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Abstract Differentiation of malignant and benign pulmo-
nary nodules is of paramount clinical importance. Tex-
ture features of pulmonary nodules in CT images reflect
a powerful character of the malignancy in addition to the
geometry-related measures. This study first compared
three well-known types of two-dimensional (2D) texture
features (Haralick, Gabor, and local binary patterns or
local binary pattern features) on CADx of lung nodules
using the largest public database founded by Lung Im-
age Database Consortium and Image Database Resource
Initiative and then investigated extension from 2D to
three-dimensional (3D) space. Quantitative comparison
measures were made by the well-established support

vector machine (SVM) classifier, the area under the receiver
operating characteristic curves (AUC) and the p values from
hypothesis t tests. While the three feature types showed about
90 % differentiation rate, the Haralick features achieved the
highest AUC value of 92.70 % at an adequate image slice
thickness, where a thinner or thicker thickness will deteriorate
the performance due to excessive image noise or loss of axial
details. Gain was observed when calculating 2D features on
all image slices as compared to the single largest slice. The 3D
extension revealed potential gain when an optimal number of
directions can be found. All the observations from this sys-
tematic investigation study on the three feature types can lead
to the conclusions that the Haralick feature type is a better
choice, the use of the full 3D data is beneficial, and an
adequate tradeoff between image thickness and noise is de-
sired for an optimal CADx performance. These conclusions
provide a guideline for further research on lung nodule differ-
entiation using CT imaging.

Keywords LungCADx . Lung nodule analysis . Haralick
features . Gabor features . LBP features

Introduction

Lung cancer is the worldwide leading cause of cancer-related
deaths, more than the combination of breast, colon, and pros-
tate cancers [1, 2]. In the past decades, because of the widely
use of computer tomography (CT) for lung cancer screening
[3], a large and increasing number of pulmonary nodules have
been detected each year. The ultimate goal of evaluating the
detected nodules is to differentiate the malignant from the
benign ones. The task of evaluating a large number of detected
nodules by the experts or radiologists can be very burden-
some. Therefore, computer-aided diagnosis (CADx) is expect-
ed to play an important role in the evaluating task, where the
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extraction of features from detected nodules and the classifi-
cation of the features are the basic research interests.

Many features have been proposed and investigated for the
differentiation task, and the features can be divided into two
categories according to their achieving paths, namely, clinical
and image features. Clinical features were obtained according
to the patient records, such as age, gender, history of cancer,
history of smoking, location of cancer, etc. [4–6]. A sophisti-
cated study [7] further presented a comprehensive formula of
clinical features to evaluate the suspicious on the malignancy.
While these clinical features helped the differentiation to some
degrees, the outcome was still not satisfactory. Attribute to
medical imaging techniques, such as CT, a large number of
image features from pulmonary nodules have been extracted,
such as size (diameter or volume), shape, morphology, and
texture [8–10], as well as volume growth rate during a time
period [11, 12]. While a fast growth rate usually indicates
malignancy, the outcome requires sufficient time for the
growth, more CT scans, and accurate image segmentation
for the nodule volumes at two or more time points. Although
the geometry related features from the CT images have played
an important role for the differentiation task [13–19], texture
features have gained great attention for lung CADx [20–23] in
recent years. We summarize these recently reported image
features and their performance levels in Appendix, where their
used datasets are also included.

This work aims to provide a systematic investigation on
three widely used types of two-dimensional (2D) texture
features, namely the Haralick [24], Gabor [25], and local
binary pattern (LBP) [26] features, using the largest public
database founded by the Lung Image Database Consortium
and Image Database Resource Initiative (LIDC-IDRI) [27].
Specifically, we intend to explore (1) what are the differences
of these 2D texture features on differentiating the nodules, (2)
how sensitive are these texture features for classification of
nodule volume data with different image thicknesses or data
acquisition protocols, and (3) whether these texture features
have a high possibility on distinguishing the nodules in a
reasonably large database. Based on the outcome of the above
investigation, we further study how the three-dimensional
(3D) expansion will impact the differentiation task. As the
feature dimension increases from 2D to 3D space, we further
investigate how the reduction of feature dimension will affect
the differentiation task. We expect that this systematic inves-
tigation will generate the knowledge on the capacity of the
widely used texture features and their variations and further
render a base onwhichwe canmeasure the gain by adding any
new features.

The remainder of this paper is organized as follows. In
“Materials,” the utilization of the downloaded LIDC-IDRI
database is described. In “Three Types of Texture Features
and Their Calculation Methods,” the foundations and

principles of the three types (Haralick, Gabor, and LBP)
of texture features are presented, followed by description of 3D
expansion. In “Experimental Design and Results,” the evalua-
tion experiments are designed, and the results are reported.
Finally, discussions and conclusions are given in “Discussion
and Conclusion.”

Materials

In this section, the preprocessing of the CT image volume data
of pulmonary nodules from the LIDC-IDRI database is intro-
duced by the following two subsections.

& A brief description of the lung image database with paint-
ing outlines of the nodules by up to four radiologists
(“Lung CT Image Database”).

& Automatic extraction of all the nodules volumes from the
pulmonary CT images by combining all the radiologists’
painting boundaries (“Extraction of Nodule Volumes”).

Lung CT Image Database

The lung CT images used in this paper were downloaded from
the online resource named LIDC-IDRI [27], which was initi-
ated by the National Cancer Institute (NCI), further advanced
by the Foundation for The National Institutes of Health
(FNIH), and accompanied by the Food and Drug Administra-
tion (FDA). The LIDC-IDRI Database is the largest public
resource of lung nodules in the world, which contains 1,012
patient cases, each case includes images from a clinical tho-
racic CT scan and an associated XML file that records the
locations of the pixels on the nodule boundary in each image
slice and nine characteristics of the nodule detected by up to
four experienced thoracic radiologists. These images were
scanned by a wide range of different scanner manufacturers
with different image slice thicknesses, such as 0.60, 0.75,
0.90, 1.00, 1.25, 1.50, 2.00, 2.50, 3.00, 4.00, and 5.00 mm.
Therefore, the LIDC-IDRI Database is becoming an essen-
tial medical imaging research resource to spur the devel-
opment of computer-aided nodule detection (CADe), seg-
mentation (CADseg), and diagnosis (CADx), validation of
various proposed methodologies, and dissemination in
clinical practice.

According to the rules of constructing the LIDC-IDRI
database, the malignancy assessments are defined in five
levels, i.e., 1, 2, 3, 4, and 5, from benign to malignant. Among
them, “3” means the malignancy of the corresponding nodule
is uncertain. Therefore, the nodules with label “3”were treated
in two different ways in this study: (i) they were grouped into
those nodules labeled “1” and “2” as benign class; (ii) they
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were grouped into those nodules labeled “4” and “5” as
malignant class.

Extraction of Nodule Volumes

Because the boundaries of each nodule on each CT slice
were drawn by up to four radiologists independently, the
candidate nodule volume formed by each area on each
CT slice was extracted as the combinations of the up-to-
four outlines with the references of the associated XML

files. For the evaluation purpose, only those nodules with
three or four radiologists’ assessment were considered in
the following. The combination rule of the four outlines
for each slice of each nodule is to extract all image
pixels inside their painting boundaries and select the
intersection area of at least three radiologists’ decisions
as the nodule’s region in an image slice. Stocking those
associated image slices together gives the nodule vol-
ume. The algorithm of extracting the nodule volume data
is outlined as follows.

3) Calculate the times (tn) of each pixel being contained by the four boundaries. 

4) Label the inner pixels by combination times. 

        If (tn  3) 

            The pixel is labeled. 

5) Combine all the labeled pixels, and then extract the nodule volume data from the CT images 

according to their spatial coordinates. 

>_

Algorithm 1:  Nodule Volume Extraction 

1) Read all the pixels belong to the four boundaries of each nodule. 

2) Fill the inner pixels for each of the four boundaries. 

As an example, the combination processing of a sample
nodule on a CT image is shown in Fig. 1.

After the volume of a nodule was determined from the
radiologists’ drawings, the volume was then translated into the
corresponding image volume by the use of the associated anno-
tation file, named “imageZposition,” which is included in the
XML files (i.e., a part of the LIDC database) and provides the
slice information where each nodule’s boundaries were drawn
by the radiologists. Once the volume of a nodule was identified
in the corresponding image volume, the image volume data of
that nodule was then obtained. From the image volume of a
nodule, various geometric and texture features can be extracted.
Extraction of the texture features is presented below.

Three Types of Texture Features and Their Calculation
Methods

Three types of widely used 2D texture features (Haralick,
Gabor, and LBP) and their calculation methods are introduced
in this section. Expansion to 3D space is described using the
2D Haralick feature type as an example, where the reduction
of feature size or dimension is illustrated by the principal
component analysis (PCA) [28].

& 2D Haralick features calculation method based on the
gray-tone spatial-dependence matrices (GTSDMs) (“Feature

Extraction Based on 2D Gray-Tone Spatial-Dependence
Matrices”).

& 2D Gabor features calculation based on Gabor filters
(“Feature Extraction Based on Gabor Filters”).

& Calculation of the statistical LBP features expressed by the
local binary patterns (“Feature Extraction Based on Local
Binary Patterns”).

& 3DHaralick features calculation methods based on the 3D
GTSDMs (“3D Expansion of Haralick Feature Models on
Gray-Tone Spatial-Dependence Matrices”).

& PCA algorithm applied on 2D and 3D Haralick features
(“Principal Component Analysis on the Haralick Feature
Vector Space”).

Feature Extraction Based on 2D Gray-Tone
Spatial-Dependence Matrices

This feature extraction method assumes that the texture infor-
mation of a nodule is contained in the extracted nodule image
volume I [24]. In other words, the texture information can be
adequately specified by a set of GTSDMs, which are comput-
ed for various angular relationships and distances between
neighboring resolution cell pairs on each of the image slices.
Then, the texture features are calculated from the analyzed
statistics or pattern matrices. There are two steps to obtain the
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texture features using this method, namely, (i) generation of
GTSDMs and (ii) feature extraction from these matrices. The

algorithm of extracting the texture features is outlined as
follows.

Algorithm 2:  2D Haralick Features Calculation 

1) Quantize the gray value of each pixel to Ng levels. 

2) Generate the pattern matrices on all of the four directions, 0°, 45°, 90°, and 135°. 

3) Calculate 14 Haralick features from each pattern matrix on each direction separately for four 

directions in total. 

4) Calculate the mean and range of each feature over the four directions. 

In algorithm 2, suppose the image to be analyzed is rect-
angular in a 2D representation, the resolution is Nx×Ny, and
the gray value of each image pixel is quantized into Ng levels.
The distance of the neighbor points on each direction is 1 pixel
unit. For each pixel in the image, the correlations between the
eight neighbor pixels and itself are described in four direc-
tions, such as 0°, 45°, 90°, and 135°. An illustrative drawing is
shown in Fig. 2.

For each direction, a GTSDM can be calculated according
to the gray value combinations of the neighbor and the central
pixels, which are shown in Table 1. # (i, j) (i, j=1, 2, …, Ng)
stands for number of times gray tones i and j have been as

neighbors. Therefore, the resolution of each GTSDM is Ng×
Ng.

The basic assumption in the extraction method above is that
all the texture information is contained in gray-tone spatial-
dependence matrices. Therefore, all textural features can be
extracted from the matrices. A set of 14 measures of texture
features are usually calculated, such as angular second moment,
contrast, correlation, sum of squares (variance), inverse differ-
encemoment, sum average, sum variance, sum entropy, entropy,
difference variance, difference entropy, information measures of
correlation, andmaximal correlation coefficient. The formulas of
these texture features have been given in [24]. There are 14
features on each direction. Because this feature calculation
methodwas proposed byRobertM.Haralick [24], the 14 texture
features are then named as Haralick features in the literature.

After the feature values are calculated along all four direc-
tions, the mean and range of each feature can be averaged
over the four directions, resulting in a set of 2×14 features in
total to classify each nodule. In this paper, 2D Haralick
features were extracted according to two different rules: (1)
from the single CT image slice, which contains the largest
area of the candidate nodule and (2) from all the CT image
slices, which contain the parts belonging to the candidate
nodule.

Radiologist 1 Radiologist 3 Radiologist 4

Combination

Radiologist 2

Fig. 1 The combination processing of one nodule based on the paintings
from four radiologists

1 8 7

2 6

3 4 5

0º

45º90º135º

Fig. 2 Pixels 2 and 6 are 0° nearest neighbors to the central pixel, pixels 3
and 7 are 45° nearest neighbors, pixels 4 and 8 are 90° nearest neighbors,
and pixels 1 and 5 are 135° nearest neighbors
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Feature Extraction Based on Gabor Filters

Gabor functions were first proposed by Dennis Gabor for com-
munication applications in 1946 [25]. Since then Gabor func-
tions have been deployed in many areas of signal processing. In
the image processing field, Gabor functions are usually used as
Gabor filters for multi-dimensional signal processing applica-
tions [29]. In particular, as a texture feature extractor, Gabor
filters are becoming a widely used method in recent years.

A Gabor filter is obtained by modulating a sinusoid with a
Gaussian functional and further being discretized over orien-
tation and frequency [30]. 2D Gabor filters can be defined as
follows in the spatial domain (x, y):

g x; y;λ; θ;ϕ;σ; γð Þ ¼ exp −
x02 þ γ2y02

2σ2

 !
exp i 2π

x0

λ
þ ϕ

� �� �
ð1Þ

x0 ¼ xcosθþ ysinθ ð2Þ

y0 ¼ −xsinθþ ycosθ ð3Þ

where the arguments x and y specify the position of a
light impulse in the visual field, λ, θ, ϕ, σ, and γ are
parameters [31]. λ represents the wavelength of the
sinusoidal factor, and the spatial frequency can be
shown as 1/λ. θ (θ∈[0, π)) represents the orientation
of the normal to the parallel stripes of a Gabor function.
ϕ (ϕ∈(−π, π]) is the phase offset. Since the nodules are
usually circular-shaped, we chose ϕ=0 for symmetric
receptive fields. σ is the sigma parameter of the Gauss-
ian envelope, which can be determined by λ. σ/λ is a
constant value empirically set, and then σ can be deter-
mined by λ. γ is the spatial aspect ratio that specifies
the ellipticity of the support of the Gabor function. It
has been found to vary in a limited range of 0.23<γ<
0.92 [32]. In this paper, the value of γ is used as 0.92.
Finally, only the parameters θ and λ are used to index a
Gabor filter function.

The response of a Gabor filter to an image is obtained by a
2D convolution operation. An input image I(x,y), x,yє Ω, (Ω,
the set of image points), is convolved with a 2D Gabor
function, g(x,y, λ, θ, y , σ, γ), x,yєΩ, to obtain a Gabor feature
image r(x,y) as follows:

r x; yð Þ ¼ ∬
Ω
I ξ; ηð Þg x−ξ; y−η;λ; θ;y ;σ; γð Þdξdη ð4Þ

In this paper, the parameter values (orientation θ=0°, 45°,
90°, 135° and frequency 1/λ=0.3, 0.4, 0.5) were adopted
according to the experiences referred to [10]. As mentioned
in that paper, the mean and standard deviation of each Gabor
response image were calculated to be the features for our
classification purpose. The feature extraction algorithm is
outlined as follows.

Algorithm 3:  Gabor Features Calculation 

1) Input 2D image slices of the candidate nodule. 

2) Set parameters  (0°, 45°, 90°, and 135°) and 1/  (0.3, 0.4, and 0.5) of Gabor filters. 

3) Get the response images from the convolution of 2D images and each Gabor filter separately. 

4) Calculate the mean and standard deviation values of response images for the candidate nodule 

according to each Gabor filter. 

Feature Extraction Based on Local Binary Patterns

As a model of texture analysis based on the so-called
texture unit, local binary pattern or LBP was first intro-
duced in [26, 33]. The main idea is that a texture image
can be characterized by its texture spectrum in the image.
The LBP calculates the relationships between each neigh-
borhood pixel and the central one and describes textures

based on the histogram of the whole region of interest.
Because of the advantage on the powerful illumination
invariant, LBP has been widely recognized as a texture
operator. This LBP texture operator has been highly suc-
cessfully used for various computer vision applications,
especially for face recognition [34].

Many favorable patterns were proposed based on
different numbers of neighborhood pixels with different

Table 1 General form of any GTSDM for any direction

Gray level 1 2 3 … Ng

1 #(1, 1) #(1, 2) #(1, 3) … #(1, Ng)

2 #(2, 1) #(2, 2) #(2, 3) … #(2, Ng)

3 #(3, 1) #(3, 2) #(3, 3) … #(3, Ng)

… … … … … …

Ng #(Ng, 1) #(Ng, 2) #(Ng, 3) … #(Ng, Ng)
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radii around the central pixel. However, the basic LBP
operator introduced as a standard example and used
mostly in practices is based on the eight neighbor pixels
[35]. An illustration for the basic LBP operator is
shown in Fig. 3.

The relationships of the central pixel Pc and the
surrounding pixels Pn (n=0, 1, …, 7) on gray levels
are calculated by:

s xð Þ ¼ 1 x ≥ 0
0 otherwise

�
; x ¼ Pn−Pc ð5Þ

If the gray value of a neighbor pixel is higher than
or equal to that of the central one, the value of s(x) is
set to 1, otherwise to 0. The descriptor describes the

result over the neighborhood as a binary pattern as
follows:

LBPR;N x; yð Þ ¼
XN−1

i¼0

s Pi−Pcð Þ � 2i ð6Þ

where N is equal to eight in this illustrative example, Pc value
corresponds to the gray value of the central pixel of a local
neighborhood, and Pi to the gray values of N equally spaced
pixels on a circle of radius R. Therefore, the signs of the
differences in a neighborhood are interpreted as anN-bit binary
number, resulting in 2N (e.g., 28=256) distinct values for the
binary pattern. However, many images of a nodule or other
objects cannot contain all 256 patterns. Therefore, the selection
of effective patterns should be adopted in most applications.
The feature extraction algorithm is outlined as follows.

Algorithm 4: LBP Features Calculation  

1) Input 2D image slices of the candidate nodule. 

2) Calculate eight patterns of each pixel in one 2D image except the boundary points (the boundary 

points are not belong to the candidate nodule). 

3) Calculate the statistical probabilities of each pattern in the whole 2D image. 

4) Summarize the statistical probabilities of each pattern on all of the images containing the current

nodule as LBP feature candidates. 

3D Expansion of Haralick Feature Models on Gray-Tone
Spatial-Dependence Matrices

While 2D medical images of axial cross-section can always
give rich information for various clinical tasks, there is a
conjecture that more information can be obtained in 3D image
space. Therefore, the 3D texture features extracted from the
3D volume nodule data were considered. As an example, we
designed and implemented a calculation model based on the
2D model to obtain the 3D Haralick features [36–38].

The integral part of our idea is to regard the volume as a
structure, which consists of many spatial texture elements.

Following the same calculation procedure as that on 2D
image, we can apply the calculation model of Haralick fea-
tures to 3D gray-level volume data. In 2D images, there are
eight neighbor pixels around the central one with the distance
of one pixel. In 3D space, each voxel has 26 neighbors with
distance of one voxel (d=1). Therefore, there are 13 directions
in the 3D model (shown as in Fig. 4) for the calculation of
Haralick features. For each direction, 14 texture features can
be calculated from the correspondingGTCM. Therefore, more
directions and space information are considered.

To study the contributions of different directions for the
classification of lung nodules, we designed three different
combination modes of directions, which contain 5, 9, and 13
directions, respectively. The standard rule for different com-
binations of 3D directions is based on the spatial distances
between the neighboring voxels and the central one. The first
combination contains A1, A2, A3, A4, and A13; the second
combination contains A1, A2, A3, A4, A5, A7, A9, A11, and
A13; and the third combination contains all of the 13 directions
shown in Fig. 4. The schematic diagram of the three combi-
nations of directions studied in this paper is shown in Fig. 5.

Suppose Hij is the jth (j=1, 2,…, 14) texture feature value
in the ith direction (i=1, 2,…, n, n=5, 9, 13) calculated from

LBP=

S(P0 - Pc) × 2
0
+S(P1 - Pc) × 2

1
+

S(P2 - Pc) × 2
2
+S(P3 - Pc) × 2

3
+

S(P4 - Pc) × 2
4
+S(P5 - Pc) × 2

5
+

S(P6 - Pc) × 2
6
+S(P7 - Pc) × 2

7

P7 P0 P1

P6 Pc P2

P5 P4 P3

Binary Pattern

Fig. 3 Typical LBP features based on a neighborhood of eight pixels
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the GTCMs proposed by Haralick, the final Haralick features
should be 2×14=28, which contain the mean and range of the
texture feature values on the directions of different combina-
tion modes. The formulas can be shown as follows.

Meanjn ¼ 1

n

X
i¼1

n

Hij ð7Þ

Rangejn ¼ max
i¼1…n

Hij

� �
− min

i¼1…n
Hij

� � ð8Þ

However, the physical distance between the neighbor
voxels along z axis is usually different from x and y axis.
Therefore, when we use the 3D Haralick feature model, we
should pay attention to the different physical distances of
neighbor voxels along different axis [38]. If the volume data
is anisotropic, it may need to do resampling operation. The
outline of calculating 3D Haralick features is shown as
follows.

Algorithm 5:  3D Haralick Features Calculation 

1) Resample the anisotropic volume data to isotropic one. 

2) Quantize the gray value of each pixel to Ng levels. 

3) Generate the GTCMs on all of the thirteen directions in the 3D volume model. 

4) Calculate 14 Haralick features from each GTCM on each direction separately for the thirteen 

directions in total. 

5) Calculate the mean and rang of each feature over the five, nine, and thirteen directions. 

Principal Component Analysis on the Haralick Feature Vector
Space

After calculation of the Haralick features, each sample has a
feature vector containing 28 factors.When combining the texture
features to other features (size, shapes, etc.), the dimension of the
texture feature vector, however, can be very large. PCAalgorithm
is a popular mathematical procedure that uses orthogonal trans-
formation to convert a set of observations of possibly correlated
variables into a set of values of linearly uncorrelated variables
called principal components (PCs) [28]. Therefore, it was used in
our study to reduce the number of texture features without much
efficiency reduction. Other application can be seen in [39].

Suppose there are n samples, the resolution of the feature
matrix formed by the feature vectors is n×28. According to
the principle of PCA algorithm [28], feature vectors in the
feature matrix are transformed to an equal number of principal
components and the corresponding scores. Then, we rank the

scores and corresponding principal components based on the
values of scores decreasingly. The cumulative energy content
of the ith (i=1, 2,…, 28) component is the sum of the former i
scores divided by the sum of all scores. Finally, the principal
components can be selected as the new feature vectors by the
firstly setting of the cumulative energy content.

Experimental Design and Results

Data Preparation

A major purpose of this study is to evaluate the efficiencies of
different texture features for classification of malignant and be-
nign lung nodules. For this purpose, the entire LIDC database,
which is so far the largest public database available, was utilized.
While all the images were acquired with equal pixel size in each
image slice, the image thickness varies, depending on data

Fig. 4 The 3D resolution cells
for one center voxel in 13
directions. The angular Ai (i=1, 2,
…, 13) is equal to (θxy, θyz, θxz).
θxy is the angle between the
project vector on x–y flat and x-
axis, θyz is the angle between the
project vector on y–z flat and y-
axis, and θxz is the angle between
the project vector on y–z flat and
z-axis
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acquisition protocols. Investigation on the dependence of the
features on the image thickness is one task of this work. As
described in “Materials,” in the LIDC-IDRI database, the radiol-
ogists’malignancy assessments are labeled as “1,” “2,” “3,” “4,”
and “5” levels. Figure 6 shows the nodules (diameter>3 mm) of
the database in terms of image thickness and class labels used in
our experiments. The vertical axis shows the number of nodules.

In this study, we grouped “1” and “2” as benign class, “4”
and “5” asmalignant class, and “3” as uncertain class. The label
“3” or uncertain class can be treated in two different scenarios.
In the first scenario, “3” was grouped into benign class. In the
second scenario, “3” was grouped into malignant class.

By inputting the extracted features from the 1,356 nodules (of
three thickness groups) and the labels of two classes (1=malig-
nance and 0=benign) into the well-known support vector ma-
chine (SVM) with the widely used kernel of radial basis function
(RBF) [40], we randomized the training and testing process for
100 times. The corresponding 100 classification outcomes of
sensitivity and specificity were obtained. From each set of 100
classification outcomes of an image slice thickness, themean and
standard deviation measures were computed. The following
sections present the study design and experimental outcomes.

Comparison of Three Types of 2D Texture Features Based
on Different Slice Thicknesses

Based on the description of the three texture features in “Three
Types of Texture Features and Their CalculationMethods” above,
28 Haralick features, 24 Gabor features, and 256 LBP features
were extracted from the segmented volume data of each nodule. In

extracting the Haralick features, 14measures of the four directions
(0°, 45°, 90°, and 135°) were calculated, but when calculating the
maximal correlation coefficient feature, it cost too much time.
Therefore, there were 13 measures left, which can be evaluated
on each direction in this study. Then, the Haralick features were
presented by the mean and range values of the 13 measures over
the four directions, resulting in a total of 26 features (i.e., 13×2).
For the parameters of Gabor filters, according to the previous
research reports [29–32], we selected the same directions as men-
tioned above of 0°, 45°, 90°, and 135° and the frequencies of 0.3,
0.4, and 0.5, resulting in a total of 24 features. By theory, a total of
256 LBP features would be extracted. However, in our situation,
most of the feature values were zero. This indicates that most
patterns are not existed in the noduleCTimages.All of the features
were undergone a principal component analysis, and 0.9985 of
cumulative probability was empirically selected. This resulted in
40±5 LBP features as input to the SVM classifier.

The first experiment was performed on the original data of
different image slice thicknesses. Three image groups were select-
ed from the LIDC-IDRI database: Group 1 (Data_250) has 630
nodules of 2.50±0.50 mm image thickness, group 2 (Data_125)
has 330 nodules of 1.25 and 1.50 mm thickness, and group 3
(Data_100) has 396 nodules of 1.00 mm thickness or less. Those
nodules of image thickness beyond 4.00 mm were ignored.

The outcome from the first scenario, where the label “3”was
grouped into benign class, is shown by Fig. 7. Each receiver
operating characteristics (ROC) plot was drawn from the SVM
classification of the features from all the nodules. The mean and
standard deviation (SD) values of the area under the ROC curve
(AUC) measures are shown in Table 2.

Fig. 6 The information about class labels and image thickness in the LIDC-IDRI database used in this study

(a) (c)(b)

Fig. 5 Three combination modes
of the neighbor voxels on 3D
directions. a Combination of five
directions, b combination of nine
directions, c combination of 13
directions
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Fig. 7 The ROC curves of the three types of texture features’ classifica-
tion performance on the three groups of different image thickness nodule
data. a ROC curves of three types of features applied on the nodule data
with 1.00 mm or less slice thickness. b ROC curves of three types of
features applied on the nodule data with 1.25 and 1.50 mm slice thick-
ness. c ROC curves of three types of features applied on the nodule data
with 2.50±0.50 mm slice thickness

Table 2 The AUC information
about the performances of the
three types of texture features

AUC information Haralick features Gabor features LBP features

Mean SD Mean SD Mean SD

Data_100 0.8393 0.0491 0.8485 0.0413 0.8321 0.0230

Data_125 0.9270 0.0257 0.8805 0.0437 0.8779 0.0232

Data_250 0.9160 0.0150 0.9139 0.0116 0.9022 0.0171

Average 0.8941 0.0299 0.8810 0.0322 0.8707 0.0211
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Fig. 8 The ROC curves of the three types of texture features’ classification
performances on the interpolated image data. a ROC curves from the
interpolated 1 mm data from 1.25 mm thickness. b ROC curves from the
interpolated 1 mm data from 2.50 mm thickness. c ROC curves from the
combination of all the interpolated data and the original Data_100 datasets
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Ahigh effectiveness of the three types of 2D texture features on
the classification of malignancy can be visualized in Fig. 7 and
also reflected by the average mean and standard deviation values
of theAUCmeasures as listed in Table 2. The classification results
from the Haralick features have shown significantly higher AUC
values in average on Data_125 group (t test p valueHG=1.1102×
10−16, p valueHL=5.6431×10

−32) and Data_250 group (t test p

Table 3 The AUC measures on
different texture features from the
three types of interpolated image
data

AUC information Haralick features Gabor features LBP features

Mean SD Mean SD Mean SD

Data_125 (interpolated) 0.9256 0.0256 0.8699 0.0310 0.9166 0.0200

Data_250 (interpolated) 0.9113 0.0179 0.9130 0.0149 0.9126 0.0126

Data_100+ 0.9124 0.0120 0.9083 0.0099 0.9119 0.0096
Data_125 (interpolated) +

Data_250 (interpolated)
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Fig. 9 The ROC curves of the three types of texture features’ classification
performances on the two scenarios. a ROC curves on the Haralick features
from the two scenarios. b ROC curves on the Gabor features from the two
scenarios. c ROC curves on the LBP features from the two scenarios
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Fig. 10 The ROC curves of the 2D and 3D Haralick texture features’
classification performances from the two experiments. a Classification
performances on the dataset containing the uncertain nodules (i.e., the
nodules labeled by “3”). b Classification performances on the dataset
without the uncertain nodules
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Table 4 The AUC measures on
the three types of texture features
from the two scenarios

AUC information Haralick features Gabor features LBP features

Mean SD Mean SD Mean SD

“3” belong to “1”+“2” 0.9124 0.0121 0.9101 0.0112 0.9012 0.0097

“3” belong to “4”+“5” 0.7810 0.0266 0.8045 0.0212 0.7799 0.0127

Table 5 The AUC measures for the performances of the 2D and 3D Haralick texture features from the two experiments

AUC information Mean Standard D AUC information Mean Standard D
With label “3” nodules Without label “3” nodules

2D Haralick features (single slice) 0.9113 0.0106 2D Haralick features (single slice) 0.9373 0.0103

2D Haralick features (all slices) 0.9124 0.0121 2D Haralick features (all slices) 0.9432 0.0109

3D Haralick features (5 directions) 0.9069 0.0103 3D Haralick features (5 directions) 0.9426 0.0088

3D Haralick features (9 directions) 0.9086 0.0124 3D Haralick features (9 directions) 0.9440 0.0100

3D Haralick features (13 directions) 0.9080 0.0110 3D Haralick features (13 directions) 0.9441 0.0088

Table 7 t test results of the 2D and 3D Haralick features on the data without the uncertain nodules (labeled by “3”)

p value 2DH of single slice 2DH of all slices 3DH of 5 directions 3DH of 9 directions 3DH of 13 directions

2DH of single slice 1.0576×10−4 1.3072×10−4 5.9170×10−6 2.4057×10−6

2DH of all slices 1.0576×10−4 0.6528 0.6106 0.5253

3DH of 5 directions 1.3072×10−4 0.6528 0.3003 0.2352

3DH of 9 directions 5.9170×10−6 0.6106 0.3003 0.9019

3DH of 13 directions 2.4057×10−6 0.5253 0.2352 0.9019

Table 8 The cumulative energy content of the former PCs from 2D and 3D Haralick features

No. of PCs 1 2 3 … 9 … 26

2D Haralick features (single slice) 0.998511 0.999515 0.999863 … 1.000000 … 1.000000

3D Haralick features (13 directions) 0.991478 0.997637 0.999096 … 1.000000 … 1.000000

Table 6 t test results of the 2D and 3D Haralick features on the data with the uncertain nodules (labeled by “3”)

P-value 2DH of single slice 2DH of all slices 3DH of 5 directions 3DH of 9 directions 3DH of 13 directions

2DH of single slice 0.4972 0.0034 0.1103 0.0319

2DH of all slices 0.4972 6.9789×10−4 0.0336 0.0079

3DH of 5 directions 0.0034 6.9789×10−4 0.2752 0.4741

3DH of 9 directions 0.1103 0.0336 0.2752 0.6807

3DH of 13 directions 0.0319 0.0079 0.4741 0.6807
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valueHG=0.2601, p valueHL=6.3565×10
−9) than that of the

Gabor and LBP features. For Data_100 group, all three types
of features showed similar performance. Because of the large
database and 100 repeated runs, the above experimental out-
come would lead to the following conclusion: While the three
types of texture features performed similarly for noisy data
(thinner image slices), the Haralick features outperformed the
other two types as the image noise level goes down (thicker
image slices). When the image slice thickness goes beyond
3.0 mm, image details along the slice direction will be averaged
out and the details in the axial cross-section will be affected by

partial volume effect, no obvious gain is expected. This con-
jecture is demonstrated by the outcome from the Haralick
features. To further investigate the influence of image slice
thickness on the classification performance, we conducted an-
other experiment below.

Comparison of Different 2D Texture Features after Thickness
Interpolation

In this experiment, we interpolated the thick images to a same
thinner thickness. The interpolation method used here is refer-
ring to a cubic interpolation algorithm mentioned in [41].

Because the pixel sizes in the cross-section CT images are all
smaller than 1 mm, we only interpolated those nodule volume
data whose thicknesses are >1 mm, such as the Data_125 and
Data_250. A total of 960 nodule datasets were interpolated into
1-mm slice thickness. The other 396 nodule datasets in
Data_100 were remained. Then, the three types of texture
features were extracted from the interpolated and remained
datasets, namely, the (axially) isotropic volume data. The ex-
tracted features were then compared by the same methods
described in “Data Preparation.” The averaged outcomes are
plotted as ROC curves in Fig. 8. The statistical information of
the ROC curves or AUC measures are shown in Table 3.

Based on the results of Figs. 7 and 8 as well as Tables 2 and 3
above, the following observations can be documented: (1) The
2D Haralick texture features have higher mean values of the
AUC measures on the isotropic data than the Gabor and LBP
features (t test p valueHG=0.0100, p valueHL=0.7901); (2) by
comparing the classification results on the anisotropic and iso-
tropic data, the interpolation did not show noticeable gain for
both Haralick and Gabor features; however, the t test results
showed some gain for the LBP features (p valueHD125=0.6998,
p valueHD250=0.0452, p valueGD125=0.0493, p valueGD250=
0.6434, p valueLD125=0.0000, p valueLD250=1.8905×10

−6).
Based on the above two observations (more specifically on the
improvement for LBP features’ performance), the isotropic data
were used in the next few experiments below to further inves-
tigate the performances of the three types of texture features.

Comparison of Different Experimental Designs
on the Uncertain Nodules

The above experiments were performed for the first scenario of
grouping the uncertain label “3” into the benign class. The

Table 9 The AUC information
about the performances of 3 PCs,
9 PCs, and 26 PCs after PCA
analysis on the 2D and 3D
Haralick features

AUC information 2D Haralick features (single slice) 3D Haralick features (13 directions)

Mean Standard deviation Mean Standard deviation

3 PCs 0.8354 0.0151 0.8814 0.0131

9 PCs 0.8849 0.0137 0.8978 0.0130

26 PCs 0.9377 0.0095 0.9386 0.0093
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Fig. 11 The ROC curves of the classification evaluates based on 3, 9, and
26 PCs extracted from the 2D and 3D Haralick features. a Different PCs
from 2D Haralick features of single slices. b Different PCs from 3D
Haralick features of volume data formed by all slices
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following experiment was performed for the second scenario of
grouping the uncertain label “3” into the malignant class. The
experiment was performed on the isotropic data as described in
“Comparison of Three Types of 2D Texture Features Based on
Different Slice Thicknesses.” The classification evaluation results
of the second scenarios are described by the ROC curves as
shown in Fig. 9, where the results of the first scenario are also
listed in Table 4 for comparison purpose.

Based on the evaluation experiments of the uncertain nodules
with label “3,” we can conclude that the uncertain nodules are
more similar to the benign ones according to the experts’ visual
assessment. These experimental outcomes from two different
scenarios raise a suspicious that whether the experts’ visual
assessment might have bias toward classification for benign.
Resolving this suspicious requires the ground truth from nodule
biopsy, and unfortunately the ground truth is not available.

Because of the advantage performance of the Haralick
features over the other two types of features, our next research
task is then turned to investigate if there is a gain on expanding
the Haralick model from 2D to 3D space.

Comparison of 2D and 3D Haralick Features

The extraction of 3D Haralick texture features was described
above in “3D Expansion of Haralick Feature Models on Gray-
Tone Spatial-Dependence Matrices.” Both 2D and 3D Haralick
features were applied to the CT volume images of 1,356 nodules
from the LIDC database. All the CT image slice thicknesses were
interpolated into 1mmas unified isotropic data.We calculated the
2DHaralick texture features in twoways: One calculation is from
the single slice with the largest area of nodules and the other from
all slices containing the nodules. The 3D Haralick features were
calculated in three ways: One considered five directions, another
considered nine directions, and the third one considered all the 13
directions on the unified isotropic volume data of the nodules. The
uncertain nodules with label “3” were considered as the benign
ones in one experiment and excluded from the data as another
experiment. The classification results of the 2D and 3D texture
features from the two experiments are shown in Fig. 10 and
Table 5. The ROC curves from both experiments show similar
characteristics, indicating that the results are not depending on the
data variation. Table 5 shows a gain for 2D features when applied
to the 3D data as compared to the outcome from the single 2D
image in both experiments. This is expected because more data
information about the nodule is used. The gain by the 3D expan-
sion is not seen in terms of AUCmean value fromTable 5. To get
more insight into the above observations fromFig. 10 andTable 5,
we performed more statistical tests below.

To study if the above observations are statistically meaning-
ful, we performed hypothesis t test experiments on the 2D and
3D Haralick features on the nodules image data with and
without the uncertain nodules of label “3.” The p values of the
outcomes from the test experiments are shown in Tables 6 and 7.

Based on the t test experimental results in Tables 6 and 7 as
well as AUCmeasures in Table 5, the following observations can
be documented. (i) The 2D Haralick features from the 3D data
outperformed the 2D features from the 2D data (with the p<0.05)
in the absence of the uncertain nodules of label “3” (only the
certain labels “1,” “2,” “4,” and “5” were considered), and both
performed similarly in the presence of the uncertain nodules (with
the p>0.05). It seems it is worthwhile to include all the image
slices of the 3D data to compute the 2D features because the
computing time is not an issue by current desk top computers. (ii)
The 3D Haralick features performed slightly better than the 2D
Haralick features in the absence of the uncertain nodules because
three p<0.05 and the other three are >0.05, and did not show gain
in discrimination performance on the uncertain nodules because 5
in 6 p values of 2D and 3DHaralick features are smaller than 0.05.
(iii) The 3D Haralick features from nine directions showed higher
discrimination performance than five directions and did not show
gain from 13 directions regardless absence or presence of the
uncertain nodules. Although the mean value of AUC of 3D
Haralick features from 13 directions is the highest (0.9441), it is
only 0.0001 higher than the value of 3D Haralick features from
nine directions (0.9440) in the absence of the uncertain nodules
and the t test p value is 0.9019>0.05, which means that they are
not significantly different. This issue regarding consideration of
more or less directions in computing the features seems somehow
related to feature redundancy problem in general. In the following,
we investigated this redundancy problem by the use of the PCA
[28].

Performance of Dimension Reduced 2D and 3D Haralick
Features

From the classification results of the above experiments, it was
seen that inclusion of the uncertain nodules (labeled by “3”)
resulted in a noticeable variation in the texture characteristics in
both the 2D and 3D space. To avoid the variation, the uncertain
nodules were not included in the following study on feature
redundancy problem, in more general term the study may be
called dimension reduction. Even not including the uncertain
nodules, there are still 906 nodules (422 malignant and 484
benign) with certain labels left for this dimension reduction study.

From each lung nodule CT image, total 26 of 3D Haralick
texture features were extracted from all the 13 directions.
Similarly, total 26 of 2D Haralick texture features were also
extracted from the four directions. Given the numbers of the
nodules and features, the resolution of the texture feature vector
matrix is 906×26. Then, the PCA was applied on the two
matrices of 2D and 3D Haralick texture features, respectively.
The cumulative energy contents of the ordered principal com-
ponents were calculated from the eigenvalues which were
ranged in descending order. The values are shown in Table 8.

When the number of PCs is 3, all the cumulative energy
contents are over 0.999000 according to Table 8. When the
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number of PCs is 9, all the cumulative energy contents are up to
1.000000. Therefore, we performed two classification experi-
ments, one selected the first three PCs and the other selected the
first nine PCs. We also compared the performances of the princi-
pal components of 2D vs. 3DHaralick features. The ROC curves
and the AUC information of the above reduced features are
shown in Table 9 and Fig. 11.

Based on the results from Table 9 and Fig. 11 above, the
following observations can be documented. (i) Both 2D and 3D
features performed similarly and their performances increased as
more PCswere used. Thismay indicate that the 13measures from
each direction have no significant redundancy. (ii)When recalling
the 3D expansion study in “Comparison of Different Experimen-
tal Designs on the Uncertain Nodules” above, the redundancy
may exist only in the directions involving the z-axis, where two
factors may be considered when selecting the directions: One is
the data sampling rate when CT images are acquired, and the
other is the objects’ geometry and texture properties along the z-
axis. For the sampling rate at mm resolution level along the z-axis
and the nodule sizes also at millimeter level, more than nine
directions in the 3D expansion seems not necessary.

Discussion and Conclusion

The effectiveness of three widely used types of 2D (Haralick,
Gabor, and LBP) texture features was investigated in this study for
CADx purpose of differentiating the lung nodules using the entire
LIDC-IDRI CT image database, which is so far the largest one
available worldwide. The extraction of these three types of 2D
features was implemented in a similar fashion according to their
theoretical descriptions. The classification of the extracted features
was performed by the well-known SVMclassifier with thewidely
used RBF kernel, which fits our bi-classification task well. The bi-
classification outcomes were plotted as ROC curves and further
documented quantitatively by the well-established AUC merit on
a statistical base, i.e., the mean and standard deviation values of
AUC values for 100 repeated times of classification experiments.

For a suggested data acquisition protocol among different CT
scanners at a fixed image slice thickness, the three types of 2D
features produced similar mean values of the AUC merit. When
the image slices increased from <1 mm up to 3 mm, the perfor-
mance of each type of the features varied to some degree respec-
tively, but the variation is not dramatic. However, the 2D Haralick
features had achieved the best result or the highest mean value of
AUC merit when the image thickness ranges from 1.25 to
1.50 mm. The gain of the Haralick over the Gabor and LBP
features at this thickness range is statistically significant. Their
deteriorate performances as the thickness increased over
1.50mm indicate that thicker than 1.50mmwould not be a choice.
Interpolation from a thicker image thickness down to a thinner one
(from 3 mm down to 1 mm) did not improve the performance. In
other words, the image information content is determined by the

originally acquired image, the post-image operation by interpola-
tion does not add more information. Their deteriorate perfor-
mances as the thickness decreased below 1.25 mm indicate that
the image noise can compromise the image information content. In
otherwords, if thinner image thickness is desired for the purpose of
improving the performance, then the image noise level must be
retained and unavoidably the X-ray radiation risk will increase.

The gain from the 2D Haralick feature type over the other two
feature types suggests that the Haralick features might be a pre-
ferred choice for further investigations, such as adding more other
types of features [42] and improving the classifier [43]. Since the
malignancy scores or labels were based on the radiologist experts’
visual perception on the image characteristics of the nodules’
image slices, the conjecture of the Haralick features being a
preferred choicemay be translated to a conjecture that theHaralick
features may be more correlated to the visual perception.

When the 2D texture features were calculated from the
available 3D volumetric data, a noticeable gain was observed
as compared to the calculation from a single, largest slice in the
3D data. This observation leads us to conjecture that as isotropic
volumetric image data or isotropic voxel size become reality by
advanced CT imaging technology, calculation of the 2D tex-
tures from the 3D volumetric data has advantage because a
higher discrimination performance can be achieved with nearly
negligible computing cost by current desktop computers.

Extension of the original theoretical 2D feature model to direct
3D calculation on the 3D data did not show a gain from the LIDC-
IDRI image database. Theoretically, the direct 3D calculation on
the 3D volumetric data would be beneficial. This open question
leads us to explore two directions for further investigation: One is
to modify the original 2D feature model to take advantages of the
3D data information. For example, gradient and curvature infor-
mation are inherently 3D properties of the 3D data and features
from the higher order 3D properties could show the benefit [44,
45]. Another direction is to improve the CT image reconstruction
for thinner image slices while control the image noise [46, 47].

Since the uncertain nodules rendered a very challenging task
for any feature type, we performed a hypothetical test study by
neglecting these nodules. The outcome of this test study indicates
a potential of obtaining gain by the direct 3D extension or calcu-
lation of the 2D model on the 3D volumetric data. While it is
straightforward to consider the full 13 directions in the direct 3D
calculation in the 3D space, a less number of directions, such as 9,
may be beneficial. By the PCA analysis, we found that the feature
extraction along each direction does not contain significant redun-
dancy, so an optimal selection of the number of directions may be
worth further investigation for other applications.

While the LIDC-IDRI database is the largest public
database of lung nodules worldwide and includes the
strictly selected CT images of nodules with clear texture
information, however, because of the lack of pathological
ground truth, the experimental outcomes of this study may
have different conclusions when the corresponding
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pathological ground truth is available. This is an essential
limitation of the LIDC-IDRI database. This limitation shall
be notified for all investigational efforts in developing
CADe, CADseg, and CADx algorithms using the LIDC-

IDRI database. But our study show that the texture fea-
tures of benign and malignant nodules represented in the
CT images can be distinguished, and they can be consis-
tent with human visual diagnosis.
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Table 10 Features and their performance levels for nodule differentiation

Scheme Datasets Features Performance level

David F. Yankelevitz
et al. in [11]

13 patients Volume measurement to evaluate the
doubling times

All malignant nodules had doubling times of less than
177 days. All benign ones had doubling times of
396 days or longer

Lawrence R.
Goodman et al. in
[12]

50 nodules, less than 20 mm in
diameter, in 29 patients,
scanned with 1.25 mm
collimation

Volume measurements The mean inter-observer variability (repeatability)
was 0.018 % (SD=0.73 %), and the SD of the
mean for 3 contemporaneous scans
(reproducibility) was 13.1 % (confidence limits, ±
25.6 %)

Yuichi Matsuki et al.
in [4]

155 clinical cases with nodules
less than 3 cm (99 malignant
and 56 benign nodules)

7 clinical parameters and 16 radiologic
findings

The area under the receiver operating characteristic
(ROC) curve (Az value) of the artificial neural
network alone was 0.951

Giuseppe Cardillo
et al. in [5]

429 patients (276 men and 153
women)

Age, diameter, smoking habits, evidence of
calcifications, surgical procedure, and
history of previous cancer

370 lesions were benign (86.24 %): mean age, 49;
mean diameter, 1.8 cm; evidence of calcifications,
43 cases (11.62 %); smokers, 201 cases (54.32 %);
history of previous cancer, 11 cases (2.97 %)

Feng Li et al. in [6] 61 malignant and 183 benign
nodules

Two clinical parameters (patient age and sex)
and 56 features extracted from images
(e.g., effective diameter, etc.)

The Az value of the CADx scheme alone was 0.831
for distinguishing benign from malignant nodules

Michael F. McNitt-
Gray et al. in [8]

31 cases (14 benign and 17
malignant)

Several quantitative measures were extracted
based on each nodule’s size, shape,
attenuation, distribution of attenuation,
and texture

28/31 cases (90.3 %) of the training set were correctly
classified

Qiang Li et al. in [9] 415 CT scans (76 confirmed
cancers and 413 confirmed
benign nodules)

Three features, i.e., effective diameter, degree
of circularity, and contrast

The Az value for the average performance of the five
radiologists was 0.63 (p<0.01)

Dmitriy Zinovev et al.
in [9]

All the labeled nodule data from
the Lung Image Database
Consortium (LIDC) database
[27]

64 two-dimensional (2D) low-level image
features grouped into four categories:
shape, texture, intensity, and size features

The proposed approach can correctly predict 70 % of
the instances contained in the dataset

Ted W. Way et al. in
[14]

96 lung nodules (44 malignant,
52 benign) from 58 patients

3D gradient, 3D curvature, mask energy,
morphological and gray-level features

The system achieved the Az value of 0.83±0.04

Hajime Saito et al. in
[15]

214 single small solitary
nodules with diameter
<15 mm

The extent of the ratio of ground-glass
opacity and circumference difference

Sensitivity is 96.6 %, specificity is 86.1 %, and
positive predictive value is 94.1 %

Ayman El-Baz et al. in
[16, 17]

327 nodules (153 malignant and
174 benign)

Mesh model of 3D shape 93.6 % correct classification

Ingrid C. Sluimer et al.
in [21]

116 patients, 657 regions of
interest (ROIs)

Extracting features to describe local image
structure by means of a multi-scale filter
bank

The Az value is 0.862

Kohei Arai et al. in
[23]

14 patients with 5 classes of
lung cancer

2D and 3D local binary pattern (LBP)
features [23]

The classification accuracy of 2D and 3D LBP are 43
and 78 % respectively
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