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Abstract Breast cancer is the most common cancer among
women in the USA. Compared to mammography, digital
breast tomosynthesis is a new imaging technique that may
improve the diagnostic accuracy by removing the ambiguities
of overlapped tissues and providing 3D information of the
breast. Tomosynthesis reconstruction algorithms generate 3D
reconstructed slices from a few limited angle projection im-
ages. Among different reconstruction algorithms, back pro-
jection (BP) is considered an important foundation of quite a
few reconstruction techniques with deblurring algorithms
such as filtered back projection. In this paper, two BP variants,
including α-trimmed BP and principal component analysis-
based BP, were proposed to improve the image quality against
that of traditional BP. Computer simulations and phantom
studies demonstrated that the α-trimmed BP may improve
signal response performance and suppress noise in breast
tomosynthesis image reconstruction.
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Introduction

Breast cancer accounts for around 30 % of all female cancers
in the USA [1]. Early detection of breast cancer is viewed as
the best hope to decrease breast cancer mortality [2]. It is
universally accepted that mammography is the most effica-
cious tool for the early detection of breast cancer. With tradi-
tional mammography technique, the object is projected onto
the detector or film to generate the 2D projection image of the
breast. Superimposed objects on the projection images, caused
by overlapped anatomical structures, bring limitations to
mammography [3, 4], such as 20 % false-negative rates and
high recall rates, which may result in unnecessary anxiety to
the patients and increase the medical costs.

Compared to the standard mammography, digital breast
tomosynthesis (DBT) techniquemay overcome the limitations
by removing the ambiguities of overlapped tissues and pro-
viding the 3D localization. Since 3D slice images of the breast
can be partially reconstructed based on a few limited angle
projection images, DBT has the potentials to help decrease
recall rates, improve the accuracy of breast cancer detection,
and therefore reduce the number of womenwho die from such
cancer [4].

In the process of tomosynthesis technique, sequences of
limited angle 2D projection images are acquired first and then
reconstructed into slice images of the breast. A few image
reconstruction algorithms have been investigated by various
research groups, including back projection (BP) reconstruc-
tion algorithm [5], filtered back projection (FBP) algorithm
[6], matrix inversion tomosynthesis (MITS) [7], maximum
likelihood expectation maximization (MLEM) [8, 9], simul-
taneous algebraic reconstruction techniques (SART) [10, 11],
etc. Compared to other reconstruction algorithms, FBP runs
very fast, enhances the conspicuity of objects, and removes
out-of-plane artifacts [6, 11–15], therefore, it is extensively
used in the current digital breast tomosynthesis systems. BP is
a critical component of FBP and significantly influences the
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image quality of FBP-reconstructed images [5, 6, 12, 16]. This
paper focuses on investigation of BP algorithms.

Two BP variants, including α-trimmed BP and principal
component analysis-based (PCA) BP, were proposed. Their
performance of improving the conspicuity of lesions and
suppressing noise was studied by computer simulations and
phantom experiments.

Methods and Materials

Tomosynthesis Reconstruction Methods

The shift-and-add (SAA) tomosynthesis reconstruction algo-
rithm [5] is a common mathematical method. It reconstructs
the plane at the specified height by lining up each projection
image according to its relative shift amount. When the X-ray
beam is turned on, objects at different locations above the
detector will be projected onto the detector at positions de-
pending on the relative locations of the objects.

In order to reconstruct 3D slices of the breast, each projec-
tion image should be shifted by an amount appropriate for the
plane of reconstruction. When the detector remains stationary
and the tubes are in a plane that is parallel to the detector plane,
the magnification of objects depends on the height of the
object. With SAA reconstruction, shift amount for each pro-
jection image is calculated along the direction of X-ray tube
movement. The shift amount can be calculated based on
projected positions from central points of each reconstruction
plane. The shifted planes are added together to emphasize
structures in the in-focus plane and blur out structures in other
planes.

Figure 1 shows a parallel tomosynthesis imaging geometry.
The SAA uses Shift(O) as the shift amounts of all the pixels on

the reconstruction plane S. For a specific projection image
acquired by the X-ray source R, in order to shift the projection
image to line up structures in the plane S, the SAA algorithm
uses the shift amount calculated as

shifti Sð Þ ¼ shift Oð Þ ¼ H

SID−H
⋅ Rx−Oxð Þ ð1Þ

One can obtain the reconstructed plane S as the average of
all the shifted projection images [5, 14].

Traditional BP Method

The 3D reconstructed slices can be acquired from the SAA
algorithm. Nevertheless, because the different pixels on the
reconstruction plane have their unique locations, the shift
amounts should be different. In order to improve the recon-
struction of the single pixel on a reconstruction plane at certain
height above the detector, the shift amount should be calcu-
lated along both x and y directions for each pixel on the
reconstruction plane. This is called the point-by-point back
projection [5].

With the point-by-point back projection, shift amounts for
every pixel location on each reconstructed plane are comput-
ed, taking into account the 2D projection of reconstructed
objects in each plane. Figure 2 illustrated such a procedure.
The location equation between the reconstructed point A and
its projection point B is written as

Bx ¼ Rx þ Rz

Rz−Az
⋅ Ax−Rxð Þ

By ¼ Ry þ Rz

Rz−Az
⋅ Ay−Ry

� � ð2Þ

Fig. 1 Imaging geometry of a
parallel X-ray breast
tomosynthesis system. The X-ray
tubes were placed along the top
horizontal line. SID is the distance
from X-ray tubes to the detector
plane. The plane S represents a
reconstruction plane at a height of
H above the detector surface.
When the X-ray beam is turned
on, objects in the plane S will be
projected onto the detector. R, the
location of X-ray tube; O, the
center of the reconstructed plane
S; Shift(O), the shift amount of the
point O when the X-ray projec-
tion line RO passes through the
plane S
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The back-projected pixels represent the estimation
about the internal structure of the object. For each projec-
tion image, we can acquire a corresponding estimation.
The actual structure can be approximated from all the
estimations. The final pixel value of the point A in the
traditional BP algorithm is the mean value of the back-
projected pixels from all the N projection images (N is the
number of projection images).

Traditional BP is capable of improving the conspicuity of
in-plane object and decreasing out-of-plane artifacts against
SAA [5]. In order to utilize the statistical properties of those N
values and thus improve the image quality, two variants were
proposed as below.

α-Trimmed Method

The α-trimmed BP removes the “extremity” values in the
back-projected pixels. In the implementation, we sorted
all the pixel values in the back projection images, re-
moved the d/2 lowest and the d/2 highest gray-level
values, and then calculated the mean value. It can be
written as

s ¼ 1

N−d

XN−d=2

i¼d=2þ1

I Bið Þ ð3Þ

where the value of d can range from 0 to N−1. When d=0,
the α-trimmed method regresses to traditional BP. If we
choose d=N−1, it becomes a median BP. This technique is

often used to remove mixed noise in digital image processing
[16].

PCA-Based Method

The PCA method is an eigenvector-based multivariate analy-
sis technique, and it provides an orthogonal linear transforma-
tion from n-dimensional coordinate system to a newm-dimen-
sional coordinate system (m<n). It is performed in such a way
that a truncation of an input vector in the new coordinate
system only causes a minimal square error, i.e., a minimal
loss of information [17]. PCA has been served as a standard
tool for a large diversity of data analysis and information
visualization to extract the most important information [16,
17]. In our PCA-based BP implementation, the first principal
eigenvectors of the matrix being composed of the N back-
projected pixel values were calculated as the reconstructed
image.

Digital Breast Tomosynthesis Prototype System

A new multi-beam breast tomosynthesis prototype system,
invented by Zhou et al. [18], was used for our phantom
experiments. The system used static multi-beam X-ray emit-
ters as the sources and controlled the X-ray sources by elec-
tronic switches.

In the investigated prototype system, 15 X-ray sources,
operated at a voltage of 30 kV, were linearly fixed along a
parallel line above the detector, as illustrated in Fig. 1. In this
paper, the detector had a pixel pitch of 140 μm. The image
size was 2048×1664. The distance from the X-ray tubes to the

Fig. 2 Projection geometry. R,
the location of X-ray source; A, a
point on the reconstruction plane
S; B, projection location of A on
the detector plane
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detector (SID) was around 690 mm. The total view angle θ is
equal to 15°. In all the following experiments, dwas set to be 4
in order to reduce noise as well as to keep the detected pixel
intensity.

Experiments

Breast Phantom

A standard breast biopsy training phantom [19] was used in
this experiment. The phantom was composed of a proprietary
gel similar to human tissue. Dense masses and micro-
calcifications with varied sizes were embedded into the phan-
tom. To evaluate the tomosynthesis imaging of the biopsy
training breast phantom, 15 low dosage projection images at
a total exposure of 80 mAs (5.3 mAs/projection) were obtain-
ed and reconstructed by the investigated algorithms.

Masses and micro-calcifications were extracted from the
reconstructed images. The contrast-to-noise ratio (CNR) [11]
was used to quantitatively compare the reconstruction algo-
rithms based on the reconstructed regions of interest (ROI). It
was defined by

CNR ¼ μob−μbg

σbg
ð4Þ

where μob and μbg are the mean pixel values of the object
and image background, respectively, and σbg is the root mean
square noise value of pixel values in the image background.

Spherical Object Simulation

A spherical object with the radius of 0.4 mm, placed at the
height of 20 mm above the detector, was simulated and
embedded in a uniform background as the target-to-test re-
construction algorithms. The linear attenuation coefficient of
the simulated spherical object was set as 0.038/mm, which
referred to the linear attenuation coefficient of carcinoma
tissue for 30 KeV photon energy [20]. Ray tracing method
was used to model the X-ray attenuation.

Three groups of simulation were conducted to test the
response of the algorithms:

1. In the first simulation, a solid sphere was put in the center
above the detector plane, the background was uniform,
and we did not add any noise to the simulated data.

2. In the second simulation, mixed noise (Gaussian and salt-
and-pepper noise) was added to every projection image of
the first group to reveal the performance of noise removal
with the investigated reconstruction algorithms.

3. In the third simulation, a solid sphere was placed near the
boundary of the reconstruction plane. Due to limited size
of the detector, part of the sphere was projected out of the
detector. This simulation was expected to demonstrate if
the algorithms could preserve the shape of the object
when it was near the boundary and some portions of the
object could go beyond the detector when projected.

The above three BP algorithms were then applied to recon-
struct the images acquired from simulated tomosynthesis
datasets. A reconstruction plane spacing of 1 mm was used.
An in-plane line passing through the center of the sphere along
the horizontal axis and the out-of-plane line parallel to and
4mm above the in-plane were extracted to evaluate the out-of-
plane removal of the investigated reconstruction algorithms.

Noise Power Spectrum (NPS) Measurement

To measure the noise propagation in the reconstructed images
as a function of spatial frequency, noise power spectrum
(NPS)(f) was tested with the DBT prototype system. A stan-
dard phantom (47 % water and 53 % adipose equivalent) with
the equivalent distribution of attenuation and scatter radiation
in breast tissues was placed on the surface of the detector. The
projection images were acquired by our prototype systemwith
the same exposure and imaging configuration as in the biopsy
phantom experiment and reconstructed by the three investi-
gated reconstruction algorithms.

The NPS(f) investigation with the reconstruction algo-
rithms used a 1D NPS line profile method [11]. It cuts
the ROIs with 1024×1024 pixels from the reconstructed
planes with the same height above the detector. Each
ROI was evenly divided into 63 strips with a size of
1024×32 pixels. The adjacent strips were overlapped.
For each strip, a line curve fitting was used to obtain
an approximation to the true NPS. Finally, we extracted
the frequency components from each strip and formed
the smoothened NPS curves.

In our implementation, the reconstructed plane containing
the ROI for NPS(f) estimation was 45 mm above the detector.
The measurement of the 1D NPS was repeated on two exper-
iments of the phantom at the same plane and the average of the
repeated measurement was compared.

MTF Measurement

To characterize signal propagation in the investigated recon-
struction algorithms, MTF(f) was tested. We used an impulse
response simulation method [21]. In our measurement, an
impulse, located at the center of the plane which is 45.0 mm
above the detector, was computer simulated with the imaging
configuration of the prototype system. The intensities of the
X-ray projection lines which passed through the simulated
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impulse point were reduced by an amount of 1000
when forming the projection images. Impulses were
then reconstructed by the above three algorithms. In
MTF(f) calculation, the reconstructed slices 45.0 mm
above the detector were selected. FFT transform of the
slices was calculated to extract frequency components
and generate the MTF curves.

Results

Phantom Study

Figure 3 shows the reconstructed plane that is 47.0 mm above
the detector. Figure 4 shows reconstructed ROIs from tradi-
tional BP, α-trimmed BP, PCA-based BP respectively.

Fig. 3 Reconstructed slice
images of the biopsy phantom. a
Traditional BP, bα-trimmedBP, c
PCA-based BP

(a) (b) (c)

(d) (e) (f)

Fig. 4 Reconstructed regions of interest in the phantom. a, b, cMasses reconstructed by traditional BP,α-trimmed BP, and PCA-based BP, respectively.
d, e, f Microcalcifications reconstructed by traditional BP, α-trimmed BP and PCA-based BP, respectively
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All the three reconstruction algorithms were capable of
providing 3D reconstruction of the phantom with the location,
shape, and edge information. The breast phantom was com-
pressed to be around 4 cm, therefore, in the micro-calcification
cluster, not all the micro-calcification points were at the same

planes, so some got blurred. This revealed the 3D localization
of tomosynthesis reconstruction.

CNR values of the masses from Fig. 4 were 2.68, 2.81, and
2.76 for traditional BP, α-trimmed BP, PCA-based BP, respec-
tively. The α-trimmed BP shows higher conspicuity for re-
constructed objects.

(a) (b c)

(d) (e

()

() f)

(g) (h () i)

Fig. 5 In-plane and out-of-plane
line profiles of reconstructed
spheres in the three groups of
simulation. a, b, c Simulation
without noise; d, e, f simulation
with the mixed noise; g, h, i
Simulation with a near-boundary
sphere. a, d, g Reconstructed by
traditional BP; b, e, h Recon-
structed by α-trimmed BP; c, f, i
Reconstructed by PCA-based BP.
Solid lines are the ones that pass
through the center of the simulat-
ed spherical object and are in-
plane line profiles. Dotted lines
are the ones that are parallel to the
in-plane lines but 3 mm higher,
and they are out-of-plane line
profiles. X-axis represents the
pixel location. Y-axis represents
the pixel intensity. For each re-
construction algorithm, the pixel
intensities were normalized based
on the in-plane (H=20 mm)
maximum pixel intensity

Fig. 7 MTF(f) curves of different reconstruction algorithmsFig. 6 NPS(f) curves of different reconstruction algorithms
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Spherical Object Simulation

For each reconstruction algorithm (traditional BP, α-trimmed
BP, and PCA-based BP) and computer simulation, two line
profiles of normalized pixel intensities on the defined recon-
struction planes were shown in Fig. 5.

In the simulation without noise (Fig. 5a–c), results from α-
trimmed and traditional BP were quite similar. The result of
PCA-based BP had higher out-of-plane blur. Artifact spread
function (ASF) was used to evaluate the removal of out-of-
plane blur. It was the difference between the in-plane average
pixel values and out-of-plane average pixel values. ASF
values were 0.41, 0.43, and 0.36 for traditional BP, α-
trimmed BP, PCA-based BP, respectively.

In the simulation with mixed noise (Fig. 5d–f), the line
profiles of α-trimmed BP were much smoother than the ones
of traditional BP and PCA-based BP. CNR was measured for
1D in-plane line profiles and it was 0.82, 0.97, and 0.88 for
traditional BP, α-trimmed BP, and PCA-based BP,
respectively.

In the simulation with near-boundary sphere (Fig. 5g–i),α-
trimmed BP preserved the shape of near-boundary object,
while traditional BP and PCA-based BP could not reveal
ambiguities when viewing the objects near the boundary of
the reconstruction plane.

NPS Measurement

The average 1D NPS in the same selected area is shown in
Fig. 6 for the three reconstruction methods. Fifty percent of
maximum NPS(f) was 0.11, 0.11, and 0.54 for traditional BP,
α-trimmed BP, PCA-based BP, respectively. The traditional
BP and α-trimmed BP methods produced the essentially
indistinguishable NPS(f) level in the reconstructed slice.
PCA-based BP had higher spatial frequency response since
it intends to maximize the information retrieval.

MTF Measurement

The α-trimmed BP had the maximal MTF(f) for all the fre-
quencies, as shown in Fig. 7. The 10 % MTF(f) drop-off was
0.99 for traditional BP, 2.08 for α-trimmed BP, and 1.34 for
PCA-based BP.

Conclusions

Masses and micro-calcifications were revealed in the 3D
reconstructed images by the investigated reconstruction algo-
rithms, including traditional BP, α-trimmed BP, and PCA-
based BP. Among the investigated algorithms, the α-
trimmed BP has better capability to reduce noise and out-of-

plane artifact and thus improve the conspicuity of in-plane
objects. In addition, the α-trimmed BP contributes to preserve
the shape of the near-boundary object. Nevertheless, the value
ofα should be carefully selected tomaximize the performance
of the α-trimmed BP algorithm. A fixed value of α was used
for our experiments, but it may have to be tuned when being
applied in the other tomosynthesis imaging system.

FBP with theα-trimmed BP as the back projection step has
the potential to improve the image quality of reconstructed
slices. Next step, we will implement it in our FBP reconstruc-
tion algorithm. Phantom studies and clinical data will be used
to validate our new algorithm.
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