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Abstract Radiologists are adept at recognizing the character
and extent of lung parenchymal abnormalities in computed
tomography (CT) scans. However, the inconsistent differential
diagnosis due to subjective aggregation necessitates the ex-
ploration of automated classification based on supervised or
unsupervised learning. The robustness of supervised learning
depends on the training samples. Towards optimizing emphy-
sema classification, we introduce a physician-in-the-loop
feedback approach to minimize ambiguity in the selected
training samples. An experienced thoracic radiologist selected
412 regions of interest (ROIs) across 15 datasets to represent
124, 129, 139 and 20 training samples of mild, moderate,
severe emphysema and normal appearance, respectively.
Using multi-view (multiple metrics to capture complementary
features) inductive learning, an ensemble of seven un-
optimized support vector models (SVM) each based on a
specific metric was constructed in less than 6 s. The training
samples were classified using seven SVM models and con-
sensus labels were created using majority voting. In the active
relearning phase, the ensemble-expert label conflicts were
resolved by the expert. The efficacy and generality of active
relearning feedback was assessed in the optimized parameter
space of six general purpose classifiers across the seven dis-
similarity metrics. The proposed just-in-time active relearning
feedback with un-optimized SVMs yielded 15 % increase in
classification accuracy and 25 % reduction in the number of
support vectors. The average improvement in accuracy of six

classifiers in their optimized parameter space was 21 %. The
proposed cooperative feedback method enhances the quality
of training samples used to construct automated classification
of emphysematous CT scans. Such an approach could lead to
substantial improvement in quantification of emphysema.

Keywords Emphysema . Supervised classification . Support
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Introduction

Pulmonary emphysema is characterized by irreversible de-
struction of lung parenchyma and is one of the major causes
of morbidity and mortality in chronic obstructive pulmonary
disease (COPD) patients [1]. The contrast and spatial resolu-
tion of High Resolution Computed Tomography (HRCT)
reveals the complex architecture of the emphysematous lung
[2]. The destroyed lung parenchyma and resulting air pockets
in lung result in low attenuations areas on CT scans.
Nevertheless, these abnormalities pose a visual quagmire for
accurate and reproducible classification since the radiologist
mentally maps and aggregates the findings while wading back
and forth through the lung. Additionally, the increasing inci-
dence of emphysema [3], the exponential use of CT scans [4]
and the increasing spatial resolution of CT images reduces
throughput efficiency — the number of unambiguous radio-
logical reads per minute. This scenario requires a reinvention
of current radiological approaches for robust diagnosis, stag-
ing and assessment in response to treatment for emphysema.

An initial effort to objectively evaluate the extent of em-
physema based on a density threshold was proposed in 1988
[5]. Subsequently, several density thresholds have been pro-
posed ranging from −910 to −1,000 HU based on statistically
significant correlation of quantified extent to physiologic
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indices such as the pulmonary function tests or visual radiol-
ogy emphysema index [6]. Despite its success, the density
based threshold quantification is not a stable measure of low
attenuation areas across patients, scans and protocols [7–9].
This has led to the exploration of robust and reproducible
supervised quantitative techniques for classification of dis-
cernible emphysematous patterns in chest CT scans [10–15].
However, supervised classification of emphysema has found
few clinical champions. This can be partly attributed to the
inaccurate classification due to noisy training samples arising
from subjective, tedious and error prone processes.
Fundamentally, the faithful adoption and implementation of
the supervised training by a classifier is contingent upon the
quality of acquired training samples and their discriminability
across classes. In this paper, we are interested in addressing
the problem of efficient development of classification models
using expert chosen training samples.

Clean classification models are achieved through elimina-
tion of outlier samples [16] or through active learning pro-
cesses where the learner actively chooses the most informative
training samples from a pool of previously labeled samples
and hence steers the choice of expert labels. Active learning
methods have demonstrated value where large training
datasets are available, such as in remote sensing [17], text
classification [18, 19] and object recognition applications.
However, medical image classification models are typically
constructed from a limited pool of expert-chosen regions of
interest (ROIs). Our experience within a clinical setting sug-
gests that physician apathy and related sub-optimal perfor-
mance in clinically relevant pattern classification is predomi-
nantly due to lack of real time feedback on the effect the
chosen samples have on the classifier. In this paper, we pro-
pose a feedback mechanism — active relearning — that
engages the expert to reduce uncertainty in the training sam-
ples through initial inductive learning and subsequent active
relearning to steer the classifier towards optimal performance
in one exercise. Unlike the active learning process, the pro-
posed methodology resolves the conflicting labels through a
physician-in-the-loop feedback mechanism.

Support Vector Machine (SVM) [20–22] models are the
state-of-the-art learning models with firm theoretical founda-
tions and proven performance in wide range of applications.
In the training phase, SVM models are trained to discriminate
the features of the data. The training samples are projected on
to the feature space and SVM constructs hyper-planes in
feature space by maximizing the margins. The meta-
parameters such as penalty term and kernel parameters are
used to construct feature space and define hyper-plane bound-
aries between training classes. Support vectors lie on the
maximum margin hyperplanes. In this paper, pairwise dissim-
ilarity between training samples is generated using seven
different metrics and seven corresponding SVM models are
constructed. Radial basis functions (RBF) kernel is used to

model the individual SVMs. The ensemble of one-against-
one SVMs based on these seven metrics is used in the induc-
tive learning process, wherein, the predictions made by the
ensemble of SVMs are voted through a simple majority and
compared with the expert's original labeling. In the active
relearning phase, the expert resolves the conflict, if any, in
one of three ways: retaining the original label; relabeling; or
removing the sample from the training set. Since the SVMs
were implemented with default parameters in active relearning
phase, to assess the true efficacy of expert-assisted sample
cleaning across other commonly used general-purpose six
classifiers (SVM, Random Forest, Nearest Neighbor, Naïve
Bayes, One-R and Decision Tree) with their respective opti-
mized parameters were assessed with the original and cleaned
training samples. The optimal values of the individual classi-
fiers' meta-parameters were chosen through a detailed design
of experiments (DOE) study. The results of our investigation
provides evidence that with physician-in-the-loop feedback
and a flexible and trainable algorithm, better accuracy in
supervised training and thus eventually efficient classification
method can be achieved towards confident quantitative diag-
nosis of emphysema patients.

Materials: Data and ROI Selection

CT scans from 86 patients with different stages of emphy-
sema were used for this study. Scans were performed with a
HiSpeed CT/i GE scanner (120 kVp, BONE kernel recon,
512×512 axial matrix with 0.7422×0.7422×1 mm3). The
experienced thoracic chest radiologist selected multiple 9×9
voxel ROIs from any of the 86 scans. In contrast to the
traditional approach of binning emphysema severity based
on the relative area of voxels below a certain threshold, the
expert used clinically compliant binning by assessing the
visual texture, location and context of the ROI based on the
attenuation characteristics that best captures the severity of
parenchymal destruction. The texture based approach en-
ables more consistent characterization of disease compared
to threshold based emphysema assessment which is prone to
variations with noise, different CT acquisition and recon-
struction protocols [6, 23, 24]. Accordingly, four classes of
ROIs were selected to represent normal parenchyma; mild,
moderate and severe emphysema (Fig. 1). Under this proto-
col, the radiologist selected 412 ROIs across 15 datasets
with good CT scan quality and no artifacts to represent
124, 129, 139 and 20 training samples of mild, moderate,
severe and normal appearance, respectively. The low count
of normal samples is due to the strong emphysematous
criterion used in the initial enrollment of patients in the
study. The locations and the cases corresponding to the
individual ROIs were tagged to facilitate review during the
relearning phase.

J Digit Imaging (2014) 27:548–555 549



Methods

Dissimilarity Metrics

Histogram-based distance measures were used to compute
the dissimilarity among the samples to the supervised learn-
ing models. Probability density functions (PDFs) of the indi-
vidual ROIs were computed as their respective normalized
histograms and pairwise dissimilarities among them were
computed using seven metrics: Manhattan, Sorensen,
Tanimoto, Jaccard, Squared Chord, Pearson χ2 and
Kullback–Leibler (summarized in Table 1). The metrics were
drawn from different metric families to reflect the multi-view
perspective.

Feedback Mechanism

The proposed physician-in-the-loop feedback mechanism has
two phases: passive inductive learning and expert-in-the-loop
active relearning. Figure 2 outlines the workflow of the pro-
posed feedback mechanism. After the ROIs are selected and
labeled by the expert, the inductive learning phase is initiated
and followed by active relearning.

Inductive Learning

SVM model was used for the passive inductive learning
process. As mentioned before, SVMs learn hyperplanes in
a feature space based on the training data mapped to a high
dimensional feature space by means of a kernel function and
applied to future test data for classification. SVM model is
constructed based on training with N instances of data
vector x and class label y by minimizing the following error
function:

1

2
wTwþ C

X

i¼1:N

ξi

Subject to constraints yi(w
Tϕ(xi)+b)≥1−ξi,ξi>0: where

ξi is a non-negative regularization variable, introduced to
reduce model complexity and achieve convergence. w is
the function of linear combination of support vectors de-
fining the hyper-planes in the feature space and ϕð Þ is the

kernel function. The performance of SVM models depends
on penalty term (C), part of the regularization term in
quadratic optimization and kernel function, applied to the
training data to improve discriminability in feature space.
The RBF kernel for one-against-one classification used in
this paper for a pair of support vectors i and j is defined by
[20, 25]:

K xi; x j
� � ¼ ϕ xið ÞTϕ x j

� � ¼ exp −y xi−x j
�� ��2

2

� �
:

Fig. 1 Representative ROIs selected by the expert as training samples to represent normal parenchyma (a), mild (b), moderate (c) and severe (d)
emphysema

Table 1 PDF based pairwise dissimilarity metrics used in the SVM
models

Metric ID Metric Metric family Equation

M1 Manhattan Lp Minkowski ∑
i¼1:n

Pi � Qij j
M2 Sorensen L1 ∑

i¼1:n
Pi−Qij j

∑
i¼1:n

Pi þ Qij j
M3 Tanimoto Intersection ∑

i¼1:n
Pi−Qij j

∑
i¼1:n

max Pi;Qið Þ
M4 Jaccard Inner Product ∑

i¼1:n
Pi−Qið Þ2

∑
i¼1:n

P2
i þ ∑

i¼1:n
Q2

i − ∑
i¼1:n

PiQi

M5 Squared Chord Fidelity
∑

i¼1:n

ffiffiffi
P

p
i−

ffiffiffiffiffi
Qi

p� �2

M6 Pearson χ2 χ2 ∑
i¼1:n

Pi−Qið Þ2
Qi

M7 Kullback–
Leibler

Shannon Entropy
∑

i¼1:n
Piln

Pi

Qi

� 	

P and Q represent the PDFs of the two ROIs with n bins
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The other tunable meta-parameter is the kernel parameter,
γ, which tunes the RBF kernel to map the training samples
nonlinearly into multi-dimensional space.

In the inductive learning stage, pairwise dissimilarity
among the expert-labeled samples is computed with seven
metrics (Table 1). An ensemble of SVM models based on
these seven independent dissimilarity metrics is constructed.
The pairwise dissimilarity matrix derived from each metric is
the input to the respective SVM model. Default meta-
parameter values of 1 and 1/#ROIs, respectively, for C and
γ were used for all the SVM models. Note that the SVM
models are not optimized for the optimal parameters at this
point. This was in consideration of the following combined
effects of (a) the computational complexity of parameter op-
timization, (b) the need to engage the expert without interrup-
tion, (c) the assumption that naturally clean samples can be
labeled confidently by the vanilla classifier and (d) the pre-
mise that gross inaccuracies can be corrected easily in the
relearning phase. The predictions for 412 ROI samples for
each of the seven classifiers are made using one-against-one
multiclass classification. The accuracy of SVM models using
original and clean training was evaluated using 10-fold strat-
ified sampling strategy (random subsets with class distribution
kept constant) for cross-validation.

Active Relearning

The consensus of the ROI labels is derived based on simple
majority of the predictions obtained from the seven individual
SVM models. ROI samples for which the consensus label dif-
fered from that of the expert are flagged for expert reviewwithout
revealing the exact consensus label to the expert. The conflict
represents the machine confusion to reproduce expert’s label for
the sample. For each of the conflicts, the expert had the option of
(a) retaining the original label, (b) relabeling to another appropri-
ate class or (c) removing the sample from the training set.

Generality of Relearning Efficacy

As mentioned before, SVM models used in the relearning
phase were based on default parameter sett ings.

Consequently, the accuracy improvements do not reflect the
true efficacy of sample cleaning. To augment the value of the
on-line expert feedback, a detailed off-line DOE study is
required to train the model by exhaustively sampling its
parameter space. Moreover, the effect of true sample cleaning
should transcend across classifiers in their respective opti-
mized parameter space. This was assessed using the grid
parameter optimization in RapidMiner [26], an open source
data mining software that allows analysis of data for standard
processes and tools such as classification algorithms and
parameter optimization methods. Six commonly used classi-
fiers — LibSVM, Random Forest, Nearest Neighbors, Naive
Bayes, One R and Decision Tree— were used to conduct the
DOE study where the parameter space of the respective clas-
sifiers were sampled along a linear grid and model validation
was performed at each of the grid points using 10-fold cross-
validation and stratified sampling of original and cleaned
samples. The grid based approach to parameter optimization
ensures the choice of optimal parameter for the classifier given
the training samples. Performance was characterized by the
mean accuracy of the validation process.

Experimental Results

Figure 3 shows the pairwise dissimilarity matrices for original
samples using the Manhattan (left) and Tanimoto (right) met-
ric. The matrix elements were permuted such that the mild,
moderate, severe and normal samples are grouped together
(black partitions). The diagonal blocks show the inter-class
dissimilarity variation. Off-diagonal blocks capture the intra
class variation; the lighter the shade the stronger the dissimi-
larity. Lack of an adequate number of samples for the normal
class hinders its discriminability. Both dissimilarities reveal
the separability of mild and severe classes, and the strong
overlap that moderate samples have with both mild and se-
vere. The inter- and intra-observer variation to grade emphy-
sema based on these subtle but pathologically significant
attenuation variations explains the conventional practice
(and limitation) of lumping abnormalities together based on
a single threshold. The overlapping nature of features as

Fig. 2 The workflow of feedback
mechanism paradigm which
outlines the two stages: inductive
learning and active relearning

J Digit Imaging (2014) 27:548–555 551



observed in the matrices justifies our selection of non-linear
RBF kernels to learn the feature space.

SVM models based on the aforementioned metrics were
constructed and their respective predictions were collated to
form the consensus predictions. It took less than 6 s on a
standard PC (single core, 3.1GHZ processor) to complete
the inductive learning and consensus building, highlighting
the just-in-time computation to engage the expert without
diminishing his interest. Table 2 shows the results of a single
iteration of relearning. A total of 87 conflicts from 412 train-
ing samples were found based on the consensus predictions of
seven SVMmodels. The conflicts were resolved by the expert
using remove–relabel–retain options with no knowledge of
the consensus labels. The expert's decision to remove some of
the ROI samples was based on the presence of confounding
vessels or due to mixed attenuation types within the ROIs. The
training sets were refined depending on the expert's decision.
Figure 4 shows the representative options exercised in the
resolution process. Samples were removed either due to vessel
intrusion (Fig. 4a) or mixed types (Fig. 4b) within ROIs.
Panels c and d respectively highlight scenarios where the
original label (normal) was retained and relabeled (from

moderate to severe). At the end of the 5-min-long relearning
session, 87 conflicts were resolved through 35 removes, 15
relabels, and 37 retains.

Figure 5 illustrates the improvement in accuracy in SVM
for each of the seven metrics and corresponding reduction in
the number of support vectors with original and clean training
samples. Due to the reduction in label uncertainty, all the
models showed significant improvement in the accuracy with
concomitant reduction in the number of support vectors. The
average percentage improvement in accuracy was 15%; mean
reduction in number of support vectors was 25 %. Co-
occurrence of reduced support vectors and increased accuracy
is in contrast to prevalent accuracy compromisingmethods for
reducing support vectors [27]. It is also worth reiterating that
the SVM models herein used default parameter settings and
no exhaustive search was conducted to optimize parameters.
Nevertheless, the relative gain in performance suggests that
the power of relearning would be further highlighted in the
optimized parameter space.

Figure 6 shows the results in the optimized parameter space
obtained through the DOE study which illustrates the corre-
sponding improvement in accuracy for all the six classifiers
for the seven metrics. With clean samples, accuracy increased
across all the classifier–metric combinations. The maximum
and minimum changes of 33.6 and 8.5 were observed, respec-
tively, for the OneR-SquaredChord and Nearest Neighbors–
Kullback Leibler combinations. Mean percentage change over
all combinations was 21.

Discussion

The grades of severity of parenchymal distortion in patients
with emphysema characterized by low attenuation areas on
CT have significant prognostic and therapeutic consequences
[28]. The density based thresholds tend to quantify severe
emphysema and thus has limitation in quantification of mild
and moderate emphysema. Although, desired pattern

Fig. 3 Pairwise dissimilarity
matrix of Manhattan (left) and
Tanimoto (right) metrics. The
thick line partitions along the
diagonal show the mild,
moderate, severe and normal
classes of 412 ROI expert chosen.
The darker shade represents the
similarity among pairs of ROIs

Table 2 Distribution of labels across inductive learning and active
relearning processes

Mild Moderate Severe Normal Total

Label distribution

Original 124 129 139 20 412

Consensus 106 92 127 0 325

Conflicts 18 37 12 20 87

Expert resolution

Removed 7 17 8 3 35

Relabeled 8 5 1 1 15

Retained 3 15 3 16 37

Final distribution 113 116 132 16 377
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classification can be achieved through supervised classifica-
tion methods, identification of subtle grades of emphysema is
not easily mastered even by experts. Since the discriminability
of the training samples is crucial, efforts to maximize the
supervised learning is necessary. Active learning methods
attempt to minimize the manual effort by selecting the most
appropriate data to label and this produces the best possible
classifier within a reasonable number of expert engagements.
It is typically accomplished using divide-and-conquer strate-
gies like multi-view partitions of samples [29] or through
hierarchical cascades of classifiers [11, 30]. In this paper, we
have proposed simpler relearning strategy wherein an ensem-
ble of naïve learners collaborate and collectively resolve their
differences through expert guidance in a single exercise. SVM
models are constructed within 6 s and the conflicts were
resolved in about 5 min. We have shown that just-in-time
physician-in-the-loop feedback demonstrates promising per-
formance. The classifier, once trained, is available for general
use without the need for further physician-in-the-loop inter-
vention. Figure 7 shows representative classification results
with the original (panel b) and clean (c) samples on a random-
ly chosen test dataset. The original conflicts in the moderate

class between the mild and severe classes have been correctly
resolved with clean samples. The less clutter in panel c illus-
trates the improvement in classification achieved solely due to
clean training samples. This strategy can be incorporated
effectively in improving the validity of samples by obtaining
multiple expert consensuses on labels. We would like to point
that this paper demonstrates the need and value of obtaining
clean samples for more efficient algorithm with lesser errors
due to sampling process itself. Nevertheless, there are other
contributors to classification models such as most optimal
metric or metric combinations and classifier parameters to
achieve efficacy in classification of emphysema per se is not
evaluated in this paper. Future study would be to incorporate
active relearning and optimize classification algorithms to
classify dataset from emphysema population towards estab-
lishing the clinical significance.

The SVMs are deemed state-of-the-art supervised classifi-
cation models with proven efficacy in wide areas of applica-
tion. The classification speed of SVMs is governed by number
of support vectors used to define the decision boundaries.
Several support vector reduction methods [31] are incorporat-
ed with a trade-off in classification performance to overcome

Fig. 4 Representative remove–retain–relabel resolution. Panels highlight ROI (a) removed due to confounding vessel, (b) removed due to mixed tissue
type, (c) retained as normal and (d) moderate relabeled as severe

Fig. 5 a Improvement in
percentage accuracy in the un-
optimized SVM model for the
seven metrics after relearning. b
The reduction in support vectors
in the SVM model for the seven
metrics after relearning
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the limitation of classification time. Active relearning process,
originally designed to ensure the selected training samples
have discriminatory power, resulted in reduction of support
vectors of about 25 % and increase in classification accuracy
of about 21 % across seven SVM models assessed by 10-fold
cross-validation. In addition to obtaining clean training sam-
ples, the efficiency of the classification system is improved.

There is room for further improvement of the proposed
work. We have used dissimilarity metrics derived from
pairwise comparisons of the PDFs. Such appearance based
metrics in combination with active shape metrics such as local
binary patterns [32], could provide complementary multi-
view optimization of the data. A critical measure of expert
acceptance and system learnability is the number of label
conflicts that the expert prefers to repeatedly retain. This can

be minimized using sampling of critical patterns based on
local measures in feature space [33]. The effect of sample
cleaning on the ultimate classificationmust be further assessed
for clinical significance and relevance.

Conclusion

The automated classification of severity grades of emphysema
is valuable in clinical management of patients. The efficacy of
supervised classification methods are limited by noise in the
expert-chosen training samples characteristic of pathological
patterns. We have proposed a simple physician-in-the-loop
feedback based active relearning to ensure selection of most
discriminative training samples reproducible by the

Fig. 6 The improvement in the percentage accuracy due to sample cleaning through active relearning across the six classifiers and seven metrics in their
optimized parameter space

Fig. 7 A representative axial cross section of a CT volume scan (a) with classification results obtained using original (b) and clean (c) training samples
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classification system. This leads to considerable improvement
in quantitative assessment of emphysema thereby improving
the throughput efficiency in chest radiology practices and their
confidence in quantitative imaging methods towards provid-
ing optimal patient care.
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