
A Reliable, Low-Cost Picture Archiving and Communications
System for Small and Medium Veterinary Practices Built
Using Open-Source Technology

Bryan Iotti & Alberto Valazza

Published online: 3 May 2014
Society for Imaging Informatics in Medicine 2014

Abstract Picture Archiving and Communications Systems
(PACS) are the most needed system in a modern hospital.
As an integral part of the Digital Imaging and Communica-
tions in Medicine (DICOM) standard, they are charged with
the responsibility for secure storage and accessibility of the
diagnostic imaging data. These machines need to offer high
performance, stability, and security while proving reliable and
ergonomic in the day-to-day and long-term storage and re-
trieval of the data they safeguard. This paper reports the
experience of the authors in developing and installing a com-
pact and low-cost solution based on open-source technologies
in the Veterinary Teaching Hospital for the University of
Torino, Italy, during the course of the summer of 2012. The
PACS server was built on low-cost x86-based hardware and
uses an open source operating system derived from Oracle
OpenSolaris (Oracle Corporation, Redwood City, CA, USA)
to hos t the DCM4CHEE PACS DICOM server
(DCM4CHEE, http://www.dcm4che.org). This solution
features very high data security and an ergonomic interface
to provide easy access to a large amount of imaging data. The
system has been in active use for almost 2 years now and has
proven to be a scalable, cost-effective solution for practices
ranging from small to very large, where the use of different
hardware combinations allows scaling to the different deploy-
ments, while the use of paravirtualization allows increased
security and easy migrations and upgrades.

Keywords PACS . DICOM . Image storage and retrieval .

Open source

Background

Picture Archiving and Communications Systems (PACS) are
the most needed system in a modern hospital. As an integral
part of the Digital Imaging and Communications in Medicine
(DICOM) standard, they are charged with the responsibility
for secure storage and accessibility of the diagnostic imaging
data generated by a medical practice. These machines need to
offer high performance, stability, and security while proving
reliable in the day-to-day and long-term storage of the data
they safeguard. This paper reports the experience of the au-
thors in developing, installing and using a compact, low-cost
solution based on open-source technologies in the Veterinary
Teaching Hospital for the University of Torino, Italy, during
the course of 1 year. The availability of open source image
storage and retrieval software packages has steadily increased
over the years, making it easier for a radiology department
with sufficient in-house technical knowledge to deploy their
own PACS solution. However, this kind of project requires a
deep understanding of several aspects of information technol-
ogy, ranging from networking to storage system architecture
to data security. Choosing an enterprise-grade operating sys-
tem as the base for such a project constitutes an important first
step towards a vertical approach to system integration focus-
ing on data integrity and system reliability. The Veterinary
Teaching Hospital of the University of Torino’s 3,000 new
cases per year identify it as a large facility by Italian standards.
Despite the considerable case load, the Diagnostic Imaging
and Radiology units employ machines that are quite old by
today’s standards. The computed tomography scanner, for
example, is a single-slice helical unit1 with a 512×512 matrix
size and uses the discontinued SGI IRIX2 operating system for
the controller unit. When we started our work, the radiology

B. Iotti (*) :A. Valazza
Dipartimento di Scienze Veterinarie, Università degli Studi di Torino,
Torino, Italy
e-mail: bryan.iotti@unito.it

A. Valazza
e-mail: alberto.valazza@unito.it

J Digit Imaging (2014) 27:563–570
DOI 10.1007/s10278-014-9692-1

1 GE HighSpeed FX/I, General Electric, Fairfield, CT, USA
2 Silicon Graphics International, Milpitas, CA, USA

http://www.dcm4che.org/

department was archiving most of the imaging data as digital
versatile disks (DVDs) in a separate room, organized by
month and year, while the most recent records resided on the
visualization workstation.3 A copy of the imaging data for the
more recent records was also sent to the hospital information
system and associated to the patient records, where it could be
visualized as a JPEG thumbnail or downloaded in DICOM
format. Meanwhile, the CT unit was storing its data on the
visualization workstations and on a network drive. This layout
is shown in Fig. 1. Accessing the archived imaging data was a
time-consuming process, requiring the assistance of a techni-
cian from each unit (and therefore being subject to different
working schedules, for example). The amount of single points
of failure that could determine data loss was extremely high,
and none of the systems, with the exception of the hospital
information system, was covered by either an unassisted
backup or an auditing infrastructure. A proper PACS server
with semiautomaticmanagement capabilities was sorely need-
ed. Budget constraints imposed on the authors were quite
stringent, so the priority was given to data security over pure
system performance.

Methods

Previous Works and Introduction

Previous work by other authors outlines the possibility of
building an open source PACS solution that delivers commer-
cial quality results without incurring in licensing costs [1]. The
authors decided to evaluate the possibility of building a similar
system on low-cost, over-the-counter hardware using the more
common x86 platform instead of the SPARC architecture used
in other projects [1]. Our main goal for this project was the
consolidation of the available imaging data behind a single,
easy to use user interface.

Hardware Configuration Overview

The hardware powering the PACS server is a HP ProLiant
Microserver,4 model N40L, with 8 GB error correction and
control (ECC) random access memory (RAM) and several
internal hard disks. The processor is a dual-core 1.7Ghz
AMD Turion.5 The system itself is physically small and
very quiet (measured noise at normal operation is about
22 dB). It is secured against physical intrusion through
keyed access to the case and is set up in an office that
is closed when not in use. The power cord is chained in

place both on the case of the server and the power
outlet to prevent accidental disconnections. The system
Basic Input/Output System (BIOS) is programmed to
restore the system to the previous state in case of a
loss of power.

PACS Software

DCM4CHEE6 is a DICOM-compliant, feature-complete
open-source PACS solution that can offer levels of service
on par with commercial solutions [1]. It is written in the Java7

programming language, making it multiplatform. The Weasis
DICOM viewer4 is installed as a centrally deployed applica-
tion on the PACS server.

Database

We chose the PostgreSQL database,8 version 9.1.

Operating System

We chose OpenIndiana9 as the operating system for the PACS.
This distribution is a derivative of OpenSolaris7 and uses the
Illumos Kernel.10

System Security

The system is protected by a local software firewall
based on IPsec, the standard Solaris system firewall,
as well as the perimeter hardware firewalls of the uni-
versity network.

The system uses the auditing technologies provided
by both the PACS server software and the operating
system, in the form of an auditing database and a
system fingerprint.

System Subdivision

The DCM4CHEE server resides in a paravirtualized local
zone. The current layout of the PACS server is shown in
Fig. 2.

Storage

The disks contained in the PACS server are divided into two
groups: system disks and data disks. The system disks are two
250 GB 7200RPM SATA-II disks in software RAID-1 mirror
configuration and independently bootable (each disk has a

3 Agfa Mimosa Vips 1206, Agfa-Gevaert NV/SA 96, Munich, Germany
4 Hewlett Packard, Palo Alto, CA, USA
5 Advanced Micro Devices, Sunnyvale, CA, USA

6 DCM4CHEE, http://www.dcm4che.org, last accessed 08/03/13
7 Oracle Corporation, Redwood City, CA, USA
8 PostgreSQL, http://www.postgresql.org, last accessed 08/03/13
9 OpenIndiana Project, http://openindiana.org, last accessed 08/03/13
10 Illumos Project, http://wiki.illumos.org, last accessed 08/03/13

564 J Digit Imaging (2014) 27:563–570

http://www.dcm4che.org/
http://www.postgresql.org/
http://openindiana.org/
http://wiki.illumos.org/

complete bootloader, and the BIOS is configured to attempt
booting from the second one if the first one fails to respond).
The data disks are two 1 TB 7200RPM SATA-II disks, also in
software RAID-1 mirror configuration. Due to the low cost of
storage and the need to keep a native DICOM copy of the
files, together with the adequate throughput of the network
and the limited CPU resources, we opted to store the files as
lossless DICOM images, devoting all available space to online
storage. Upon installation of the system, the available archive
data for the various modalities was migrated to the server,
accounting for roughly 550 GB of the total used storage.

System Tuning

The filesystem read cache (L2ARC) was limited to 4 GB
using the kernel configuration files.

Backup Strategy

The system performs automatic unassisted backups of the
image data to a network drive on the other side of the building
every night and updates a series of log files with the results of
the operation. Since the configuration of the system itself is

Fig. 1 The diagnostic imaging
workflow before the installation
of the PACS system

Fig. 2 Current system
subdivision and layout of the
PACS server

J Digit Imaging (2014) 27:563–570 565

static, it is backed up before and after performing system
updates and upgrades by a competent technician, with the
backup data stored on a removable drive in a separate location.

System Monitoring

The system automatically logs the results of actions such as
disk data consistency checks, SMART checks, audit logs, and
backups to a series of log files, easily accessible by the system
administrator.

Total Cost

Total cost for the system as installed was 800,00 € including
VAT at the time of purchase (August 2012). The network disk
we use for backups had already been purchased and was re-
purposed. If acquired separately it would have cost 399,00 €
including VAT.

Results

The system has been in active use for almost 2 years now. It
has overcome minor situations like power outages successful-
ly, without the loss of data and restoring the services it pro-
vides without the need for operator assistance. No unplanned
downtime has occurred so far, performance has been better
than expected and constant. System log reports have never
reported a fault either in disk health or data consistency. The
web-based interface is ergonomic to use, loads quickly, and
allows role-based access to all the required functions. At the
moment of writing this paper, the system contains CT,
MR, and CR modality images amounting to roughly
51,000 studies for 20,000 patients, totaling about
700 GB of data and growing by roughly 60 GB per
year. The faculty’s medical staff can easily access the
imaging data and review patient progress by comparing
past and present examinations with ease, across multiple
modalities, while the system allows students working on
their thesis to find and collect all the necessary case data
in a matter of a few hours. The current workflow is
shown in Fig. 3.

Discussion

PACS Software

Role-Based Approach

One of the key features of this PACS server is that it allows a
role-based approach to user management. We therefore have
four main user groups with different privileges:

administrators, staff, thesis, and student. Administrators can
access the image data, the auditing interface and the system
configuration, including the definition of application entity
(AE) titles and other DICOM network parameters. Staff users
can access the image data, view it and have it sent to an
external viewer, but cannot delete it. Thesis students have
the same privileges as the staff group; the distinction is made
for management and auditing reasons. Student users are the
basis for the future development of teaching files, where the
creation of special, educational datasets will allow interested
students to enhance their knowledge of both physiological and
pathological anatomy viewed through different digital imag-
ing modalities. The teaching staff will prepare anonymous
datasets of various anatomical parts and conditions. This role
is currently not enabled. All operations performed on the web
interface, including logins, and the imaging data by the users
are subject to monitoring by the auditing infrastructure present
in DCM4CHEE.

Integrated DICOM Viewer

The Weasis DICOM viewer is a multiplatform, multimodality
DICOM-compliant image viewer written in Java and centrally
deployed (after the initial installation, any update will be
delivered to the client computers automatically). Weasis
played a crucial role in allowing any computer inside the
faculty to be used for basic visualization and measurements,
resulting in a diminished workload for the specialized work-
stations. The tools available in Weasis are considerably supe-
rior to those available on the older workstations, especially for
more structured measurements like fixed right-angles and
Cobb’s angle. The Osirix DICOM viewer11 is used when
three-dimensional reconstructions are necessary, and in these
cases, the PACS is accessed through the DICOM network
using the standard DICOM Query commands (C-GET, C-
MOVE).

Fig. 3 The current diagnostic imaging workflow

11 Antoine Rosset, Geneva, CH

566 J Digit Imaging (2014) 27:563–570

Database

The DCM4CHEE PACS server comes with interfaces for
many popular databases, like MySQL, PostgreSQL,
Microsoft SQL Server, and IBM DB2. We chose PostgreSQL
because it has several desirable characteristics: it is completely
open source, well known, powerful, and reliable. It supports
atomic transactions, ensuring data consistency, and is well
suited to vertical scaling (i.e., move to a more powerful
machine, versus horizontal scaling which indicates a move
to a cluster-type deployment). PostgreSQL version 9.1 is
available as a pre-built package for OpenIndiana and comes
with its own service manifests for the Service Management
Facility.

Operating System

Why Solaris?

The Sun Solaris operating system is known in the enterprise
world for its stability, security, and reliability [1]. It offers
some of the most refined and complete administration and
maintenance tools available and is built on cutting edge tech-
nology that has been field tested and proven in the most
demanding mission-critical environments [1]. Historically, it
has been associated only with large businesses due to the
elevated licensing costs. In June 2005, Sun Microsystems
created a mixed open/closed source version of Solaris for the
community, called OpenSolaris. This operating system gained
a substantial following in fields that could benefit from the
Solaris features but could not afford the expensive support
contracts associated with it. When Oracle acquired Sun
Microsystems in 2009, it also became the owner of the rights
to the Solaris operating system. Oracle stopped the develop-
ment and distribution of OpenSolaris, but the community had
forked just in time, creating an open-source version of the
Solaris Kernel with the Illumos Project. By combining the
traditional OpenSolaris GNU userland with the Illumos ker-
nel, the OpenIndiana distribution was born. This distribution
aims to continue the OpenSolaris legacy as both a desktop and
server general-purpose operating system by providing a drop-
in replacement for existing OpenSolaris installations. We
chose to use OpenIndiana as the operating system for the
PACS because it features the Zettabyte File System (ZFS),
numerous virtualization possibilities, an advanced networking
stack, the Service Management Facility (SMF), and the
DTrace framework. OpenIndiana also offers the possibility
of a desktop graphical user interface if needed (other deriva-
tives like OmniOS and SmartOS are text-only), allowing the
authors to develop and test the system on a workstation that
provides an identical software stack as the final product but
with the additional ease of use of a graphical user interface.

ZFS

ZFS has long been one of the most advanced file systems
available [2, 3]. By separating the concept of volumes (called
pools) and physical drives, it allows flexible management of
the storage assets of a server. Software Redundant Array of
Inexpensive Disks (RAID) solutions can be implemented and
changed while a system is online, without requiring down-
time. ZFS assumes that the drives themselves will eventually
fail or generate errors. It therefore writes a checksum for each
and every block of data written to the disks and then checks
their correspondence both when the data is accessed, and
periodically through the use of scrubs, a maintenance opera-
tion that checks each and every used data block without
offlining the system. ZFS is a copy-on-write journaled file
system. This means that when a block of data is written to the
disk, each pool contains a log of the write operations, called a
ZFS Intent Log or ZIL. Should the power be cut accidentally
before the write operation is complete, this ZIL will contain
the necessary information for replaying the transaction, ensur-
ing data consistency. Also, in a copy-on-write filesystem, the
data that is read and modified is not rewritten to the same
physical block, but to another part of the disk and its inode
reference changed. This allows the implementation of point-
in-time versioning through the use of snapshots, in essence
keeping a copy of the complete pool or filesystem and only
marking the changes made to a new filesystem with very little
overhead. Snapshots are the bases for the ZFS send/receive
commands that are used for backing up and cloning
filesystems. Should the data pool need to be transferred to
another server, for example, the system administrator could
take a snapshot of the data filesystem and start to copy it in its
exact condition, including access permissions and file times.
While the data is being copied, the server continues to func-
tion regularly, and new data is received without touching the
snapshot. After the transfer is complete, the PACS server
software would be stopped, a new snapshot taken, and the
data sent incrementally, bringing the new copy up to date. The
result is a greatly decreased offline time. System updates
follow a similar logic, through the use of boot environments
(BEs) that represent a complete, working copy of the system
software. When updates are applied, the system administrator
can request the creation of a new BE for the updated software,
ensuring that the system can be restarted from the previous,
known-good copy should trouble arise. Another useful feature
of ZFS is the availability of four different built-in compression
schemes that can be added on a per-file system basis. Proper
use of this technology could, for example, allow the use of
compression on a separate pool or filesystem to implement
compressed nearline storage and increase the available storage
capacity. The computational cost of compression on modern
higher-tier processors is negligible, considering the improve-
ment gained in disk input/output (which is the main bottleneck

J Digit Imaging (2014) 27:563–570 567

in many systems).We opted not to use filesystem compression
because of the machine’s limited processing power and have
dedicated all available space to online storage.

Filesystem Caching

ZFS features both read and write caches. The write cache is
the ZIL, as previously mentioned. Its performance can be
improved by moving it to a separate drive, maybe based on
high-speed flash storage (otherwise it resides on the pool
itself, mixed with the data). The read cache is divided in two
levels: ARC and L2ARC. ARC stands for adaptive replace-
ment cache. Being adaptive, this read cache “learns” from the
interaction between the pool and the operating system and
“warms up” by storing the most frequently used blocks of data
in RAM. Since RAM is two orders of magnitude faster than
hard disks (access times are in nanoseconds instead of milli-
seconds), accessing the cached data greatly improves the
system response time. The ARC also stores the deduplication
tables, should deduplication be enabled on a pool.
Deduplication means that the operating systems writes data
to the disks and ZFS finds identical blocks of data across a
stream and only writes them once, referencing said blocks in
other locations. Depending on the data being stored, this can
improve storage capacity by as much as twenty times [4].
However, deduplication tables must be stored in RAM or the
system response times will become unacceptable. ZFS re-
quires 1–2 GB of RAM per TB of deduplicated data. Should
a system not be able to install enough RAM to hold the
deduplication tables together with the application memory
requirements, one can resort to using a solid state drive
(SSD, flash storage) to store the tables and ARC data on. This
is the L2ARC. SSDs feature a random seek capacity that is
one order of magnitude slower than RAM, but one order of
magnitude faster than traditional hard disks. In our system, we
did not use data deduplication because the limited CPU re-
sources would not have been able to deal with the increased
workload. The default behavior of ZFS is to allocate all
system memory to the ARC except one GB, which remains
for the OS. Now, this memory can be freed, but if the appli-
cations require the use of large pages of memory, the ARC can
be slow to release the used memory, resulting in slower
performance and memory fragmentation.We therefore limited
the maximum amount of memory used by the ARC by pro-
filing the system after several weeks of regular use. By ana-
lyzing the most commonly used size for the ARC, we found it
to be at most 4 GB and limited it to that value, as per
instructions provided by the ZFS tuning guide.12 This left a
sufficient amount of free memory for both the OS and the
applications. This dynamic caching ability is very important

for achieving high performance, since it represents a user-
transparent way of mimicking the behavior of enterprise-
level tiered storage (i.e., storage solutions where infrequently
accessed data resides on slow, high capacity disks and recent
or often requested data resides in RAM or fast solid state
drives) for a fraction of the cost.

Paravirtualization

Paravirtualization is a unique feature of the Solaris OS, similar
to FreeBSD’s Jails. The kernel itself allows partitioning of
memory and resources (which can be limited or “throttled” if
needed) into software zones. Zones can be shared or dedicat-
ed. By relying heavily on the ZFS snapshot feature, they are
extremely lightweight (a few hundred megabytes per in-
stance). Each zone behaves like a single separate entity (they
can for example have a different network address) and has no
access to either the data or the memory maps of the global
zone (host computer). Due to their light weight and little to no
performance impact, zones represent an ideal way of running
multiple separate services on a single machine. Should a zone
be compromised, the attacker would only have access to the
data contained inside it, and no control over the global zone.
Our PACS installation hosts the DCM4CHEE server and the
PostgreSQL database in a single zone at the present time.
Zones are very easy to migrate across machines, consisting
only of a zone manifest and an associated ZFS filesystem.
Should we decide to upgrade the hardware on the PACS, we
could shut down the zone containing the PACS server, export
a configuration manifest, edit it if necessary, and use the ZFS
send/receive commands to stream the complete zone to the
new machine. When the zone is started again, nothing has
changed from its point of view and service resumes with little
interruption.

Networking

Solaris features a very advanced networking stack that allows
the creation of inter-zone dedicated high-speed networks. This
does much to improve the security of a system based on this
technology, limiting the exterior visibility of the services
provided. Also, the system allows the aggregation of different
physical links into a larger logical one, with to several differ-
ent modes of operation, or the partitioning of an existing link
into smaller VLANs.

Service Management Facility

Services in Solaris are managed through the Service Manage-
ment Facility or SMF. Here, each service carries a manifest
that identifies it, places it in the right part of the boot and
shutdown sequence for the OS, handles dependencies (some
software might require to be started only after the database it

12 ZFS Tuning Guide, http://www.solarisinternals.com, last accessed 08/
03/13

568 J Digit Imaging (2014) 27:563–570

http://www.solarisinternals.com/

runs on has been correctly started, for instance), and monitors
service health periodically, logging any malfunctions and
startup error codes. Services placed under SMF are automat-
ically restarted, for example, should they stop working. In our
system, the local zone has its own list of SMF services,
including the PostgreSQL database and JBoss server (hosting
the PACS server application). The global zone starts the local
zone itself as an SMF service.

DTrace

The inherent complexity of a modern operating system can
make it very difficult to troubleshoot. Just gathering the nec-
essary data to understand the problem can be a daunting task.
The management tools available are numerous and often
intimately tied in to the platform they were developed for.
DTrace is a very advanced dynamic tracing technology that
can effectively visualize different aspects of a running, un-
modified production system, providing great insight into po-
tential performance problems [5]. Since it is also available on
Apple Mac OS X and FreeBSD, it has become a common
ground for troubleshooting and objective-driven
benchmarking.

Auditing Technologies

The installation guidelines of the PACS server software en-
courage the system administrator to create an auditing data-
base, which will contain a record for each and every operation
performed on the PACS (e.g., image send/retrieve, user login
attempts, and whether they are successful or not). This data-
base can then be examined periodically by system adminis-
trators to detect any unusual behavior. The Solaris operating
system features a program called BART, an acronym for basic
audit reporting tool, that allows the rapid acquisition of a
system fingerprint: in essence, what files are stored where,
their size, date of last access and modification, and access
permissions. When run, the output of the tool should be saved
to a text file, so that the program can later use it to perform an
accurate comparison with the future state of the system. When
updating the system, the administrator verifies the current
fingerprint against the stored one to ensure that no unautho-
rized modifications have been made before proceeding. After
all updates have been applied, a new fingerprint is acquired
and stored.

Important Hardware Features

Despite being a very small server, the HP ProliantMicroserver
features error correction control (ECC) random access mem-
ory (RAM). This is important because it can recognize cor-
ruption of the in-memory contents as it happens and report this
to the operating system, preventing the corrupted data from

being written to disk as if it was correct. ECC RAM represents
a very important cornerstone in a data security scheme based
on ZFS: employing the best file system does not matter if the
data that the system processes becomes corrupted in RAM and
this is not recognized.

Skills Needed

Despite the best attempts to make management of such a
system as easy to use as possible, the flexibility provided
means that a quite steep learning curve is involved. The IT
personnel managing this type of machine should be well-
versed in the Solaris OS (which is similar to Linux in many
respects, but managed differently) as well as Java and the
management of a JBoss13 Web workflow.

Possible Future Optimizations

A good hardware upgrade would be the use of a system with
dual power supplies (known as an n+1 configuration) or at
least of an uninterruptible power supply (UPS battery back-
up). When the system was installed, it was not deemed nec-
essary to create separate AE titles for each modality as would
be generally suggested [6]. This was performed 1 year after
the initial installation, since it represents a good optimization
of the system and allows separate processing and routing of
the different modalities. Also, the system layout could be
improved by moving the PostgreSQL database to a separate
zone, accessed through a virtual network that is accessible
only to the DCM4CHEE server software. This would allow
easier management of the database software while improving
reliability and performance. The installation of a web man-
agement console like Nagios14 would allow the system to be
largely monitored by the hospital personnel, without requiring
system administrator intervention unless it is needed. Choos-
ing a systemwith faster processors would allow the creation of
a compressed filesystem for use as nearline storage, with
automatic transfer of the imaging data between tiers based
on when it was last requested. Backing up the image data to an
external disk is barely an acceptable solution. The optimum
would be the creating a cluster configuration, as supported by
both JBoss and DCM4CHEE, with two or more systems
balancing their load and synchronizing the information they
store. The adoption of clustering would allow higher perfor-
mance, reliability, and automatic failover with no system
downtime. The main issue with many external network hard
disks is the lack of SMART monitoring: should a disk start to
accumulate errors, they would not be reported and go unno-
ticed until the total failure of the device. This could expose the
system to a small timeframe where the data is not covered by

13 JBoss, http://www.jboss.org/, last accessed 08/03/13
14 Nagios, http://www.nagios.org/, last accessed 08/03/13

J Digit Imaging (2014) 27:563–570 569

http://www.jboss.org/
http://www.nagios.org/

the security provided by a backup. One strategy could
be to plan obsolescence for the backup disks on a yearly
basis, or use a dedicated small system for backups,
allowing the use of SMART monitoring and reporting,
possibly together with data compression and/or
deduplication for increased storage. The system is cur-
rently not integrated with the hospital radiology infor-
mation system (RIS), but this would allow the use of the
modality worklist, reducing the possibility of user error
during patient data entry [7]. All connections to and
from the PACS server could be upgraded to run over a
Secure Sockets Layer (SSL) encrypted protocol, thus
increasing security. Thanks to the open source nature
of this project, all components of this system could be
redistributed as a pre-installed, ready-to-run image with
good default values for most options, enabling close-to-
unassisted deployments, requiring only a minimum
amount of configuration.

Conclusion

After 2 years of use, this system has proven itself a scalable,
cost-effective solution for practices ranging from small
to very large, where the use of different hardware com-
binations allows scaling to the different deployments
while the use of zones allows increased security and
easy migrations and upgrades.

Acknowledgments The authors wish to acknowledge the OpenIndiana
user and developer community and the DCM4CHEE user and developer
community. Their continued high-quality work makes this system
possible.

Conflicts of Interest and Financial Support The authors declare no
conflict of interest. No external financial support was received for this
project.

References

1. Marcheschi P, et al: A new approach to affordable and reliable cardi-
ology PACS architecture using Open-Source Technology. Comput
Cardiol, 2009. IEEE, 2009

2. Bonwick J, Ahrens M, Henson V, Maybee M, Shellenbaum M: The
Zettabyte File System Course material for CMPS 221: Advanced
Operating Systems, Fall 2006, UC Santa Cruz.

3. Zhang Y, Rajimwale A, Arpaci-Dusseau A, Arpaci-Dusseau R: End-
to-end Data Integrity for File Systems: A ZFS Case Study FAST′10
Proceedings of the 8th USENIX conference on File and storage
technologies, pp 3–3

4. Bonwick J: Zfs deduplication. Jeff Bonwick’s Blog at Oracle (2009),
last accessed 08/06/13.

5. Gregg B, Mauro J: DTrace: Dynamic Tracing in Oracle Solaris, Mac
OS X and FreeBSD (Oracle Solaris Series) ISBN 978–0132091510
Prentice Hall Professional, 2011

6. Robertson ID, Saveraid T: Hospital, Radiology and Picture Archiving
and Communication Systems. Vet Radiol Ultrasound 49, No. 1, Supp.
1:S19–S28,2008

7. Ballance D: The Network And Its Role In Digital Imaging And
Communications In Medicine Imaging. Vet Radiol Ultrasound 49,
No. 1, Supp. 1:S29–S32,2008

570 J Digit Imaging (2014) 27:563–570

	A...
	Abstract
	Background
	Methods
	Previous Works and Introduction
	Hardware Configuration Overview
	PACS Software
	Database
	Operating System
	System Security
	System Subdivision
	Storage
	System Tuning
	Backup Strategy
	System Monitoring
	Total Cost

	Results
	Discussion
	PACS Software
	Role-Based Approach
	Integrated DICOM Viewer

	Database
	Operating System
	Why Solaris?
	ZFS
	Filesystem Caching
	Paravirtualization
	Networking
	Service Management Facility
	DTrace

	Auditing Technologies
	Important Hardware Features
	Skills Needed
	Possible Future Optimizations

	Conclusion
	References

