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Abstract Medical image compression is one of the growing
research fields in biomedical applications. Most medical im-
ages need to be compressed using lossless compression as
each pixel information is valuable. With the wide pervasive-
ness of medical imaging applications in health-care settings
and the increased interest in telemedicine technologies, it has
become essential to reduce both storage and transmission
bandwidth requirements needed for archival and communica-
tion of related data, preferably by employing lossless com-
pression methods. Furthermore, providing random access as
well as resolution and quality scalability to the compressed
data has become of great utility. Random access refers to the
ability to decode any section of the compressed image without
having to decode the entire data set. The system proposes to
implement a lossless codec using an entropy coder. 3D med-
ical images are decomposed into 2D slices and subjected to
2D-stationary wavelet transform (SWT). The decimated coef-
ficients are compressed in parallel using embedded block
coding with optimized truncation of the embedded bit stream.
These bit streams are decoded and reconstructed using inverse
SWT. Finally, the compression ratio (CR) is evaluated to
prove the efficiency of the proposal. As an enhancement, the
proposed system concentrates on minimizing the computation
time by introducing parallel computing on the arithmetic
coding stage as it deals with multiple subslices.
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Introduction

Recent developments in health-care practices and develop-
ment of distributed collaborative platforms for medical diag-
nosis have resulted in the development of an efficient tech-
nique to compress medical data. Telemedicine applications
involve image transmission within and among health-care
organizations using public networks. In addition to
compressing the data, this requires handling of security issues
when dealing with sensitive medical information systems for
storage, retrieval, and distribution of medical data. Some of
the requirements for compression of medical data include high
compression ratio and the ability to decode the compressed
data at various resolutions.

In order to provide a reliable and efficient means for storing
and managing medical data, computer-based archiving sys-
tems such as picture archiving and communication systems
(PACS) and Digital Imaging and Communications in Medi-
cine (DICOM) standards were developed. Health Level Seven
(HL7) standards are widely used for exchange of textual
information in health-care information systems. With the ex-
plosion in the number of images acquired for diagnostic
purposes, the importance of compression has become invalu-
able in developing standards for maintaining and protecting
medical images and health records.

Compression offers a means to reduce the cost of
storage and increase the speed of transmission; thus, med-
ical images have attained a lot of attention towards com-
pression. These images are very large in size and require
lot of storage space.

The image compression techniques are broadly classified
into two categories depending whether or not an exact replica
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of the original image could be reconstructed using the com-
pressed image. These are as follows:

1. Lossless technique
2. Lossy technique

In lossless compression techniques, the original image can
be perfectly recovered from the compressed (encoded) image.
They are also called noiseless since they do not add noise to
the image and are also known as entropy coding since
they use statistics/decomposition techniques to eliminate/
minimize redundancy. Lossless compression is used only for
a few applications with stringent requirements such as medical
imaging. Lossless compression is preferred for artificial im-
ages such as technical drawings, text, and medical-type im-
ages, icons, or comics. Some of the techniques included in
lossless compression are run length encoding, Huffman
encoding, LZW coding, area coding, etc.

The acronym EBCOT is derived from the description “em-
bedded block coding with optimized truncation” which iden-
tifies some of the major contributions of the algorithm. The
EBCOT algorithm is related in various degrees to much earlier
work on scalable image compression. Scalable compression
refers to the generation of a bit stream which contains embed-
ded subsets, each of which represents an efficient compression
of the original image at a reduced resolution or increased
distortion [1]. The terms “resolution scalability” and “SNR
scalability” are commonly used in connection with this idea.

In EBCOT, each subband is partitioned into relatively
small blocks of samples, the samples called code-blocks.
EBCOT generates a separate highly scalable (or embedded)
bit stream for each code-block, B;. The bit stream associated
with B; may be independently truncated to any of a collection
of different lengths, R}, where the increase in reconstructed
image distortion resulting from these truncations is modeled
by D}. An enabling observation leading to the development of
the EBCOT algorithm is that it is possible to independently
compress relatively small code-blocks (say 32%32 or 64% 64
samples each), with an embedded bit stream consisting of a
large number of truncation points, R}, such that most of these
truncation points lie on the convex hull of the corresponding
rate-distortion curve. To achieve this efficient, fine embed-
ding, the EBCOT block coding algorithm builds upon the
fractional bit plane coding ideas [1].

Several techniques based on the (3D) discrete cosine trans-
form (DCT) have been proposed for volumetric data coding.
These techniques fail to provide lossless coding coupled with
quality and resolution scalability, which is a significant draw-
back for medical applications. This paper gives an overview
of several state-of-the-art 3D wavelet coders that do meet
these requirements and proposes new compression methods
exploiting the quadtree and block-based coding concepts,
layered zero-coding principles, and context-based arithmetic

coding. Additionally, a new 3D DCT-based coding scheme is
designed and used for benchmarking. The proposed wavelet-
based coding algorithms produce embedded data streams that
can be decoded up to the lossless level and support the desired
set of functionality constraints. Moreover, objective and sub-
jective quality evaluation on various medical volumetric data
sets shows that the proposed algorithms provide competitive
lossy and lossless compression results when compared with
the state of the art [2].

The mesh-based schemes have been shown to be effective
for the compression of 3D brain computed tomography data
also. Adaptive mesh-based schemes perform marginally better
than the uniform mesh-based methods, at the expense of
increased complexity. Lossless uniform and adaptive mesh-
based coding schemes are proposed for MR image sequences.
Context-based source modeling is used to exploit the
intraframe and interframe correlations effectively. However,
any other context-based modeling can be used in conjunction
with both mesh-based schemes [3].

2D integer wavelet transform is used to decorrelate
the data and an intraband prediction method to reduce
the energy of the subbands by exploiting the anatomical
symmetries typically present in structural medical im-
ages [4, 5]. A modified version of the EBCOT, tailored
according to the characteristics of the data, encodes the
residual data generated after prediction to provide
resolution and quality scalability.

In [6, 7], the bit stream reordering procedure is based on a
weighting model that incorporates the position of the VOI and
the mean energy of the wavelet coefficients. The background
information with peripherally increasing quality around the
Volume Of Interest (VOI) allows for placement of the VOI into
the context of the 3D image.

Several compression methods for medical images have
been proposed, some of which provide resolution and quality
scalability up to lossless reconstruction [8—13].

Methodologies
Wavelet-Based Compression

For image compression, loss of some information is accept-
able. Among all of the above lossy compression methods,
vector quantization requires many computational resources
for large vectors; fractal compression is time consuming for
coding; predictive coding has inferior compression ratio and
worse reconstructed image quality than those of transform-
based coding [14]. So, transform-based compression methods
are generally best for image compression. For transform-
based compression, JPEG compression schemes based on
DCT have some advantages such as simplicity, satisfactory
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performance, and availability of special purpose hardware for
implementation.

However, because the input image is blocked, correlation
across the block boundaries cannot be eliminated. This results
in noticeable and annoying “blocking artifacts” particularly at
low bit rates. Wavelet-based schemes achieve better perfor-
mance than other coding schemes like the one based on DCT.
Since there is no need to block the input image and its basis
functions have variable length, wavelet-based coding schemes
can avoid blocking artifacts. Wavelet-based coding also facil-
itates progressive transmission of images.

Block Coding Algorithm

EBCOT stands for embedded block coding with optimal
truncation. Every subband is partitioned into little blocks
(for example, 64x64 or 32x32), called code-blocks. Every
code-block is codified independently from the other ones thus
producing an elementary embedded bit stream. The algorithm
can find some points of optimal truncation in order to mini-
mize the distortion and support its scalability. It uses the
wavelet transform to subdivide the energy of the original
image into subbands. Coefficients are coded after having done
an appropriate quantization specified by the standard. Each
subband is divided into code-blocks before being compressed.
A bit plane encoder is used; it encodes the information be-
longing to a code-block by grouping it in bit planes, starting
from the most significant one. After that, less significant bit
planes will be encoded.

Proposed Method

The main objective of the system is to effectively implement
lossless compression by reducing the amount of data required
to represent a digital image. The architecture of the proposed
system is shown in Fig. 1. The system proposes to implement a
lossless codec using an entropy coder. The original 3D med-
ical image is given as input, and it is converted to 2D slices.
Using segmentation, extract the brain mass (region of interest)
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Fig. 1 Architecture of the proposed system
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alone from the 2D slice. The extracted information from 2D
slices is decimated using 2D stationary wavelet transform
(SWT). The decimated coefficients are compressed in parallel
using embedded block coding with optimized truncation of
the embedded bit stream. These bit streams are decoded and
reconstructed using inverse SWT. As an enhancement, the
system concentrates on minimizing the time computation by
introducing parallel computing on the arithmetic coding stage
as it deals with multiple subslices.

ROI Extraction

The volumetric data of the brain MRI is converted to 2D MRI
slices by iterating on the stack. The proposed system needs to
compress the image in a lossless manner, the important infor-
mation extracted from the whole brain image. A segmentation
algorithm is used to extract the brain mass alone and eliminate
other parts using threshold pixel values [15, 16].

2D Stationary Wavelet Transform

Because of their inherent multi-resolution nature, wavelet-
coding schemes are especially suitable for applications where
scalability and tolerable degradation are important. Wavelet
transform decomposes a signal into a set of basis functions.
Here, 2D SWT filters are compared to 2D DWT filters be-
cause of the time-space shifts that DWT creates after applying
any operation on wavelet coefficients. Compared with the

Two-Dimensional SWT

Decomposition Step columns

N i
columns

h)
L horizontal

CA. —
J columns .
o
J vertical
columns
D@
whete diagonal

rows

Convolve with filter X the rows of the entry

columns

Convolve with filter X the columns of the entry

Filter Computation

Initialization
cAg =s for the decomposition initialization
Fp=Lo D
Gy=Hi D

Note size(cA)) = sizc(cD;m; = size(cD;"‘; = sizc(cD;d’; =s
Where s = size of the analyzed image

Fig. 2 2D stationary wavelet transform
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Table 1 Experimental results of
MRI images for different com-
pression techniques

Modality (Slices:Pixel per
slice:Bits Per Pixel)

Compression method

JPEG 2000

EBCOT Proposed method

MRI (30:256 % 256:8)
MRI (40:256 % 256:16)

MRI (30:256 X256:8)
MRI (40:256%256:16)

CR (bit rate/bits per pixel)
8.29:1 (2.58 bpp)
8.29:1 (2.58 bpp)
PSNR (bit rate/bits per pixel)
24.45 (0.063 bpp)
24.45 (0.063 bpp)

3.33:1 (4.80 bpp)
3.33:1 (4.80 bpp)

17.5324 (0.9126 bpp)
16.9826 (0.9421 bpp)

22.11:1 (0.063 bpp)
22.11:1 (0.063 bpp)

41.6729 (0.9126 bpp)
41.5884 (0.9421 bpp)

traditional wavelet transform, the SWT has several advan-
tages. First, each subband has the same size, so it is easier to
get the relationship among the subbands. Second, the resolu-
tion can be retained since the original data is not decimated
[17]. Also, at the same time, the wavelet coefficients contain
much redundant information which helps to reduce the size of
the image.

In Fig. 2, F; and G; represent high-pass and low-pass filters
at scale j, resulting from interleaved zero padding of filters F;—
1 and G, (j>1). cAy is the original image, and the output of
scale j, c4;, would be the input of scale j+1. c4;+, denotes the
low-frequency (LF) estimation after the stationary wavelet
decomposition, while cl)j+1(h), cDjH(V), and cDjH(d) denote
the high-frequency (HF) detailed information along the hori-
zontal, vertical, and diagonal directions, respectively.

cAjii(x,y) = Zm nc(n)A(m)cAj(z./Hm,x’ 27ty
¢ D M(x,y) = Zc(”)D(m)CAj(zj“mfx, 2ty

D V(x,y) = Zc(n)D(m)cAj@me—x, 27—y
mn
¢DiyD(x,y) = Zc(n)D(m)cAj(Zme—x, 2 =y

where F[-] and G[-] represent the low-pass and high-pass
filters, respectively, and cA4q(x, y)=Ax, ).

EBCOT Encoding

Encoding is performed by using block coding algorithm men-
tioned in methodologies.

Bit Plane Coding

A bit plane of a digital discrete signal (such as image or sound)
is a set of bits corresponding to a given bit position in each of
the binary numbers representing the signal. For example, for
16-bit data representation, there are 16 bit planes: the 1st bit
plane contains the set of the most significant bit and the 16th
contains the least significant bit. It is possible to see that the
first bit plane gives the roughest but the most critical approx-
imation of values of a medium, and the higher the number of
the bit plane, the less is its contribution to the final stage. Thus,
adding a bit plane gives a better approximation. If a bit on the
nth bit plane on an m-bit data set is set to 1, it contributes a
value of 2" ™; otherwise, it contributes nothing. Therefore,
bit planes can contribute half of the value of the previous bit
plane.

A Dbit plane encoder is used; it encodes the information
belonging to a code-block by grouping it in bit planes, starting
from the most significant one. After that, less significant bit
planes will be encoded [18].

Arithmetic Coding

Arithmetic coding is a form of variable-length entropy
encoding that converts a string into another form that repre-
sents frequently used characters with fewer bits and infre-
quently used characters with more bits with the goal of using
fewer bits in total. As opposed to other entropy-encoding
techniques that separate the input message into its component
symbols and replace each symbol with a code word, arithmet-
ic coding encodes the entire message into a single number
which is a fraction n where (0.0<n<1.0). It is also called a

Table 2 Experimental results
based on time

Modality (Slices:Pixels per slice:Bits per slice) JPEG 2000 EBCOT Proposed method

EcT DcT EcT DcT EcT DcT
MRI (30:256 x256:8) 4.01 3.18 4.10 3.18 1.20 1.06
MRI (40:256 x256:16) 4.43 3.35 4.48 3.57 2.64 1.12

EcTencoding time, DcT decoding
time
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statistical technique since it is based on probabilities like all
the other techniques. The code extracted for the entire se-
quence of symbols is called a tag or an identifier.

Arithmetic coding is also a coding technique in which a
message is encoded as a real number in an interval from one to
zero. Arithmetic coding typically has a better compression
ratio than Huffman coding as it produces a single symbol
rather than several separate code words. Arithmetic coding is
performed by providing symbols and probabilities for each
symbol and a message that has to be coded. The arithmetic
coding technique, though it gives a better performance than
Huffman coding, has some disadvantages. In this coding
technique, the whole codeword must be received for the
symbols to be decoded, and if a bit is corrupted in the code
word, the entire message could become corrupt.

The proposed system uses an arithmetic encoder to code
the outputs of bit planes. It encodes the symbols and produces
the histogram count of encoded pixels.

Parallel Computing

Parallel computing lets us solve data-intensive problems using
multi-core processors. The proposed system uses parallel
computing to implement arithmetic coder operations such that
it shares the memory of the processors connected in a pool.
Thus, a MATLAB pool is constructed by interconnecting two
systems, where the unused memory will be used to compute
the arithmetic coder operations. This limits the time compu-
tation and increases the processing quality and speed.

EBCOT Decoding

The coded sequence is decoded using the arithmetic decoder.
It decodes the symbol sequence and returns a row vector

Fig. 3 2D slices
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Fig. 4 Stationary wavelet transform

which is to be reshaped as a matrix. This reshaped matrix
along with its appropriate bit planes has to undergo bit plane
decoding. All the decimated blocks have to be decoded using
bit plane decoding. The decoded image is reconstructed using
inverse SWT.

Performance Analysis

The proposed system determines the efficiency of compres-
sion using compression ratio, peak signal to noise ratio
(PSNR), and bits per pixel (Table 1). The compression ratio
is used to measure the ability of data compression by compar-
ing the size of the image being compressed to the size of the
original image.

CR = Uncompressed image size/Compressed image size

Fig. 5 Region of interest
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Fig. 6 Encoded image

Two of the error metrics used to compare the various image
compression techniques are the mean square error (MSE) and
the PSNR. The MSE is the cumulative squared error between
the compressed and the original image, whereas PSNR is a
measure of the peak error. The mathematical formulae for the
two are

MSE = MLNZZ (e, )1 (x,9)]

y=1x=1
PSNR = 20 x log,,(225/VMSE)

where /(x, y) is the original image, /'(x, ) is the approximated
version (which is actually the decompressed image), and M
and N are the dimensions of the images.

A lower value for MSE means lesser error, and as seen
from the inverse relation between the MSE and PSNR, this
translates to a high value of PSNR. Logically, a higher value

<

Fig. 7 Decoded image

e

Fig. 8 Reconstructed image

of PSNR is good because it means that the ratio of signal to
noise is higher. Table 2 shows experimental results compared
with encoding and decoding time.

Conclusion

Telemedicine applications involve image transmission
within and among health-care organizations using public
networks. These things resulted in the development of
an efficient technique to compress medical data. This
work proposes to implement a lossless codec using an
entropy coder. This approach exploits the properties of
SWT and EBCOT encoding in order to provide lossless
compression for 3D brain images.

Future work involves compressing other types of
medical images with this proposed system using parallel
computing.

Experimental Results

Figures 3, 4, 5, 6, 7, and 8 show the experimental results.
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