuation coefficients in this CTscanner
ranges from −1,024 to 3,072 Hounsfield units (HU). Slice thick-
ness of 0.625–1 mm and increment of 0.625–1 mm were used.
BeforeCTscanning, subjects were coached to hold breaths at full
inspiration and full expiration by the technologist, and training
was performed to check whether full inspiration and expiration
could be adequately obtained. Acquired data were reconstructed,
using a standard algorithm, at thicknesses of 0.625–0.8 mm and
increments of 0.625–0.8 mm. All CT machines were calibrated
every month and after major maintenance, using water as a
standard phantom, and were calibrated in air every day. We
obtained all screening scans within 24 h of air calibration. Image
data were stored in the Digital Imaging and Communications in
Medicine (DICOM) format. This study was approved by the
institutional review board at Asan Medical Center.

Lung Extraction

The lung volume was extracted using a typical, semi-
automatic lung segmentation scheme [15, 17]. The lung seg-
mentation algorithm consists of the following three steps,
which are based on gray-level thresholding, 3D region grow-
ing, and morphological operations.

1. Classification of Lung and Non-lung Regions: A fixed,
threshold-based segmentation is first applied to separate
the lung region, including the airways, from the surround-
ing, non-lung region. The threshold range to segment the
lung region is −1,024 to −400 HU. After thresholding, a
seed point for 3D region growing is determined by semi-
automatically searching for the location of a possible
point within the lung. From this seed point, the lung
volume is grown so that it reaches the size of the region
determined by the thresholding.

2. Segmentation of the Trachea and Bronchi: The trachea
and the main parts of the bronchial tree are segmented
using 3D region growing with the fixed threshold range of
−1,024 to −950 HU within the lung region, and are
regarded as the true airway region [18]. A new seed point
for the airways is determined by searching for a possible
point within the tracheal region in the topmost superior
slice of the chest volumetric CT scan. From this seed

point, the volume of the trachea and the main stem bron-
chi is segmented using 3D region growing. Finally, mor-
phological dilation is applied to eliminate fuzzy compo-
nents, which can be caused by the use of a fixed threshold,
from the segmented region.

3. Extraction of the Lung:The lung volume obtainedwith the
first step contains the trachea and the main parts of the
bronchial tree, as well as the left and right lungs. Therefore,
to obtain the true left and right lung volumes, the trachea
and the main stem bronchi must be removed from the lung
region. Accordingly, volume-based subtraction is used to
separate the left and right lungs from the trachea and
bronchi. Finally, each lung volume is obtained by 3D
region growing. In general, after the removal of the trachea
and the main stem bronchi from the lung region, the left
and right lungs are easily divided by region growing.
However, in some cases, the two lungs cannot be separated
due to anterior or posterior region attachment caused by
PVE. Such cases require an additional separation process.

The Proposed Lung Separation Method

To automatically separate a 3D left and right lung volume in
volumetric CT data, our iterative method consists of three
steps: (1) Initial Left and Right Lung Separation, (2) Detection
of a Central Point Set Traversed between the Initial Left and
Right Lungs Using Euclidean Distance Transform, (3) Sepa-
ration of the Left and Right Lungs Using Free-Formed Sur-
face Fitting. Figure 2 shows the overall process of the pro-
posed lung separation method.

Initial left and right lung separation To identify a correct
separating surface, the left and right lungs should initially be
separated without severely modifying their original shapes.
Accordingly, the proposed initial lung separation is based on a
scheme in which a 3D eroding operation is combined with a
Hessian matrix analysis method. Figure 3 shows the results of
a separation in which a 3D erosion operator has been applied
to the lung data of obtained from two examinations, with
junctions of different sizes between the two lungs. The 3D
erosion was performed repeatedly until each given lung vol-
ume was separated into left and right lungs.

As seen in Fig. 3a, b, if the left and right lungs are weakly
connected, a 3D erosion operator can easily separated them
using a small number of iterations, thus maintaining their
original shapes. On the other hand, if the size of the junction
is large, the separated volumes will be severely deformed in
shape, such that it will be difficult to find a correct separating
surface.

To solve this problem, we used a Hessian matrix analysis
method with limited iterations of the 3D erosion operator.
Initial lung separation starts by performing a 3D erosion
operation within the limited repetitions of the number that
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was determined empirically. If the left and right lungs are
separated during the process of this limited erosion, this lung

data is considered as weakly connected lung data and this
initial lung separation step is completed. However, if they are

Fig. 2 Overall process of the
proposed lung separation method

Fig. 3 The shapes of the lungs
separated only by a 3D erosion
operator for the volumetric lung
data of two examinations with
lungs of different junction sizes: a
lung data with a small medial
junction; b the shapes of the left
and right lungs separated by
repeating an erosion process four
times; c lung data with a large
anterior junction; and d the shapes
of the left and right lungs
separated by repeating an erosion
process 15 times
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not, the lung data is considered as strongly connected lung
data and the voxels corresponding to the junctions between
the left and right lungs are detected and removed from the
given lung data by analyzing the eigenvalues of the Hessian
matrix. Therefore, this intermediate lung data whose junction
region becomes weaker could be easily separated into left and
right lungs without shape deformation caused by 3D eroding.

The Hessian matrix analysis method is widely used
for extracting local structural features from 3D objects
by analyzing the eigenvalues of the Hessian matrix.
This method has been used primarily for vessel detec-
tion [19, 20] and tissue classification [21] in the field of
medical image analysis. In this study, multiple scale
analysis is used to correctly detect the lung junction
with various sizes. Image intensity function in scale
space is obtained by convoluting the original image
with the Gaussian functions with differing variances,
as shown in Eq. 1;

f x; y; zð Þ ¼ g x; y; z;σð Þ*I x; y; zð Þ ð1Þ

where f(x, y, z) is an image function, g(x, y, z, ∂) is a Gaussian
function with variance ∂, and I(x, y, z) is an original image.
The Hessian matrix of the image function is obtained as
follows:

H x; y; zð Þ ¼ ∇2 f ¼
f xx f xy f xz
f yx f yy f yz
f zx f zy f zz

2
4

3
5 ð2Þ

where fxx and fxy are second derivatives of the image
function f(x,y,z). The eigenvalues (λ1 ≥ λ2 ≥ λ3) of the

Hessian matrix are used as features for detecting local
structures of three types such as sheet, line, and blob.
Table 1 shows basic eigenvalue conditions for each
local structure, and these conditions are based on the
assumption that the local structure is brighter than the
surrounding region [21].

The junction region between the left and right lungs can be
assumed as a plate structure in volumetric lung data. To detect
this region, we defined a condition based on the fundamental
condition for sheet-like region detection. The defined condi-
tions are as follows:

λ3 < θ3; λ2j j < θ2; λ1j j < θ1
λ3

λ2

����
���� < α;

λ3

λ1

����
���� < α ð3Þ

where θ1 and θ2 have similar values, which are near
zero, θ3 is a negative number less than θ1 and θ2, and α
is a positive number. These numbers were empirically
defined. Based on these conditions, the voxels corre-
sponding to a sheet-like structure are extracted. The
extracted voxels are densely distributed in a correct
junction region and are sparsely scattered in a non-
junction region of lung tissue, such as fissures or large
vessels. To refine the junction detection, scattered noisy
voxels are eliminated by a median filter.

Before applying the Hessian matrix analysis, closing
operation and region of interest (ROI) detection are
used, as shown in Fig. 2. The closing operation is used
to increase the junction region, and ROI detection is
used to correctly detect the lung junction by excluding
the regions containing lobar fissures as the lobar fis-
sures can be detected as a lung junction. In addition,
Hessian matrix analysis in the ROI can reduce process-
ing time. The ROI is defined as a region occupying the
central region in 35 % of the whole lung in the axial
direction since most of the junctions are located be-
tween the left and right lungs, as shown in Fig. 4.
Finally, the detected junction voxels are removed from
the original, whole lung voxels. The strength of the
connection between the two lungs then becomes weak

Table 1 Basic conditions for each local structure [21]

Local structure Eigenvalue condition Decomposition condition

Sheet λ3 ≪ λ2 ≅ λ1 ≅ 0 λ3≪0&λ3≪λ2≅0&λ3≪λ1≅0
Line λ3≅λ2≪λ1≅0 λ3≪0&λ3≅λ2&λ2≪λ1≅0
Blob λ3≅λ2≅λ1≪0 λ3≪0&λ3≅λ2&λ2≅λ1

Fig. 4 ROI and sheet-like
regions: a defined ROI in an axial
CT image and b sheet-like voxels
detected by Hessian matrix
analysis in the ROI
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enough to separate the two lungs based on a 3D erosion
operator, and while maintaining the shape of each lung,
as shown in Fig. 5.

Detection of a central point set traversed between the initial
left and right lungs using Euclidean distance transform After
initially separating the given single lung data into left
and right lungs, we should correctly and efficiently find
the optimal separating surface to separate the two lungs.
For this purpose, the proposed scheme first detects 3D
points which can be located on the separating surface
using a 3D EDT algorithm.

This method has been widely used in computer vi-
sion, graphics, shape analysis, pattern recognition, and
computational geometry [22, 23]. Here, we use a 3D
EDT algorithm as the lung data used in this study is
volumetric binary data [24].

The initial left and right lung volumes obtained in
the previous step are separated some distance away
from each other, and the amount of the boundary voxels
removed from one lung volume by erosion is equal to
that of the other lung volume. Based on these facts, the
optimal separating surface can be obtained by detecting
the points which are centrally traversed between the
initial left and right lung volumes and modeling them
into a free-formed surface. To detect the central point

set between the two lung volumes, the 3D EDT for
each volumetric lung data is calculated, and the point
set is determined to be the points within the same
distance range from each lung based on the 3D distance
map for the two lungs.

The 3D distance map of each initial lung volume
data set is calculated as shown in Eq. 4. Within the
given volumetric binary lung data, a lung volume is an
object and the remaining region is a background. In this
study, we focus on the distance map of the background
region, unlike the original DT algorithm, as the central
point set traversed between the two objects should be
able to be found. Therefore, the original 3D EDT is
modified as:

I t x; y; zð Þ ¼
min x − x0; y − y0; z − z0k kð

;∀I x0; y0; z0ð Þ∈OÞ; x; y; zð Þ∈B
0 ; x; y; zð Þ∈O

8<
: ð4Þ

The set O is called ‘object’ and the set B ‘back-
ground’. ‖‖ is a 2D distance metric in which the DT
(Distance Transform) algorithm obtains different results
according to the distance metric. In the DT algorithm,
the Euclidean distance is commonly considered to be
the most useful metric [22].

Fig. 5 Initial lung separation
results: a Intermediate lung data
and b initial left and right lungs

Fig. 6 Example of the modified distance transform in a 2D binary image
with two objects: a the Euclidean distance of each pixel to the nearest
pixel of object A; b the Euclidean distance of each pixel to the nearest

pixel of object B; and c the set of central points from a and b. The distance
values are squared
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From the distance map for each lung, we can find the set of
central points as follows:

C ¼ x; y; zjτ1 < ILt x; y; zð Þ < τ2
� �

∩ x; y; zjτ1 < IRt x; y; zð Þ < τ2
� �

ð5Þ

C is the set of central points, It
L(x,y,z) and It

R(x,y,z) are the
distance maps of the initial left and right lung data, and
τ1 and τ2 are, respectively, the lower and upper bounds
of the common distance range. The lower and upper
bounds were empirically defined in our experiments.
Figure 6 shows the example for a process for detecting
the central points between the two objects in a binary
image-based on the 3D EDT algorithm, and Fig. 7
shows the result obtained using the proposed method
for the volumetric CT lung data. To reduce the process-
ing time, all volumetric lung data were subsampled with
a factor of 2 in each direction before calculating the

distance maps of the initially separated left and right
lungs.

Separation of the left and right lungs using free-formed sur-
face fitting The central point set is used to model a free-
formed surface to separate the left and right lungs. For
this purpose, we used a surface fitting algorithm based
on gridfit of the Matlab version because this algorithm
makes a smooth surface model based on data that have
a z(x, y) form from scattered or semi-scattered data [25].
After the separating surface between the two lungs has
been determined, to separate the left and right lungs, the
voxels of the surface data are removed from the original
single large lung data, and the two separated lung
volumes are obtained using a region growing method.
Figure 8 shows the lung separation result obtained with
the proposed method.

Results

Evaluation Technique

To evaluate the performance of the proposed lung separation
method, we compared the results obtained using the proposed
method with the manually separated results, using the three
measures including average symmetry Root Mean Square–
Surface Distance(RMS-SD), maximum surface distance
(MSD), and volumetric overlap error(VOE) [26].

To obtain manual separation results, an interactive,
lung-separating tool developed as in-house software

Fig. 7 Example of the central point set obtained by the 3D EDT algo-
rithm. The detected central points are represented as red dots on the axial
view image

Fig. 8 Lung separation results: a
the optimal separating surface
modeled from the central point set
and b the left and right lung data
separated using the proposed
method (Left lung; blue, Right
lung; red)

Table 2 Average and standard deviation of the volume differences
between lungs separated using the proposed versus the manual method

Data set RMS-SD (mm) MSD (mm) VOE (%)

Abnormal 0.033 (0.045) 2.525 (1.988) 0.014 (0.032)

Normal 0.030 (0.044) 2.189 (1.897) 0.025 (0.052)

Total 0.032 (0.045) 2.418 (1.955) 0.017 (0.039)
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was used. This tool allows an observer to split the left
and right lungs manually using thresholding based, 3D
sculpting. A human expert who has worked with this
interactive tool for more than 5 years separated the left
and right lungs manually. We then compared and ana-
lyzed the automatically separated result and the manu-
ally generated result.

Results

Table 2 shows the average and standard deviation of the
volumetric differences between the lungs separated
using the proposed method and the manual analysis.
From these results, the following can be observed:

1. The proposed method precisely and successfully detected
and separated all connections between the left and right
lungs in the given lung data of 44 patients. The averages
of the RMS-SD, MSD, and VOE between the two results
were 0.032 (±0.045)mm, 2.418 (±1.955)mm, and 0.017
(± 0.039)%, respectively.

2. The performance of the abnormal (COPD) data set
was similar to that of the normal data set in all
three measurements. In other words, the perfor-
mance of the proposed method would be clinically
reasonable regardless of the data set, whether nor-
mal or abnormal.

In Table 3, the abnormal and normal data sets were com-
pared with respect to the following: percentage of cases sub-
jected to Hessian matrix analysis, number of repeated erosion
operations for the initial lung separation in the cases not

subjected to Hessian matrix analysis, and number of
repeated erosion operations in the cases subjected to
Hessian matrix analysis. These three factors represent
the conditions of the connections between the left and
right lungs for each data set. As shown in Table 3,
more lung data needing Hessian matrix analysis were
presented in the abnormal than in the normal data set,
and the average number of repeated erosion operations
was higher (5.2 and 4.1, respectively). This indicates
that the lung data contained in the abnormal set had
stronger and wider connections between the left and
right lungs than that of the normal set. However, the
experimental findings also showed that the lung separa-
tion results of the abnormal set were similar to those of
the normal set. From this information, it can be con-
cluded that the proposed lung separation method is
feasible in the given two data sets and that its perfor-
mance is less affected by the locations (i.e., anterior,
medial, and posterior) and numbers (i.e., single and
multiple) of lung connections, as shown in Fig. 9. The
algorithm was implemented in C++ linked with Matlab,
and the code was not optimized. It takes 3 min to
process complete CT images on Intel 3-GHz i7 CPU.
The processing time of the proposed method is shorter
than that of a human expert. In the case of a human
expert, it takes approximately 15 min

Discussion and Conclusion

We have developed a novel 3D surface fitting based a scheme
used to automatically separate the left and right lungs on the

Table 3 Comparisons between the abnormal and normal data sets

Data set Percentage of Cases in which a
Hessian Matrix Analysis was applied

# of erosion operations # of Erosion operations after applying Hessian matrix analysis

Max Min Ave Max Min Ave

Abnormal 23.3 % (7/30) 9 2 5.2 6 3 4.7

Normal 21.4 % (3/14) 6 2 4.1 5 4 4.7

Total 22.7 % (10/44) 9 2 4.8 6 3 4.7

Fig. 9 CT slice images for the
lung separation results obtained
using the proposed method
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chest CT data. Our results showed that this method could
separate the connections between the left and right lungs with
accuracy comparable to that of a human expert, as shown in
Table 2.

In the previous methods [12–16], based on the 2D-
slice CT images, the processes used to detect the junc-
tion region and to identify the optimal path should be
iteratively conducted on every slice image; consequent-
ly, they would not guarantee the 3D continuity of a
separating surface between left and right lungs. As our
proposed scheme is a 3D-volumetric CT data-based
method, it is able to avoid such iterations and separate
multiple junctions regardless of their locations in a
single instance. In addition, 3D-based lung separation
can provide results with 3D continuity of the separated
lung boundary. Figure 10 shows the three-dimensionally
rendered views of the lung separation results obtained
using our method.

In a previous study, a method [15] based on the morpho-
logical operator iteratively conducted morphological opening
and/or closing operations. This iterative procedure is time-
consuming. Our method also used morphological operation.
However, our method used morphological operation with the
limited conducting number, as well as the scheme combined
Hessian matrix analysis in order to minimize the processing
time. Therefore, we were able to avoid a large degree of
computational complexity.

Although the proposed method was successful regard-
less of the given data sets, there might be a problem

when applying it for lung data with non-smooth bound-
ary. In this case, the original lung shape can be severely
deformed after conducting 3D erosion operation in the
initial lung separation step. This makes the proposed
method incorrect for finding the separating surface.
Consequently, this problem causes failed separation re-
sults to be obtained. Figure 11 shows examples of this
problem. To solve this problem, the initial lung separa-
tion step must be improved in order to keep the original
shape of the lung boundary in the future work.

In addition, the proposed method was only tested on
a small number of CT examinations performed on a
limited specific CT machine, using a CT reconstruction
protocol, and for only certain diseases. In other words,
the feasibility or performance of the proposed method,
when applied to cases with severe lung abnormalities
along the junction area or when using other CT scan-
ners and reconstruction protocols, was not investigated
in this study. Therefore, the robustness of the proposed
method should be improved by testing on a large CT
image database that includes diverse cases with various
lung diseases, CT vendors, and reconstruction protocols.
In conclusion, our study showed that it is possible to
separate the left and right lungs automatically in volu-
metric chest CT images by identifying the 3D continu-
ous separating surface. Regarding the evaluation of ab-
normal and normal lung data sets, the experimental
results showed that the performance of the proposed
method was comparable to that of a human expert.

Fig. 10 Three-dimensionally
rendered views of the lung
separation process of one CT
examination: a lung with an
anterior junction; b connected
lung data and the detected optimal
separating surface; and c left and
right lungs separated using the
proposed method

Fig. 11 Examples of failed lung
separation results caused by a 3D
erosion operator. The original
shapes of the left and right lungs
in the junction region were
severely modified by 3D erosion.
(Red solid line indicates the
separating surface detected using
the proposed method; Blue dotted
line indicates the manually
corrected separating surface)
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